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Abstract: This three part paper addresses the task of modelling the right
hand tail of a severity distribution. In Part I the excess ratio function is
used to de�ne a discrete sequence of loss distributions with related moments and
similar tail behavior. Part II extends this to continuous one-parameter families
and provides some examples. Part III provides the main result: that under
some reasonable conditions, each such family has a limiting distribution which
is exponential. The paper then exploits this to 1) group loss distributions based
on tail behavior and 2) promote the choice of (mixed) exponentials to model tail
behavior.

Remark 85 This is the �nal part of a three part paper. We assume familiarity
with Parts I and II and continue our numbering from those earlier parts.

6 Orbits and Tail Behavior

We have seen that the orbit eF [R] of an SLDFn F says something about the
existence of moments and the �invariant �F . In this section we investigate
the structural possibilities for the orbits eF [R] and relate it to analytic behavior
naturally associated with tail behavior. We make the following:

De�nition 86 A C1 function T : [0;1) ! R is monotone of degree n
provided

(�1)k d
kT

dxk
(x) � 0 for k = 0; 1; 2; :::; n and for every x 2 (0;1):

T is completely monotone provided T is monotone of degree n for every
n 2 N:
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Note that while the concept of monotone of degree n is peculiar to this paper,
this is the standard de�nition of completely monotone (sometimes called totally
monotone). As an immediate consequence of this de�nition we have:

Proposition 87 For any SLDFn F :

eF [�n] exists for n 2 N, SF is monotone of degree n, S eF is monotone of degree n+1eF [�n] exists for every n 2 N , SF is completely monotone.

Proof. Clear from the de�nition of the backward coderived LDFn.

Example 88 The survival function SF (x) =
Pm

i=1 wie
� x
�i for a mixture of

exponentials is completely monotone.

Proposition 89 If T (x) =
R1
0
e�xtg(t)dt for some integrable function g : (0;1)!

[0;1), then T is completely monotone:

Proof. This follows from di¤erentiation under the integral

dnT

dxn
(x) =

dn
R1
0
e�xtg(t)dt

dxn
=

Z 1

0

dng(t)e�xt

dxn
dt

=

Z 1

0

g(t)
dne�xt

dxn
dt = (�1)n

Z 1

0

tng(t)e�xtdt

) (�1)n d
nT

dxn
(x) =

Z 1

0

tng(t)e�xtdt � 0

completing the proof.

Remark 90 A theorem of Bernstein establishes the converse; and we will soon
make use of that theorem.

Example 91 Consider the survival function SF (x) = e�
p
x. In this case we

have ([1], #29.3.83, p. 1026)

SF (x) = e
�
p
x =

Z 1

0

e�xtg(t)dt where g(t) =
e�

1
4t

2
p
�t3

and so SF is completely monotone. Observe that we also have

fF (x) = �
dSF
dx

(x) =
e�

p
x

2
p
x

�F (x) =
1

2
p
x

) �F = 0:
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Note too that the SLDFn F has all �nite moments by Proposition 40, since

�
(n)
F = n

Z 1

0

xn�1SF (x)dx = n

Z 1

0

xn�1e�
p
xdx

= n

Z 1

0

u2n�2e�u2udu where u =
p
x; x = u2; dx = 2udu

= 2n

Z 1

0

u2n�1e�udu = 2n (2n� 1)! <1:

The following generalizes an earlier observation on mixed exponentials:

Proposition 92 For any SLDFn F , if the survival function SF (x) has the form

SF (x) =

Z 1

0

e�xtg(t)dt

for some integrable function g : (0;1)! [0;1), then CVF � 1:

Proof. Note �rst that

1 = SF (0) =

Z 1

0

g(t)dt:

and so by Schwartz�Z 1

0

g(t)

t
dt

�2
=

 Z 1

0

p
g(t)

p
g(t)

t
dt

!2

�
Z 1

0

�p
g(t)

�2
dt

Z 1

0

 p
g(t)

t

!2
dt

=

Z 1

0

g(t)dt

Z 1

0

g(t)

t2
dt =

Z 1

0

g(t)

t2
dt:

Observe next that for any �xed t > 0, from what has been observed for the
exponential distribution of parameter � = 1

t (example 76)

1 =

Z 1

0

e�
x
�

�
dx = t

Z 1

0

e�xtdx

)
Z 1

0

e�xtdx =
1

t

� =

Z 1

0

x
e�

x
�

�
dx = t

Z 1

0

xe�xtdx

)
Z 1

0

xe�xtdx =
�

t
=
1

t2
:
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Now we compute, using Fubini

�F =

Z 1

0

SF (x)dx =

Z 1

0

Z 1

0

e�xtg(t)dtdx

=

Z 1

0

Z 1

0

e�xtg(t)dxdt =

Z 1

0

g(t)

Z 1

0

e�xtdxdt

=

Z 1

0

g(t)

t
dt:

Similarly, from Proposition 27

�
(2)
F = 2

Z 1

0

xSF (x)dx = 2

Z 1

0

x

Z 1

0

e�xtg(t)dtdx

= 2

Z 1

0

g(t)

Z 1

0

xe�xtdxdt = 2

Z 1

0

g(t)

t2
dt:

Now it follows that
�2F + �

2
F = �

(2)
F

) CV 2F + 1 =
�2F
�2F

+ 1 =
�
(2)
F

�2F

=
2
R1
0

g(t)
t2 dt�R1

0
g(t)
t dt

�2 � 2
) CV 2F � 1) CVF � 1

as required.
We noted in the examples that the �xed points under the coderived loss

construction are exactly the exponential densities. In fact, by a theorem of Serge
Bernstein, we have the following characterization of the exponential survival
curve that we will �nd useful and that may even be of some independent interest:

Proposition 93 For any C1 function T : (0;1)! R:8>>>>>>>>>><>>>>>>>>>>:

T is completely monotone

1 =
R1
0
T (x)dx

There exists some m 2 N such that
(�1)m dmT

dxm (x) = T (x) for every x 2 (0;1)

9>>>>>>>>>>=>>>>>>>>>>;
, T (x) = e�x:

Proof. () Clear.
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)) We have already noted that the case m = 1 holds, so assume m > 1.
Letting f = �dTdx (x) we clearly have

1 =

Z 1

0

T (x)dx) lim
x!1

T (x) = 0 and so f(x) � 0 with 1 =
Z 1

0

f(x)dx

and f = fF is the PDF for an SLDFn F for which T = SF : As per Proposi-
tion 87, since T = SF is completely monotone we have the series of backward
coderived loss variables

S eF [�1](x) =
f(x)

f(0)
=
�dTdx (x)
�dTdx (0)

=
dT
dx (x)
dT
dx (0)

S eF [�2](x) =
� d
dx

�
S eF [�1]

�
(x)

� d
dx

�
S eF [�1]

�
(0)

=
d2T
dx2 (x)
d2T
dx2 (0)

...

S eF [�k](x) =
� d
dx

�
S eF [�k+1]

�
(x)

� d
dx

�
S eF [�k+1]

�
(0)

=
dkT
dxk

(x)
dkT
dxk

(0)

Let G = eF [�m]. We have
SG = S eF [�m] =

dmT
dxm

dmT
dxm (0)

=
T

T (0)
= SF

) G = F

) eG[k] = ^� eF [�m]�[k] = eF [k�m]; for every k 2 Z:
Now Bernstein�s theorem implies that since T; dTdx ;

d2T
dx2 ,...are all completely monotone,

we can represent each of the S eF [k] as a Laplace transform, as in Proposition 92
from which we conclude from Proposition 92 that CV eF [k] � 1 for every k 2 Z:
But then by Proposition 46

�F � � eF � � eF [2] � ::: � � eF [m] = �F

) � eF [k] = �F =

Z 1

0

T (x)dx = 1; for every k 2 Z:

We claim that �(k)F = k! for every k 2 N. We verify this by induction. Indeed we
just observed the case n = 1 and by Proposition 40 and the induction hypothesis

1 = � eF [k] =
�
(k+1)
F

(k + 1)�
(k)
F

=
�
(k+1)
F

(k + 1) k!
=
�
(k+1)
F

(k + 1)!

) �
(k+1)
F = (k + 1)!:
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It only remains to observe that

�
(k)
F = k! for every k 2 N [ f0g ) LF (t) =

1

1 + t
= Lj(1;h1i;h1i)(t)

) F = j(1; h1i ; h1i)

) T = SF = Sj(1;h1i;h1i) = e
�x

completing the proof.

Lemma 94 If c > 0 is a �xed irrational number and g : [0;1) ! R is a con-
tinuous function satisfying

g(n) � g(n+ 1) for every n 2 N and g(x) = g(x+ c) for every x 2 [0;1);

then g is constant, i.e., g(x) = g(0) for every x 2 [0;1):

Proof. Consider the equivalence relation � on [0;1) de�ned by

x � y , x� y
c
2 Z:

Note that because g(x) = g(x + c) for every x 2 [0;1), the function g is a
continuous function well-de�ned on the equivalence classes of [0;1). Note that

x � x1 and y � y1

) x� x1
c

= z 2 Z and y � y1
c

= w 2 Z

but then
(x+ y)� (x1 + y1)

c
= z + w 2 Z

) x+ y � x1 + y1

and
(x� y)� (x1 � y1)

c
= z � w 2 Z

) x� y � x1 � y1:

We claim that the sequence A = fnjn 2 N; n 2 [0; c)g of equivalence class rep-
resentatives is dense in [0; c). Assume given d 2 [0; c) and 0 < �1 < c� d. We
have

for every n;m 2 N; n � m 6= n) 0 6= m� n
c

= z 2 Z) c =
m� n
z

2 Q, a contradiction)(

) sequence A has distinct numbers in compact set [0; c]

) A has a cluster point.

Since there is a cluster point and the elements of A are distinct, it follows that

there exist m;n 2 N such that m > n; m; n 2 [0; c) and jm� nj < �1
4
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) there exists l 2 N such that
lX

k=1

(m� n) 2 (d� �1; d+ �1) � [0; c)

but
lX

k=1

(m� n) =
lX

k=1

(m� n) = l (m� n)

l (m� n) 2 N) � 6= A \ (d� �1; d+ �1) \ [0; c)

and so A is dense in [0; c) as claimed. Now since g is continuous

A dense in [0; c)

) g(A) dense in fg (x) jx 2 [0; c)g = fg (x) jx 2 [0;1)g = Im(g):

Note that since g is continuous on the compact set [0; c], we know that g has a
maximum. But then by our assumptions, the sequence fg(n)jn 2 Ng is nonde-
creasing and bounded above. So we can set

lim
n!1

g(n) = � <1:

Now assume given any �2 > 0, it follows that

there exists M 2 N such that g(n) 2 (�� �2; �] for every n > M

g periodic) g(n) 2 (�� �2; �] for every n 2 N

fg(n)jn 2 Ng dense in Im(g)) Im(g) � (�� �2; �]:

But since �2 > 0, was arbitrary, we have

fg(n)jn 2 Ng �
\
n2N

(�� 1
n
; �] = [�; �]

fg(n)jn 2 Ng dense in Im(g)) Im(g) � fg(n)jn 2 Ng � [�; �] = [�; �]

Im(g) � [�; �] =) g(x) = � = g(0) for every x 2 [0;1)

and the proof is complete.

Theorem 95 For any SLDFn F with �nite mean, the following are equivalent:

1. there exists r 2 R; r > 0 such that F = eF [r]
2. SF (x) = e

� x
�

3. eF [R] = fFg
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Proof. Suppose F = eF [r] for some r > 0 We �rst claim that !F =1. Indeed,
if !F = b <1. then clearly �(k)F <1 for every k 2 N and by the intermediate
value theorem

there exist ak 2 (0; b] such that a1 = �F = �
(1)
F

and �(k+1)F =

bZ
0

xk+1fF (x)dx =

bZ
0

x
�
xkfF (x)

�
dx

= ak

bZ
0

xkfF (x)dx = ak�
(k)
F

) � eF [k] =
�
(k+1)
F

(k + 1)�
(k)
F

=
ak�

(k)
F

(k + 1)�
(k)
F

=
ak

(k + 1)
� b

(k + 1)

) lim
k!1

� eF [k] = 0

But F = eF [r] ) � eF [kr] = �F > 0 for all k 2 N. Since the function m(c) = � eF [c]

is evidently continuous, we have

0 = lim
k!1

� eF [k] = lim
c!1

� eF [c]

= lim
k!1

� eF [kr] = lim
k!1

�F = �F > 0 )(=

This contradiction implies that !F =1 and SF : (0;1)! R is a C1 function.
We now prove that SF (x) = e

� x
� . Consider �rst the case r = m 2 N. Assume

that F = eF [R] and let G = F�: Then by Proposition 48 and the fact that
eG[m] = g(F�)[m] = � eF [m]�

�
= F� = G

) eG[�m] = G
) SG = S eG[�m] :

Since SG is clearly completely monotone, it follows from the same CV argument
as in the proof of Proposition 93 that

1 = �G = � eG[k] for every k 2 Z
) f eG[k](0) = 1 for every k 2 Z

) SG = S eG[�m] =
(�1)m dmSG

dxm

f eG[�m+1](0)
= (�1)m d

mSG
dxm

:
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and so the characterization of that lemma implies that

SG(y) = e�y

F = G 1
�

) SF (x) = SG 1
�

(x) = SG

�
x

�

�
= e�

y
� :

This completes the proof for m 2 N. Consider next the case r 2 Q let r = n
m ;

with m;n 2 N.and F = eF [r] We claim that

F = eF [ knm ] for every k 2 N:
This is a simple veri�cation by induction, for k = 1 this reduces to F = eF [ nm ],
which is true, and then

F = eF [ knm ]
) eF [ (k+1)nm ] = eF [ (k+1)nm ] = eF [ knm + n

m ] = eF [ knm +r]

= êF [ knm ][r] = eF [r] = F
completing the induction. But then it follows that

F = eF [mn
m ] = eF [n] for n 2 N) SF (x) = e

� x
�

by the case r = m 2 N, completing the proof in the rational case. Finally,
consider next the case r 2 R with r irrational. As above, the assumptions imply
that we can represent each of the S eF [c] as a Laplace transform, as in Proposition
92 from which we conclude that CV eF [c] � 1 for every c 2 R We clearly have
� eF [c] <1 for every c � 0 so we de�ne

g(c) = � eF [c] for c � 0:

Then g is continuous on [0;1) and by Proposition 46

g(c) = � eF [c] � �geF [c]
= � eF [c+1] = g(c+ 1)

g(c+ r) = � eF [r+c] = �geF [r]
[c] = � eF [c] = g(c):

And so the lemma implies that

� eF [c] = g(c) = g(0) = � eF [0] = �F = � for every c � 0:

We claim that �(k)F = k!�k for every k 2 N. We verify this by induction. Indeed
the case n = 1 being apparent. By Proposition 40 and the induction hypothesis

� = � eF [k] =
�
(k+1)
F

(k + 1)�
(k)
F

=
�
(k+1)
F

(k + 1) k!�k
=

�
(k+1)
F

(k + 1)!�k
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) (k + 1)!�k+1 = �
(k+1)
F

completing the induction. It only remains to observe that

�
(k)
F = k!�k for every k 2 N [ f0g ) LF (t) = Lj(1;h1i;h�i)(t)

) F = j(1; h1i ; h�i)

) T (x) = SF (x) = Sj(1;h1i;h�i)(x) = e
� x
� :

We have shown�
there exists some r 2 R; r > 0 such that F = eF [r]�) �

SF (x) = e
� x
�

�
but clearly �

SF (x) = e
� x
�

�
)
� eF [R] = fFg�

and
� eF [R] = fFg�) �

there exists r 2 R; r > 0 such that F = eF [r]�
and the result follows.
We observe that, except when eF [R] = fFg is the singleton orbit of an ex-

ponential, once we have selected an SLDFn G 2 eF [R] the elements H 2 eF [R]
are uniquely expressible in the form H = eG[c] in the sense c = c(H) is uniquely
determined. It is most natural to just take G = F . This enables us to describe
the possibilities for the structure of the orbit eF [R] as related to a subset of R,
an interval actually, via the bijection


: eF [R] ! 

� eF [R]� � R where 


� eF [c]� = c 2 R:
In e¤ect, this is a canonical 1-dimensional continuous parametrization of the
orbits eF [R] of non-exponential SLDFns F: We summarize this observation in:
Proposition 96 For any SLDFn F 6= j(1; h1i ; h�F i) with �nite mean, [0; 1] �


� eF [R]� and the possibilities for 
� eF [R]� and �F are:
1. there exist c; d 2 R with 


� eF [R]� 2 f[c; ; d]; [c; d); (c; d]; (c; d)g ; �F = 0
,there exists n 2 N such that �(n)F = 1 and SF is not completely
monotone.

2. there exists c 2 R with 

� eF [R]� 2 f[c;1); (c;1)g ; c � 0; �F 2 [0;1]

, �
(n)
F <1 for every n 2 N and SF is not completely monotone.

3. there exists d 2 R with 

� eF [R]� 2 f(�1; d]; (�1; d)g ; d > 0; �F = 0

,there exists n 2 N such that �(n)F =1 and SF is completely monotone.
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4. 

� eF [R]� = (�1;1); �F 2 (0;1)
, �

(n)
F <1 for every n 2 N and SF is completely monotone.

With all possibilities actually occurring. Indeed we have:

1. Let F (x) = x2

1+x2 . We have

SF (x) =
1

1 + x2

�F =
�

2
<1

fF (x) =
2x

(1 + x2)
2

�
(a)
F = 2

1Z
0

xa+1

x4 + 2x2 + 1
dx <1

) a+ 1 < 3) a < 2

) d � 2
dfF
dx

= 2
1� 3x2

(1 + x2)
3 ) there exists a mode at

1p
3
> 0

) c > �1:

2. Lognormal or any loss distribution with �nite support and mode > 0:

3. Pareto.

4. Mixed Exponential.

The following is also clear from the above:

Proposition 97 

� eF [R]� = (1;1) ,there exists LDFn G with F = L�(G)

and �(n)G <1 for every n 2 N:

7 Ordering Loss Distributions

In this section we introduce a way to order SLDFns based on di¤erences be-
tween hazard rate functions. We then relate this with the orbit structure of the
previous section.

Proposition 98 For any SLDFns F and G with !F = !G :

lim
x!!F

fF (x)

fG(x)
= lim

x!!F

SF (x)

SG(x)
= e

R !F
0 (�G��F )(t)dt
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Proof. All but the last equality is clear from l�Hbopital, but then
lim
x!!F

SF (x)

SG(x)
= lim

x!!F

e�
R x
0
�F (t)dt

e�
R x
0
�G(t)dt

= lim
x!!F

e�
R x
0
�F (t)dt+

R x
0
�G(t)dt

= lim
x!!F

e
R x
0
(�G��F )(t)dt

= e
lim

x!!F

R x
0
(�G��F )(t)dt

= e
R !F
0 (�G��F )(t)dt

as required.

De�nition 99 For two SLDFns F and G set

�(F;G) = e
RMin(!F ;!G)
0 (�G��F )(t)dt:

Provided �(F;G) exists, de�ne the relations thicker than and strictly thicker
than by

F � G, !F � !G or (!F = !G and �(F;G) � 1)
F � G, !F > !G or (!F = !G and �(F;G) > 1) :

Remark 100 Note that

!F = !G =1 and �F < �G )
Z !F

0

(�G � �F ) (t)dt =1) �(F;G) = e1 =1 > 1

) F � G.

Example 101 Let F (x) = 1� (x+ 1) e�x. We have

SF (x) = (x+ 1) e
�x

fF (x) = �
dSF
dx

(x) = �
�
(x+ 1) e�x (�1) + e�x

�
= xe�x

�F (x) =
fF (x)

SF (x)
=

xe�x

(x+ 1) e�x
=

x

x+ 1
) �F = 1

�F =

Z 1

0

xfF (x)dx =

Z 1

0

x2e�xdx = 2

f eF (x) = SF (x)

�F
=
(x+ 1) e�x

2

�(F; eF ) = lim
x!1

fF (x)

f eF (x) = lim
x!1

xe�x

(x+1)e�x

2

= 2 lim
x!1

x

x+ 1
= 2 > 1

) F � eF :
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Example 102 Let F (x) = 1� e�x

x+1 . We have

SF (x) =
e�x

x+ 1

fF (x) = �
dSF
dx

(x) = �
 
(x+ 1) e�x (�1)� e�x

(x+ 1)
2

!
=
(x+ 2) e�x

(x+ 1)
2

�F (x) =
fF (x)

SF (x)
=

(x+2)e�x

(x+1)2

e�x

x+1

=
x+ 2

x+ 1
) �F = 1

�F =

Z 1

0

SF (x)dx =

Z 1

0

e�x

x+ 1
dx =

Z 1

1

e�u+1

u
du

= e

Z 1

1

e�u

u
du < e

Z 1

1

e�udu = e
�
�e�u

�1
1
=
e

e
= 1

f eF (x) = SF (x)

�F
=

e�x

x+1

�F

�(F; eF ) = lim
x!1

fF (x)

f eF (x) = lim
x!1

(x+2)e�x

(x+1)2

e�x
x+1

�F

= �F lim
x!1

x+ 2

x+ 1
= �F < 1

) F � eF :
Proposition 103 Given SLDFns F and G with !F = !G and constants a; b >
0 such that the limit �F (

a
b ) = lim

x!!F

SF (
a
b x)

SF (x)
exists. Then

�(Fa; Gb) = �F (
a

b
)�(F;G)

Proof. We have

�(Fa; Gb) = lim
x!!F

SFa(x)

SGb
(x)

= lim
x!!F

SF (ax)

SG (bx)

= lim
x!!F

SF
�
a(xb )

�
SG
�
b(xb )

� = lim
x!!F

SF
�
(ab )x

�
SG (x)

= lim
x!!F

SF ((
a
b )x)

SF (x)

SF (x)

SG (x)

= lim
x!!F

SF ((
a
b )x)

SF (x)
lim
x!!F

SF (x)

SG (x)

= �F (
a

b
)�(F;G)

as required.
Recall the following from set theory:
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De�nition 104 Given a set A with relation >; A is partially ordered under
> provided for every a; b; c 2 A

1. (re�exive) a > a

2. (antisymmetric) (a > b and b > a) ) a = b

3. (transitive) (a > b and b > c) ) a > c

It is straightforward to verify that � de�nes a partial order relation on the
equivalence classes of SLDFns modulo the equivalence relation

F � G, !F = !G and �(F;G) = 1:

As usual, the case in which the hazard function is either increasing or de-
creasing is especially easy:

Proposition 105 If F is any SLDFn with �nite mean and �F > 0, then for
all m < n 2 N:

�F increasing ) eF [m] � eF [n]
�F decreasing ) eF [n] � eF [m]:

Proof. Clear from Propositions 33 and 32. Observe that �F increasing or
decreasing implies that �F > 0 on (�F ; !F ). Now, all moments are �nite, soeF [n] exists and so the assertion at least makes sense. We have

�F increasing ) � eF [m] increasing

) � eF [n] = � êF [n�1]
> � eF [n�1] � � eF [m] on (�F ; !F )

)
Z !F

�F

�
� eF [n] � � eF [m]

�
(t)dt > 0

) �( eF [m]; eF [n]) = eR !F�F
(� eF [n]�� eF [m])(t)dt > e0 = 1

) eF [m] � eF [n]
as asserted. The result for �F decreasing follows similarly, reversing inequalities.

Proposition 106 For any SLDFns F and G with !F = !G =1

� = �(F;G) <1
) for every � > 0 there exists an M such that jSF (x)� �SG(x)j < � for every x > M:
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Proof. Clear. Given � > 0

!G =1) SG(x) > 0 for every x � 0

0 = lim
x!1

SG(x)

) there exists M1 such that 0 < jSG(x)j <
p
� for every x > M1

� = �(F;G) = lim
x!1

SF (x)

SG(x)
<1

) there exists M2 such that 0 �
����SF (x)SG(x)

� �
���� < p� for every x > M2:

Then setting M = max(M1;M2) we have

x > M

) jSF (x)� �SG(x)j = jSG(x)j
����SF (x)SG(x)

� �
���� < p�p� = �

as required.

Proposition 107 For any SLDFns F and G with !F = !G =1 and for which
0 � �F ; �G � 1 :

0 < �(F;G) <1) �F = �G:

Proof. Set lim
x!1

fF (x)
fG(x)

= lim
x!1

SF (x)
SG(x)

= �

1 = �
1

�
= lim

x!1

fF (x)

fG(x)
lim
x!1

SG(x)

SF (x)
= lim

x!1

fF (x)

fG(x)

SG(x)

SF (x)

= lim
x!1

fF (x)

SF (x)

SG(x)

fG(x)
= lim

x!1
�F (x)

1

�G(x)
:

Consider �rst the case 0 < �F ; �G <1

1 = lim
x!1

�F (x)
1

lim
x!1

�G(x)
= �F

1

�G
) �F = �G:

We have
1 = lim

x!1
�F (x)

1

lim
x!1

�G(x)
and so

0 = �F = lim
x!1

�F (x)) 0 = lim
x!1

�G(x) = �G:

and by the same token

1 = lim
x!1

�F (x)
1

lim
x!1

�G(x)
and so

1 = �F = lim
x!1

�F (x))1 = lim
x!1

�G(x) = �G

and the result follows.
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Example 108 The converse is false:

�F (x) = 1; �G(x) = 1 +
1

x

)
Z 1

0

(�G � �F ) (t)dt =
Z 1

0

dt

t
=1

) �F = �G = 1 with �(F;G) =1:

Proposition 109 For any SLDFns F and G with !F = !G =1 and for which
F � G:

c > 0 such that �(c)F <1) �
(c)
G <1:

Proof. We have
F � G

) � = �(F;G) = lim
x!1

SF (x)

SG(x)
� 1:

Consider �rst the case � > 1

there exists M1 such that SF (x) > SG(x); for every x > M1

) �
(c)
G = c

Z 1

0

xc�1SG(x)dx

= c

Z M1

0

xc�1SG(x)dx+ c

Z 1

M1

xc�1SG(x)dx

� cM c�1
1 M1 + c

Z 1

M1

xc�1SF (x)dx

� cM c
1 + c�

(c)
F <1:

So now consider the case � = 1

lim
x!1

SG(x)

SF (x)
=
1

�
= 1

) there exists M2 such that SF (x) > 0 and

����SG(x)SF (x)
� 1
���� < 1

2
; for every x > M2

) SG(x)

SF (x)
<
3

2
; for every x > M2

) SG(x) <
3

2
SF (x); for every x > M2

) �
(c)
G = c

Z 1

0

xc�1SG(x)dx

= c

Z M2

0

xc�1SG(x)dx+ c

Z 1

M2

xc�1SG(x)dx
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� cM c�1
2 M2 + c

Z 1

M2

xc�1
3

2
SF (x)dx

� cM c
2 +

3c

2

Z 1

0

xc�1SF (x)dx � cM c
2 +

3

2
�
(c)
F <1

and the proof is complete.

Proposition 110 For any SLDFns F and G with !F = !G =1 :

0 � �F < �G ) F � G:

Proof. This is straightforward:

�F < �G

) there exist M; � > 0 such that �F (x) < �G(x)� � for every x > M

)
Z 1

M

(�G � �F ) (t)dt �
Z 1

M

�dt =1:

But thenZ 1

0

(�G � �F ) (t)dt =

Z M

0

(�G � �F ) (t)dt+
Z 1

M

(�G � �F ) (t)dt

=

Z M

0

(�G � �F ) (t)dt+1 =1

) lim
x!1

SF (x)

SG(x)
= e

R1
0
(�G��F )(t)dt = e1 =1 > 1

) F � G
as asserted.
Given any two SLDFns F and G and assuming �F and �G are known, the

comparative thickness reduces to evaluating the limit �(F;G) when �F = �G.
But we know that the set of SLDFns F for which �F is a speci�ed constant is
acted on by the additive group R via taking the coderived distributions (when
they exist) and is thus decomposed into orbits eF [R]under that action. The
structure of those orbits was described in the previous section and we can orient
ourselves within an orbit as to the �more or less tail-like� the distribution is
in the �analytic� sense that eF [c] is more tail-like than eF [d]exactly when c > d
(here �more tail like�means higher degree of monotonality. And we have seen
that one may sacri�ce the existence of moments to achieve that). The next
result �nally draws together the two perspectives of the paper and shows how
the structure of those orbits relates with �thickness�:

Proposition 111 If F and G are SLDFns with !F = !G and 0 < �F = �G <
1 , then:

for every m;n 2 N; �
� eF [m]; eG[n]� = � (F;G) m!�n�mF �

(n)
G

n!�
(m)
F

:
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Proof. From the Corollary 43

lim
x!1

f eF [n](x)

f eF [m](x)
=
�m�nF n!�

(m)
F

m!�
(n)
F

whence

�
� eF [m]; eG[n]� = lim

x!!F

f eF [m](x)

f eG[n](x)
= lim

x!!F

f eF [m](x)

fF (x)

fF (x)

fG(x)

fG(x)

f eG[n](x)

= lim
x!!F

f eF [m](x)

fF (x)
lim
x!!F

fF (x)

fG(x)
lim
x!!G

fG[0](x)

f eG[n](x)

=

�
lim
x!!F

fF [0](x)

f eF [m](x)

��1
� (F;G)

�n�0G (0!)�
(n)
G

n!�
(0)
G

=

 
�mF �

(m)
F

m!

!�1
� (F;G)

�nG�
(n)
G

n!

= � (F;G)
m!

�mF �
(m)
F

�nG�
(n)
G

n!
= � (F;G)

m!

n!

�n�mF �
(n)
G

�
(m)
F

as required.

Corollary 112 For any SLDFns F and G with !F = !G and 0 < �F = �G <
1 : eF [m] � eG[n] , � (F;G)

m!�n�mF �
(n)
G

n!�
(m)
F

� 1:

Corollary 113 For any SLDFn F with 0 < �F <1 :

eF [m] � eF [n] , m!�n�mF �
(n)
F

n!�
(m)
F

� 1:

Corollary 114 For any SLDFn F with 0 < �F <1 :

eF [m] � F , m! � �mF �
(m)
F :

Corollary 115 For any SLDFn F with 0 < �F <1 :

there exists k � 0 such that eF [m] � F for every m � k:

Proof. Observe that for all x; t > 0:

0 < e�tx < 1

and so the integral

L(t) =

Z 1

0

e�txf(x)dx =

Z 1

0

��e�txf(x)�� dx � Z 1

0

jf(x)j dx = 1
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is absolutely convergent. We have for any x > 0:

e�F x =
1X
k=0

(�Fx)
k

k!
=

1X
k=0

����� (�1)k �kFxkk!

�����
and the power series expansion

e��F x =
1X
k=0

(��Fx)k

k!
=

1X
k=0

(�1)k �kFxk
k!

is absolutely convergent and so can be integrated term by term:

LF (�F ) =

Z 1

0

e��F xf(x)dx =

Z 1

0

1X
k=0

 
(�1)k �kFxkf(x)

k!

!
dx

=

1X
k=0

  
(�1)k �kF

k!

!Z 1

0

xkf(x)dx

!

=

1X
k=0

(�1)k �(k)F �kF
k!

:

Since the terms of any convergent series must converge to 0:

there exists k � 0 such that �
(m)
F �mF
m!

=

����� (�1)m �(m)F �mF
m!

����� < 1 for every m � k:

And by the previous corollary:

eF [m] � F for every m � k

as required.

Proposition 116 If F is an SLDFn for which the orbit eF [R] has a last element
then: eF [m] � eF [n] , m � n:

Proof. Let eF [l] be the last element of eF [R];
� eF [R]� = (�1; l]. Suppose �rst
that eF [m] � eF [n], in this case, we have

l � m; l � n

) l �m = highest �nite moment of eF [m]
) l � n = highest �nite moment of eF [n]

but then from Proposition 109

eF [m] � eF [n] and �(l�m)eF [m]
<1
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) �
(l�m)eF [n]

<1
) l �m � l � n
) �m � �n
) m � n

establishing one direction. For the converse, suppose that m � n, and by way of
contradiction that eF [m] � eF [n] is false. Then since by Proposition 42 the limit
�
� eF [m]; eF [n]� exists, we must have

�
� eF [m]; eF [n]� < 1

) �
� eF [n]; eF [m]� = 1

�
� eF [m]; eF [n]� > 1

) eF [n] � eF [m]
above direction) n � m and n 6= m

) n > m )(
and this contradiction completes the proof.

Proposition 117 If F is the SLDFn of a mixed exponential density, then for
all k; n 2 N: eF [k] � eF [n] , k � n:

Proof. Let F be a mixture of exponential densities. More precisely, for some
m, 1 � m � 1; weights wi > 0 with 1 =

Pm
i=1 wi and parameters �i > 0

ordered so that �i < �i+1 and with
Pm

i=1 wi�i <1 set

F = j(m; hwii ; h�ii)

with survival function

SF (x) =
mX
i=1

wie
� x
�i :

Then we have, by Proposition 49

�F =
mX
i=1

wi�i <1

S eF (x) =
Pm

i=1 wi�ie
� x
�i

�F
=

mX
i=1

uie
� x
�i where ui =

wi�i
�F

:

And it follows that

SF (x)

S eF (x) =
Pm

i=1 wie
� x
�iPm

i=1 uie
� x
�i

=
e

x
�m

Pm
i=1 wie

� x
�i

e
x
�m

Pm
i=1 uie

� x
�i
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=

Pm
i=1 wie

x
�m

� x
�iPm

i=1 uie
x
�m

� x
�i

=
wm +

Pm�1
i=1 wie

�
�i��m
�i�m

�
x

um +
Pm�1

i=1 uie

�
�i��m
�i�m

�
x

�i � �m < 0; 1 � i � m� 1

) lim
x!1

SF (x)

S eF (x) = lim
x!1

wm +
Pm�1

i=1 wie

�
�i��m
�i�m

�
x

um +
Pm�1

i=1 uie

�
�i��m
�i�m

�
x

=
wm + lim

x!1

Pm�1
i=1 wie

�
�i��m
�i�m

�
x

um + lim
x!1

Pm�1
i=1 uie

�
�i��m
�i�m

�
x
=
wm + 0

um + 0
=
wm
um

=
wm
wm�m
�F

=
�F
�m

< 1

) eF � F
and then by transitivity. eF [k�n] � F , and the result follows by replacing F with
. eF [n], which also has a mixed exponential density.
As one would expect, there are continuous analogues for many of these �mo-

mentous�observations:

Proposition 118 For any SLDFns F and G with 0 < �F = �G < 1 and
positive c; d 2 R:

�
� eF [d]; eG[c]� = � (F;G) �(d+ 1)� c�dF �

(c)
G

�(c+ 1)�
(d)
F

:

Proof. This is clear from Proposition 71

�
� eF [d]; eG[c]� = lim

x!1

f eF [d](x)

f eG[c](x)
= lim

x!1

f eF [d](x)

fF (x)

fF (x)

fG(x)

fG(x)

f eG[c](x)

= lim
x!1

f eF [d](x)

fF (x)
lim
x!1

fF (x)

fG(x)
lim
x!1

fG(x)

f eG[c](x)

=

�
lim
x!1

fF (x)

f eF [d](x)

��1
� (F;G)

� cG�
(c)
G

�(c+ 1)
=

 
�dF�

(d)
F

�(d+ 1)

!�1
� (F;G)

� cY �
(c)
G

�(c+ 1)

= � (F;G)
�(d+ 1)

�dF�
(d)
F

� cG�
(c)
G

�(c+ 1)
= � (F;G)

�(d+ 1)

�(c+ 1)

� c�dF �
(c)
G

�
(d)
F

as required.

Corollary 119 For any SLDFns F and G with 0 < �F = �G <1 and positive
c; d 2 R: eF [d] � eG[c] , � (F;G)

�(d+ 1)� c�dF �
(c)
G

�(c+ 1)�
(d)
F

� 1:
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Corollary 120 For any SLDFn F with 0 < �F <1 and positive c; d 2 R:

eF [d] � eF [c] , �(d+ 1)� c�dF �
(c)
F

�(c+ 1)�
(d)
F

� 1:

Corollary 121 For any SLDFn F with 0 < �F <1 and positive d 2 R:

eF [d] � F , �(d+ 1) � �dF�
(d)
F :

We conclude this section with a couple more examples.

Example 122 Consider the Pareto density F = �(�; �):

SF (x) =

�
�

x+ �

��
@S

@�
=

�
�

x+ �

��
ln

�
�

x+ �

�
� 0

@S

@�
= ��

�
�

x+ �

���1�
1

x+ �

�2
= ��� (x+ �)

���1
> 0

which suggests that, all else equal, F gets �thicker�as � increases or � decreases.
Now let F = �(�; �) G = �(�; #) be two Pareto densities, �; �; �; # 2 (0;1).
Then !F = !G =1 and �F = �G = 0 with

�(F;G) = e
R1
0
(�G��F )(t)dtZ 1

0

(�G � �F ) (t)dt =
Z 1

0

�
�

t+ #
� �

t+ �

�
dt

= [� ln (t+ #)� � ln (t+ �)]t=1t=0 =
h
ln
�
(t+ #)

�
�
� ln (t+ �)�

it=1
t=0

=

"
ln

 
(t+ #)

�

(t+ �)
�

!#t=1
t=0

= lim
t!1

"
ln

 
(t+ #)

�

(t+ �)
�

!#
� ln

 
#�

��

!

= ln

 
lim
t!1

 
(t+ #)

�

(t+ �)
�

!!
+ ln

�
��

#�

�

= ln

�
lim
t!1

�
t+ #

t+ �

��
(t+ #)

���
�
+ ln

�
��

#�

�
= ln

�
lim
t!1

1� (t+ #)
���

�
+ ln

�
��

#�

�
= ln

�
lim
t!1

(t+ #)
���

�
+ ln

�
��

#�

�
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=

8><>:
+1 � > �

ln
��

�
#

���
� = �

�1 � < �

9>=>; :
We see that

�(F;G) = e
R1
0
(�G��F )(t)dt =

8<:
+1 � > ��
�
#

��
� = �

0 � < �

9=;
and that

�(�; �) � �(�; #), �(F;G) � 1

, � > � or (� = � and � � #)

and
�(�; �) � �(�; #), �(F;G) > 1

, � > � or (� = � and � > #)

which conforms to what was suggested before.

Example 123 Let F = �(�; �) and G(x) = x2

1+x2 :

�F (x) =
�

� + x
) �F = 0

�G(x) =
fG(x)

SG(x)
=

2x
(1+x2)2

1
1+x2

=
2x

1 + x2
) �G = 0Z 1

0

(�G � �F ) (t)dt =
Z 1

0

�
2t

1 + t2
� �

� + t

�
dt

=
�
ln
�
1 + t2

�
� � ln (� + t)

�t=1
t=0

= lim
t!1

�
ln
�
1 + t2

�
� ln (� + t)�

�
+ � ln (�)

= lim
t!1

�
ln

�
1 + t2

(� + t)
�

��
+ ln (��) = ln

�
lim
t!1

�
1 + t2

(� + t)
�

��
+ ln (��)

= ln

"
lim
t!1

 
2t

� (� + t)
��1

!#
+ ln (��)

=

(
+1 � � 1

ln
h
lim
t!1

�
2

�(��1)(�+t)��2

�i
+ ln (��) � > 1

)

=

8><>:
+1 � � 1

1 + ln (��) � = 2

ln
h

2
�(��1) limt!1

�
(� + t)

2��
�i
� ln (��) � > 1; � 6= 2

9>=>;
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=

8>>>><>>>>:
+1 � � 1

ln(1) + ln
�
�2
�

� = 2

ln
h

2
�(��1) (+1)

i
+ ln (��) = +1 1 < � < 2

ln
h

2
�(��1) (0)

i
+ ln (��) = �1 � > 2

9>>>>=>>>>;
=

8<:
+1 � < 2

ln
�
�2
�
� = 2

�1 � > 2

9=;
�(F;G) = e

R1
0
(�G��F )(t)dt =

8<:
+1 � < 2

�2 � = 2
0 � > 2

9=;
� < 2) �(F;G) =1 > 1) F � G
� > 2) �(F;G) = 0 < 1) G � F

� = 2; � > 1) �(F;G) > 1) F � G
� = 2; � = 1) �(F;G) = 1) F � G
� = 2; � < 1) �(F;G) < 1) G � F:

8 Conclusion

For a given continuous loss distribution F with �nite mean, we have seen that
the ratio of losses in excess of a given loss limit x to total losses de�nes a func-
tion R(x) that formally resembles a survival function. The loss distribution
de�ned by that survival function was de�ned to be the �coderived� distribu-
tion eF . This coderived distribution was shown to exhibit (right hand) tail
behavior and moments that are very closely related to those of the original loss
distribution (Propositions 27 and 28). Moreover, this coderived distribution
has a simpler, more �monotone�, structure than the original (Proposition 87).
We observed that this coderived distribution completely determines the original
distribution (Proposition 26). Repeating this process yields a discrete sequence

of loss distributions F; eF ; eeF ; :::within a continuous, one-parameter collection of
loss distributions (Remark 58). Such collections all have tails with the same ul-
timate settlement rate �F = � eF = � eeF (Proposition 28). We described a simple
approach to ordering loss distributions according to the �thickness�of their tails
(De�nition 99) and related thickness with monotonality and ultimate settlement
rate (Proposition 111). A key �nding is that the asymptotic behavior of the
hazard rate as captured by the ultimate settlement rate �F = lim

x!!F
�F (x); pro-

vides a natural bridge between these two perspectives. We observed that if the
hazard rate function is increasing or decreasing, then the sequence of coderived
distributions converges to an exponential loss distribution (Proposition 78). We
conclude that when modeling loss severity (where the hazard rate function is
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reasonably well-behaved, e.g. with only �nitely many turning points, and where
there is no cap), there is a uniquely determined exponential distribution with
canonical properties that favor it as a choice to splice onto to the model as the
right hand tail. If it is impractical to go far enough out into the tail to make the
tail close to monotone (near constant hazard rate), one should consider �tting
a mixed exponential. The reader is invited to consult [2] for both a discussion
of tail-splicing and as a case study of this approach.
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