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Abstract: This three part paper addresses the task of modelling the right
hand tail of a severity distribution. In Part I the excess ratio function is
used to define a discrete sequence of loss distributions with related moments and
similar tail behavior. Part II extends this to continuous one-parameter families
and provides some examples. Part III provides the main result: that under
some reasonable conditions, each such family has a limiting distribution which
is exponential. The paper then exploits this to 1) group loss distributions based
on tail behavior and 2) promote the choice of (mized) exponentials to model tail
behavior.

Remark 56 This is Part II of a three part paper. We assume familiarity with
Part I and continue our numbering from Part I.

4 Continuous Families of Distributions

While we introduced taking the coderived distribution as a discrete process, we
use Proposition 46 to generalize our definitions:

Definition 57 For any SLDFn F and positive ¢ € R with ,ug,c) < o0, the c-
th coderived loss distribution function of F is the LDFn G with survival
function

Sale) = S W=D Ir&)y
Hp

which we denote as G = Fl9. Forc < 0, the c-th coderived loss distribution
function of F' is the LDFn G, if such exists, satisfying
G =F

The set FIF = {13[0”0 € R such that u%c) < oo} is called the coderived orbit
of the loss distribution function F.
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Remark 58 It follows from this calculation or from Proposition 46 that this
agrees with the earlier definition of coderived loss distribution when ¢ € Z. In-
deed, under either definition we trivially have, for any loss SLDFn F,

Fll = F
Fo_ F
and __
Fld = Flet for every ¢ € R.

For any SLDFn F and ¢ > 0, the c-th coderived SLDFn Fld egists < ,u;f) < 00.

This is consistent with the original construction Sg(x) = 5271(:) Consequently

we chose to use the formulation

oo _ C d
S (z) = fz Y m()c) fr)dy
I

in the definition. For ¢ < 0 it is sometimes useful to try the following formula

M (&
Sp(0) = tim Je W=D Sr®)dy
M=o W yefr(y)dy

For example in the case that F is a mizture of exponentials, u;f) < oo only for

c>—1, but Fle exists for every ¢ € R and in that special case the latter formula
works for every c € R.

Proposition 59 For any SLDFn F and positive constants a,c € R with M%c) <
00 :

1. S~ ((E) _ 0°° 2 fr(z+2)dz _ cfzm(yfm)"_lsp(y)dy _ cfooc ZC_lsF(I+Z)dZ
- OF © © ©
3 33 [

_cfXw—a) r(ydy _ [ 2T fr(at2)dz
2. fﬁ[c] (z) = A = —=¢ Al

~ _ Sl e ()dy [T 2 e (atz)de
3. )\F[C] (Qf) - f;o(yfx)c’lsp(y)dy = fjoc 215 (atz)dz

Proof. The substitution z — x — y will be used routinely to change the lower
limit of integration between y = x and z = 0. By Proposition 11 we have

/ (y—2) fry)dy = 0/ (y— )" Sr(y)dy
and the rest is straightforward calculation. For Item 1

Iy —2)° fr(y)dy
e
¢ [ (y— )" Srly)dy
© :
1353

Sﬁ[c} () =
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For Item 2 we differentiate under the integral

dSz

fﬁ[cl () = *% (z)

_d (f;”(y )CfF<y>dy>
o dz (e)

KEg

_ (ffmyx) >fF<y>dy>

m

cf; (y—2)"" frly)dy

and Item 3 follows from Items 1 and 2. m
Letting B denote the beta function; we will make use of the following results
from calculus

b
/(m—a)p(b—x)qu = (b—a)’"""'B(p+1,q+1) wherep>—1,g> —land b >a

Fe)rl—¢) = " where 0 < c < 1.

sin cm

Proposition 60 If F is a nonvanishing SLDFn and ¢ € (0,1), then:

Fy—2) fpay)d
© (o) _ _om SF(z):ng (y — )" fpa (y)dy

9 .u“" : (=c)
s cm /”Lﬁ[ ]

Proof. Let G = FI ,s0 that Gl = F. We have

[ =) fawdy [ (y—2)° fa(y)dy

,UJ(G_C) N(G_C)

S =) (e (=) fr(2)dz) dy
e

= o e o

- <c><c// —a) (=) fr()dydz

Letting B denote the beta function and noting that ¢ € (0,1) = —c > —1 and
c—1>-1

foo (yix)_c fG(y)dy c i * —c c—1
T — f z —x z — d dz
= o [ ([ o0 )
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. (C) / Fr(z z-x)**(‘f*l)“B(—cH,(c—1)+1)) dz
HUp MG

= CBC) cc/ fr(z z—m))dz
=§7/ e

— Cgll’l ('71'c fF
A
erSE(x)
ppe

sin e

and letting x = 0 in the equality, it follows that

Jo v faly cnSr(0) cm

,u(G °) u(c)u(c; ) gin e u(c)u(G ) gin e

(& (& (& (& CcT
PG — P -

and further that for every z € [0, c0)

o0 _ —C d o0 o —c _ . d
Sr(r) = Sgi-a(z) = L@ x(),c) foly)dy _ Jo m)(ic)fF[ 1(y)dy
€ P e

as required. m

The following result generalizes Proposition 44 and shows that with the
exception of instances when the coderived distribution fails to exist, the additive
group of reals acts on the set of SLDFns under this definition. This vindicates
our use of the term “orbit” and gives credence to the view that this is the
“correct” way to extend the definition of coderived variable from discrete to
continuous.

(c+d)

Proposition 61 For any SLDFn F' and positive constants c,d € R with py <

00, letting B denote the beta function:

. (c+d+1)B(d+1,c+1) it
c B = pg

—1d] -
2. Fld = pletd
o pletD
5 HE = Gy
- 2 . (C“"I)N(C) (c+2)
4 (CVgy)~ = D (E) L+1>)
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Proof. Note first that by definition

WS (@) = / (v — o)+ f(y)dy.

On the other hand, we have

d oo
WS ga@ = [ =0 ()

0o C > z — el z)dz
_ / (y_m)d< Jy yic) fr(2) )dy
Hp

c > > d c—1
= (y—2)" (z—y)" fr(z)dzdy
il '

c > [7 d c—1
= (y—2)"(z=y)" " fr(2)dyd

- M(Cc)/oofp(Z) ([ w-orc-n"ap)a
@ ), i

c (o]
= fr(2) ((z=2) T B(d+1,¢)) d
u;f)/m Fz(z T c)z
cB(d+1,¢) [ c+d
= —o— | (-2 fr(2)d
,u;f) /I z2— 7(2)dz

B CUES I R
B u;f)f‘(c—i-d—f—l)/x ( ) Ir(=)d

I'(d+ 1)I(c+1)

_ o . c+d d
u%)l“(c+d+1)/w (2 = 2)°" fp(2)dz

e+ d+ DDA+ DT (c+1) [ e
“%)(C+d+1)f‘(c+d+ 1)/1 ( ) fr(2)d
(c+d+1)I(d+1)T(c+1)

o c+d
= z— fr(z)dz
pOT(c+1+d+1) /x (o) fr(2)

_ (c+d+1)B@d+1lc+1) /oo (z = 2)* fr(2)dz.

0
Letting x = 0 we have
d d c+d+1)B(d+1l,c+1) [~ ,
ﬂ(~[)c] = M&[)C]S:V[d] (0) = ( ) (L ) Z +dfp(z)dz
r Flel™ ple) ﬂ%) o
B (c+d+1)B(d+1,c+1)u(c+d)
- F

i
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which proves Item1. For Item 2 the above equations imply

d+1B(d+1,c4+1) [® .

W Sate) = CEEIRLERCD [7 ooy pe)as
T Fle M%C) -

c+d+1B(d+1,c+1 d

exdr LB (1 S 0)

%

which by Item 1 gives

c+d
s  (e+d+1)B(d+1,c+ 1);4;+ )Sﬁ[c+d](x) _ s
=— 4] () = D (o = Spteta ()
Fle] MQ M%)
Fle]

— ]
= Fld = Fletd],

And since
r'2)'(c+1) I'(c+1)

T(c+3)  (c+2)T(c+2)
I(c+1) _ 1

(c+2)(c+1)T(c+1) (c+2)(c+1)

B(2,c+1)

we see that Item 3 is just the case d =1 of Item 1

1 (C+2)B(27C+ 1),u§§+1)

Rl = H Fle] — .
F u%")

c+1 c+1
(ct+2ut™ Y

(c+2)(c+)p  (c+1)pf

Finally, we have by Proposition 46 and Part 3

= Flet1
(CVﬁ[C])Q = 2 (F[C]> — ]. = 2 <MF[C+ ]> — ]_

H Elel HElel
L+
(c+2)pe™
Hg+m
(e+1)pu)

2(c+1) pi pie

(e+2) ()’

= 2 —1

and the proof is complete. m

Proposition 62 For any non-vanishing loss SLDFn F and positive constant c

with ,ug,f) <0
TEF = Tﬁ[c] .
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Proof. We have from I’Hopital

Sr(x) - —[r(z) fr(z)
li — 1 li
Pl S (@) e (1) fom (@) =0 fom (@)

whence
t = (g 75) (i 25)
-1
- () (o (22) )
- (mos ?;)(x%offf(ﬁ

Sr(x) fga(®)
e F[L](m) F(z)
=00 fF(x) SFm (z)
= lim (x)

T—00 )\F(x)

=>TFp = hm )\F(ZU) = hm Aﬁ[c] (1‘) = Tﬁ[c]

Tr—00

as required. m
The relation

F~G < there exists ¢ € R such that G = Fl9 & G € F®
defines an equivalence relation on the class of SLDFns
F=FO s F~F

F ~ G = there exists c € Rsuch that G = Fld = F=Gl"d = G~ F
F ~ G,G ~ H = there exist ¢,d € R such that G = F[C =Gl

———d

-~ H =G = (ﬁ[a}) —Fl+td 5 F o H.

We just observed that the real-valued mapping F' — 7p is constant on
equivalence classes, i.e., orbits. In this regard we make the:

Definition 63 For any SLDFn F and real number ¢ set

=) fe(y)dy
L) = IS, Sp(z) '

47

Casualty Actuarial Society E-Forum, Fall 2008 494



Grouping Loss Distributions by Tail Bebavior Part 11: Continuons Families

Remark 64 Note that for the exponential distribution F(x) =1—e™" we have

e} _ c—1 ~yd oo
Te() = lim o ZL —F = qim [ (y-2) ey
= lim 27te™*dz = lim I'(c) = T'(c)

which helped prompt the choice of notation.

Proposition 65 For any SLDFn F and positive constants a,c € R with u%c) <
00 :

(1)
L Lp(t) = CIZF(@ (1= Lpe—n (1))
33

e

2. Ppe—n =

cuﬁ,ffl)
3. TF, = aTFf
4. Tp,(c) = a'~“Tr(c).
Proof. For Item 1
Lp(t) = Epg [e7]

— /0C>O e*mfﬁ[c] (z)dx
_ /°° ot (cff" (y—=2)°" fF(y)dy> "
0

0

R e T d)d
uﬁf)/o e </x (y—=2)" fr(y)dy | do

= %/ udv
pg /0

where
u = /00 (y — x)cfl frly)dy = u%cfl)Sﬁ[c_” and v = _e—tw
P
and so du = —M%cfl)fﬁlc,l].
We have

48

Casualty Actuarial Society E-Forum, Fall 2008 495



Grouping Loss Distributions by Tail Bebavior Part 11: Continuons Families

c e7tT [0 o oo el poo .
- (o) Q‘ 7 /i (y — ) 1fF(y)dy]0 _FT/O e fitemy (x)dz

o’
00 (e—1)
c 1
= - ycflfp(y)dy*LLﬁ[cfu(t)
© \tJo t
1553
- (c) t t LF[C*H (t)
o’
F
0 )
= — Lae_y(t)
c Fle—1]
)

For Item 2, invoke Item 1 and Proposition 39 applied to the LDFn ﬁ[c_l], noting
that for any LDFn G, 0 < Lg(1) < 1

1— Lp(t)

Li(t) = — fort >0
c,u;ffl) 1
o U= Lpen(®) = Lpg(t) = o (1= Ly (1))
tug HEle-1
(e=1)
Cpp B 1
7T O T o
/'I’F F[c 1]
(c)
1
= PFe-1) = ﬁ
Clp
Item 3 follows from Proposition 48
Tp, = lim Ap (x) = lm aip(az) =a lim Ap(z) =arp.
3c—>wFa r—awp T—WwWpE

And for Item 4

WF, 7 c—1 d
L0 = Jim Jo "y Sﬂz(x)fpa(y) y

_ oy e =) afr (ay) dy
T—awp SF (CL$)
alfc fllUJF (ay_ax)c‘*lf (a )ad
= lim z r\ay)ady
T—awr SF (CL.%)
_ e gy dae 2 02)7 fr(2)d2
ar—wp Sk (Z)
e du G fr()de
N ®)

= a'"Tp(c)

as required. m

49
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Proposition 66 If F' is an SLDFn with 0 < 7p < oo and a any positive
constant, then: _
F,e F® & g=1.

Proof. The < direction is trivial. For =
F, € ﬁ(R):>TF=TFa =aTp
0 < Tp<o=a=1

as required. m
What really prompted the notation are Items 5 and 6 of the following;:

Proposition 67 For any non-vanishing SLDFn F with finite mean and ¢ € R
with ,u;f) <00

1. Tr(l) =1
2. T >0=Tp(2) =L

TF

. o zc_lf z+x)dz
3. FF(C) = a:li»Irolo 0 S'Ffz() )

4. I'z(c) =Tr(c)
5. 7pl'p(c+ 1) = cI'r(c)
6. 7p >0and c€Z = Tp(c) =75 T(c)

Proof. We clearly have

=) feyydy [T fey)dy . Sp(e)
P =00 " m TR S S e

verifying Item 1. When 75 > 0, we have from I’Hopital and Proposition 22

LTy —a) felydy - ppRe(w)
Ip(2) = lim =% =1
= pp lim R (2) = pp lim —EE
F(L’*)LUF SF(:}j) F:v—»wp —fF(CI?)
SF(.’,U) . 1 1

lim 28 -

im = —
e—wp fp(x)  z—wrdp(z) TR

proving Item 2. For Item 3, just use the change of variable z = y — x. For Item
4, we have, using Item 3

waF chlfﬁ(z +x)dz

I'= = li
WF el Sr(z+x) dz
= lim fo Hr
T—wp RF (;[;)

50
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T et Re@
0 AR S b
Hpr—wr 4 Rp(x)
_L o LT Se o)) de
W e—wr M
Hp

—Jo = 1fF(ZJrfL”)d(zﬂ)d

= lim
WF _c—1
C bm Jo &z fp(z+x)dz
T—WER SF(LL')
= Tr(c)

which establishes Item 4. For Item 5 we have

TF(C)FF(C+1) FF(C+1)

hm A (@) Tr(c+1)

- Jre (@)
_ TI—IWFSF[](x)FF(c—I—l)
T - >‘ selohy [ (=) fr(y)dy
e tm [T (y—x)c 1fF(y) dy [°F ° fr(y)dy
wmwr [ (y — ) F(y)dy
o T ey
o Catl—lg)lp SF (LE) - CFF(C).

And finally, for Item 6 note that the formula holds for ¢ = 1 and ¢ = 2. by
Items 1 and 2. Define I'*(¢) = 75 'T'r(c),then by Item 5

I'(c+1)

and so I'* and I' satisfy the same recurrence formula and agree on 1 and 2,

P (e 4 1)
c cI'r(c)

TS ZCT%_IFF(C)

TF
cI™(c)

whence I'* =T on Z, as required. m

Corollary 68 If F' and G are SLDFns with finite means and TpTg > 0, then

I'r(c) =Tq(c) for everyceZ &

Casualty Actuarial Society E-Forum, Fall 2008
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Corollary 69 If F' is an SLDFn with finite mean and Tp > 0, then

7r =14 TF(n) =n! for everyn € N.

Proposition 70 If F is a non-vanishing SLDFn, then for any ¢ > 1 such that

,u;f_l) < 00, we have:

wro o (Sp(x+2)
Tr(e) = (c—1) i =2 (2B T2 ) gz,
o= te=n iy, [ (g o
Proof. By Proposition 11 we have

[t = -0 [T -0 seiy

x

from which we find that

oy DL 2) T Se(y)dy
T—WF Sp(x)

= (=) tim o -2 ( 3)

= — im UJFz Sr(x +2) z

= (c 1)szF | ( ) )d

as required. m

Proposition 71 If F' is a non-vanishing SLDFn with T > 0 and is such that

for every ¢ > 0 we have /JEVC) < o0, then:

lim fp (z )_FF(C+1)
@ T

for every ¢ > 0.

Proof. We have

[e ] _ c—1 d
ot = e G2 IO

which implies that

c [2(y—x)° " fr(y)dy
[ (z) e
fr(z) fr(z)

c [2(y—2)°" " fr(y)dy

(c) fr(x)
Kp SI;(z)

c [2(y—2)°" " fr(y)dy
Sr(x)

1 Ap (@)

92
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and recalling the definition I'p(c) = lim [ (y=2)°" fr (v)dy

) , we find from Propo-
sition 67 that

L2 (y—2)°" fr(y)dy

i JF0 @) e 5k (@)
a—co fr(z) ple) w=o0 Ar(x)
. mILH;OI,T?"(y—n;);(’;)fF(y)dy
ue o JmAr()
~ d'p(e)  7pl'p(c+1)  Tr(c+1)
N NEVC)TF - MEFC)TF - u%‘:)

as required. m

Proposition 72 If F' is an SLDFn with finite mean, then there exist unique
a,b,c € RU{oo},a <b<0,1<c such that:

(a,c) = {33 € R —{a,c}| there exists SLDFn G such that G = ﬁm}
(b,e) = {x e R —{b,c} \,ugf) < oo}.

Proof. It is clear from the above that both sets are connected subsets of R
containing (0,1) and that they share a right hand endpoint c. It is also clear
from what has been shown that a < b. The rest follows from Proposition 23. =

Proposition 73 For any SLDFns F and G with ,ugl), ,u(Gn> < oo for every
n € N and Tp7g > 0, letting B denote the beta function:

G = ﬁ;[c]for some positive constants a,c € R

=

TG e ) Th(ctk+ DBk +1c+ Dui™
a = — and there exists ¢ > 0 such that T4py’ = @

TF M};

for every k € N.

Proof. Suppose that G = ﬁ;mfor some positive constants a,c € R, then

¢ = (7))

= TG:TF[C]:T(ﬁ[C]) =aT g = aTF
a a
TG
= a4a=—
TF

and we have for every k € N

) (et k+ DB+ 1c+ Dul™

(k) _
Ba™ = e ©
HE,

F,

93
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a(c+k+ 1)B(k +1,c+ D™

ac«ch;f)
(e k+1D)Bhk+ e+ D)l
akps)
(e k)B4 e+ Dl
- B
(%) Kp
Ele+k+1)B(k+1,c+ 1ulct™
éT’éug):TF(c—i_ +1) ((cj_ et Dy for every k € N
120

which establishes the = direction. Conversely, letting a = :—bcf > 0 those same
equations imply that
wo Thletk+ DB+ 1,c 4+ Dulst

TGHG for every k € N
(c)
HE

- Mg“) — ,u%k,)[c] for every k € N

[C] _ ﬁgc]

= LG:LF[C] éG:E
and the proof is complete. m
This suggests that one way to decompose the set of all SLDFns F' with
0 < 7p < oo is into disjoint ~invariant subsets of “coordinated half planes” of
the form

(0, 00)FI®) = {(a7c) — E[C]m € (0,00),c € R}.

Such a plane is akin to an orbit under the affine-like action of the direct product
(0, 00) x R of the multiplicative group of positive reals by the additive group of
reals (subgroup of a Borel subgroup of SLy(R)). The above Proposition provides
one approach for determining when two SLDFns “lie on the same plane”. Note
that while there are infinitely many equations to check, mathematical induction
should often apply to make this doable. Also, you may need to swap roles of F'
and G to deal with the possibility of ¢ < 0. From knowledge of moments ugff)
as ¢ varies for some empirical data, the above formulas show how to pick (a, ¢)

to match the first two moments (first solve for ¢ to match the CV

¢) (c+2) (2

2(c+ ) pPui™ 2 Fpi
T (CVpw) +1= T2
(c+2) (NF ) ('uﬁ[c})

and then determine a as the scalar adjustment to match the mean). We will
soon see how to quantify the difference in the thickness of the tail between any

o4
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two elements of such a plane. We will see that for loss variables F' and G in
different planes, we need only be able to compare one pair of representatives
from the two planes to be able to compare any two elements in the union of the
two planes, including, of course, F' and G.

The real-valued mapping F' +— 7p defined on the set of SLDFns is constant
on equivalence classes, i.e., orbits. The main result of this paper is to specify
the possible structures for F®! as they relate with the ultimate settlement rate
T and other metrics for the “thickness” of the tail, as that concept is defined
later. This part of the paper concludes with some examples. In the next and
final part we will see that the structure of F(™ becomes more “monotone”,
“smooth”, and “tail-like” as n increases and make mathematically precise what
that statement means.

5 Examples
This section presents some simple examples.

Example 74 Uniform density: let F be uniformly distributed on the finite in-
terval [a,b] where 0 < a < b.The following are well-known and readily verified

0 r<a
Flz)=4q =2 a<z<b
1 b<z
0 z<a
friz)=4 7= a<z<b
0 b<zx
1 r<a
Sp(z) =< =L a<z<b
0 b<zx
0 rz<a
Ap(z) ={ 7= a<z<b
00 T >b
aF = a wrp=2>
_ b+a
Hrp = 9
ebt_eat
Mp(t) = t>0
r(t) G—ayit '~
Propositions 25, 38, and 46 lead to
2 r<a
fr(r) = i&*f;’ a<z<b
0 z>b
55
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a+b—2x
Lo, z<a
Spl@) =9 %% a<az<b
0 >0

Observe that . .
a s} bt)" —(a
bt tooy, %

e’ —e
Mp(t) = =
r(t) (b—a)t (b—a)t
B i (b — gk) th=1
ps (b—a)k!
o b(k*l)«#l_a(k'fl)«#l tk_l
_ Z ( ((k=1)4+1)(b—a) )
= (k—1)!
o ph+l_ g k+1 b
B ((kfl)(b—a)) ¢
BEP D
k=0
N Bt g+l Z?:o bl gk—i
Pe = v (b—a)  k+1
And so from Propositions 27 and 40
ka1 ph+2 _ k42
,u(f) _ M% : _ _(:+2)(b=0)
PTG (kD) (50)
pr+2 _ gh+2
= 2
(k+2)(k+1) (b —a?)
ph+2_ gk+2
- ugwl) B (D=0 B pE+2 _ gh+2
Flk] — (k) — _ - k+1 _ k+1)°
(k+1) pp (k+1)(%) (k+2)(b ak+1)
In particular
b3 _ a3

=30 a2y
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Notice that for ¢ > 0

bk:+2 k+2

—a

K g

(k+2) (1 — aF 1)

()

a

(k+2) ()" -1)
b ((3)’c+1 - 1) tbh—a

(k+2) ()" -1)

b b—a

R g (&) =1)

= lim gz, =0
k—oo /J’F[k]

and we see that as k increases, the LDFns F* become concentrated at the

value 0. On the other hand, if b is the maximum loss, then Sz, (b —

€) > 0 for

every k € N, e > 0. More generally we have:

Example 75 Consider the case when the PDF has finite support and is bounded
away from 0, i.e., there exist a,b,a, 8 € R with 0 < a <b and 0 < a < 3 such
that fr(xz) =0 forx ¢ [a,b] and a < fr(x) < B x € [a,b]. In this case we have,

fore>0

a (bc+1 _ ac+1) b

c+1

a

= U =

:a/xcdxgu;f)gﬂ/mcdx:
a

b B (chrl _ ac+1)

c+1
it
(c+1) e

B(bn+27ac+2)
B I

B

(c + 1) (a(bc+1_ac+1)>

c+1

bc+2 _ ac+2

a(c+ 2) bett — getl

B

a+ b bc+2 _ ac+2

a(c+2)a+bbetl —qotl!

B(a+Db)

bc+2 _ ac+2
a(ec+2)bet2 — act2 4+ ab(be — a)
B (a+0b) b2 — qct?
a(c+2) bet2 — got2
B(a+b)
alc+2)
57
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= lim pg =0

CcC— 00

and again, as one would expect from the uniform density example, we see that
as ¢ increases the LDFns FI< become concentrated at the value 0.

Example 76 Ezxponential Distribution: Let F' have an exponential density with
mean p > 0. We have:
1

Wp =O0F = CVp =1 ap =0, wp=00, Ap=—=17Tp
"

1 1

= t>
14 pt 1z

SF(;E) 1 _z

f~x = = —_ e IL:f €T
) p p F(x)

=F=F=FM=F for every n € N.

i) = pFR L (t)

The converse also holds

Letting G = F),, we have G = G and hg = Hp, = HTF = 1. Define g(z) =
Sa(—x) for x <0, then

dg d(Se(—z)  dSe d(—z)
dr Cc;izz: _d(ffc) dx = (e (=2))(=1)
= folea) = fa (o) = 2600 L o o) = go)
Ha
dg

= Sp(z) = Sa, (z) = Sa (ﬁ) =g (JE) —eE

W o
and F has an exponential density with mean p > 0. More generally we have for
c>0

Sp(z)=e®
Jo (y—2)" fr(y)dy
= Sﬁ[C] (SL‘) = (©
Hp
58
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e e
B e ¥ fooo ZceILM dz e %Mgg)
W

We have established _
Sp(z)=e n o F® = (F}.

Note too that for any ¢ > 0

Sp(z + ) G K

F>Cx :17 P\ C:lfe Z :lfeuec :176 %:Fm

() SF(C) e w e n ()
= F"“=F

with the converse again being true, i.e., this too characterizes the exponential

distribution. Indeed for any SLDFn G :
G~ =G for everyc>0

= W =wes1 =wWg — 1 = wg =00
Sa(xz+ ¢
—M for every x,c >0

=1 Sa(c)

=1-S¢(z) = G(z) = G7°(x)

= Sg(z) = W for every x,c >0

= Sa(z +vy) = Sa(x)Sa(y) for every xz,y >0
= falz+y) = _dSGil? v _ _dsc(z)ysc;@)
= Sa(x)fa(y) + Sa(y) - 0= Sa(x) faly) for every x,y >0
= fa(x) = Sa()fc(0)

=1= [ fa(x)dz = f5(0) | Sq(z)dz = fa(0)uq
/ /

Je(0) = Sa(e)fe(0) = ui
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Finally, we have as noted above

[ =) Sy

I'rp(c) = lim

Tr—00

= lim

r—00

= lim p!™

r—00

"

o0
C/ 2 leT%dz
0

= lim @' =T (c) = p*~cT(c).

r—00

As a consequence of this example:

()

Proposition 77 Suppose F' is an SLDFn with (ap,wr) = (0,00), pp’ < M <
oo for every k € N, and for which FI*®! = lim Fl"exists as a pointwise limit

n—oo

function and where the convergence is uniform on (0,00). Then for all x > 0 :

Flol(g) =1 —¢7F",

Proof. Let G = lim F ("] uniform convergence implies that G is an SLDFn

n—oo

with finite mean pg < M < co. We have

TG = lim’l'i[n]: limTF:TF

n—oo

n—oo

and G = lim Fi0 = lim Finl = lim FI"Y = lim FY = @,

n—oo

And so by the exponential example

G(z)

as required. m

n—oo

=
=

n—oo n—oo
—__z
1—e rc
1
TF =TG — —
2%¢]

Gx)=1—eTF"

In practice, one would expect that far enough into the tail of a distribution
the hazard function Arp would be bounded and stabilized at least to being either
nonincreasing or nondecreasing. And in that event, the hazard functions of the
higher coderived distributions FI" are squeezed to the constant 7x. Accord-
ingly, when 77 > 0, as n increases we would expect the FI"l to converge to the
exponential density of mean p = # This points toward a special role for the
exponential density when fitting the tail of a loss distribution. More precisely,

we have:

Proposition 78 Suppose F' is an SLDFn with A\g either nonincreasing or non-
decreasing and with 0 < Tp < co. Then for any x > 0 :

Fl™¥l(z) = lim F(z) =1 — e 777,
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Proof. By Proposition 33, the assumption 0 < 7p < co assures all moments
are finite. Since A is either non(iecreasing or noniﬂpcreasimg7 Propositions 31

and 32 imply that either \ < A < h <..or \> h\ > A > .... In either event, we
have pointwise convergence on (0,wr) = (0, 00) of the hazard function sequence
/\,X,X, ... to a ~invariant hazard function. As in the proof of the previous

Proposition, this entails uniform convergence of A, X, X, ... to the constant 75 on
the interval [z, 00), which then entails that F[™ (y) converge to 1 —e~7FY as
n — oo for any y > x, and the result follows. m

. - . 5= ()
Q EF>c
Similarly, recall from Proposition 37 that zigr}d L Frae®

SLDFn with finite mean and 0 < 7p < co. Then the idea is again that the “far
tail” of F is captured as G = F~¢ for ¢ large and where we have

o S _
55 S (@)

= 1 where F'is any

S GrGrloe T =1—¢ T(F)" =] _ ¢ TFT,

This suggests that quite generally, when 0 < 7p,up < 00, the exponential
density of mean % appears as a natural way to model the structure of the far
tail of the distribution. We will see in the next section that analytic properties of
exponentials, and more generally mixed exponentials, again make them a natural
choice for modeling tail behavior. This strengthens the theoretical justification
for the methodology used to fit tails when calculating ELFs in [2] which also

derives some general formulas for splicing tails on loss distributions.

Example 79 Pareto Density: Let F' = Il(«,0) have the Pareto density with
parameters o and 6 :

F(z) = (e, 0;2) =1 — (xie)a Wp =00

Srle) = <xie)a

af®
af” (710)°T1 o
(z+6)*" r() (L)“ z+0 F
z+6

fr(z) =

*) 0" k!
keNandk < o= pp :(a_l)...(a—k)

R = Flen)=1- (" )
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_6 \°
Fro) 1SS<(+)>1((>)
= 1—(3%>a=1_[(a,9+c;m)

= I(a, 0)”° = II(cr, 0 + ¢)

0 «
40 —1)9~!
rn = ((Z)) B (a(ca+ 9><)a—1>+1 = fia-10(@)

= for every k € Z, TI™(a, 0) = { (o % k,0) Z i Z }
More generally we have for ¢ >0

Jo y—=) fF< ) v
fo yefr(y
f Cff(z—i—x)dz
fo yefr(y

0 _c a@a
fo z (z+a:+0)“+1dz

fO y+9)°‘+1 dy

S () =

0 o} a(z+6)°
((w+0)a) 0 z° (Z+x+0)rv+1 dz

0T (c+1)T'(a—c)

T'(a)
0\ (z+0)°T(c+1)T(a—c) .
B (m) T(a) _ < 0 )a ¢
- 0T (c+1)T'(a—c) -
#ﬂ( x+0

~(c {a—c,0 c<a
= for every c €R, i )(a,H) { Doe(s not ea:)ist c> }

and we see that in this case the natural parametrization of the orbit F®relates
linearly with the o parameter of the usual arithmetic formula and with an orbit
corresponding to a fized value of the 0 parameter

FER = {ﬁ[’“”r € R such that ug) < oo}

= {I(a—r0)re(0,a)}
{II(s,0)|s > 0} .
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Note too that for a >0

and we see that the “half plane” (0, oo)ﬁ'[R] ~invariant subset here more resem-
bles a “quadrant” and corresponds to the Pareto density “family” of distributions

—— [R]

(0,00)II(a,0) = (0, 00)F® = {II(s,t)|s > 0,¢ > 0} .

Example 80 Lognormal Density: Let F = A(u, o) have the Lognormal density
with F(z) = ® (m) In this case:

14

’712(72
%’1) — en,u,Jr 5

wp =00,7Fp =0 and p < oo for everyn € N

= F[" ezists for every n € N.

We see from Proposition 40 that

’ugwl) ()t <n+12>202 oht (2n+21>02
:u"v[n] = - 3, =
P )Y (1) et nt 1

n—oo

Also, the mode of F is e~ > 0=} F[-1,

Perhaps the most useful example for the practical application of these ideas
is:
Example 81 Mized FExponential Distribution: Let F' be a mixture of exponen-
tial densities. More precisely, for some m, 1 < m < oo, and for any real weights

w; >0 with 1 =3"."  w; and parameters p; > 0 ordered so that p; < p; ., and
with Y 1" wip; < oo. Then consider the weighted mizture SLDFn variable F

= A(m, (wi) , (1;))
o, se) = FGo 1= S
Sp(z) = Zwiefﬁ,
i=1
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Then we have, by Proposition 49

Hp = Zwiui<oo
™ wipe i
Spla) = Tt

and generally

Z’rn W ,U Lo~ u m
Zui=l Tt & Y for every n € Z such that Zwlﬂr < 0.

Sgm (z) =
F Ziil wllui i=1

Proposition 9 can be used to verify that A is decreasing provided m > 1. Indeed

m>1=

11 Sp(x) 1 X0 we #

Ha a 1y Sk () ; M Sr(z)
moow; ‘J'L moow; “L
Zz 1 py e Zz 1 p, e fF(x)

Sr (@) Se@) Se(@ @
Z;ﬂl;}me ’“_ 1Y we” M_ 1 Sp(x) 1
Sr(z) L SE(x) P SF(T)  fy,
= L > Ap(z) > L
p’l p‘m

and similarly we find that

—4 Z:nl,ufe i #%Z:nlzhe o flx) 1

= = — = —Az z)?
Sw - s@  ° S@ i S@) oy ) > A@
daf
:>0>)\(9c)2+%=%

= A\p is decreasing

as asserted. Note also that Corollary 51 implies that the CVg > 1 for any mized
exponential. In fact

m>1=CVr > 1= pign < fgmey for every n € Z.

When 1 < m < oo we clearly have

Zwi,u? < 00 for everyn € Z
i=1
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and it follows that FE >R g5 ordered sets, with no first or last element. From
Proposition 49 we see that

M i) = fhy, and Bm pge . =
n—oo n—oo

and we see that for mized exponentials there are readily identified limiting dis-
tributions equal to exponential distributions

—— [o0] —— [n]

J(m’ <wi> ) <Mz>) = nh_{réoj(m’ <wi> ) </J'z>) = 3(1’ 1, um)
—— [—oc] — [-n]
A(m, (wi) , (i) = lim I(m, (wi), (i) = (L1, m)

This also illustrates what was just established more generally for the case of
decreasing hazard functions.

The next example generalizes the mixed exponential and illustrates a con-
struction that is “dual” to that of the coderived distribution:

Example 82 Let G = G(w) be a (not necessarily continuous) LDFn with PDF

_dc
T dw

g(w)

and finite mean pg < co. As above, there is the related LDFn G with PDF

G(w) = /Ow 3(2)dz = fozjizw

which conforms with our earlier notation and as before we set

&= an
Gl — Glk—1] for k € N and pgp—ry < 00
_ngt
Hamw = &) -
Ha

This relates with the mized exponential coderived distribution via a Laplace-like
transformation. Define

Lo(z) = /0 T emruaG = /0 ~ e g (w)du
= Lo(0) = [ gtw)d =1

65
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and the function Lg resembles a survival function of a mized exponential dis-

tribution. We set
L(G)
LH(G)(x)

which associates with the LDFn G another LDFn F = L*(G).

1—Lg
1—/ e " g(w)dw
0

Now observe

that, differentiating under the integral

fr(z) =

2%}

dL*(G)

> d
= —/0 e (e=™) g(w)dw

_Hc

/OOO (e7™) (~w) g(w)dw
— o [ e

= 16 (1-£°@)@)).

—_~—

Let H = £*(G), we have for the PDF of H = £*(G)

fa

Su _1-H
12974 12%:1
MG(l_fU
Halm
n (1-£7(G))
IZelad:t
IF
HelH

Now since both fz and fr are PDFs of the LDFns F and E(@), respectively, it

follows that

T T fe(@)
1 = fa(x)de = dx =
[ 2

) ZfF(l")de .

B 17e1%5z4

) HalH KalH
N S S
Fr P Ha
= fg=1Ir

—_~—

= [*G)=F=H=_r*G).
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This may be summarized in the commutative diagram:

r*

G — F
Tl Trv
G £ H

which illustrates that the rather trivially “derived” construction G — G of the
time-biased distribution is “dual” under L* to determining a coderived or equi-
librium distribution or equivalently to determining the excess ratio curve. We

have o
£5(G) = L+ (5) = - (G2)

= £7(C) = £4(0) = <c/(?§;1)> = z:*/(\c;:[/?])m

and by induction

— [ —— [ —— [
L£(G)=L*(GM) =L (Gm) =..=L* (G["]) for every n € N
———[—n] ~
= L*(G) =L (G["]) for every n € Z.

Example 83 Gamma Density: Let F = T'(«,0) have the Gamma density:

() et

fr(@) = 2l (a)

ugf)=9k(a+k—1)~-~ozfor—a<k€Z.
We see from Proposition 40 that
g™ et e f(atn)
A = ) it DO (atn—1)a  ntl

= lm iz, = 0.
Letting
G = Fl*l = lim FI"

n—oo

we have

G=G and pg=0= G =1(1,(1),6))

and the limiting distribution is independent of o and is recognized as exponential
of mean 0. Finally, observe that

cE)@) =1 [T e ppwdn =1 [T e % .
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o po—leo—F—zw o ,a—1 —w(z+%)
:1—/ udwzl—/ e duw
0 a 0 0°T (@)

( )(1—1
o) (3 e*’u
= 1- "L+%1 — du where uw<x+1)
0 (x+§)9 I'(a) 0
1 (z+3) " /OO ua‘le—“du
0 o T(a)

1
= H(av év‘r)

and we have that £L*(F) =1I(a, §). And so for a > 1

o8

_afe() _(3)%eF _ (5)™ed
I(@) = brp ;af‘(a) o er‘(a—i-l) = Ir(a+1.0)(7)

= F=T(a+1,0)

1 — o

e, 3) = £(F) = £(F) = £(D(a+1,0)) = L+ 1%)

as had already been observed in Example 79 above.

Example 84 Weibull: Let F'= W (r,0) have the Weibull density:

F(z) =W(r,0;2)=1— e (5 wp=oc

8
~—
3

T(% Te_(
fF(fE): (0)
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Recall the definition of the incomplete gamma function:

xtafleft
I'(a;z z/ —dt
(@9 = ), T

and define

then
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