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Abstract

The use of age-to-age factors applied to cumulative
losses has been shown to produce least-squares opti-
mal reserve estimates when certain assumptions are met.
Tests of these assumptions are introduced, most of which
derive from regression diagnostic methods. Failures of
various tests lead to specific alternative methods of loss
development.
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INTRODUCTION

In his paper “Measuring the Variability of Chain Ladder
Reserve Estimates” Thomas Mack presented the assumptions
needed for least-squares optimality to be achieved by the typ-
ical age-to-age factor method of loss development (often called
“chain ladder”). Mack also introduced several tests of those as-
sumptions. His results are summarized below, and then other
tests of the assumptions are introduced. Also addressed is what
to do when the assumptions fail. Most of the assumptions, if they
fail in a particular way, imply least-squares optimality for some
alternative method.

The organization of the paper is to first show Mack’s three
assumptions and their result, then to introduce six testable im-
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plications of those assumptions, and finally to go through the
testing of each implication in detail.

PRELIMINARIES

Losses for accident year w evaluated at the end of that year
will be denoted as being as of age 0, and the first accident year in
the triangle is year 0. The notation below will be used to spec-
ify the models. Losses could be either paid or incurred. Only
development that fills out the triangle is considered. Loss devel-
opment beyond the observed data is often significant but is not
addressed here. Thus age ! will denote the oldest possible age
in the data triangle.

Notation

c(w,d): cumulative loss from accident year w as of age d
c(w,!): total loss from accident year w when end of triangle

reached
q(w,d): incremental loss for accident year w from d"1 to d
f(d): factor applied to c(w,d) to estimate q(w,d+1)
F(d): factor applied to c(w,d) to estimate c(w,!)

Assumptions

Mack showed that some specific assumptions on the process
of loss generation are needed for the chain ladder method to
be optimal. Thus if actuaries find themselves in disagreement
with one or another of these assumptions, they should look for
some other method of development that is more in harmony with
their intuition about the loss generation process. Reserving meth-
ods more consistent with other loss generation processes will be
discussed below. Mack’s three original assumptions are slightly
restated here to emphasize the task as one of predicting future in-
cremental losses. Note that the losses c(w,d) have an evaluation
date of w+d.
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1. E[q(w,d+1) # data to w+d] = f(d)c(w,d).
In words, the expected value of the incremental losses

to emerge in the next period is proportional to the to-
tal losses emerged to date, by accident year. Note that
in Mack’s definition of the chain ladder, f(d) does not
depend on w, so the factor for a given age is constant
across accident years. Note also that this formula is a
linear relationship with no constant term. As opposed to
other models discussed below, the factor applies directly
to the cumulative data, not to an estimated parameter, like
ultimate losses. For instance, the Bornhuetter-Ferguson
method assumes that the expected incremental losses are
proportional to the ultimate for the accident year, not the
emerged to date.

2. Unless v = w, c(w,d) and c(v,g) are independent for all
v, w, d and g.
This would be violated, for instance, if there were a

strong diagonal, when all years’ reserves were revised
upwards. In this case, instead of just using the chain
ladder method, most actuaries would recommend elimi-
nating these diagonals or adjusting them. Some model-
based methods for formally recognizing diagonal effects
are discussed below.

3. Var[q(w,d+1) # data to w+ d] = a[d,c(w,d)].
That is, the variance of the next increment observa-

tion is a function of the age and the cumulative losses
to date. Note that a($, $) can be any function but does not
vary by accident year. An assumption on the variance
of the next incremental losses is needed to find a least-
squares optimal method of estimating the development
factors. Different assumptions, e.g., different functions
a($, $) will lead to optimality for different methods of es-
timating the factor f. The form of a($, $) can be tested
by trying different forms, estimating the f’s, and seeing
if the variance formula holds. There will almost always
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be some function a($, $) that reasonably accords with the
observations, so the issue with this assumption is not
its validity but its implications for the estimation proce-
dure.

Results (Mack)

In essence what Mack showed is that under the above as-
sumptions the chain ladder method gives the minimum variance
unbiased linear estimator of future emergence. This gives a good
justification for using the chain ladder in that case, but the as-
sumptions need to be tested. Mack assumed that a[d,c(w,d)] =
k(d)c(w,d), that is, he assumed that the variance is proportional
to the previous cumulative loss, with possibly a different pro-
portionality factor for each age. In this case, the minimum vari-
ance unbiased estimator of c(w,!) from the triangle of data
to date w+d is F(d)c(w,d), where the age-to-ultimate factor
F(d) = [1+f(d)][1+f(d+1)] $ $ $ , and f(d) is calculated as:

f(d) =
!
w

q(w,d+1)
"!

w

c(w,d),

where the sum is over the w’s mutually available in both columns
(assuming accident years are on separate rows and ages are in
separate columns). Actuaries often use a modified chain ladder
that uses only the last n diagonals. This will be one of the al-
ternative methods to test if Mack’s assumptions fail. Using only
part of the data when all the assumptions hold will reduce the
accuracy of the estimation, however.

Extension

In general, the minimum variance unbiased f(d) is found by
minimizing!

w

[f(d)c(w,d)"q(w,d+1)]2k(d)=a[d,c(w,d)]:
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This is the usual weighted least-squares result, where the weights
are inversely proportional to the variance of the quantity be-
ing estimated. Because only proportionality, not equality, to the
variance is required, k(d) can be any convenient function of d—
usually chosen to simplify the minimization.

For example, suppose a[d,c(w,d)] = k(d)c(w,d)2. Then the
f(d) produced by the weighted least-squares procedure is the av-
erage of the individual accident year d to d+1 ratios, q(w,d+1)
=c(w,d). For a[d,c(w,d)] = k(d), each f(d) regression above is
then just standard unweighted least squares, so f(d) is the regres-
sion coefficient

#
w c(w,d)q(w,d+1)=

#
w c(w,d)

2. (See Murphy
[8].) In all these cases, f(d) is fit by a weighted regression, and
so regression diagnostics can be used to evaluate the estimation.
In the tests below just standard least-squares will be used, but in
application the variance assumption should be reviewed.

Discussion

Without going into Mack’s derivation, the optimality of the
chain ladder method is fairly intuitive from the assumptions. In
particular, the first assumption is that the expected emergence in
the next period is proportional to the losses emerged to date. If
that were so, then a development factor applied to the emerged
to date would seem highly appropriate. Testing this assump-
tion will be critical to exploring the optimality of the chain lad-
der. For instance, if the emergence were found to be a constant
plus a percent of emergence to date, then a different method
would be indicated—namely, a factor plus constant development
method. On the other hand, if the next incremental emergence
were proportional to ultimate rather than to emerged to date, a
Bornhuetter-Ferguson type approach would be more appropriate.

To test this assumption against its alternatives, the develop-
ment method that leads from each alternative needs to be fit, and
then a goodness-of-fit measure applied. This is similar to trying
a lot of methods and seeing which one you like best, but it is
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different in two respects: (1) each method tested derives from
an alternative assumption on the process of loss emergence; (2)
there is a specific goodness-of-fit test applied. Thus the fitting
is a test of the emergence patterns that the losses are subject to,
and not just a test of estimation methods.

TESTABLE IMPLICATIONS OF ASSUMPTIONS

Verifying a hypothesis involves finding as many testable im-
plications of that hypothesis as possible, and verifying that the
tests are passed. In fact a hypothesis can never be fully verified,
as there could always be some other test you haven’t thought
of. Thus the process of verification is sometimes conceived as
being really a process of attempted falsification, with the current
tentatively-accepted hypothesis being the strongest (i.e., most
easily testable) one not yet falsified. (See Popper [9].) The as-
sumptions (1)–(3) are not directly testable, but they have testable
implications. Thus they can be falsified if any of the implications
are found not to hold, which would mean that the optimality
of the chain ladder method could not be shown for the data in
question. Holding up under all of these tests would increase the
actuary’s confidence in the hypothesis, still recognizing that no
hypothesis can ever be fully verified. Some of the testable im-
plications are:

1. Significance of factor f(d).

2. Superiority of factor assumption to alternative emer-
gence patterns such as:

(a) linear with constant: E[q(w,d+1) # data to w+d] =
f(d)c(w,d) +g(d);

(b) factor times parameter: E[q(w,d+1) # data to w+d]
= f(d)h(w);

(c) including calendar year effect: E[q(w,d+1) # data to
w+d] = f(d)h(w)g(w+ d).
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Note that in these examples the notation has changed
slightly so that f(d) is a factor used to estimate q(w,
d+1), but not necessarily applied to c(w,d). These al-
ternative emergence models can be tested by goodness
of fit, controlling for number of parameters.

3. Linearity of model: look at residuals as a function of
c(w,d).

4. Stability of factor: look at residuals as a function of time.

5. No correlation among columns.

6. No particularly high or low diagonals.

The remainder of this paper consists of tests of these implica-
tions.

TESTING LOSS EMERGENCE—IMPLICATIONS 1 & 2

The first four of these implications are tests of assumption (1).
Standard diagnostic tests for weighted least-squares regression
can be used as measures.

Implication 1: Significance of Factors

Regression analysis produces estimates for the standard de-
viation of each parameter estimated. Usually the absolute value
of a factor is required to be at least twice its standard deviation
for the factor to be regarded as significantly different from zero.
This is a test failed by many development triangles, which means
that the chain ladder method is not optimal for those triangles.

The requirement that the factor be twice the standard devia-
tion is not a strict statistical test, but more like a level of comfort.
For the normal distribution this requirement provides that there is
only a probability of about 4.5% of getting a factor of this abso-
lute value or greater when the true factor is zero. Many analysts
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are comfortable with a factor with absolute value 1.65 times its
standard deviation, which could happen about 10% of the time by
chance alone. For heavier-tailed distributions, the same ratio of
factor to standard deviation will usually be more likely to occur
by chance. Thus, if a factor were to be considered not signifi-
cant for the normal distribution, it would probably be even less
significant for other distributions. This approach could be made
into a formal statistical test by finding the distribution that the
factors follow. The normal distribution is often satisfactory, but
it is not unusual to see some degree of positive skewness, which
would suggest the lognormal. Some of the alternative models
discussed below are easier to estimate in log form, so that is not
an unhappy finding.

It may be tempting to do the regression of cumulative on
previous cumulative and test the significance of that factor in
order to justify the use of the chain ladder. However it is only
the incrementals that are being predicted, so this would have to
be carefully interpreted. In a cumulative-to-cumulative regres-
sion, the significance of the difference of the factor from unity
is what needs to be tested. This can be done by comparing that
difference to the standard deviation of the factor, which is equiv-
alent to testing the significance of the factor in the incremental-
to-cumulative regression. Some alternative methods to try when
this assumption fails are discussed below.

Implication 2: Superiority to Alternative Emergence Patterns

If alternative emergence patterns give a better explanation of
the data triangle observed to date, then assumption (1) of the
chain ladder model is also suspect. In these cases development
based on the best-fitting emergence pattern would be a natural
option to consider. The sum of the squared errors (SSE) would be
a way to compare models (the lower the better) but this should be
adjusted to take into account the number of parameters used. Un-
fortunately it appears that there is no generally accepted method
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to make this adjustment. One possible adjustment is to compare
fits by using the SSE divided by (n"p)2, where n is the number
of observations and p is the number of parameters. More param-
eters give an advantage in fitting but a disadvantage in prediction,
so such a penalty in adjusting the residuals may be appropriate.
A more popular adjustment in recent years is to base goodness of
fit on the Akaike Information Criterion, or AIC (see Lütkepohl
[5]). For a fixed set of observations, multiplying the SSE by e2p=n

can approximate the effect of the AIC. The AIC has been criti-
cized as being too permissive of over-parameterization for large
data sets, and the Bayesian Information Criterion, or BIC, has
been suggested as an alternative. Multiplying the SSE by np=n

would rank models the same as the BIC. As a comparison, if
you have 45 observations, the improvement in SSE needed to
justify adding a 5th parameter to a 4 parameter model is about
5%, 412%, and almost 9%, respectively, for these three adjust-
ments. In the model testing below the sum of squared residuals
divided by (n"p)2 will be the test statistic, but in general the
AIC and BIC should be regarded as good alternatives.

Note again that this is not just a test of development methods
but is also a test to see what hypothetical loss generation process
is most consistent with the data in the triangle.

The chain ladder has one parameter for each age, which is
less than for the other emergence patterns listed in implication
2. This gives it an initial advantage, but if the other parameters
improve the fit enough, they overcome this advantage. In testing
the various patterns below, parameters will be fit by minimizing
the sum of squared residuals. In some cases this will require an
iterative procedure.

Alternative Emergence Pattern 1: Linear with Constant

The first alternative mentioned is just to add a constant term
to the model. This is often significant in the age 0 to age 1 stage,
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especially for highly variable and slowly reporting lines, such
as excess reinsurance. In fact, in the experience of myself and
other actuaries who have reported informally, the constant term
has often been found to be more statistically significant than the
factor itself. If the constant is significant and the factor is not, a
different development process is indicated. For instance in some
triangles earning of additional exposure could influence the 0-
to-1 development. It is important in such cases to normalize the
triangle as much as possible, e.g., by adjusting for differences
among accident years in exposure and cost levels (trend). With
these adjustments a purely additive rather than a purely multi-
plicative method could be more appropriate.

Again, the emergence assumption underlying the linear with
constant method is:

E[q(w,d+1) # data to w+ d] = f(d)c(w,d)+g(d):
If the constant is statistically significant, this emergence pattern
is more strongly supported than that underlying the chain ladder.

Alternative Emergence Pattern 2: Factor Times Parameter

The chain ladder model expresses the next period’s loss emer-
gence as a factor times losses emerged so far. An important al-
ternative, suggested by Bornhuetter and Ferguson (BF) in 1972,
is to forecast the future emergence as a factor times estimated
ultimate losses. While BF use some external measure of ultimate
losses in this process, others have tried to use the data triangle it-
self to estimate the ultimate (e.g., see Verrall [13]). In this paper,
models that estimate emerging losses as a percent of ultimate
will be called parameterized BF models, even if they differ from
the original BF method in how they estimate the ultimate losses.

The emergence pattern assumed by the parameterized BF
model is:

E[q(w,d+1) # data to w+d] = f(d)h(w):



TESTING THE ASSUMPTIONS OF AGE-TO-AGE FACTORS 817

That is, the next period expected emerged loss is a lag factor
f(d) times an accident year parameter h(w). The latter could be
interpreted as expected ultimate for the year, or at least propor-
tional to that. This model thus has a parameter for each accident
year as well as for each age (one less actually, as you can assume
the f(d)’s sum to one—which makes h(w) an estimate of ulti-
mate losses; thus multiplying all the f(d)’s, d > 0, by a constant
and dividing all the h’s by the same constant will not change
the forecasts). For reserving purposes there is even one fewer
parameter, as the age 0 losses are already in the data triangle, so
f(0) is not needed. Thus, for a complete triangle with n accident
years the BF has 2n"2 parameters, or twice the number as the
chain ladder. This will result in a penalty to goodness of fit, so
the BF has to produce much lower fit errors than the chain ladder
to give a better test statistic.

Testing the parameterized BF emergence pattern against that
of the chain ladder cannot be done just by looking at the statis-
tical significance of the parameters, as it could with the linear
plus constant method, as one is not a special case of the other.
This testing is the role of the test statistic, the sum of squared
residuals divided by the square of the degrees of freedom. If this
statistic is better for the BF model, that is evidence that the emer-
gence pattern of the BF is more applicable to the triangle being
studied. That would suggest that loss emergence for that book
can be more accurately represented as fluctuating around a pro-
portion of ultimate losses rather than a percentage of previously
emerged losses.

Stanard [10] assumed a loss generation scheme that resulted
in the expected loss emergence for each period being propor-
tional to the ultimate losses for the period. This now can be seen
to be the BF emergence pattern. Then by generating actual loss
emergence stochastically, he tested some loss development meth-
ods. The chain ladder method gave substantially larger estimation
errors for ultimate losses than his other methods, which were ba-
sically different versions of BF estimation. This illustrates how
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far off reserves can be when one reserving technique is applied
to losses that have an emergence process different from the one
underlying the technique.

A simulation in accord with the chain ladder emergence as-
sumption would generate losses at age j by multiplying the sim-
ulated emerged losses at age j"1 by a factor and then adding
a random component. In this manner the random components
influence the expected emergence at all future ages. This may
seem an unlikely way for losses to emerge, but it is for the trian-
gles that follow this emergence pattern that the chain ladder will
be optimal. The fact that Stanard used the simulation method
consistent with the BF emergence pattern, and this was not chal-
lenged by the reviewer, John Robertson, suggests that actuaries
may be more comfortable with the BF emergence assumptions
than with those of the chain ladder. Or perhaps it just means that
no one would be likely to think of simulating losses by the chain
ladder method.

An important special case of the parameterized BF was de-
veloped by some Swiss and American reinsurance actuaries at
a meeting in Cape Cod, and is sometimes called the Cape Cod
method (CC). It is given by setting h(w) to just a single h for
all accident years. CC seems to have one more parameter than
the chain ladder, namely h. However, any change in h can be
offset by inverse changes in all the f’s. CC thus has the same
number of parameters as the chain ladder, and so its fit mea-
sure is not as heavily penalized as that of BF. However a single
h requires a relatively stable level of loss exposure across ac-
cident years. Again it would be necessary to adjust for known
exposure and price level differences among accident years, if us-
ing this method. The chain ladder and BF can handle changes
in level from year to year as long as the development pattern
remains consistent.

The BF model often has too many parameters. The last few
accident years especially are left to find their own levels based
on sparse information. Reducing the number of parameters, and
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thus using more of the information in the triangle, can often yield
better predictions, especially in predicting the last few years. It
could be that losses follow the BF emergence pattern, but this is
disguised in the test statistic due to too many parameters. Thus,
testing for the alternate emergence pattern should also include
testing reduced parameter BF models.

The full BF not only assumes that losses emerge as a percent-
age of ultimate, but also that the accident years are all at different
mean levels and that each age has a different percentage of ulti-
mate losses. It could be, however, that several years in a row, or
all of them, have the same mean level. If the mean changes, there
could be a gradual transition from one level to another over a few
years. This could be modeled as a linear progression of accident
year parameters, rather than separate parameters for each year.
A similar process could govern loss emergence. For instance,
the 9th through 15th periods could all have the same expected
percentage development. Finding these relationships and incor-
porating them in the fitting process will help determine what
emergence process is generating the development.

The CC model can be considered a reduced parameter BF
model. The CC has a single ultimate value for all accident years,
while the BF has a separate value for each year. There are nu-
merous other ways to reduce the number of parameters in BF
models. Simply using a trend line through the BF ultimate loss
parameters would use just two accident year parameters in total
instead of one for each year. Another method might be to group
years using apparent jumps in loss levels and fit an h parameter
separately to each group. Within such groupings it is also possi-
ble to let each accident year’s h parameter vary somewhat from
the group average, e.g., via credibility, or to let it evolve over
time, e.g., by exponential smoothing.

Alternative Emergence Patterns Example

Table 1 shows incremental incurred losses by age for some
excess casualty reinsurance. As an initial test, the statistical sig-
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TABLE 1

INCREMENTAL INCURRED LOSSES

Age

Year 0 1 2 3 4 5 6 7 8 9
0 5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172
1 106 4,179 1,111 5,270 3,116 1,817 "103 673 535
2 3,410 5,582 4,881 2,268 2,594 3,479 649 603
3 5,655 5,900 4,211 5,500 2,159 2,658 984
4 1,092 8,473 6,271 6,333 3,786 225
5 1,513 4,932 5,257 1,233 2,917
6 557 3,463 6,926 1,368
7 1,351 5,596 6,165
8 3,133 2,262
9 2,063

TABLE 2

STATISTICAL SIGNIFICANCE OF FACTORS

0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8
a 5,113 4,311 1,687 2,061 4,064 620 777 3,724
Std. Dev. a 1,066 2,440 3,543 1,165 2,242 2,301 145 0:000
b "0:109 0.049 0.131 0.041 "0:100 0.011 "0:008 "0:197
Std. Dev. b 0:349 0.309 0.283 0.071 0:114 0.112 0:008 0:000

nificance of the factors was tested by regression of incremental
losses against the previous cumulative losses. In the regression
the constant is denoted by a and the factor by b. This provides a
test of implication 1—significance of the factor, and also one test
of implication 2—alternative emergence patterns. In this case the
alternative emergence patterns tested are factor plus constant and
constant with no factor. Here they are being tested by looking
at whether or not the factors and the constants are significantly
different from zero, rather than by any goodness-of-fit measure.

Table 2 shows the estimated parameters and their standard
deviations. As can be seen, the constants are usually statistically
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FIGURE 1

AGE 1 VS. AGE 0 LOSSES

significant (parameter nearly double its standard deviation, or
more), but the factors never are. The chain ladder assumes the
incremental losses are proportional to the previous cumulative,
which implies that the factor is significant and the constant is
not. The lack of significance of the factors and the significance
of many of the constants both suggest that the losses to emerge
at any age d+1 are not proportional to the cumulative losses
through age d. The assumptions underlying the chain ladder
model are thus not supported by this data. A constant amount
emerging for each age usually appears to be a reasonable esti-
mator, however.

Figure 1 illustrates this. A factor by itself would be a straight
line through the origin with slope equal to the development fac-
tor, whereas a constant would give a horizontal line at the height
of the constant. As an alternative, the parameterized BF model
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was fit to the triangle. As this is a non-linear model, fitting is a
little more involved. A statistical package that includes non-linear
regression could ease the estimation. A method of fitting the
parameters without such a package will be discussed, followed
by an analysis of the resulting fit.

To do the fitting, an iterative method can be used to minimize
the sum of the squared residuals, where the (w,d) residual is
[q(w,d)"f(d)h(w)]. Weighted least squares could also be used
if the variances of the residuals are not constant over the triangle.
For instance, the variances could be proportional to f(d)ph(w)q

for some values of p and q, usually 0, 1, or 2, in which case the
regression weights would be 1=f(d)ph(w)q.

A starting point for the f’s or the h’s is needed to begin the
iteration. While almost any reasonable values could be used, such
as all f’s equal to 1=n, convergence will be faster with values
likely to be in the ballpark of the final factors. A natural starting
point thus might be the implied f(d)’s from the chain ladder
method. For ages greater than 0, these are the incremental age-
to-age factors divided by the cumulative-to-ultimate factors. To
get a starting value for age 0, subtract the sum of the other factors
from unity. Starting with these values for f(d), regressions were
performed to find the h(w)’s that minimize the sum of squared
residuals (one regression for each w). These give the best h’s for
that initial set of f’s. The standard linear regression formula for
these h’s simplifies to:

h(w) =
!
d

f(d)q(w,d)
"!

d

f(d)2:

Even though that gives the best h’s for those f’s, another regres-
sion is needed to find the best f’s for those h’s. For this step the
usual regression formula gives:

f(d) =
!
w

h(w)q(w,d)
"!

w

h(w)2:
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TABLE 3

BF PARAMETERS

Age d 0 1 2 3 4 5 6 7 8 9
f(d) 1st 0.106 0.231 0.209 0.155 0.117 0.083 0.038 0.032 0.018 0.011
f(d) ult. 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009
Year w 0 1 2 3 4 5 6 7 8 9
h(w) 1st 17,401 15,729 23,942 26,365 30,390 19,813 18,592 24,154 14,639 12,733
h(w) ult. 15,982 16,501 23,562 27,269 31,587 20,081 19,032 25,155 13,219 19,413

Now the h regression can be repeated with the new f’s, etc.
This process continues until convergence occurs, i.e., until the
f’s and h’s no longer change with subsequent iterations. It may
be possible that this procedure would converge to a local rather
than the global minimum, which can be tested by using other
starting values.

Ten iterations were used in this case, but substantial conver-
gence occurred earlier. The first round of f’s and h’s and those
at convergence are in Table 3. Note that the h’s are not the final
estimates of the ultimate losses, but are used with the estimated
factors to estimate future emergence. In this case, in fact, h(0) is
less than the emerged to date. As the h’s are unique only up to a
constant of proportionality, which can be absorbed by the f’s, it
may improve presentations to set h(0) to the estimated ultimate
losses for year 0.

Standard regression assumes each observation q has the
same variance, which is to say the variance is proportional to
f(d)ph(w)q, with p= q= 0. If p= q= 1 the weighted regression
formulas become:

h(w)2 =
!
d

[q(w,d)2=f(d)]
"!

d

f(d) and

f(d)2 =
!
w

[q(w,d)2=h(w)]
"!

w

h(w):
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TABLE 4

DEVELOPMENT FACTORS

Incremental
Prior 0 to 1 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9

1.22 0.57 0.26 0.16 0.10 0.04 0.03 0.02 0.01
Ultimate

0 to 9 1 to 9 2 to 9 3 to 9 4 to 9 5 to 9 6 to 9 7 to 9 8 to 9
6.17 2.78 1.77 1.41 1.21 1.10 1.06 1.03 1.01

Incremental/Ultimate
0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009

For comparison, the development factors from the chain lad-
der are shown in Table 4. The incremental factors are the ratios
of incremental to previous cumulative. The ultimate ratios are
cumulative to ultimate. Below them are the ratios of these ratios,
which represent the portion of ultimate losses to emerge in each
period. The zeroth period shown is unity less the sum of the
other ratios. These factors were the initial iteration for the f(d)s
shown above.

Having now estimated the BF parameters, how can they be
used to test what the emergence pattern of the losses is?

A comparison of this fit to that from the chain ladder can
be made by looking at how well each method predicts the incre-
mental losses for each age after the initial one. The SSE adjusted
for number of parameters will be used as the comparison mea-
sure, where the parameter adjustment will be made by dividing
the SSE by the square of the difference between the number of
observations and the number of parameters, as discussed ear-
lier. Here there are 45 observations, as only the predicted points
count as observations. The adjusted SSE was 81,169 for the BF,
and 157,902 for the chain ladder. This shows that the emergence
pattern for the BF (emergence proportional to ultimate) is much
more consistent with this data than is the chain ladder emergence
pattern (emergence proportional to previous emerged).
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TABLE 5

FACTORS IN CC METHOD

Age d 0 1 2 3 4 5 6 7 8 9
f(d) 0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008

The CC method was also tried for this data. The iteration pro-
ceeded similarly to that for the BF, but only a single h parameter
was fit for all accident years. Now:

h=
!
w,d

f(d)q(w,d)
"!

w,d

f(d)2:

This formula for h is the same as the formula for h(w) except
the sum is taken over all w. The estimated h is 22,001, and
the final factors f are shown in Table 5. The adjusted SSE for
this fit is 75,409. Since the CC is a special case of the BF, the
unadjusted SSE is necessarily worse than that of the BF method
(in this case 59M vs. 98M), but with fewer parameters in the
CC, the adjustment makes them similar. These are close enough
that which is better depends on the adjustment chosen for extra
parameters. The BIC also favors the CC, but the AIC is better for
the BF. As is often the case, the statistics can inform decision-
making but not determine the decision.

Intermediate special cases could be fit similarly. If, for in-
stance, a single factor were sought to apply to just two accident
years, the sum would be taken over those years to estimate that
factor, etc.

This is a case where the BF has too many parameters for
prediction purposes. More parameters fit the data better but use
up information. The penalty in the fit measure adjusts for this
problem, and the penalty used finds the CC to be a somewhat
better model. Thus the data is consistent with random emergence
around an expected value that is constant over the accident years.
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TABLE 6

TERMS IN ADDITIVE CHAIN LADDER

Age d 1 2 3 4 5 6 7 8 9
g(d) 4,849.3 4,682.5 3,267.1 2,717.7 2,164.2 839.5 625.0 294.5 172.0

Again, the CC method would probably work even better for
loss ratio triangles than for loss triangles, as then a single target
ultimate value makes more sense. Adjusting loss ratios for trend
and rate level could increase this homogeneity.

In addition, an additive development was tried, as suggested
by the fact that the constant terms were significant in the origi-
nal chain ladder, even though the factors were not. The develop-
ment terms are shown in Table 6. These are just the average loss
emerged at each age. The adjusted sum of squared residuals is
75,409. This is much better than the chain ladder, which might
be expected, as the constant terms were significant in the origi-
nal significance-test regressions while the factors were not. The
additive factors in Table 6 differ from those in Table 2 because
there is no multiplicative factor in Table 6.

Is it a coincidence that the additive chain ladder gives the same
fit accuracy as the CC? Not really, in that they both estimate each
age’s loss levels with a single value. Let g(d) denote the additive
development amount for age d. As the notation suggests, this
does not vary by accident year. The CC method fits an overall h
and a factor f(d) for each age such that the estimated emergence
for age d is f(d)h. Here too the predicted development varies
by age but is a constant for each accident year. If you have
estimated the CC parameters you can just define g(d) = f(d)h.
Alternatively, if the additive method has been fit, no matter what
h is estimated, the f’s can be defined as f(d)h= g(d). As long as
the parameters are fit by least-squares they have to come out the
same: if one came out lower, you could have used the equations
in the two previous sentences to get this same lower value for
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TABLE 7

BF-CC PARAMETERS

Age d 0 1 2 3 4 5 6 7 8 9
f(d) % 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017
Year w 0 1 2 3 4 5 6 7 8 9
h(w) 14,829 14,829 20,962 25,895 30,828 20,000 20,000 20,000 20,000 20,000

the other. The two models have the same age and accident year
relationships and so will always come out the same when fit
by least-squares. They are defined differently, however, and so
other methods of estimating the parameters may come up with
separate estimates, as in Stanard [10]. In the remainder of this
paper, the models will be used interchangeably.

Finally, an intermediate BF-CC pattern was fit as an example
of the possible approaches of this type. In this case ages 1 and 2
are assumed to have the same factor, as are ages 6 and 7 and ages
8 and 9. This reduces the number of f parameters from 9 to 6.
The number of accident year parameters was also reduced: years
0 and 1 have a single parameter, as do years 5 through 9. Year 2
has its own parameter, as does year 4, but year 3 is the average
of those two. Thus there are 4 accident year parameters, and so
10 parameters in total. Any one of these can be set arbitrarily,
with the remainder adjusted by a factor, so there are really just 9.
The selections were based on consideration of which parameters
were likely not to be significantly different from each other.

The estimated factors are shown in Table 7. The factor to be
set arbitrarily was the accident year factor for the last 5 years,
which was set to 20,000. The other factors were estimated by
the same iterative regression procedure as for the BF, but the
factor constraints change the simplified regression formula. The
adjusted sum of squared residuals is 52,360, which makes it the
best approach tried. This further supports the idea that claims
emerge as a percent of ultimate for this data. It also indicates
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that the various accident years and ages are not all at different
levels. The actual and fitted values from this, the chain ladder,
and CC are in Exhibit 1. The fitted values in Exhibit 1 were
calculated as follows. For the chain ladder, the factors from Table
4 were applied to the cumulative losses implied from Table 1.
For the CC the fitted values are just the terms in Table 6. For the
BF-CC they are the products of the appropriate f and h factors
from Table 7. The parameters for all the models to this point are
summarized in Exhibit 2.

Alternative Emergence Patterns-Summary

The chain ladder assumes that future emergence for an ac-
cident year will be proportional to losses emerged to date. The
BF methods take expected emergence in each period to be a per-
centage of ultimate losses. This could be interpreted as regarding
the emerged to date to have a random component that will not
influence future development. If this is the actual emergence pat-
tern, the chain ladder method will apply factors to the random
component, and thus increase the estimation error.

The CC and additive chain ladder methods assume in effect
that years showing low losses or high losses to date will have
the same expected future dollar development. Thus a bad loss
year may differ from a good one in just a couple of emergence
periods, and have quite comparable loss emergence in all other
periods. The chain ladder and the most general form of the BF,
on the other hand, assume that a bad year will have higher emer-
gence than a good year in most periods.

The BF and chain ladder emergence patterns are not the only
ones that make sense. Some others will be reviewed when dis-
cussing diagonal effects below.

Which emergence pattern holds for a given triangle is an em-
pirical issue. Fitting parameters to the various methods and look-
ing at the significance of the parameters and the adjusted sum of
squared residuals can test this.
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FIGURE 2

RESIDUAL ANALYSIS—TESTING IMPLICATIONS 3 & 4

So far the first two of the six testable implications of the
chain ladder assumptions have been addressed. Looking at the
residuals from the fitting process can test the next two impli-
cations.

Implication 3: Test of Linearity—Residuals as Function of
Previous

Figure 2 shows a straight line fit to a curve. The residuals
can be seen to be first positive, then negative then all positive.
This pattern of residuals is indicative of a non-linear process
with a linear fit. The chain ladder model assumes the incremental
losses at each age are a linear function of the previous cumulative
losses.

A scatter plot of the incremental against the previous cumu-
lative, as in Figure 3, can be used to check linearity; looking for
this characteristic non-linear pattern (i.e., strings of positive and
negative residuals) in the residuals plotted against the previous
cumulative is equivalent. This can be tested for each age to see if
a non-linear process may be indicated. Finding this would sug-
gest that emergence is a non-linear function of losses to date. In
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FIGURE 3

Figure 3 there are no apparent strings of consecutive positive or
negative residuals, so non-linearity is not indicated.

Implication 4: Test of Stability—Residuals Over Time

If a similar pattern of sequences of high and low residuals is
found when plotted against time, instability of the factors may be
indicated. If the factors appear to be stable over time, all the acci-
dent years available should be used to calculate the development
factors, in order to reduce the effects of random fluctuations.
When the development process is unstable, the assumptions for
optimality of the chain ladder are no longer satisfied. A response
to unstable factors over time might be to use a weighted aver-
age of the available factors, with more weight going to the more
recent years, e.g., just use the last 5 diagonals. A weighted av-
erage should be used when there is a good reason for it, e.g.,
when residual analysis shows that the factors are changing, but
otherwise it will increase estimation errors by over-emphasizing
some observations and under-emphasizing others.
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FIGURE 4

2ND TO 3RD FIVE-TERM MOVING AVERAGE

Another approach to unstable development would be to ad-
just the triangle for measurable instability. For instance, Berquist
and Sherman [1] suggest testing for instability by looking for
changes in the settlement rate of claims. They measured this by
looking at the changes in the percentage of claims closed by age.
If instability is found, the triangle is adjusted to the latest pattern.
The adjusted triangle, however, should still be tested for stabil-
ity of development factors by residual analysis and as illustrated
below.

Figure 4 shows the 2nd to 3rd factor by accident year from a
large development triangle (data in Exhibit 3) along with its five-
term moving average. The moving average is the more stable of
the two lines, and is sometimes in practice called “the average of
the last five diagonals.” There is apparent movement of the factor
over time as well as a good deal of random fluctuation. There is
a period of time in which the moving average is as low as 1.1 and
other times it is as high as 1.8. This is the kind of variability that
would suggest using the average of recent diagonals instead of
the entire triangle when estimating factors. This is not suggested
due to the large fluctuations in factors, but rather because of the
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changes over time in the level around which the factors are fluc-
tuating. A lot of variability around a fixed level would in fact
suggest using all the data.

It is not clear from the data what is causing the moving av-
erage factors to drift over time. Faced with data like this, the
average of all the data would not normally be used. Grouping
accident years or taking weighted averages would be useful al-
ternatives.

The state-space model in the Verall and Zehnwirth references
provides a formal statistical treatment of the types of instability in
a data triangle. This model can be used to help analyze whether to
use all the data, or to adopt some form of weighted average that
de-emphasizes older data. It is based on comparing the degree of
instability of observations around the current mean to the degree
of instability in the mean itself over time. While this is the main
statistical model available to determine weights to apply to the
various accident years of data, a detailed discussion is beyond
the scope of this paper.

INDEPENDENCE—TESTING IMPLICATIONS 5 & 6

Implications 5 and 6 have to do with independence within the
triangle. Mack’s second assumption above is that, except for ob-
servations in the same accident year, the columns of incremental
losses need to be independent. He developed a correlation test
and a high-low diagonal test to check for dependencies. The data
may have already been adjusted for known changes in the case
reserving process. For instance, Berquist and Sherman recom-
mend looking at the difference between paid and incurred case
severity trends to determine if there has been a change in case
reserve adequacy, and if there has, adjusting the data accord-
ingly. Even after such adjustments, however, correlations may
exist within the triangle.
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TABLE 8

SAMPLE CORRELATION="1:35=(146:37&0:20)1=2 =":25
Year X = 0 to 1 Y = 1 to 2 (X"E[X])2 (Y"E[Y])2 (X"E[X])(Y"E[Y])
1 0.65 0.32 54.27 0.14 2:78
2 39.42 0.26 986.46 0.19 "13:71
3 1.64 0.54 40.70 0.02 0:98
4 1.04 0.36 48.63 0.11 2:31
5 7.76 0.66 0.07 0.00 0:01
6 3.26 0.82 22.63 0.01 "0:57
7 6.22 1.72 3.24 1.05 "1:85
8 4.14 0.89 15.01 0.04 "0:74

Average 8.02 0.70 146.37 0.20 "1:35

Implication 5: Correlation of Development Factors

Mack developed a correlation test for adjacent columns of a
development factor triangle. If a year of high emergence tends to
follow one with low emergence, then the development method
should take this into account. Another correlation test would be
to calculate the sample correlation coefficients for all pairs of
columns in the triangle, and then see how many of these are
statistically significant, say at the 10% level. The sample cor-
relation for two columns is just the sample covariance divided
by the product of the sample standard deviations for the first n
elements of both columns, where n is the length of the shorter
column. The sample correlation calculation in Table 8 shows that
for the triangle in Table 1 above, the correlation of the first two
development factors is "25%.

Letting r denote the sample correlation coefficient, define
T = r[(n"2)=(1" r2)]1=2. A significance test for the correlation
coefficient can be made by considering T to be t-distributed with
n"2 degrees of freedom. If T is greater than the t-statistic for
0.9 at n"2 degrees of freedom, for instance, then r can be con-
sidered significant at the 10% level. (See Miller and Wichern [7,
p. 214].)
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In this example, T ="0:63, which is not significant even at
the 10% level. This level of significance means that 10% of the
pairs of columns could show up as significant just by random
happenstance. A single correlation at this level would thus not
be a strong indicator of correlation within the triangle. If several
columns are correlated at the 10% level, however, there may be
a correlation problem.

To test this further, if m is the number of pairs of columns in
the triangle, the number that display significant correlation could
be considered a binomial variate in m and 0.1, which has stan-
dard deviation 0:3m1=2. Thus more than 0:1m+m1=2 significant
correlations (mean plus 3.33 standard deviations) would strongly
suggest there is actual correlation within the triangle. Here the
10% level and 3.33 standard deviations were chosen for illus-
tration. A single correlation that is significant at the 0.1% level
would also be indicative of a correlation problem, for example.

If there is such correlation, the product of development fac-
tors is not unbiased, but the relationship E[XY] = (E[X])(E[Y])+
Cov(X,Y) could be used to correct the product, where here X and
Y are development factors.

Implication 6: Significantly High or Low Diagonals

Mack’s high-low diagonal test counts the number of high and
low factors on each diagonal, and tests whether or not that is
likely to be due to chance. Here another high-low test is pro-
posed: use regression to see if any diagonal dummy variables are
significant. This test also provides alternatives in case the pure
chain ladder is rejected. An actuary will often have information
about changes in company operations that may have created a
diagonal effect. If so, this information could lead to choices of
modeling methods—e.g., whether to assume the effect is perma-
nent or temporary. The diagonal dummies can be used to measure
the effect in any case, but knowledge of company operations will
help determine how to use this effect. This is particularly so if
the effect occurs in the last few diagonals.
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A diagonal in the loss development triangle is defined by w+
d = constant. Suppose for some given data triangle, the diagonal
w+d = 7 has been estimated to be 10% higher than normal.
Then an adjusted BF estimate of a cell might be:

q(w,d) = 1:1f(d)h(w) if w+d = 7, and

q(w,d) = f(d)h(w) otherwise:

This is an example of a multiplicative diagonal effect. Additive
diagonal effects can also be estimated, using regression with di-
agonal dummies.

Age

Year 0 1 2 3

1 2 5 4
3 8 9
7 10
7

Incr. Cum. Cum. Cum. Dummy Dummy
Ages 1–3 Age 0 Age 1 Age 2 1 2

2 1 0 0 0 0
8 3 0 0 1 0
10 7 0 0 0 1
5 0 3 0 1 0
9 0 11 0 0 1
4 0 0 8 0 1

The small sample triangle of incremental losses here will be
used as an example of how to set up diagonal dummies in a chain
ladder model. The goal is to get a matrix of data in the form
needed to do a multiple regression. First the triangle (except the
first column) is strung out into a column vector. This is the de-
pendent variable, and forms the first column of the matrix above.
Then columns for the independent variables are added. The sec-
ond column is the cumulative losses at age 0 corresponding to
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the loss entries that are at age 1, and zero for the other loss en-
tries. The regression coefficient for this column would be the 0
to 1 cumulative-to-incremental factor. The next two columns are
cumulative losses at age 1 and age 2 corresponding to the age 2
and age 3 data in the first column. The last two columns are the
diagonal dummies. They pick out the elements of the last two
diagonals. The coefficients for these columns would be additive
adjustments for those diagonals, if significant.

This method of testing for diagonal effects is applicable to
many of the emergence models. In fact, if diagonal effects are
found to be significant in chain ladder models, they probably
are needed in the BF models of the same data. Thus tests of the
chain ladder vs. BF should be done with the diagonal elements
included. Some examples are given in the Appendix. Another
popular modeling approach is to consider diagonal effects to be a
measure of inflation (e.g., see Taylor [11]). In a payment triangle
this would be a natural interpretation, but a similar phenomenon
could occur in an incurred triangle. In this case the latest diagonal
effects might be projected ahead as estimates of future inflation.
An understanding of the aspects of company operations that drive
the diagonal effects would help address these issues.

This approach incorporates diagonal effects right into the
emergence model. For instance, an emergence model might be:

E[q(w,d+1) # data to w+d] = f(d)g(w+ d):
Here g(w+d) is a diagonal effect, but every diagonal has such a
factor. The usual interpretation is that g measures the cumulative
claims inflation applicable to that diagonal since the first accident
year. It would even be possible to add accident year effects h(w)
as well, e.g.,

E[q(w,d+1) # data to w+d] = f(d)h(w)g(w+d):
There are clearly too many parameters here, but a lot of them
might reasonably be set equal. For instance, the inflation might
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be the same for several years, or several accident years might
be at the same level. Note that since g is cumulative inflation, a
constant inflation level could be achieved by setting g(w+d) =
(1+ j)w+d. Then j is the only inflation parameter to be estimated.

The age and accident year parameters might also be able to be
written as trends rather than individual factors. If f(d) = (1+ i)d

and h(w) = h& (1+ k)w, then the model reduces to four parame-
ters h, i, j, and k. However it would be more usual to need more
parameters than this, possibly written as changing trends. That
is, i, j, and k might be constant for some periods, then change for
others. Note that if they are constant for all periods, the estimator
h(1+ i)d(1+ j)w+d(1+ k)w is h(1+ i+ j+ ij)d(1+ k+ j+ jk)w,
which eliminates the parameter j, as i becomes i+ j+ ij and
k becomes k+ j+ jk.

It might be better to start without the accident year trend and
keep the calendar year trend, especially if the triangle has been
normalized for accident year changes. The model for the (w,d)
cell would then be h(1+ i)d(i+ j)w+d, which has just three pa-
rameters.

As with the BF model, the parameters of models with diag-
onal trends can be estimated iteratively. With reasonable start-
ing values, fix two of the three sets of parameters, and fit the
third by least squares, and rotate until convergence is reached.
Alternatively, a non-linear search procedure could be utilized.
As an example of the simplest of these approaches, modeling
E[q(w,d+1) # data to w+d] as just 6,756(0:7785)d gives an ad-
justed sum of squares of 57,527 for the reinsurance triangle
above. This is not the best fitting model, but it is better than
some and has only two parameters h= 6,756 and i="0:2215.
Calendar year trend accounts for inflation in the time between

loss occurrence and loss settlement, which many actuaries be-
lieve has an impact on ultimate losses. Whether it is influencing
a given loss triangle can be investigated by testing for diagonal
effects.
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CONCLUSION

The first test that will quickly indicate the general type
of emergence pattern faced is the test of significance of the
cumulative-to-incremental factors at each age. This is equivalent
to testing if the cumulative-to-cumulative factors are significantly
different from unity. When this test fails, the future emergence is
not proportional to past emergence. It may be a constant amount,
or it may be proportional to ultimate losses, as in the BF pattern.

When this test is passed, the addition of an additive compo-
nent may give an even better fit. Even when the test is failed,
including an additive term may make the factor significant. In
either case the BF emergence pattern may still produce a better
fit. Reduced parameter BF models could also give better perfor-
mance, as they will be less responsive to random variation. If an
additive component is significant, then converting the triangle to
on-level loss ratios may improve the forecasts.

Tests of stability and for diagonal effects may lead to further
improvements in the model. However, if the emergence is stable,
excluding data by using only the last n diagonals will lead to
higher estimation errors on average.

An actuary might advise: “If the chain ladder doesn’t work,
try Bornhuetter-Ferguson.” This is a reasonable conclusion, with
the interpretation of “doesn’t work” to mean “fails the assump-
tions of least-squares optimality,” and “try” to mean “test the
underlying assumptions of.”
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EXHIBIT 1

COMPARATIVE FITS

Chain Ladder
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 6,101 4,705 2,846 1,912 1,350 656 580 296 172
% Error 87% 78% 217% 10% "49% "64% "3% 448% 0%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 129 2,438 1,408 1,728 1,374 632 499 257
% Error "97% 119% "73% "45% "24% "714% "26% "52%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,151 5,116 3,619 2,614 1,868 900 736
% Error "26% 5% 60% 1% "46% 39% 22%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 6,883 6,574 4,113 3,444 2,336 1,057
% Error 17% 56% "25% 60% "12% 7%
Actual 8,473 6,271 6,333 3,786 225
Fit 1,329 5,442 4,131 3,591 2,588
% Error "84% "13% "35% "5% 1,050%
Actual 4,932 5,257 1,233 2,917
Fit 1,842 3,667 3,053 2,095
% Error "63% "30% 148% "28%
Actual 3,463 6,926 1,368
Fit 678 2,287 2,856
% Error "80% "67% 109%
Actual 5,596 6,165
Fit 1,644 3,953
% Error "71% "36%
Actual 2,262
Fit 3,814
% Error 69%

CC
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 4,364 3,746 2,287 1,631 1,082 336 188 59 17
% Error 34% 42% 155% "6% "59% "82% "69% 9% "90%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 4,364 3,746 2,287 1,631 1,082 336 188 59
% Error 4% 237% "57% "48% "40% "426% "72% "89%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,364 3,746 2,287 1,631 1,082 336 188
% Error "22% "23% 1% "37% "69% "48% "69%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 4,364 3,746 2,287 1,631 1,082 336
% Error "26% "11% "58% "24% "59% "66%
Actual 8,473 6,271 6,333 3,786 225
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EXHIBIT 1

(CONTINUED)

Fit 4,364 3,746 2,287 1,631 1,082
% Error "48% "40% "64% "57% 381%
Actual 4,932 5,257 1,233 2,917
Fit 4,364 3,746 2,287 1,631
% Error "12% "29% 85% "44%
Actual 3,463 6,926 1,368
Fit 4,364 3,746 2,287
% Error 26% "46% 67%
Actual 5,596 6,165
Fit 4,364 3,746
% Error "22% "39%
Actual 2,262
Fit 4,364
% Error 93%

BF-CC
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 3,411 3,411 2,373 1,824 1,275 593 593 252 252
% Error 5% 29% 164% 5% "52% "68% "1% 367% 47%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 3,411 3,411 2,373 1,824 1,275 593 593 252
% Error "18% 207% "55% "41% "30% "676% "12% "53%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,821 4,821 3,354 2,578 1,803 838 838
% Error "14% "1% 48% "1% "48% 29% 39%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 5,956 5,956 4,143 3,185 2,227 1,036
% Error 1% 41% "25% 48% "16% 5%
Actual 8,473 6,271 6,333 3,786 225
Fit 7,090 7,090 4,932 3,792 2,651
% Error "16% 13% "22% 0% 1,078%
Actual 4,932 5,257 1,233 2,917
Fit 4,600 4,600 3,200 2,460
% Error "7% "12% 160% "16%
Actual 3,463 6,926 1,368
Fit 4,600 4,600 3,200
% Error 33% "34% 134%
Actual 5,596 6,165
Fit 4,600 4,600
% Error "18% "25%
Actual 2,262
Fit 4,600
% Error 103%
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EXHIBIT 1

(CONTINUED)

Additive with Multiplicative Diagonals and Accident Years
1 2 3 4 5 6 7 8 9

Actual 3,257 2,638 898 1,734 2,642 1,828 599 54 172
Fit 3,185 3,185 2,148 2,730 1,995 660 660 660 477
% Error "2% 21% 139% 57% "24% "64% 10% 1,122% 177%
Actual 4,179 1,111 5,270 3,116 1,817 "103 673 535
Fit 3,185 3,185 3,465 2,730 1,995 660 660 477
% Error "24% 187% "34% "12% 10% "741% "2% "11%
Actual 5,582 4,881 2,268 2,594 3,479 649 603
Fit 4,036 6,508 4,390 3,460 2,529 836 604
% Error "28% 33% 94% 33% "27% 29% 0%
Actual 5,900 4,211 5,500 2,159 2,658 984
Fit 6,508 6,508 4,390 3,460 2,529 604
% Error 10% 55% "20% 60% "5% "39%
Actual 8,473 6,271 6,333 3,786 225
Fit 5,136 5,136 3,465 2,730 1,442
% Error "39% "18% "45% "28% 541%
Actual 4,932 5,257 1,233 2,917
Fit 5,136 5,136 3,465 1,972
% Error 4% "2% 181% "32%
Actual 3,463 6,926 1,368
Fit 5,136 5,136 2,503
% Error 48% "26% 83%
Actual 5,596 6,165
Fit 5,136 3,710
% Error "8% "40%
Actual 2,262
Fit 3,710
% Error 64%
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EXHIBIT 2

SUMMARY OF PARAMETERS

0 1 2 3 4 5 6 7 8 9
BF f(d) 0.162 0.197 0.204 0.147 0.115 0.082 0.037 0.030 0.015 0.009
BF h(w) 15,982 16,501 23,562 27,269 31,587 20,081 19,032 25,155 13,219 19,413
CC f(d) 0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008
Additive
Chain

— 4,849.3 4,682.5 3,267.1 2,717.7 2,164.2 839.5 625.0 294.5 172.0

BF-CC
f(d)

— 0.230 0.230 0.160 0.123 0.086 0.040 0.040 0.017 0.017

BF-CC
h(w)

14,829 14,829 20,962 25,895 30,828 20,000 20,000 20,000 20,000 20,000

EXHIBIT 3

2ND TO 3RD FACTORS FROM LARGE TRIANGLE

2nd to 3rd' 1.81 1.60 1.41 2.29 2.25 1.38
1.36 1.07 1.60 0.89 1.42 0.99 1.01
1.03 1.02 1.35 1.21 1.28 1.51 1.17
2.00 0.98 1.21 1.24 1.79 1.32 1.48
1.51 1.01 1.51 1.06 1.60 1.10 1.11
2.20 2.00 1.50 2.20 1.19 1.28 1.52
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APPENDIX

DIAGONAL EFFECTS IN BF MODELS

As an example, a test for diagonal effects in the CCmodel was
made in the reinsurance triangle as follows. The CC is the same
as the additive chain ladder, so it can be expressed as a linear
model. This can be estimated via a single multiple regression
in which the dependent variable is the entire list of incremental
losses for ages 1 to 9 and all accident years—45 items in all.
That is, the triangle beyond age 0 is strung out into a single
vector. Age and diagonal dummy independent variables can be
established in a design matrix to pick out the right elements of
the parameter vector of age and diagonal terms to estimate each
incremental loss cell. For the additive chain ladder, the column
dummy variables will be 1 or 0, as opposed to cumulative losses
or 0 in the chain ladder example. Then the coefficient of that
column will be the additive element for the given age.

The later columns of the design matrix would be diagonal
dummies, as in the chain ladder example. By doing a multiple
linear regression for the incremental loss column in terms of
the age and diagonal dummies, additive terms by age and by
diagonal will be estimated. The regression can tell which terms
are statistically significant, and the others can be dropped from
the specification.

With the reinsurance triangle tested above, the first three di-
agonals turned out to be lower than the others, as was the last
diagonal. Also, the first two ages were not significantly different
from each other, nor were the last four. This produced a model
with five age parameters and two diagonal parameters—one for
the first three diagonals combined, and one for the last diagonal.
The parameters are shown in Table 9.

The sum of squared residuals for this model is 49,673.4 when
adjusted for seven parameters used. This is considerably better
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TABLE 9

TERMS IN ADDITIVE CHAIN LADDER WITH DIAGONAL EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1–3 Diag 9
5,569.0 5,569.0 3,739.2 2,881.8 2,361.1 993.3 993.3 993.3 993.3 "2,319:9 "984:7

than the model without diagonal effects. The multiple regression
found the diagonals to be statistically significant and adding them
to the model improved the fit.

A problem with the diagonal analysis is how to use them
in forecasting. One reason for diagonal effects is a change in
company practice, particularly in the claims handling process.
If the age effects are considered the dominant influence with
occasional distortion by diagonal effects, then including diagonal
dummy variables will give better estimates for the underlying age
terms. Then these, but not the diagonal effects, would be used in
forecasting.

Having identified the significant diagonal effects through lin-
ear regression, it may be more reasonable to convert them to
multiplicative effects through non-linear regression. The model
could be of the form:

q(w,d) = f(d)g(w+d),

where f(d) is the additive age term for age d, and g(w+ d) is
the factor for the w+dth diagonal. Again this can be estimated
iteratively by fixing the f’s to estimate the g’s by linear regres-
sion, then fixing those g’s to estimate the next iteration of f’s,
until convergence is reached. The previous model was refit with
the diagonals as factors with the result in Table 10. This had a
slightly better adjusted sum of squared residuals of 49,034.8.

Diagonal factors can be used in conjunction with accident
year factors as in:

q(w,d) = f(d)g(w+d)h(w):
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TABLE 10

ADDITIVE CHAIN LADDER WITH MULTIPLICATIVE DIAGONAL
EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1–3 Diag 9
5,692.3 5,692.3 3,823.0 2,816.1 2,416.7 672.1 672.1 672.1 672.1 .5598 .6684

TABLE 11

ADDITIVE CHAIN LADDER WITH MULTIPLICATIVE DIAGONAL
& AY EFFECTS

Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Diag 1-3 Diag 9 AY 3-4
5,135.6 5,135.6 3,464.7 2,730.1 1,995.4 660.1 660.1 660.1 660.1 .6201 .7225 1.2672

As an example, a factor was added to the above model to repre-
sent accident years 3 and 4, and the 4th age term was forced to
be the average of the 3rd and 5th. The result is in Table 11.

The adjusted sum of squared residuals came down to
44,700.9, which is considerably better than the previous best-
fitting model, and almost twice as good as in the original BF
model, which in turn was almost twice as good as the chain lad-
der. It appears that accident year effects and diagonal effects are
significant in this data. The fit is shown as the last section of
Exhibit 1. The numerous examples fit to this data were for the
sake of illustration. Some models of the types discussed may still
fit better than the particular ones shown here.


