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Abstract: This three part paper addresses the task of modelling the right
hand tail of a severity distribution. In Part I the excess ratio function is
used to de�ne a discrete sequence of loss distributions with related moments and
similar tail behavior. Part II extends this to continuous one-parameter families
and provides some examples. Part III provides the main result: that under
some reasonable conditions, each such family has a limiting distribution which
is exponential. The paper then exploits this to 1) group loss distributions based
on tail behavior and 2) promote the choice of (mixed) exponentials to model tail
behavior.

Remark 56 This is Part II of a three part paper. We assume familiarity with
Part I and continue our numbering from Part I.

4 Continuous Families of Distributions

While we introduced taking the coderived distribution as a discrete process, we
use Proposition 46 to generalize our de�nitions:

De�nition 57 For any SLDFn F and positive c 2 R with �(c)F < 1, the c-
th coderived loss distribution function of F is the LDFn G with survival
function

SG(x) =

R1
x
(y � x)c fF (y)dy

�
(c)
F

which we denote as G = eF [c]. For c < 0, the c-th coderived loss distribution
function of F is the LDFn G, if such exists, satisfyingeG[�c] = F:
The set eF [R] = n eF [c]jc 2 R such that �(c)F <1

o
is called the coderived orbit

of the loss distribution function F .
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Remark 58 It follows from this calculation or from Proposition 46 that this
agrees with the earlier de�nition of coderived loss distribution when c 2 Z. In-
deed, under either de�nition we trivially have, for any loss SLDFn F;eF [0] = FeF [1] = eF
and geF [c] = eF [c+1] for every c 2 R:
For any SLDFn F and c > 0, the c-th coderived SLDFn eF [c]exists , �

(c)
F <1.

This is consistent with the original construction S eF (x) = SF (x)
�F

. Consequently
we chose to use the formulation

S eF [c](x) =

R1
x
(y � x)c fF (y)dy

�
(c)
F

in the de�nition. For c < 0 it is sometimes useful to try the following formula

S eF [c](x) = lim
M!1

RM
x
(y � x)c fF (y)dyRM
0
ycfF (y)dy

:

For example in the case that F is a mixture of exponentials, �(c)F <1 only for
c > �1, but eF [c] exists for every c 2 R and in that special case the latter formula
works for every c 2 R.

Proposition 59 For any SLDFn F and positive constants a; c 2 R with �(c)F <
1 :

1. S eF [c](x) =
R1
0
zcfF (x+z)dz

�
(c)
F

=
c
R1
x
(y�x)c�1SF (y)dy

�
(c)
F

=
c
R1
0
zc�1SF (x+z)dz

�
(c)
F

2. f eF [c](x) =
c
R1
x
(y�x)c�1fF (y)dy

�
(c)
F

=
c
R1
0
zc�1fF (x+z)dz

�
(c)
F

3. � eF [c](x) =
R1
x
(y�x)c�1fF (y)dyR1

x
(y�x)c�1SF (y)dy

=
R1
0
zc�1fF (x+z)dzR1

0
zc�1SF (x+z)dz

Proof. The substitution z 7! x� y will be used routinely to change the lower
limit of integration between y = x and z = 0. By Proposition 11 we haveZ 1

x

(y � x)c fF (y)dy = c
Z 1

x

(y � x)c�1 SF (y)dy

and the rest is straightforward calculation. For Item 1

S eF [c](x) =

R1
x
(y � x)c fF (y)dy

�
(c)
F

=
c
R1
x
(y � x)c�1 SF (y)dy

�
(c)
F

:
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For Item 2 we di¤erentiate under the integral

f eF [c](x) = �
dS eF [c]

dx
(x)

= � d
dx

 R1
x
(y � x)c fF (y)dy

�
(c)
F

!

= �
 R1

x
d
dx ((y � x)

c
) fF (y)dy

�
(c)
F

!

=
c
R1
x
(y � x)c�1 fF (y)dy

�
(c)
F

and Item 3 follows from Items 1 and 2.
Letting B denote the beta function; we will make use of the following results

from calculusZ b

a

(x� a)p (b� x)q dx = (b� a)p+q+1B(p+ 1; q + 1) where p > �1,q > �1 and b > a

�(c)�(1� c) =
�

sin c�
where 0 < c < 1.

Proposition 60 If F is a nonvanishing SLDFn and c 2 (0; 1), then:

�
(c)
F �

(�c)eF [c]
=

c�

sin c�
and SF (x) =

R1
x
(y � x)�c f eF [c](y)dy

�
(�c)eF [c]

:

Proof. Let G = eF [c],so that eG[�c] = F . We haveR1
x
(y � x)�c fG(y)dy

�
(�c)
G

=

R1
x
(y � x)�c f eF [c](y)dy

�
(�c)
G

=

R1
x
(y � x)�c

�
c
R1
y
(z � y)c�1 fF (z)dz

�
dy

�
(c)
F �

(�c)
G

=
c

�
(c)
F �

(�c)
G

Z 1

x

Z 1

y

(y � x)�c (z � y)c�1 fF (z)dzdy

=
c

�
(c)
F �

(�c)
G

Z 1

x

Z z

x

(y � x)�c (z � y)c�1 fF (z)dydz

Letting B denote the beta function and noting that c 2 (0; 1) ) �c > �1 and
c� 1 > �1R1
x
(y � x)�c fG(y)dy

�
(�c)
G

=
c

�
(c)
F �

(�c)
G

Z 1

x

fF (z)

�Z z

x

(y � x)�c (z � y)c�1 dy
�
dz
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=
c

�
(c)
F �

(�c)
G

Z 1

x

fF (z)
�
(z � x)�c+(c�1)+1B(�c+ 1; (c� 1) + 1)

�
dz

=
cB(1� c; c)
�
(c)
F �

(�c)
G

Z 1

x

fF (z)
�
(z � x)0

�
dz

=
cB(1� c; c)
�
(c)
F �

(�c)
G

Z 1

x

fF (z)dz

=
c �
sin c�

�
(c)
F �

(�c)
G

Z 1

x

fF (z)dz

=
c�SF (x)

�
(c)
F �

(�c)
G sin c�

and letting x = 0 in the equality, it follows that

1 =

R1
0
y�cfG(y)dy

�
(�c)
G

=
c�SF (0)

�
(c)
F �

(�c)
G sin c�

=
c�

�
(c)
F �

(�c)
G sin c�

) �
(c)
F �

(�c)eF [c]
= �

(c)
F �

(�c)
G =

c�

sin c�

and further that for every x 2 [0;1)

SF (x) = S eG[�c](x) =

R1
x
(y � x)�c fG(y)dy

�
(�c)
G

=

R1
x
(y � x)�c f eF [c](y)dy

�
(�c)eF [c]

as required.
The following result generalizes Proposition 44 and shows that with the

exception of instances when the coderived distribution fails to exist, the additive
group of reals acts on the set of SLDFns under this de�nition. This vindicates
our use of the term �orbit� and gives credence to the view that this is the
�correct� way to extend the de�nition of coderived variable from discrete to
continuous.

Proposition 61 For any SLDFn F and positive constants c; d 2 R with �(c+d)F <
1, letting B denote the beta function:

1. �(d)eF [c]
=

(c+d+1)B(d+1;c+1)�
(c+d)
F

�
(c)
F

2. geF [c][d] = eF [c+d]
3. � eF [c] =

�
(c+1)
F

(c+1)�
(c)
F

4.
�
CV eF [c]

�2
=

2(c+1)�
(c)
F �

(c+2)
F

(c+2)
�
�
(c+1)
F

�2 � 1
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Proof. Note �rst that by de�nition

�
(c+d)
F S eF [c+d](x) =

Z 1

x

(y � x)c+d fF (y)dy:

On the other hand, we have

�
(d)eF [c]
SgeF [c]

[d](x) =

Z 1

x

(y � x)d f eF [c](y)dy

=

Z 1

x

(y � x)d
 
c
R1
y
(z � y)c�1 fF (z)dz

�
(c)
F

!
dy

=
c

�
(c)
F

Z 1

x

Z 1

y

(y � x)d (z � y)c�1 fF (z)dzdy

=
c

�
(c)
F

Z 1

x

Z z

x

(y � x)d (z � y)c�1 fF (z)dydz

=
c

�
(c)
F

Z 1

x

fF (z)

�Z z

x

(y � x)d (z � y)c�1 dy
�
dz

=
c

�
(c)
F

Z 1

x

fF (z)
�
(z � x)c+dB(d+ 1; c)

�
dz

=
cB(d+ 1; c)

�
(c)
F

Z 1

x

(z � x)c+d fF (z)dz

=
�(d+ 1)c�(c)

�
(c)
F �(c+ d+ 1)

Z 1

x

(z � x)c+d fF (z)dz

=
�(d+ 1)�(c+ 1)

�
(c)
F �(c+ d+ 1)

Z 1

x

(z � x)c+d fF (z)dz

=
(c+ d+ 1)�(d+ 1)�(c+ 1)

�
(c)
F (c+ d+ 1)�(c+ d+ 1)

Z 1

x

(z � x)c+d fF (z)dz

=
(c+ d+ 1)�(d+ 1)�(c+ 1)

�
(c)
F �(c+ 1 + d+ 1)

Z 1

x

(z � x)c+d fF (z)dz

=
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

Z 1

x

(z � x)c+d fF (z)dz:

Letting x = 0 we have

�
(d)eF [c]

= �
(d)eF [c]
SgeF [c]

[d](0) =
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

Z 1

0

zc+dfF (z)dz

=
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

�
(c+d)
F
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which proves Item1. For Item 2 the above equations imply

�
(d)eF [c]
SgeF [c]

[d](x) =
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

Z 1

x

(z � x)c+d fF (z)dz

=
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

�
�
(c+d)
F S eF [c+d](x)

�
which by Item 1 gives

SgeF [c]
[d](x) =

(c+ d+ 1)B(d+ 1; c+ 1)�
(c+d)
F S eF [c+d](x)

�
(d)eF [c]
�
(c)
F

= S eF [c+d](x)

) geF [c][d] = eF [c+d]:
And since

B(2; c+ 1) =
�(2)�(c+ 1)

�(c+ 3)
=

�(c+ 1)

(c+ 2)�(c+ 2)

=
�(c+ 1)

(c+ 2) (c+ 1)�(c+ 1)
=

1

(c+ 2) (c+ 1)

we see that Item 3 is just the case d = 1 of Item 1

� eF [c] = �
(1)eF [c]

=
(c+ 2)B(2; c+ 1)�

(c+1)
F

�
(c)
F

=
(c+ 2)�

(c+1)
F

(c+ 2) (c+ 1)�
(c)
F

=
�
(c+1)
F

(c+ 1)�
(c)
F

:

Finally, we have by Proposition 46 and Part 3

�
CV eF [c]

�2
= 2

��geF [c]

� eF [c]

�
� 1 = 2

�
� eF [c+1]

� eF [c]

�
� 1

= 2

0B@ �
(c+2)
F

(c+2)�
(c+1)
F

�
(c+1)
F

(c+1)�
(c)
F

1CA� 1
=

2 (c+ 1)�
(c)
F �

(c+2)
F

(c+ 2)
�
�
(c+1)
F

�2 � 1
and the proof is complete.

Proposition 62 For any non-vanishing loss SLDFn F and positive constant c
with �(c)F <1 :

�F = � eF [c] :
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Proof. We have from l�Hbopital
lim
x!1

SF (x)

S eF [c](x)
= lim

x!1

�fF (x)
�f eF [c](x)

= lim
x!1

fF (x)

f eF [c](x)

whence

1 =

�
lim
x!1

SF (x)

S eF [c](x)

��
lim
x!1

fF (x)

f eF [c](x)

��1
=

�
lim
x!1

SF (x)

S eF [c](x)

� 
lim
x!1

�
fF (x)

f eF [c](x)

��1!

=

�
lim
x!1

SF (x)

S eF [c](x)

��
lim
x!1

f eF [c](x)

fF (x)

�

= lim
x!1

SF (x)

S eF [c](x)

f eF [c](x)

fF (x)

= lim
x!1

SF (x)

fF (x)

f eF [c](x)

S eF [c](x)

= lim
x!1

� eF [c](x)

�F (x)

) �F = lim
x!1

�F (x) = lim
x!1

� eF [c](x) = � eF [c]

as required.
The relation

F � G , there exists c 2 R such that G = eF [c] , G 2 eF [R]
de�nes an equivalence relation on the class of SLDFns

F = eF (0) ) F � F

F � G) there exists c 2 R such that G = eF [c] ) F = eG[�c] ) G � F

F � G;G � H ) there exist c; d 2 R such that G = eF [c];H = eG[d]
) H = eG[d] = �̂ eF [c]�d = eF [c+d] ) F � H:

We just observed that the real-valued mapping F 7! �F is constant on
equivalence classes, i.e., orbits. In this regard we make the:

De�nition 63 For any SLDFn F and real number c set

�F (c) = lim
x!!F

R1
x
(y � x)c�1 fF (y)dy

SF (x)
:
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Remark 64 Note that for the exponential distribution F (x) = 1� e�x we have

�F (c) = lim
x!!F

R1
x
(y � x)c�1 e�ydy

e�x
= lim

x!1

Z 1

x

(y � x)c�1 e�(y�x)dy

= lim
x!1

Z 1

0

zc�1e�zdz = lim
x!1

�(c) = �(c)

which helped prompt the choice of notation.

Proposition 65 For any SLDFn F and positive constants a; c 2 R with �(c)F <
1 :

1. L eF [c](t) =
c�

(c�1)
F

t�
(c)
F

�
1� L eF [c�1](t)

�
2. � eF [c�1] =

�
(c)
F

c�
(c�1)
F

3. �Fa = a�F

4. �Fa(c) = a
1�c�F (c):

Proof. For Item 1

L eF [c](t) = E eF [c]

�
e�tX

�
=

Z 1

0

e�txf eF [c](x)dx

=

Z 1

0

e�tx

 
c
R1
x
(y � x)c�1 fF (y)dy

�
(c)
F

!
dx

=
c

�
(c)
F

Z 1

0

e�tx
�Z 1

x

(y � x)c�1 fF (y)dy
�
dx

=
c

�
(c)
F

Z 1

0

udv

where

u =

Z 1

x

(y � x)c�1 fF (y)dy = �(c�1)F S eF [c�1] and v = �
e�tx

t

and so du = ��(c�1)F f eF [c�1] :

We have

L eF [c](t) =
c

�
(c)
F

�
[uv]

1
0 �

Z 1

0

vdu

�

48

Grouping Loss Distributions by Tail Behavior Part II: Continuous Families

Casualty Actuarial Society E-Forum, Fall 2008 495



=
c

�
(c)
F

 �
�e

�tx

t

Z 1

x

(y � x)c�1 fF (y)dy
�1
0

� �
(c�1)
F

t

Z 1

0

e�txf eF [c�1](x)dx

!

=
c

�
(c)
F

 
1

t

Z 1

0

yc�1fF (y)dy �
�
(c�1)
F

t
L eF [c�1](t)

!

=
c

�
(c)
F

 
�
(c�1)
F

t
� �

(c�1)
F

t
L eF [c�1](t)

!

=
c�
(c�1)
F

t�
(c)
F

�
1� L eF [c�1](t)

�
For Item 2, invoke Item 1 and Proposition 39 applied to the LDFn eF [c�1], noting
that for any LDFn G, 0 < LG(1) < 1

L eF (t) =
1� LF (t)

�t
for t > 0

c�
(c�1)
F

t�
(c)
F

�
1� L eF [c�1](t)

�
= L eF [c](t) =

1

t� eF [c�1]

�
1� L eF [c�1](t)

�

) c�
(c�1)
F

�
(c)
F

=
1

� eF [c�1]

) � eF [c�1] =
�
(c)
F

c�
(c�1)
F

:

Item 3 follows from Proposition 48

�Fa = lim
x!!Fa

�Fa(x) = lim
x!a!F

a�F (ax) = a lim
x!!F

�F (x) = a�F :

And for Item 4

�Fa(c) = lim
x!!Fa

R !Fa
x

(y � x)c�1 fFa(y)dy
SFa(x)

= lim
x!a!F

R a!F
x

(y � x)c�1 afF (ay) dy
SF (ax)

= lim
x!a!F

a1�c
R a!F
x

(ay � ax)c�1 fF (ay) ady
SF (ax)

= a1�c lim
ax!!F

R !F
ax

(z � ax)c�1 fF (z)dz
SF (z)

= a1�c lim
y!!F

R !F
y

(z � y)c�1 fF (z)dz
SF (z)

= a1�c�F (c)

as required.
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Proposition 66 If F is an SLDFn with 0 < �F < 1 and a any positive
constant, then:

Fa 2 eF (R) , a = 1:

Proof. The ( direction is trivial. For )

Fa 2 eF (R) ) �F = �Fa = a�F

0 < �F <1) a = 1

as required.
What really prompted the notation are Items 5 and 6 of the following:

Proposition 67 For any non-vanishing SLDFn F with �nite mean and c 2 R
with �(c)F <1 :

1. �F (1) = 1

2. �F > 0) �F (2) =
1
�F

3. �F (c) = lim
x!1

R1
0
zc�1fF (z+x)dz

SF (x)

4. � eF (c) = �F (c)
5. �F�F (c+ 1) = c�F (c)

6. �F > 0 and c 2 Z) �F (c) = �
1�c
F �(c)

Proof. We clearly have

�F (1) = lim
x!!F

R !F
x

(y � x)0 fF (y)dy
SF (x)

= lim
x!!F

R !F
x

fF (y)dy

SF (x)
= lim

x!!F

SF (x)

SF (x)
= lim

x!!F
1 = 1

verifying Item 1. When �F > 0, we have from l�Hbopital and Proposition 22
�F (2) = lim

x!!F

R !F
x

(y � x)1 fF (y)dy
SF (x)

= lim
x!!F

�FRF (x)

SF (x)

= �F lim
x!!F

RF (x)

SF (x)
= �F lim

x!!F

�SF (x)
�F

�fF (x)

= lim
x!!F

SF (x)

fF (x)
= lim

x!!F

1

�F (x)
=

1

�F

proving Item 2. For Item 3, just use the change of variable z = y� x. For Item
4, we have, using Item 3

� eF (c) = lim
x!!F

R !F
0

zc�1f eF (z + x)dz
S eF (x)

= lim
x!!F

R !F
0

zc�1 SF (z+x)�F
dz

RF (x)
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=
1

�F
lim
x!!F

R !F
0

zc�1SF (z + x)dz

RF (x)

=
1

�F
lim
x!!F

d
dx

R !F
0

zc�1SF (z + x)dz
d
dxRF (x)

=
1

�F
lim
x!!F

R !F
0

zc�1 d
dx (SF (z + x)) dz
�SF (x)
�F

= lim
x!1

�
R1
0
zc�1fF (z + x)

d(z+x)
dx dz

�SF (x)

= lim
x!!F

R !F
0

zc�1fF (z + x)dz

SF (x)

= �F (c)

which establishes Item 4. For Item 5 we have

�F (c)�F (c+ 1) = � eF [c]�F (c+ 1)

= lim
x!!F

� eF [c](x)�F (c+ 1)

= lim
x!!F

f eF [c](x)

S eF [c](x)
�F (c+ 1)

= lim
x!!F

c
R !F
x

(y � x)c�1 fF (y)dyR !F
x

(y � x)c fF (y)dy
lim
x!!F

R !F
x

(y � x)c fF (y)dy
SF (x)

= c lim
x!!F

R !F
x

(y � x)c�1 fF (y)dyR !F
x

(y � x)c fF (y)dy

R !F
x

(y � x)c fF (y)dy
SF (x)

= c lim
x!!F

R !F
x

(y � x)c�1 fF (y)dy
SF (x)

= c�F (c):

And �nally, for Item 6 note that the formula holds for c = 1 and c = 2. by
Items 1 and 2. De�ne ��(c) = � c�1F �F (c);then by Item 5

��(c+ 1) = � c+1�1F �F (c+ 1)

= � cF
c�F (c)

�F
= c� c�1F �F (c)

= c��(c)

and so �� and � satisfy the same recurrence formula and agree on 1 and 2,
whence �� = � on Z, as required.

Corollary 68 If F and G are SLDFns with �nite means and �F �G > 0, then

�F (c) = �G (c) for every c 2 Z , �F = �G:
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Corollary 69 If F is an SLDFn with �nite mean and �F > 0, then

�F = 1, �F (n) = n! for every n 2 N:

Proposition 70 If F is a non-vanishing SLDFn, then for any c > 1 such that
�
(c�1)
F <1, we have:

�F (c) = (c� 1) lim
x!!F

Z !F

0

zc�2
�
SF (x+ z)

SF (x)

�
dz:

Proof. By Proposition 11 we haveZ !F

x

(y � x)c�1 fF (y)dy = (c� 1)
Z !F

x

(y � x)c�2 SF (y)dy

from which we �nd that

�F (c) = lim
x!!F

R !F
x

(y � x)c�1 fF (y)dy
SF (x)

= lim
x!!F

(c� 1)
R !F
x

(y � x)c�2 SF (y)dy
SF (x)

= (c� 1) lim
x!!F

Z !F

x

(y � x)c�2
�
SF (y)

SF (x)

�
dy

= (c� 1) lim
x!!F

Z !F

0

zc�2
�
SF (x+ z)

SF (x)

�
dz

as required.

Proposition 71 If F is a non-vanishing SLDFn with �F > 0 and is such that
for every c > 0 we have �(c)F <1 , then:

lim
x!1

f eF [c](x)

fF (x)
=
�F (c+ 1)

�
(c)
F

for every c > 0:

Proof. We have

f eF [c](x) =
c
R1
x
(y � x)c�1 fF (y)dy

�
(c)
F

which implies that

f eF [c](x)

fF (x)
=

c
R1
x
(y�x)c�1fF (y)dy

�
(c)
F

fF (x)

=

c
R1
x
(y�x)c�1fF (y)dy

SF (x)

�
(c)
F

fF (x)
SF (x)

=

c
R1
x
(y�x)c�1fF (y)dy

SF (x)

�
(c)
F �F (x)
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and recalling the de�nition �F (c) = lim
x!1

R1
x
(y�x)c�1fF (y)dy

SF (x)
, we �nd from Propo-

sition 67 that

lim
x!1

f eF (c)(x)

fF (x)
=

c

�
(c)
F

lim
x!1

R1
x
(y�x)c�1fF (y)dy

SF (x)

�F (x)

=
c

�
(c)
F

lim
x!1

R1
x
(y�x)c�1fF (y)dy

SF (x)

lim
x!1

�F (x)

=
c�F (c)

�
(c)
F �F

=
�F�F (c+ 1)

�
(c)
F �F

=
�F (c+ 1)

�
(c)
F

as required.

Proposition 72 If F is an SLDFn with �nite mean, then there exist unique
a; b; c 2 R [ f1g ; a � b � 0; 1 � c such that:

(a; c) =
n
x 2 R� fa; cg j there exists SLDFn G such that G = eF [x]o

(b; c) =
n
x 2 R� fb; cg j�(x)F <1

o
:

Proof. It is clear from the above that both sets are connected subsets of R
containing (0; 1) and that they share a right hand endpoint c. It is also clear
from what has been shown that a � b. The rest follows from Proposition 23.

Proposition 73 For any SLDFns F and G with �(n)F , �(n)G < 1 for every
n 2 N and �F �G > 0, letting B denote the beta function:

G = fFa[c]for some positive constants a; c 2 R
,

a =
�G
�F

and there exists c > 0 such that �kG�
(k)
G =

�kF (c+ k + 1)B(k + 1; c+ 1)�
(c+k)
F

�
(c)
F

for every k 2 N:

Proof. Suppose that G = fFa[c]for some positive constants a; c 2 R, then
G =

�fFa�[c] = � eF [c]�
a

) �G = �fFa[c] = �( eF [c])
a

= a� eF [c] = a�F

) a =
�G
�F

and we have for every k 2 N

�
(k)
G = �

(k)fFa[c] =
(c+ k + 1)B(k + 1; c+ 1)�

(c+k)
Fa

�
(c)
Fa
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=
ac(c+ k + 1)B(k + 1; c+ 1)�

(c+k)
F

ac+k�
(c)
F

=
(c+ k + 1)B(k + 1; c+ 1)�

(c+k)
F

ak�
(c)
F

=
(c+ k + 1)B(k + 1; c+ 1)�

(c+k)
F�

�G
�F

�k
�
(c)
F

) �kG�
(k)
G =

�kF (c+ k + 1)B(k + 1; c+ 1)�
(c+k)
F

�
(c)
F

for every k 2 N

which establishes the ) direction. Conversely, letting a = �G
�F
> 0 those same

equations imply that

�kG�
(k)
G =

�kF (c+ k + 1)B(k + 1; c+ 1)�
(c+k)
F

�
(c)
F

for every k 2 N

) �
(k)
G = �

(k)fFa[c] for every k 2 N
) LG = LfFa[c] ) G = fFa[c] = eF [c]a

and the proof is complete.
This suggests that one way to decompose the set of all SLDFns F with

0 < �F < 1 is into disjoint �invariant subsets of �coordinated half planes�of
the form

(0;1) eF [R] = �(a; c) ! fFa[c]ja 2 (0;1); c 2 R� :
Such a plane is akin to an orbit under the a¢ ne-like action of the direct product
(0;1)�R of the multiplicative group of positive reals by the additive group of
reals (subgroup of a Borel subgroup of SL2(R)). The above Proposition provides
one approach for determining when two SLDFns �lie on the same plane�. Note
that while there are in�nitely many equations to check, mathematical induction
should often apply to make this doable. Also, you may need to swap roles of F
and G to deal with the possibility of c < 0. From knowledge of moments �(c)F
as c varies for some empirical data, the above formulas show how to pick (a; c)
to match the �rst two moments (�rst solve for c to match the CV

2 (c+ 1)�
(c)
F �

(c+2)
F

(c+ 2)
�
�
(c+1)
F

�2 =
�
CV eF [c]

�2
+ 1 =

�
(2)eF [c]�

�
(1)eF [c]

�2
and then determine a as the scalar adjustment to match the mean). We will
soon see how to quantify the di¤erence in the thickness of the tail between any
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two elements of such a plane. We will see that for loss variables F and G in
di¤erent planes, we need only be able to compare one pair of representatives
from the two planes to be able to compare any two elements in the union of the
two planes, including, of course, F and G.
The real-valued mapping F 7! �F de�ned on the set of SLDFns is constant

on equivalence classes, i.e., orbits. The main result of this paper is to specify
the possible structures for eF [R] as they relate with the ultimate settlement rate
�F and other metrics for the �thickness�of the tail, as that concept is de�ned
later. This part of the paper concludes with some examples. In the next and
�nal part we will see that the structure of eF (n) becomes more �monotone�,
�smooth�, and �tail-like�as n increases and make mathematically precise what
that statement means.

5 Examples

This section presents some simple examples.

Example 74 Uniform density: let F be uniformly distributed on the �nite in-
terval [a; b] where 0 � a < b:The following are well-known and readily veri�ed

F (x) =

8<:
0 x � a
x�a
b�a a � x � b
1 b � x

9=;
fF (x) =

8<:
0 x < a
1
b�a a < x < b

0 b < x

9=;
SF (x) =

8<:
1 x � a
b�x
b�a a � x � b
0 b � x

9=;
�F (x) =

8<:
0 x < a
1
b�x a < x < b

1 x � b

9=;
�F = a !F = b

�F =
b+ a

2

MF (t) =
ebt � eat
(b� a) t t > 0

Propositions 25, 38, and 46 lead to

f eF (x) =
8<:

2
a+b x < a

2(b�x)
b2�a2 a � x � b
0 x > b

9=;
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S eF (x) =
8><>:

a+b�2x
a+b x � a
(b�x)2
b2�a2 a � x � b
0 x � b

9>=>;
M eF (t) = 2e

bt � eat � (b� a)t
(b2 � a2) t2 t > 0

Observe that

MF (t) =
ebt � eat
(b� a) t =

P1
k=0

(bt)k�(at)k
k!

(b� a) t

=
1X
k=0

�
bk � ak

�
tk�1

(b� a) k!

=
1X
k=1

�
b(k�1)+1�a(k�1)+1
((k�1)+1)(b�a)

�
tk�1

(k � 1)!

=
1X
k=0

�
bk+1�ak+1
(k+1)(b�a)

�
tk

k!

) �
(k)
F =

bk+1 � ak+1
(k + 1) (b� a) =

Pk
j=0 b

jak�j

k + 1

And so from Propositions 27 and 40

�
(k)eF =

�
(k+1)
F

(k + 1)�F
=

bk+2�ak+2
(k+2)(b�a)

(k + 1)
�
b+a
2

�
= 2

bk+2 � ak+2
(k + 2) (k + 1) (b2 � a2)

� eF [k] =
�
(k+1)
F

(k + 1)�
(k)
F

=

bk+2�ak+2
(k+2)(b�a)

(k + 1)
�
bk+1�ak+1
(k+1)(b�a)

� = bk+2 � ak+2
(k + 2) (bk+1 � ak+1) :

In particular

� eF = b3 � a3
3 (b2 � a2) :
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Notice that for a > 0

� eF [k] =
bk+2 � ak+2

(k + 2) (bk+1 � ak+1)

=
b
�
b
a

�k+1 � a
(k + 2)

��
b
a

�k+1 � 1�
=

b
��

b
a

�k+1 � 1�+ b� a
(k + 2)

��
b
a

�k+1 � 1�
=

b

k + 2
+

b� a
(k + 2)

��
b
a

�k+1 � 1�
) lim
k!1

� eF [k] = 0

and we see that as k increases, the LDFns eF [k] become concentrated at the
value 0. On the other hand, if b is the maximum loss, then S eF [k](b� �) > 0 for
every k 2 N; � > 0. More generally we have:

Example 75 Consider the case when the PDF has �nite support and is bounded
away from 0, i.e., there exist a; b; �; � 2 R with 0 � a < b and 0 < � � � such
that fF (x) = 0 for x =2 [a; b] and � � fF (x) � � x 2 [a; b]. In this case we have,
for c > 0

�
�
bc+1 � ac+1

�
c+ 1

= �

bZ
a

xcdx � �(c)F � �
bZ
a

xcdx =
�
�
bc+1 � ac+1

�
c+ 1

) � eF [c] =
�
(c+1)
F

(c+ 1)�
(c)
F

�
�(bc+2�ac+2)

c+2

(c+ 1)
�
�(bc+1�ac+1)

c+1

�
=

�

� (c+ 2)

bc+2 � ac+2
bc+1 � ac+1

=
�

� (c+ 2)

a+ b

a+ b

bc+2 � ac+2
bc+1 � ac+1

=
� (a+ b)

� (c+ 2)

bc+2 � ac+2
bc+2 � ac+2 + ab(bc � ac)

<
� (a+ b)

� (c+ 2)

bc+2 � ac+2
bc+2 � ac+2

=
� (a+ b)

� (c+ 2)
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) lim
c!1

� eF [c] = 0

and again, as one would expect from the uniform density example, we see that
as c increases the LDFns eF [c] become concentrated at the value 0.
Example 76 Exponential Distribution: Let F have an exponential density with
mean � > 0. We have:

�F = �F = � CVF = 1 �F = 0; !F =1; �F =
1

�
= �F

�
(k)
F = �kk! LF (t) =

1

1 + �t
, t > � 1

�

f eF (x) = SF (x)

�
=

�
1

�

�
e�

x
� = fF (x)

) eF = F ) eF [n] = F for every n 2 N:

The converse also holds

eF = F

) g(F�) = eF� = F�:
Letting G = F�, we have G = eG and �G = �F� =

�F
� = 1. De�ne g(x) =

SG(�x) for x < 0, then

dg

dx
=

d (SG(�x))
dx

=
dSG
d(�x)

d(�x)
dx

= (�fG (�x)) (�1)

= fG (�x) = f eG (�x) = SG(�x)
�G

= SG(�x) = g(x)

dg

dx
= g(x); g(0) = 1) g(x) = ex

) SG(�y) = g(y) = ey

) SF (x) = SG 1
�

(x) = SG

�
x

�

�
= g

�
�x
�

�
= e�

x
�

and F has an exponential density with mean � > 0: More generally we have for
c > 0

SF (x) = e
� x
�

) S eF [c](x) =

R1
x
(y � x)c fF (y)dy

�
(c)
F
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=

R1
0
zcfF (z + x)dz

�
(c)
F

=

R1
0
zc e

� z+x
�

� dz

�
(c)
F

=
e�

x
�
R1
0
zc e

� z
�

� dz

�
(c)
F

=
e�

x
��

(c)
F

�
(c)
F

= e�
x
� = SF (x)

) eF [c] = F:
We have established

SF (x) = e
� x
� , eF [R] = fFg:

Note too that for any c � 0

F>c(x) = 1� SF (x+ c)
SF (c)

= 1� e
� x+c

�

e�
c
�
= 1� e

� c
� e�

x
�

e�
c
�

= 1� e�
x
� = F (x)

) F>c = F

with the converse again being true, i.e., this too characterizes the exponential
distribution. Indeed for any SLDFn G :

G>c = G for every c � 0

) !G = !G>1 = !G � 1) !G =1

) 1� SG(x) = G(x) = G>c(x) = 1�
SG(x+ c)

SG(c)
for every x; c � 0

) SG(x) =
SG(x+ c)

SG(c)
for every x; c � 0

) SG(x+ y) = SG(x)SG(y) for every x; y � 0

) fG(x+ y) = �
dSG(x+ y)

dy
= �dSG(x)SG(y)

dy

= SG(x)fG(y) + SG(y) � 0 = SG(x)fG(y) for every x; y � 0

) fG(x) = SG(x)fG(0)

) 1 =

1Z
0

fG(x)dx = fG(0)

1Z
0

SG(x)dx = fG(0)�G

fG(0) = SG(x)fG(0) =
1

�G

) fG(x) = SG(x)fG(0) =
SG(x)

�G
= f eG(x)

) G = eG) G = 1� e�
x
�G :
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Finally, we have as noted above

�F (c) = lim
x!1

R1
x
(y � x)c�1 e

� y
�

� dy

e�
x
�

= lim
x!1

Z 1

x

�1�c
�
y � x
�

�c�1
e�(

y�x
� ) dy

�

= lim
x!1

�1�c
Z 1

0

zc�1e�zdz

= lim
x!1

�1�c�(c) = �1�c�(c):

As a consequence of this example:

Proposition 77 Suppose F is an SLDFn with (�F ; !F ) = (0;1) ; �(k)F < M <

1 for every k 2 N; and for which eF [1] = lim
n!1

eF [n]exists as a pointwise limit
function and where the convergence is uniform on (0;1). Then for all x > 0 :eF [1](x) = 1� e��F x:

Proof. Let G = lim
n!1

eF [n], uniform convergence implies that G is an SLDFn

with �nite mean �G �M <1. We have

�G = lim
n!1

� eF [n] = lim
n!1

�F = �F

and eG = ^
lim
n!1

eF [n] = lim
n!1

geF [n] = lim
n!1

eF [n+1] = lim
n!1

eF [n] = G:
And so by the exponential example

G(x) = 1� e�
x
�G

) �F = �G =
1

�G
) G(x) = 1� e��F x

as required.
In practice, one would expect that far enough into the tail of a distribution

the hazard function �F would be bounded and stabilized at least to being either
nonincreasing or nondecreasing. And in that event, the hazard functions of the
higher coderived distributions eF [n] are squeezed to the constant �F . Accord-
ingly, when �F > 0, as n increases we would expect the eF [n] to converge to the
exponential density of mean � = 1

�F
. This points toward a special role for the

exponential density when �tting the tail of a loss distribution. More precisely,
we have:

Proposition 78 Suppose F is an SLDFn with �F either nonincreasing or non-
decreasing and with 0 < �F <1. Then for any x > 0 :eF [1](x) = lim

n!1
eF [n](x) = 1� e��F x:
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Proof. By Proposition 33, the assumption 0 < �F < 1 assures all moments
are �nite. Since �F is either nondecreasing or nonincreasing, Propositions 31

and 32 imply that either � � e� � ee� � :::or � � e� � ee� � :::. In either event, we
have pointwise convergence on (0; !F ) = (0;1) of the hazard function sequence
�; e�; ee�; ::: to a �invariant hazard function. As in the proof of the previous

Proposition, this entails uniform convergence of �; e�; ee�; ::: to the constant �F on
the interval [x;1), which then entails that eF [n] (y) converge to 1 � e��F y as
n!1 for any y � x, and the result follows.
Similarly, recall from Proposition 37 that lim

x;c!!F

S gF>c (x)
SF>c (x)

= 1 where F is any

SLDFn with �nite mean and 0 < �F <1. Then the idea is again that the �far
tail�of F is captured as G = F>c for c large and where we have

lim
x!!G

S eG(x)
SG(x)

= 1

) G t eG t 1� e��Gx = 1� e��(F>c)x = 1� e��F x:
This suggests that quite generally, when 0 < �F ; �F < 1, the exponential
density of mean 1

�F
appears as a natural way to model the structure of the far

tail of the distribution. We will see in the next section that analytic properties of
exponentials, and more generally mixed exponentials, again make them a natural
choice for modeling tail behavior. This strengthens the theoretical justi�cation
for the methodology used to �t tails when calculating ELFs in [2] which also
derives some general formulas for splicing tails on loss distributions.

Example 79 Pareto Density: Let F = �(�; �) have the Pareto density with
parameters � and � :

F (x) = �(�; �;x) = 1�
�

�

x+ �

��
!F =1

SF (x) =

�
�

x+ �

��

fF (x) =
���

(x+ �)
�+1 �F (x) =

���

(x+�)�+1�
�

x+�

�� =
�

x+ �
�F = 0

k 2 N and k < �) �
(k)
F =

�kk!

(�� 1) � � � (�� k)

Fa(x) = F (ax) = 1�
�

�

ax+ �

��
= 1�

 
�
a

x+ �
a

!�
= �(�;

�

a
;x)
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F>c(x) = 1� SF (x+ c)
SF (c)

= 1�

�
�

x+c+�

��
�

�
c+�

��
= 1�

�
� + c

x+ (� + c)

��
= �(�; � + c;x)

) �(�; �)>c = �(�; � + c)

f eF (x) =
�

�
x+�

��
�

(��1)
=

(�� 1) ���1

(x+ �)
(��1)+1 = f�(��1;�)(x)

) e�(�; �) = �(�� 1; �)
) for every k 2 Z, e�[k](�; �) = � �(�� k; �) k < �

@ k � �

�
:

More generally we have for c > 0

S eF [c](x) =

R1
x
(y � x)c fF (y)dyR1
0
ycfF (y)dy

=

R1
0
zcff (z + x)dzR1
0
ycfF (y)dy

=

R1
0
zc ���

(z+x+�)�+1
dzR1

0
yc ���

(y+�)�+1
dy

=

�
��

(x+�)�

� R1
0
zc �(x+�)�

(z+x+�)�+1
dz

�c�(c+1)�(��c)
�(�)

=

�
�

x+�

��
(x+�)c�(c+1)�(��c)

�(�)

�c�(c+1)�(��c)
�(�)

=

�
�

x+ �

���c

) for every c 2 R, e�(c)(�; �) = � �(�� c; �) c < �
Does not exist c � �

�
and we see that in this case the natural parametrization of the orbit eF [R]relates
linearly with the � parameter of the usual arithmetic formula and with an orbit
corresponding to a �xed value of the � parameter

eF [R] =
n eF [r]jr 2 R such that �(r)F <1

o
= f�(�� r; �)jr 2 (0; �)g
= f�(s; �)js > 0g :
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Note too that for a > 0
F (x) = �(�; �;x)

) Fa(x) = F (ax) = 1�
�

�

ax+ �

��
= 1�

 
�
a

x+ �
a

!�
= �

�
�;
�

a
;x

�

) �(�; �)a = �

�
�;
�

a

�
and we see that the �half plane� (0;1) eF [R] �invariant subset here more resem-
bles a �quadrant�and corresponds to the Pareto density �family�of distributions

(0;1)�̂(�; �)
[R]
= (0;1) eF [R] = f�(s; t)js > 0; t > 0g :

Example 80 Lognormal Density: Let F = �(�; �) have the Lognormal density
with F (x) = �

�
ln x��
�

�
. In this case:

!F =1; �F = 0 and �(n)F = en�+
n2�2

2 <1 for every n 2 N

) eF [n] exists for every n 2 N:
We see from Proposition 40 that

� eF [n] =
�
(n+1)
F

(n+ 1)�
(n)
F

=
e(n+1)�+

(n+1)2�2

2

(n+ 1) en�+
n2�2

2

=
e�+

(2n+1)�2

2

n+ 1

) lim
n!1

� eF [n] = 0:

Also, the mode of F is e���
2

> 0) @ eF [�1].
Perhaps the most useful example for the practical application of these ideas

is:

Example 81 Mixed Exponential Distribution: Let F be a mixture of exponen-
tial densities. More precisely, for some m, 1 � m � 1; and for any real weights
wi > 0 with 1 =

Pm
i=1 wi and parameters �i > 0 ordered so that �i < �i+1 and

with
Pm

i=1 wi�i < 1. Then consider the weighted mixture SLDFn variable F
= j(m; hwii ; h�ii)

j(m; hwii ; h�ii ;x) = F (x) = 1�
mX
i=1

wie
� x
�i :

SF (x) =
mX
i=1

wie
� x
�i :
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Then we have, by Proposition 49

�F =
mX
i=1

wi�i <1

S eF (x) =

Pm
i=1 wi�ie

� x
�i

�F

and generally

S eF [n](x) =

Pm
i=1 wi�

n
i e
� x
�iPm

i=1 wi�
n
i

for every n 2 Z such that
mX
i=1

wi�
n
i <1:

Proposition 9 can be used to verify that �F is decreasing provided m > 1. Indeed

m > 1)

1

�1
=
1

�1

SF (x)

SF (x)
=
1

�1

Pm
i=1 wie

� x
�i

SF (x)

=

Pm
i=1

wi
�1
e
� x
�i

SF (x)
>

Pm
i=1

wi
�i
e
� x
�i

SF (x)
=
fF (x)

SF (x)
= �F (x)

>

Pm
i=1

wi
�m
e
� x
�i

SF (x)
=

1

�m

Pm
i=1 wie

� x
�i

SF (x)
=

1

�m

SF (x)

SF (x)
=

1

�m

) 1

�1
> �F (x) >

1

�m

and similarly we �nd that

� df
dx

S(x)
=

Pm
i=1

wi
�2i
e
� x
�i

S(x)
>

1
�1

Pm
i=1

wi
�i
e
� x
�i

S(x)
=
1

�1

f(x)

S(x)
=
1

�1
�(x) > �(x)2

) 0 > �(x)2 +
df
dx

S(x)
=
d�

dx

) �F is decreasing

as asserted. Note also that Corollary 51 implies that the CVF � 1 for any mixed
exponential. In fact

m > 1) CVF > 1) � eF [n] < � eF [n+1] for every n 2 Z:

When 1 < m <1 we clearly have

mX
i=1

wi�
n
i <1 for every n 2 Z
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and it follows that eF [R] �= R as ordered sets, with no �rst or last element. From
Proposition 49 we see that

lim
n!1

� eF [n] = �m and lim
n!1

� eF [�n] = �1

and we see that for mixed exponentials there are readily identi�ed limiting dis-
tributions equal to exponential distributions

^j(m; hwii ; h�ii)
[1]

= lim
n!1

^j(m; hwii ; h�ii)
[n]

= j(1; 1; �m)

^j(m; hwii ; h�ii)
[�1]

= lim
n!1

^j(m; hwii ; h�ii)
[�n]

= j(1; 1; �1)

This also illustrates what was just established more generally for the case of
decreasing hazard functions.

The next example generalizes the mixed exponential and illustrates a con-
struction that is �dual�to that of the coderived distribution:

Example 82 Let G = G(w) be a (not necessarily continuous) LDFn with PDF

g(w) =
dG

dw

and �nite mean �G <1. As above, there is the related LDFn bG with PDF

bg(w) = wg(w)

�G

bG(w) = Z w

0

bg(z)dz = R w0 zg(z)dz
�G

which conforms with our earlier notation and as before we set

bG = bG[1]
bG[k] = \bG[k�1] for k 2 N and � bG[k�1] <1

� bG[k] =
�
(k+1)
G

�
(k)
G

:

This relates with the mixed exponential coderived distribution via a Laplace-like
transformation. De�ne

LG(x) =

Z 1

0

e�xwdG =

Z 1

0

e�xwg(w)dw

) LG(0) =

Z 1

0

g(w)dw = 1
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and the function LG resembles a survival function of a mixed exponential dis-
tribution. We set

L�(G) = 1� LG

L�(G)(x) = 1�
Z 1

0

e�xwg(w)dw

which associates with the LDFn G another LDFn F = L�(G). Now observe
that, di¤erentiating under the integral

fF (x) =
dL�(G)
dx

= �
Z 1

0

d

dx

�
e�xw

�
g(w)dw

= ��G
�G

Z 1

0

�
e�xw

�
(�w) g(w)dw

= �G

Z 1

0

e�xwbg(w)dw
= �G

�
1� L�( bG)(x)� :

Let H = L�( bG), we have for the PDF of eH = L̂�( bG)
f eH =

SH
�H

=
1�H
�H

=
�G (1�H)
�G�H

=
�G

�
1� L�( bG)�
�G�H

=
fF
�G�H

:

Now since both f eH and fF are PDFs of the LDFns eF and L( bG), respectively, it
follows that

1 =

1Z
0

f eH(x)dx =
1Z
0

fF (x)

�G�H
dx =

1Z
0

fF (x)dx

�G�H
=

1

�G�H

) �G =
1

�H
=

1

�L�( bG) ) �L�( bG) = 1

�G

) f eH = fF
) L�(G) = F = eH = L̂�( bG):
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This may be summarized in the commutative diagram:

G
L��! F

^ # "�bG L��! H

which illustrates that the rather trivially �derived� construction G ! bG of the
time-biased distribution is �dual�under L� to determining a coderived or equi-
librium distribution or equivalently to determining the excess ratio curve. We
have

L�( bG) = ^
L�
�bbG� = ^L�

� bG[2]�

) L�(G) = L̂�( bG) = ^ 
^L�
� bG[2]�! = ^L�

� bG[2]�[2]
and by induction

L�(G) = ^L�( bG[1])[1] = ^L�
� bG[2]�[2] = ::: = ^L�

� bG[n]�[n] for every n 2 N
) L̂�(G)

[�n]
= L�

� bG[n]� for every n 2 Z:

Example 83 Gamma Density: Let F = �(�; �) have the Gamma density:

fF (x) =

�
x
�

��
e�

x
�

x� (�)

�
(k)
F = �k (�+ k � 1) � � �� for � � < k 2 Z:

We see from Proposition 40 that

� eF [n] =
�
(n+1)
F

(n+ 1)�
(n)
F

=
�n+1 (�+ n) � � ��

(n+ 1) �n (�+ n� 1) � � �� =
� (�+ n)

n+ 1

) lim
n!1

� eF [n] = �:

Letting
G = eF [1] = lim

n!1
eF [n]

we have eG = G and �G = � ) G = j(1; h1i ; h�i)
and the limiting distribution is independent of � and is recognized as exponential
of mean �. Finally, observe that

L�(F )(x) = 1�
Z 1

0

e�xwfF (w)dw = 1�
Z 1

0

e�xw
�
w
�

��
e�

w
�

w� (�)
dw
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= 1�
Z 1

0

w��1e�
w
� �xw

��� (�)
dw = 1�

Z 1

0

w��1e�w(x+
1
� )

��� (�)
dw

= 1�
Z 1

0

�
u

x+ 1
�

���1
e�u�

x+ 1
�

�
��� (�)

du where u = w

�
x+

1

�

�

= 1�
�
x+ 1

�

���
��

Z 1

0

u��1e�u

� (�)
du

= 1� 1�
x+ 1

�

��
��
= 1�

�
1

�x+ 1

��
= 1�

� 1
�

x+ 1
�

��
= �(�;

1

�
;x)

and we have that L�(F ) = �(�; 1� ). And so for � > 1

f bF (x) = xfF (x)

�F
=

�
x
�

��
e�

x
�

��� (�)
=

�
x
�

��+1
e�

x
�

x�(�+ 1)
= f�(�+1;�)(x)

) bF = �(�+ 1; �)
�(�;

1

�
) = L�(F ) = L̂�( bF ) = ^L�(�(�+ 1; �)) =

^
�(�+ 1;

1

�
)

as had already been observed in Example 79 above.

Example 84 Weibull: Let F =W (� ; �) have the Weibull density:

F (x) =W (� ; �;x) = 1� e�( x� )
�

!F =1

fF (x) =
�
�
x
�

��
e�(

x
� )

�

x

�F (x) =
fF (x)

SF (x)
=
�
�
x
�

��
e�(

x
� )

�

xe�(
x
� )

�

=
�

x

�x
�

��
=
�x��1

��

�F =

8<: 0 � < 1
1
� � = 1
1 � > 1

9=;
�
(k)
F = �k�

�
1 +

k

�

�
, k > �� :
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Recall the de�nition of the incomplete gamma function:

� (�;x) =

Z x

0

t��1e�t

� (�)
dt

and de�ne

G(x) = 1� �
�
1 +

1

�
;
�x
�

���
+

xe�(
x
� )

�

��
�
1 + 1

�

�
then

dG

dx
= �
��
�
x
�

��(1+ 1
� ) e�(

x
� )

�

x�
�
1 + 1

�

� +
�x �(

x
� )

�
e
�( x� )

�

x + e�(
x
� )

�

��
�
1 + 1

�

�
=
�
�
x
�

��+1
e�(

x
� )

�

x�
�
1 + 1

�

� +
��
�
x
�

��
e�(

x
� )

�

+ e�(
x
� )

�

��
�
1 + 1

�

�
=
�
�
x
�

��
e�(

x
� )

�

��
�
1 + 1

�

� +
��
�
x
�

��
e�(

x
� )

�

+ e�(
x
� )

�

��
�
1 + 1

�

�
=
�
�
x
�

��
e�(

x
� )

�

� �
�
x
�

��
e�(

x
� )

�

+ e�(
x
� )

�

��
�
1 + 1

�

�
=

e�(
x
� )

�

��
�
1 + 1

�

� = SF (x)

�F
= f eF (x)

) G = eF = Ŵ (� ; �):
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