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ABSTRACT

This paper investigates the practical aspects of applying
the second-order Bayesian revision of a generalized linear
model (GLM) to form an adaptive filter for claims reserv-
ing. It discusses the application of such methods to three
typical models used in Australian general insurance cir-
cles. Extensions, including the application of bootstrapping
to an adaptive filter and the blending of results from the
three models, are considered.
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1. Introduction

The estimation of outstanding claims liabili-
ties is one of the central problems in general in-
surance. Many techniques exist to carry out this
task–for example, the chain ladder in its various
forms, payments per claim models, and case esti-
mate models. A good review of existing methods
is given in Taylor (2000).
Taylor (2000) also discusses a state space mod-

el, the Kalman filter (Kalman 1960), which was
introduced into the actuarial literature by De Jong
and Zehnwirth (1983). This is a recursive algo-
rithm, commonly run by accident or calendar
year, which, when applied to the modeling of
outstanding claims liabilities, permits the model
parameters to evolve over time.
Although a very flexible tool, the Kalman filter

requires the assumption of normally distributed
data. In the context of loss reserving, this is gen-
erally dealt with by assuming that the variables of
interest (claim sizes, payments in a specific pe-
riod, etc.) are lognormally distributed. Although
a common assumption in the actuarial field [see,
e.g., England and Verrall (2002)], this is an ap-
proach not without its problems. The main dif-
ficulty is the requirement for a bias correction
which results from modeling a transformation of
the data (in this case log(payments)), the deter-
mination of which, particularly when the distri-
bution of the data is only approximately known,
can be problematic. A second drawback is the re-
striction to one possible distribution for the data.
Modeling claim counts, for example, would not
be easily done with either a normal or lognormal
distribution.
An alternative family of distributions that is

worth considering is the exponential dispersion
family (termed “EDF” within this paper). This
family was introduced by Nelder and Wedder-
burn (1972) and is treated in depth by McCul-
lough and Nelder (1989). The family includes
common distributions like the normal, Poisson,

gamma, and inverse Gaussian. The gamma dis-
tribution, and to a lesser extent, the inverse Gaus-
sian distribution, are both candidates for the mod-
eling of long-tailed, strictly positive variables.
The Poisson distribution is a natural choice for
claim counts. Applied within the framework of
a filter, this would mean updating a generalized
linear model (McCullough and Nelder 1989)
rather than a normal linear model (the Kalman
filter).
In general, updating a GLM is analytically in-

tractable unless some very restrictive assump-
tions are made [see, e.g., West, Harrison, and
Migon (1995)]. However, putting the problem
into a Bayesian context, where the parameter es-
timates and distribution from the previous ap-
plication of the filter form the prior distribution
of the current step of the filter, it may be seen
that the problem is amenable to modeling us-
ing Markov Chain Monte Carlo techniques [see,
for example, Hastings (1970); Smith and Roberts
(1993); Tierney (1994)]. Examples of MCMC in
the actuarial literature appear in Scollnik (2001,
2002a), Nzoufras and Dellaportas (2002) and de
Alba (2002). Indeed, Nzoufras and Dellaportas
(2002) discuss the application of MCMC to some
state space models, the implementation of which
is further discussed in Scollnik (2002b).
However, MCMC simulation is a time-con-

suming process, with pitfalls for the unwary user
(primarily convergence issues). It would be ad-
vantageous to have an analytical version for
members of the exponential disperson family cor-
responding to the Kalman filter. Taylor (2008)
derives a second order approximation to the pos-
terior likelihood of a naturally conjugated gener-
alized linear model (GLM). This family of sec-
ond order approximations is forced to be closed
under Bayesian revision. This is a useful find-
ing since it means that the process may be used
recursively, i.e., it may be used to form an adap-
tive filter, which may be used in the modeling of
claims data.
Results from an adaptive filter may be used

to generate central estimates of an outstanding
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claims liability. In general insurance practice,
other moments are important, in particular the
variance of the reserve as well as certain quan-
tiles (e.g., 75%, 95% points). It is possible to use
bootstrapping (e.g., Efron and Tibshirani 1993)
to yield such information from an adaptive filter.
However, standard forms of bootstrapping as ap-
plied to actuarial data [see, for example, Taylor
(2000)] assume that the residuals are indepen-
dent. Residuals that result from an adaptive fil-
tering process are, in fact, not independent. Thus,
it is necessary to adapt an approach similar to that
outlined in Stoffer and Wall (1991) for normally
distributed state space models.
Since adaptive filtering, even with bootstrap-

ping, is much quicker than MCMC, it is practi-
cal to apply several different models to one data
set. These allow the capture of different aspects
of the claims experience. To produce a final an-
swer, it is necessary to produce a blended version
of all the models. One possible approach is pre-
sented in Taylor (2000).
The purpose of this paper is to demonstrate the

use of the application of Taylor’s (2008) GLM
adaptive filter, incorporating the calculation of
central estimates, the application of bootstrap-
ping, and the blending of results from several
models to produce a final result. In the remainder
of the paper, the data are described in Section 2,
while Section 3 introduces the methodology un-
derlying the GLM adaptive filter. This discussion
encompasses adaptive filter methodology, an ap-
propriate form of bootstrap for such filters, and
means for blending the results from several mod-
els. The various models applied to the data are
described in Section 4. Section 5 presents some
numerical results. The paper closes with some
discussion in Section 6.

2. Data

The data used in this paper, from a bodily
injury liability portfolio, were summarized as

follows:

² Total amount of claim payments for year of ac-
cident i (i = 1,2, : : : ,14) and development quar-
ter j (j = 1,2, : : : ,53)

² Total number of claims reported for year of
accident i and development quarter j

² Total number of claim closures for year of ac-
cident i and development quarter j

² Total amount of case estimates for year of ac-
cident i and development quarter j

The data were split into two groups by legal
jurisdiction, and each of the above summaries
was available for each of these two groups.
Ultimate numbers of incurred claims by ac-

cident year were also available; these had been
estimated in a separate modeling exercise.
The payments and case estimate data were ad-

justed for past economic inflation in line with an
appropriate wage earning index.
Some notation is defined here. Let

² CLij = claim payments in development quarter j
for accident year i for jurisdictional grouping
L (L= 1,2);

² NLij = number of claims reported in develop-
ment quarter j for accident year i for jurisdic-
tional grouping L;

² FLij = number of claim closures in development
quarter j for accident year i for jurisdictional
grouping L;

² ELij = case estimates at end of development
quarter j for accident year i for jurisdictional
grouping L;

² ULi = estimated ultimate number of claims in-
curred in accident year i for jurisdictional
grouping L; and

² OLij = number of claims open for accident year
i, at start of development quarter j for juris-
dictional grouping L.

3. Methodology

This section opens with a discussion of the
Kalman filter and outlines the generalization to
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the analytical GLM filter developed by Taylor
(2008). It then describes the adaptation of the
Stoffer and Wall (1991) bootstrap required for
GLM filters. Finally, the blending methodology
is described.

3.1. Kalman filter

Following Taylor’s (2000) description, the
model underlying the Kalman filter consists of
two equations, called the system equation and
observation equation. The former describes the
model’s parameter evolution, while the latter de-
scribes the model of observations conditional on
the parameters. The two equations are as follows:

System equation

¯ (s+1)
p£1

=© (s+1)
p£p

¯ (s)
p£1
+r (s+1)

p£1
: (3.1)

Observation equation

Y (s+1)
n£1

= X (s+1)
n£p

¯ (s+1)
p£1

+v (s+1)
n£1

:

(3.2)

These equations are written in vector and matrix
form with dimensions written beneath, and

² Y(s+1) denotes the vector of observations
made at time s+1 (= 1,2, : : :T).

² ¯(s+1) denotes the vector of parameters at
time s+1.

² X(s+1) is the design matrix applying at time
s+1.

² ©(s+1) is a transition matrix governing the
evolution of the expected parameter values
from one epoch to the next.

² r(s+1) and v(s+1) are stochastic perturba-
tions, each with zero mean, and with

Var[r(s+1)] = R(s+1) and

Var[v(s+1)] = V(s+1):
(3.3)

The Kalman filter is an algorithm for calculat-
ing estimates of the ¯(s+1). It revises the param-
eter estimates iteratively over time. Each iteration
introduces additional data Y(s+1). Specific de-

tails of its application to loss reserving may be
found in Taylor (2000).
The formal statement of the filter requires a

little extra notation. Let Y(s j s¡ k) denote the fil-
ter’s estimate of Y(s) on the basis of information
up to and including epoch s¡ k; and similarly
for other symbols at s j s¡ k. Also, let £(s j s¡ k)
denote the estimate of Var[¯(s j s¡ k)].
Equations (3.4) through (3.8) present the math-

ematical detail behind the Kalman filter. The pro-
cess may be split into four steps.
Step 1

¯(s j s¡ 1) = ©(s)¯(s¡ 1 j s¡ 1) (3.4)

£(s j s¡ 1) = ©(s)£(s¡ 1 j s¡ 1)©T(s)+R(s):
(3.5)

Step 2

L(s j s¡ 1) = X(s)£(s j s¡ 1)XT(s)+V(s)
(3.6)

K(s) =£(s j s¡ 1)XT(s)[L(s j s¡ 1)]¡1:
(3.7)

Step 3

Ŷ(s j s¡ 1) = X(s)¯(s j s¡ 1): (3.8)

Step 4

¯(s j s) = ¯(s j s¡ 1)+K(s)(Y(s)¡ Ŷ(s j s¡ 1))
(3.9)

£(s j s) = (1¡K(s)X(s))£(s j s¡ 1): (3.10)

Equations (3.4) to (3.8) generate forecasts of
the new epoch’s parameters and observations
based on no new information. The gain matrix
(credibility of the new observation) is calculated
in Equation (3.7). Finally the parameter estimates
are updated in Equations (3.9) and (3.10). The
process then moves on to the next epoch, start-
ing again with Equation (3.4).
The filter starts with prior estimates for ¯(0 j 0)

and the associated dispersion £(0 j 0).
The key equation for revising parameter esti-

mates is Equation (3.9). The main characteristics
of this formula are that:

² It is linear in the data vector Y(s).
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² ¯(s j s) is the Bayesian revision of the estimate
of ¯(s¡ 1 j s¡ 1) in the case that r(s) and v(s)
are normally distributed.

² Consequently, K(s) is equivalent to the credi-
bility of Y(s).

The Kalman filter is a form of an adaptive fil-
ter–a form of time series estimation in which
parameter estimates are constructed so as to track
evolving parameters.

3.2. Exponential dispersion family

The exponential dispersion family (EDF)
(Nelder and Wedderburn 1972) is a large family
of distributions of varying tail length. This paper
uses a slightly restricted version of the family
whose members have a likelihood of the follow-
ing form:

L(y j μ,¸) = a(¸,y)exp¸[yμ¡ b(μ)],
(3.11)

where μ, ¸ are parameters and a(:) and b(:) are
functions characterizing the members of the fam-
ily. The more general form of EDF allows ¸ to
be a function ¸(') of a dispersion parameter '
rather than a constant.
It may be shown that, for the distribution de-

fined in Equation (3.11),

E[Y j μ,¸] = b0(μ), and

Var[Y j μ,¸] = b00(μ)=¸:
(3.12)

Denote b0(μ) by ¹(μ) whence, provided that
¹(:) is one-one

Var[Y j μ,¸] = V(¹(μ))=¸ (3.13)

for some function V(:) called the variance func-
tion.
Many applications of the EDF restrict the form

of the variance function to

V(¹) = ¹p (3.14)

for some constant p· 0 or p¸ 1. This family
is referred to as the Tweedie family (Tweedie
1984). The likelihoods corresponding to such a
restriction will be referred to below as EDF(p).

Some special cases of the EDF are:

² p= 0: normal
² p= 1: Poisson
² p= 2: gamma
² p= 3: inverse Gaussian
A further quantity associated with the EDF is

the scale parameter. This is given by

'= 1=¸: (3.15)

3.3. Analytical GLM filter

Taylor (2008) examined the problem of find-
ing closed-form solutions to the Bayesian revi-
sion problem for GLMs. That paper builds on the
univariate case where the exponential dispersion
family is closed under Bayesian revision in the
presence of natural conjugate priors. Although
this is not the case for the general multivariate
EDF, Taylor (2008) derives a second order ap-
proximation to the posterior likelihood of a nat-
urally conjugated generalized linear model. This
family of second order approximations is forced
to be closed under Bayesian revision. This is a
useful result since it means that the process may
be used recursively, i.e., it may be used to form
an adaptive filter, thereby allowing a model to
adapt to changing experience.
Although Taylor (2008) gives a general form

of the filter, he notes that it is only analytically
tractable in a limited set of cases, in particular
where the link function corresponds to either the
canonical or companion canonical link (as de-
fined within the paper). Tractable cases include
the Poisson distribution with log link and the
gamma distribution with reciprocal link (canoni-
cal link) or log link (companion canonical link).
This filter is termed the analytical GLM filter (or
GLM filter for short) in this paper. The filter
implements a dynamic generalized linear model,
i.e., a GLM in which parameters vary over time.
Note also that the normal distribution with

identity link is also a member of this class of
filters; Taylor (2008) shows that this is exactly
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equal to the Kalman filter. In other words, the
second order approximations used in that paper
become exact in the case of the normal distribu-
tion and an identity link.
Full details of the general form of the filter

as well as some specific examples are available
in Taylor (2008). However, since the cases of
gamma error/log link (companion canonical link)
and the Poisson error/log link (canonical link)
versions of the filter will be used extensively in
this paper, the series of equations defining this
filter is given here.

3.3.1. The gamma GLM filter
The equations underlying the analytical GLM

filter follow the Kalman filter, in principle, but
are considerably more complex. Below, the key
definitions and equations for the gamma GLM
filter are given, with supplementary formulae in
Appendix A.1. Note that in all the equations be-
low (and those in Appendix A and Appendix B),
functions are assumed to operate componentwise
on vectors.
The system equation for the analytical gamma

GLM filter is the same as that in (3.1). However,
the observation equation differs due to the log
link and is

Y(s+1) = expfX(s+1)¯(s+1)g+ v(s+1):
(3.16)

Some other quantities of importance within the
gamma GLM are defined as follows:

1=h¡1(s j s¡ j)
= E[expf¡M(s j s¡ j)¯(s j s¡ j)g]

(3.17)
¡ (s j s¡ j)

= Var[expf¡M(s j s¡ j)¯(s j s¡ j)g]
where M(s j s¡ j) is defined in Appendix A and
s j s¡ j denotes estimates at epoch s on the basis
of information up to and including epoch s¡ j.
The gamma GLM filter is applied to these

quantities, from which the parameter means and
variances are estimated. In the case of the Kalman

filter, the corresponding expressions in Equations
(3.17) simplify to ¯(s j s¡ j) and £(s j s¡ j)
from Section 3.1.
The equations describing the gamma GLM fil-

ter are given below. Where they make reference
to matrices not defined in this section, the reader
should refer to Appendix A.1 for their defini-
tions.
Step 1

E[¯(s j s¡ 1)] = ©(s)E[¯(s¡ 1 j s¡ 1)] (3.18)

Var[¯(s j s¡ 1)] = ©(s)Var[¯(s¡ 1 j s¡ 1)]©T(s)
+R(s), (3.19)

where ©(s+1) is the identity matrix in the ex-
ample of filtering in this paper. Equation (3.19)
indicates that the parameter vector at any epoch
(accident period) is a deterministic linear trans-
formation and stochastic perturbation of its value
at the previous epoch.
Also adopt the following approximations to

Equations (3.17):

1
h¡1(s j s¡ 1) =

·
I+

1
2
Q(s j s¡1)

¸
£ expf¡E[M(s j s¡ 1)¯(s j s¡ 1)]g

(3.20)
¡ (s j s¡ 1) =Q(s j s¡ 1)DIAG

£ expf¡2E[M(s j s¡ 1)¯(s j s¡ 1)]g
(3.21)

where DIAG(:) is an operator that converts the
subject vector to a diagonal matrix.
Step 2

K(s) = B(s j s)¡1P(s)J(s)G(s): (3.22)

Step 3

Ŷ(s j s¡ 1) = expfX(s)¯(s j s¡ 1)g:
(3.23)

Step 4

1=h¡1(s j s) = DIAG exp[¡M(s j s)¯(s j s¡ 1)]
£ [1¡K(s)(Y(s)¡ Ŷ(s j s¡ 1))]

(3.24)
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where 1 represents a vector with all entries 1,
rather than the unit matrix

¡ (s j s)

=¡D(s)¡1B(s j s)2 (3.25)

E[¯(s j s)]

=M(s j s)T
½
¡ log 1

h¡1(s j s) +
1
2
¡ (s j s)H(¡1)(s j s)21

¾
(3.26)

Var[¯(s j s)]

=M(s j s)TH(¡1)(s j s)¡ (s j s)H(¡1)(s j s)M(s j s):

(3.27)
In (3.26) and (3.27),

H(¡1)(s j s) = DIAGh¡1(s j s) (3.28)

where h¡1(s j s) is the reciprocal of 1=h¡1(s j s).
The filter is initialized by setting initial

values (i.e., prior values) for E[¯(0 j 0)] and
Var[¯(0 j 0)]. Further, input values are required
for ¤(s)–for the gamma distribution, the coef-
ficients of variation of the data Y(s) are the ap-
propriate choice. The R(s) may all be set to a
constant matrix.

3.3.2. The Poisson adaptive filter
The Poisson adaptive filter is also used in this

paper. It is very similar to the gamma filter. Tay-
lor (2008) discusses the relationship between the
two, one based on the canonical link (Poisson/log
link) and the other based on the companion
canonical link (gamma/log link). The key equa-
tions are detailed below with supplementary de-
tail in Appendix A.2.
Step 1
E[¯(s j s¡ 1)] =©(s)E[¯(s¡ 1 j s¡ 1)] (3.29)

Var[¯(s j s¡ 1)] =©(s)Var[¯(s¡ 1 j s¡ 1)]©(s)
+R(s): (3.30)

Also define:

h¡1(s j s¡ 1) = [I+ 1
2Q(s j s¡1)]

£ expfM(s j s¡ 1)E[¯(s j s¡ 1)]g
(3.31)

¡ (s j s¡ 1) =Q(s j s¡ 1)DIAG
£ expf2E[M(s j s¡ 1)¯(s j s¡1)]g:

(3.32)
Step 2

Ŷ(s j s¡ 1) = expfX(s)¯(s j s¡ 1)g:
(3.33)

Step 3

h¡1(s j s) = expfM(s j s)¯(s j s¡ 1)g
+P(s)J(s)[Y(s)¡ Ŷ(s j s¡ 1)]

(3.34)

¡ (s j s) =D(s)¡1B(s j s)2: (3.35)

E[¯(s j s)] =M(s j s)T[log(h¡1(s j s))
¡ 1
2¡ (s j s)fH(¡1)(s j s)2g1]

(3.36)

Var[¯(s j s)] =M(s j s)TH(¡1)(s j s)¡ (s j s)
£H(¡1)(s j s)M(s j s): (3.37)

In Equation (3.36), 1 represents a vector of ones,
rather than a unit matrix, while

H(¡1)(s j s) = [DIAGh(s j s)]¡1: (3.38)

3.4. Bootstrap

The GLM filter yields a central estimate of lia-
bility. For many applications, an indication of the
uncertainty that is associated with the estimate is
also useful.
Variability in a forecast results from a number

of sources:

² Parameter error: sampling error in the pa-
rameter estimates;

² Process error: even if the parameter esti-
mates match their true values, future experi-
ence will be subject to disturbance

² Specification error: the error caused by the
model being incorrect

The first two of these may be measured us-
ing the bootstrap (Efron and Tibshirani 1993).
Broadly speaking, a typical bootstrap application
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involves repeatedly resampling the data to obtain
many pseudo data sets. The filter is run through
each and the resulting collection of forecast val-
ues (and parameter estimates if desired) forms an
empirical estimate of the true distribution of that
quantity.
Taylor (2000) and Pinheiro, Andrade e Silva,

and Centeno (2003) review the application of
bootstrapping to loss reserving problems; since
the data in a loss reserving triangle are not, in
general, identically distributed, an adjusted ver-
sion of the bootstrap, based on standardized
residuals must be used rather than the traditional
bootstrap method of simply resampling data
points.
When bootstrapping filtered data, a further

complication arises in that the resulting residuals
are not independent. The correct way of dealing
with such lack of independence was discussed
in Stoffer and Wall (1991) in relation to the case
of normal distributions, identity links (i.e., the
Kalman filter). A similar approach should be ap-
plied to GLM filters.
The key concept of the Stoffer and Wall (1991)

paper is that dependencies must be allowed for
in any bootstrapping process. Following the no-
tation in Section 3.1, they first construct the in-
novations, defined as follows:

"(s) = Y(s)¡X(s)¯(s j s¡ 1): (3.39)

The innovations covariance matrix is defined as

X(s)¡ (s j s¡ 1)XT(s) +V(s) = L(s j s¡ 1):
(3.40)

By (3.39) and (3.40), the standardized innova-
tions may be calculated as

e(s) = L¡1=2(s j s¡ 1)"(s): (3.41)

To carry out one iteration of the bootstrap, the
standardized innovations, e(s), s= 1, : : : ,T, are
sampled T times with replacement (where T is
the total number of epochs to which the filter is
applied). Note that all components of these es are

stochastically independent and equivariant, and,
for "(s) normal, equidistributed as is required for
the bootstrap resampling.
To create a bootstrap data set, the standardiza-

tion of the innovations is reversed using Equation
(3.41), leading to pseudo innovations, "¤(s), s=
1, : : : ,T. These may then be used in the Kalman
filter, in Equation (3.9) in place of Y(s+1)¡
Ŷ(s+1 j s). A key point to note is that, since the
filter depends on the data only through this equa-
tion, there is no need to reconstruct a pseudo data
set, as would be the case in typical applications
of bootstrapping [see, e.g., Efron and Tibshirani
(1993); Pinheiro, Andrade e Silva, and Centeno
(2003)].
Apart from the modification to Equation (3.9),

the remainder of the Kalman filter equations
flow through unchanged for a bootstrap iteration,
yielding one set of bootstrapped results. The pro-
cess may then be repeated a large number of
times to yield the bootstrapped estimate of the
distribution of the results.
For the analytical GLM filter, Equation (3.39)

is replaced with Equation (3.42), below, for the
gamma/log link case:

"(s) = 1=h¡1(s j s)¡ expf¡M(s j s)¯(s j s¡ 1)g,
(3.42)

and Equation (3.43) for the Poisson/log link sce-
nario:

"(s) = h¡1(s j s)¡ expfM(s j s)¯(s j s¡ 1)g:
(3.43)

There is no simple expression for the innova-
tions covariance matrix corresponding to Equa-
tion (3.40) for either case. Instead, these must
be calculated using Equations (3.24) and (3.34)
to find alternative specifications for Equations
(3.42) and (3.43) and then calculating the ap-
proximate variance of these terms. Appendix B
gives these calculations.
As in Stoffer and Wall (1991), the standardized

innovations are resampled T times (where T is
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the number of epochs in the data) for each boot-
strap iteration, yielding ẽ(s), s= 1, : : : ,T. Simi-
larly, a pseudo innovation is calculated for each
epoch and used in place of Equation (3.24) for
gamma/log link and Equation (3.34) for Poisson
log link. In the gamma/log case the substitution
is

1=h¡1(s j s) = "̃(s)+DIAG exp[¡M(s j s)¯(s j s¡ 1)],
(3.44)

where "̃(s) = L1=2(s j s¡ 1)ẽ(s) represents the
sampled innovation. A similar substitution is
made in the Poisson/log link case.
The gamma/log link case requires some ad-

ditional special handling. This is due to the ap-
pearance of the data, Y(s), in Equations (A.7) and
(A.9), meaning that, in the bootstrap, pseudo data
appears within the calculation of the pseudo sam-
ple parameters. This renders the computation of
pseudo data self-referencing.
The approach that has been taken here is to:

² Work through the Equations (A.7) and (A.9).
² Calculate (3.24) using the pseudo innovations.
This yields an initial estimate of 1=h¡1(s j s).

² Calculate the implied value, ˜̄ (s j s¡ 1)
from the relation 1=h¡1(s j s) = expf¡M(s j s)
¢ ˜̄ (s j s¡ 1)g (refer to (3.17)).

² Calculate the implied value, Ỹ(s) as Ỹ(s) =
expfX(s) ˜̄ (s j s¡ 1)g (refer (3.23)).

² Recalculate (A.7) and (A.9) with Ỹ(s) and then
carry these effects through the remainder of
the filter equations.

Note that, as for the Kalman filter, the pseudo
innovations (3.42) and (3.43), after diagonaliza-
tion and standardization, are stochastically inde-
pendent and equivariant. However, they may not
be equidistributed. For example, Poisson variates
with differing means, when standardized, are not
equidistributed.
Strictly, this breaches the bootstrap require-

ment of exchangeability of standardized (and di-
agonalized) residuals, and so introduces an error

into the application of the bootstrap to a GLM.
We suppose this error to be slight.

Process error
Process error may be incorporated into the

bootstrap results by means of the distribution as-
sumed for the data. Thus, the methodology out-
lined above leads to a mean value for each cell;
a value may then be sampled from the appropri-
ate error distribution (e.g., gamma or Poisson) to
incorporate process error.

Output
The ultimate output of a bootstrapping proce-

dure, for an outstanding claims estimation pro-
cess, is a distribution of the outstanding claims
liability. However, the mean of the bootstrap dis-
tribution will not, in general, equal the mean es-
timated from the original data set. The disparity
will be caused at least by sampling error aris-
ing from the finiteness of the sample forming
the bootstrap distribution, and it may arise from
other errors such as discussed immediately
above.
To correct for this, the user may scale the boot-

strap values to match the original estimates. This
ensures consistency between the bootstrapped re-
sults and the mean (such as, for example, the lo-
cation of various percentile points) while main-
taining the same level of variability.

3.5. Blending of model results

It is common practice in actuarial reserving to
apply more than one model to the data with the
final estimates being a blend of those from all
models. In principle, weights assigned to each
model should be high where that model is re-
liable and low where it is not. Further, it may
be desirable to take into account the smoothness
of certain quantities as they progress over ac-
cident periods–for example, the smoothness of
the weights themselves and the smoothness of
the ratio of the estimates of liability to case es-
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timates of that liability (call these the “case esti-
mate ratios”).
Note that the notation used in this subsection

differs in a couple of respects from that intro-
duced in Section 2. For example C and U have
different meanings, within the context of the
blending algorithm, from those previously used.
The blending procedure followed here shares

a lot of common ground with that described in
Chapter 12 of Taylor (2000), which in turn is
a modification of a procedure proposed in an
earlier paper (Taylor 1985). The principle dif-
ference is that smoothness of the case estimate
ratios is defined here in terms of their logged val-
ues, whereas it is defined in terms of their raw
values in the cited work.
The reasoning supporting this is as follows. If

Ri denotes the case estimate ratio for accident pe-
riod i, the sequence fRi, i = 1,2, : : : ,Ig will typi-
cally display relatively large values for the high-
est values of i, but tend to converge to a constant
as i! 1.
This will resemble an exponential rather than

a linear sequence. If it were precisely exponen-
tial, then the sequence flnRig would be linear,
and second differences ¢2 lnRi of this sequence
would be zero. In this sense, smallness of the
¢2 lnRi is a reasonable criterion for smoothness
of the sequence fRig.
An outline of the blending procedure is pre-

sented below.
Let L̂ih, i = 1,2, : : : ,I, h= 1,2, : : : ,H denote the

estimate of outstanding claims liabilities for mod-
el h, for accident period i.
Consider blended estimates from the family of

linear combinations of the models:

ˆ̂
Li =

HX
h=1

wihL̂ih (3.45)

for deterministic coefficients wih.
Let

L̂i = (L̂i1, L̂i2, : : : , L̂iH)
T (3.46)

wi = (wi1,wi2, : : : ,wiH)
T (3.47)

L̂
I£HI

=

26666664
L̂T1

L̂T2
. . .

L̂TI

37777775 (3.48)

w =

2666664
w1

w2
...

wI

3777775 : (3.49)

Note that L̂ is a block diagonal matrix, i.e., a

block matrix with, in this case, a 1£H block

for each entry on the diagonal and zero blocks

elsewhere. Let

C
HI£HI

=Var

2666664
L̂1

L̂2
...

L̂I

3777775 : (3.50)

Let qi be the most recent case estimates for ac-

cident year i. Let

Q = diag(q¡11 ,q
¡1
2 , : : : ,q

¡1
I ): (3.51)

Define the rth order differencing matrix, D, as

the (I¡ r)£ I matrix with (i,j) element

dij = (¡1)i+j
Ã

r

j¡ i

!
, j ¸ i, j¡ i· r

= 0, otherwise: (3.52)

The procedure requires differencing matrices

associated with both the (logged) case estimate

ratios (DQ, an (I¡ r)£ I matrix, defined as in
Equation (3.52)) and D̃W which is defined as

D̃W =

0BB@
DTD 0

. . .

0 DTD

1CCA
(H diagonal blocks)

(3.53)

where D is as defined in Equation (3.52).
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A reasonable choice for the level of differenc-
ing is second order (r = 2), for both the case es-
timate ratios and the weights.
Let E be the HI£HI matrix which permutes

the components of w as follows:26666666666666664

w11

w12

...

wI1

...

wIH

37777777777777775
!

26666666666666664

w11

w21

...

w1H

...

wIH

37777777777777775
: (3.54)

Let

R = log(QL) (3.55)

and

B = RTDTQDQR: (3.56)

Now let

T = ETD̃wE (3.57)

and

G = C+ k1B+ k2T, (3.58)

which is an objective function that assigns rela-
tive weights 1, k1 and k2 to

² variance of total liability according to the blend
of models;

² smoothness of case estimate ratios (more pre-
cisely, ratios of logged estimates to logged case
estimates); and

² smoothness of the weights;
respectively. Values of k1,k2 ¸ 0 are to be chosen
by the user, and the choice may be made with
the assistance of Taylor (1992) and Verrall
(1993).
The weights that minimize this objective func-

tion, subject to the constraint that §hwih = 1 for
each i, are

w =G¡1UT(UG¡1UT)¡11 (3.59)

where

U =

26666666664

1T
1£H

1T
1£H

. . .

1
1£H

37777777775
: (3.60)

The matrix U arises here from the constraint that
the weights for each accident period must sum
to unity.
There is no constraint for the weights to be

non-negative in the algorithm above; all that is
required is for the weights to sum to one for each
accident period. It is possible for the algorithm
to lead to large, negative weights balanced by
large positive weights. This may be seen as un-
desirable. Therefore, it is proposed that negative
weights be forced to zero, with the remaining
positive weights being scaled so that they sum to
one.
Further, the definition of C in Equation (3.50)

may be based upon variances only rather than the
full covariance matrices for each model. Restrict-
ing C to be a strictly diagonal matrix (rather than
block diagonal–where covariances between dif-
ferent accident periods may be nonzero within a
model, but covariances between models are as-
sumed zero) can lead to quite different results.
In some cases, these may be judged better by the
practitioner.
In practice, both the log and linear versions

of the blending algorithm should be considered.
The linear version of the algorithm follows the
same process as outlined above except that Equa-
tions (3.55) and (3.56) are replaced by

A=QTDTQDQQ (3.61)

and

B = L̂TAL̂: (3.62)

The version that yields the best results for the
problem under consideration should be used.
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4. Models applied to data

It has been previously indicated that it is cus-
tomary to consider fitting more than one type
of model to claims data when calculating out-
standing claims reserves. Three models are con-
sidered in this paper, representing to a certain
extent the standard repertoire in Australian prac-
tice:

² Payments per claims incurred (PPCI);
² Payments per claims finalized (PPCF); and
² Projected case estimates (PCE).
The rationale behind this is that the first two

models are payments based. These should per-
form well where there is a substantial volume of
payments (e.g., in early to middle development
periods). The PPCF model is particularly suited
to claims for which the majority of the payments
are made at finalization (and conversely less
suited to claims with substantial recurring pay-
ments). The PCE model would be expected to
perform best in the later development periods.
Here, much is known about outstanding claims,
so the case estimates would be expected to be
reliable.
Definition and discussion of the three models

appears in Taylor (2000). Some more detail on
each of them follows below. Note that the nota-
tion used here is that defined in Sections 2 and
3 (with the exception of Section 3.5).

4.1. Payments per claim incurred model

Let
PPCILij = C

L
ij=U

L
i : (4.1)

A commonly used model for PPCIij is the Ho-
erl Curve (De Jong and Zehnwirth 1983; Wright
1990). This has the following form:

¹ij = expf¯0 +¯1j+¯2 logjg, j = 1,2, : : :

(4.2)

where ¹ij represents the mean value of PPCIij .

For the particular data set described in Section

2, the Hoerl Curve is used as a starting point

and then modified slightly. Further, each jurisdic-

tional group is permitted to have its own shape.

The applied model has the form

PPCILij »Gamma(¹Lij ,vj)

¹Lij = expf¯i0 +¯i1 logj+¯i2j+¯i3min(j,16)g

+I(L= 1)f¯i4 +¯i5 logj+¯i6j+¯i7min(j,16)g

(4.3)
where

vj = coefficient of variation in development

quarter j; and

I(condition) is an indicator function which

is 1 if condition is true and 0 otherwise:

The quantity vj may be estimated on the basis of

data and actuarial judgment.

Examples of the actual data and fitted model

are shown below in Figure 1, which plots PPCIs

for one of the jurisdictional groups (labeled as

group 0). Note that both graphs are presented

on the same vertical scale. Thus, movement in

average claim payments from accident year 1 to

5 is apparent in these plots.

4.2. Payments per claims finalized
model

The payments per claims finalized model

(PPCF) actually consists of two submodels:

² Average payments per claim finalized;

² The probability that a claim finalizes in a par-

ticular quarter.

Model of average payments per claim finalized
Let

PPCFLij = C
L
ij=F

L
ij : (4.4)

Average payments per finalized claim tend to

increase with age of claim since the more com-
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Figure 1. Fitted PPCI model

plicated and serious claims are more likely to
take longer to settle. For the data in this paper,
the following model is used:

PPCFLij »Gamma(¹Lij ,vj)

¹Lij = exp

(
¯i0 + I(L= 0)

"
¯i1

μ
j¡ 1
4

¶¡0:4

+¯i2min(6,j¡ 1)
#

+I(L= 1)

"
¯i3 +¯i4

μ
j¡ 1
4

¶¡0:75

+¯i5min(6,j¡ 1)
#)

(4.5)
where

¹Lij = the mean PPCF
L
ij in cell (i,j);

Figure 2. Fitted PPCF model

vj = coefficient of variation in development
quarter j; and

modeling begins in the second development quar-
ter (i.e., j = 2).
Examples of the actual data and fitted model

are shown in Figure 2. Again, both graphs are
presented on the same vertical scale.

Model of probability of finalization
Let

PRFLij = F
L
ij =(O

L
ij +N

L
ij =3): (4.6)

The denominator in (4.6) is an exposure measure
of the number of claims that may finalized in cell
(i,j). The probability of finalization for the data
in this paper is quite a volatile quantity; therefore
simple models have been used.
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PRFLij »Overdispersed Poisson(¹Lij ,vj)

¹Lij = expf¯i0 + I(L= 0)[¯i1min(j¡ 1,15)
+¯i2max(1,j¡ 13)¡0:25]
+ I(L= 1)[¯i3 +¯i4min(j¡ 1,15)
+¯i5max(1,j¡ 13)¡0:25]g (4.7)

where

¹Lij = the mean PRF
L
ij in cell (i,j); and

vj = ratio of the variance to the mean, which
may differ from 1 (standard Poisson)
through the use of an overdispersed
Poisson.

Examples of the actual data and fitted model
are shown in Figure 3. Again, both graphs are
presented on the same vertical scale.

4.3. Projected case estimates model

The projected case estimates model examines
the further development required by case esti-
mates at a given point in time to be sufficient to
settle claims in full. In any given development
period and accident period, the hindsight esti-
mate of case estimates at the end of the quarter
(the sum of payments in that quarter and closing
case estimates) may be compared against open-
ing case estimates. If the opening case estimates
were sufficient, then the ratio would be one; a
value greater than one indicates that the opening
estimates are now considered insufficient, while
a value less than one indicates they are now con-
sidered excessive.
Therefore, there are two quantities to be mod-

eled–case estimates and payments. Both may be
expressed as factors relative to the opening case
estimates.

Payment factors
Payment factors are defined, for j = 2,3, : : : , as

PFLij = C
L
ij=E

L
i,j¡1: (4.8)

Figure 3. Modeled finalization probabilities

The PFLij are modeled as follows:

PFLij »Gamma(¹Lij ,vj)

¹Lij = expf¯i0 + I(L= 0)[¯i1max(1,j¡ 9)¡0:5 +¯i2I(j · 9)]

+ I(L= 1)[¯i3 +¯i4(j¡ 1)¡0:5

+¯i5max(0,7¡ j)2]g (4.9)
where

¹Lij = the mean PF
L
ij in cell (i,j); and

vj = coefficient of variation of the payment
factors in development quarter j:

Examples of the actual data and fitted model
are shown in Figure 4.

Case estimate development factors
Traditionally, the case estimate development

factors model is based on the development of
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Figure 4. Modeled payment factors

the hindsight case estimates. Thus, the modeled
quantities are defined, for j = 2,3, : : : as

CEDFLij = (E
L
ij +C

L
ij)=E

L
i,j¡1: (4.10)

However, comparison with Equation (4.8) indi-
cates that, based on this definition, the fCEDFg
and fPFg would not be independent. Although
this is inconsequential for the traditional deter-
ministic application of the PCE model, it does
matter for the stochastic application. Therefore,
in this paper, the following definition of a case
estimate development factor is used:

CEDFLij = E
L
ij=E

L
i,j¡1: (4.11)

To preserve the relationship with amount paid
in a cell (i,j), the payment factors are includ-

Figure 5. Modeled case estimate development factors

ed within the model for the fCEDFg. Thus, the
model is

CEDFLij »Gamma(¹Lij ,vj)

¹Lij = expf¯i0 +¯i1PFLij
+I(L= 0)[¯i1j

¡1 +¯i2I(j = 1)]

+ I(L= 1)[¯i3 +¯i4j
¡1

+¯i5I(j = 1)]g (4.12)
where

¹Lij = the mean CEDF
L
ij in cell (i,j); and

vj = coefficient of variation in development
quarter j:

Examples of the actual data and fitted model
are shown in Figure 5.
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Bootstrapping the case estimate development
factor submodel
The model for the fCEDFg is different from

the other four models described in that it depends
on a modeled quantity, the fPFg. Allowance for
this must be made within the bootstrapping pro-
cess to allow correctly for variability within the
fCEDFg. The following bootstrap process is pro-
posed:
For each bootstrap iteration, k,

² Take the past pseudo payment factors from one
bootstrapping iteration of payment factors;

² First, model the actual fCEDFg values using
these pseudo payment factors for the actual
payment factors. This yields a model for the
fCEDFg that is different from the original
fitted model through its dependency on the
pseudo payment factors;

² Now bootstrap the modeled fCEDFg as de-
scribed in Section 3.4, yielding one set of
pseudo fCEDFg. Together with the pseudo
fPFg, these produce the liability from one
pseudo data set;

² Repeat this process, starting by taking the next
set of past pseudo payment factors from the
payment factor bootstrap until the desired
number of pseudo results has been obtained.

5. Results

The models described in Section 4 were ap-
plied to the data using the GLM adaptive filter-
ing methodology described in Section 3.3. The
bootstrap process outlined in Section 3.4 was ap-
plied. The results of this were blended to yield
an overall estimate of outstanding claims liability
following the algorithm in Section 3.5.
Table 1 displays the results for each of the

three models for legislative jurisdiction 0, to-
gether with the bootstrapped estimates of coeffi-
cient of variation. Note that the results have been
scaled for confidentiality reasons. The PPCF and
PCE models perform best as measured by coeffi-

Table 1. Results for legislative jurisdiction 0

PPCI PPCF PCE
Accident
year Mean CV Mean CV Mean CV

1 8 240% 132 55% 22 105%
2 20 213% 242 47% 56 108%
3 58 169% 165 58% 23 98%
4 110 132% 268 47% 70 90%
5 242 107% 861 30% 317 62%
6 291 74% 1,216 27% 671 64%
7 678 57% 1,257 27% 799 44%
8 817 52% 1,672 27% 1,319 40%
9 2,259 48% 3,366 25% 2,040 32%

10 3,544 48% 3,510 22% 2,368 31%
11 6,366 48% 6,041 21% 5,480 31%
12 7,182 44% 6,742 20% 6,700 31%
13 8,544 43% 8,664 21% 7,234 33%
14 9,001 43% 9,015 21% 3,749 98%

Total ex 14 30,119 34,136 27,099
Total 39,120 42% 43,151 18% 30,849 22%

Table 2. Results for legislative jurisdiction 1

PPCI PPCF PCE
Accident
year Mean CV Mean CV Mean CV

1 45 213% 6 232% 0 0%
2 118 214% 146 58% 215 148%
3 160 177% 36 116% 0 0%
4 142 194% 236 45% 72 112%
5 239 153% 226 48% 52 73%
6 334 116% 365 40% 417 60%
7 446 106% 686 34% 565 54%
8 645 89% 780 34% 519 53%
9 1,859 84% 1,430 27% 1,303 48%

10 5,795 83% 6,470 24% 6,225 55%
11 8,517 78% 6,219 21% 6,923 59%
12 9,477 78% 6,580 20% 5,536 65%
13 9,828 76% 7,716 21% 5,713 74%
14 13,385 76% 10,826 21% 1,827 128%

Total ex 14 37,602 30,895 27,539
Total 50,988 73% 41,721 19% 29,366 45%

cient of variation. For these data, the three mod-

els give broadly consistent results when the most
recent accident year is excluded.

Table 2 displays the results for the other leg-
islative grouping of data. It is seen that the PPCF
and PCE models perform best for these data.

The PPCI model with universally high coeffi-
cients of variation performs poorly. These data

show changes in the rates of finalization in re-
cent years, which changes the profile of average
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Figure 6. Distribution of PPCI results—jurisdiction 0

payments paid per development period, which
in turn, impacts on the reliability of the PPCI
model.
Further, the results of the PPCF and PCE mod-

els are quite similar (ignoring the most recent
year–PCE models generally perform poorly on
recent accident periods) while the PPCI model
gives substantially higher results.
Histograms of the bootstrapped distributions

for each of the models, each with 1,000 replica-
tions, are presented in Figures 6, 7, and 8. These
graphs all relate to jurisdiction 0.
In the application of the blending algorithm

in Section 3.5, the following decisions were
made:

² Both log and linear blending were considered;
for these data the log blending was found to
perform the better;

² Only variances were used in the blending algo-
rithm (i.e., the covariance matrix in Equation
(3.50) was assumed to be strictly diagonal);

² The progression of weights, and the ratio
of blended liability to case estimates, were
smoothed over accident years 1 to 13 only. For
year 14, the minimum variance unbiased esti-
mates were used since the case estimates for
the most recent year are considerably lower
than those in previous years, due to the imma-
turity of that experience (only one quarter into
the accident year). Using them in the smooth-
ing algorithm would have led to distorted re-
sults;

² Negative weights were not allowed (see the
discussion at the end of Section 3.5);

² Values of k1 = k2 = 1014 were selected. These
values were selected by first choosing values
of similar order to the matrices B and T in
(3.58) and then examining plots of case esti-
mate ratios and weights for a suitably smooth
progression (e.g., Figures 9 to 11).

The weights that result from the algorithm are
shown in Figure 9 (jurisdiction 0) and Figure 10
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Figure 7. Distribution of PPCF results—jurisdiction 0

(jurisdiction 1). The omission of smoothing in
the last year is evident from the graphs. As would
be expected from the results in Table 1 and 2,
the PPCI model is assigned low weights in both
models.
A final point to note is the relatively high

weight assigned to the PCE model for accident
year 14, particularly for jurisdictional grouping
1. Although the PCE results for year 14 have a
high coefficient of variation (refer to Tables 1
and 2), the quantum of liability is small relative
to the other models, meaning, in turn, that the
standard deviation in absolute terms is low.
The practitioner may wish to intervene to in-

crease the standard deviation to a level perceived
as realistic relative to the other models. This has
not been done here, however.
The ratio of the blended liability (that results

from the weights above) to case estimates is
shown in Figure 11, in which the horizontal axis
relates to accident years. Given the immaturity of

the case estimates in year 14 (the most recent),
this comparison has been omitted. It is seen that
the progression is satisfactory. Missing ratios ex-
ist in Years 1 and 3 in jurisdiction 1, as case es-
timates are zero in these years.
The final results are given in Table 3. It is ob-

served that the coefficients of variation are gen-
erally lower than the individual coefficients of
variation from each component model, particu-
larly for the coefficient of variation for the total
liability.

6. Discussion

The practicalities of the application of the an-
alytical GLM filter (Taylor 2008) to claims data
have been described in this paper. Also discussed
are appropriate methods for bootstrapping fil-
tered data as well as algorithms for blending the
results from two or more models.
The filter described here is applied on a row-

by-row basis. In insurance terms, this means that
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Figure 8. Distribution of PCE results—jurisdiction 0

Figure 9. Selected weights for legislative jurisdiction 0

accident period changes may be incorporated
easily into the model, but there is no easy way
to incorporate diagonal effects (e.g., calendar pe-
riod effects such as superimposed inflation). Fur-

ther, data naturally arise on a calendar-year basis.
Therefore, an implementation of the filter by cal-
endar period would be useful. In principle, this
should be relatively straightforward [e.g., see the
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Figure 10. Selected weights for legislative jurisdiction 1

Table 3. Blended results

L = 0 L = 1
Accident
year Mean CV Mean CV

1 22 104% 0 20051%
2 56 107% 213 145%
3 24 96% 3 1413%
4 70 90% 73 110%
5 324 60% 52 72%
6 702 58% 415 59%
7 847 38% 561 49%
8 1,375 32% 567 39%
9 2,317 24% 1,447 32%

10 2,672 21% 6,273 26%
11 5,712 20% 6,649 22%
12 6,771 18% 6,655 20%
13 8,035 17% 7,425 20%
14 7,963 20% 6,811 23%

Total 36,891 12.7% 37,144 16.6%

description of the Kalman filter by calendar pe-
riod in Taylor (2000)]. However, in practice, a
number of issues may need to be addressed, such
as stability of parameter estimates. This is the
subject of future work.
Such methodology has potential use as part

of an automatic reserving process. Within the
general insurance industry, many valuations take
place on a “revolving door” basis, i.e., one val-
uation finishes only for the next one to begin.

Since filters adapt to changing experience, an au-
tomated process could be set up which would
apply filters, run the bootstrap and blending pro-
cess, and produce final results, without human
intervention. This would lead to considerable
savings in the valuation process while still pro-
ducing fully stochastic models.
An automatic approach would require a range

of diagnostic tests to alert users to problems
which require intervention. Developing such tests
is the subject of current work.
The analytical GLM filter implements an ap-

proximate solution to a Bayesian updating prob-
lem, and uses bootstrapping to estimate the distri-
bution of predicted liabilities. More exact results
may be found using a method like MCMC which
can generate Bayesian posterior distributions us-
ing simulation. A comparison between the filter
presented here and more exact approaches, in-
cluding MCMC, will be presented in a separate
paper.
The models implemented here are dynamic

models, rather than static models. This means
that their parameters evolve through time and
that the estimates of those parameters can change
through time in response, should this be war-
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Figure 11. Ratio of blended results to case estimates
for L = 0 (left graph) and L = 1 (right graph)

ranted by experience. An example of this move-
ment is given in Figure 12, where the PPCI model
fitted to the first accident year is compared with
the models for a number of following accident
years.
The amount of movement permitted in the fit-

ted curves is dependent on the “parameter vari-
ances,” defined in Equation (3.19) (gamma case
of the Analytical GLM filter) and Equation (3.30)
(Poisson case). The choice of parameter vari-
ances may be thought of as picking a point along
a continuum of levels from variances of zero

(which corresponds to a static model) to high
variances (each accident period modeled on just
its own data, without any reference to other pe-
riods).
The selection of the variance levels is currently

based on judgment; developing a more objective
way to select the variances is currently being in-
vestigated.
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Appendix A. GLM filter
A.1. Gamma GLM filter

Let 1=h¡1(s j s¡ j) and ¡ (s j s¡ j) be as de-
fined in Equation (3.17). Further, let h¡1(s j s¡ j)
be the reciprocal of 1=h¡1(s j s¡ j). The filter be-
gins with equations (3.18) and (3.19).
Define M(s j s¡ 1) and Q(s j s¡ 1) as the or-

thogonal and diagonal matrices, respectively, sat-
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isfying

M(s j s¡ 1)TQ(s j s¡ 1)M(s j s¡ 1)
= Var[¯(s j s¡ 1)]: (A.1)

It is then possible to calculate Equations (3.20)
and (3.21).
Define N(s j s¡ 1), W(s j s¡ 1) as

N(s j s¡ 1) = [¡ (s j s¡ 1)]¡1[I+ 1
2Q(s j s¡ 1)]DIAG

£ expf¡M(s j s¡ 1)E[¯(s j s¡ 1)]g,
(A.2)

W(s j s¡ 1) =N(s j s¡ 1)
·

1
h¡1(s j s¡ 1)

¸
: (A.3)

Then

¯(s j s¡ 1)
=¡M(s j s¡ 1)T log(N(s j s¡ 1)¡1W(s j s¡1)):

(A.4)
Further define:

B(s j s¡ j) =¡DIAG expf¡M(s j s¡ j)¯(s j s¡ 1)g,
j = 0,1, (A.5)

G(s) =¡DIAG expf¡X(s)¯(s j s¡ 1)g: (A.6)

and P(s) and D(s) as the orthogonal and diagonal
matrices, respectively, satisfying

P(s)TD(s)P(s)

=N(s j s¡ 1)B(s j s¡ 1)
+M(s j s¡ 1)X(s)TDIAG[G(s)¤(s)Y(s)]
£X(s)M(s j s¡ 1)T (A.7)

Then

M(s j s) = P(s)M(s j s¡ 1), (A.8)

and

J(s) = P(s)TB(s j s)P(s)

£
"
N(s j s¡ 1)B(s j s¡ 1)+M(s j s¡ 1)X(s)T

DIAGfG(s)¤(s)Y(s)gX(s)M(s j s¡ 1)T

#¡1
£M(s j s¡ 1)X(s)T¤(s): (A.9)

Equation (3.22) may then be calculated, fol-
lowed by Equation (3.23). The iteration of the
filter then concludes with Equations (3.24) to
(3.27).

A.2. Poisson GLM filter

Let h¡1(s j s¡ j) and ¡ (s j s¡ j) be as defined
in Equation (3.17). The filter begins with Equa-
tions (3.29) and (3.30).
Define M(s j s¡ 1) and Q(s j s¡ 1) as the or-

thogonal and diagonal matrices respectively sat-
isfying

M(s j s¡ 1)TQ(s j s¡ 1)M(s j s¡ 1)
= Var[¯(s j s¡ 1)]: (A.10)

It is then possible to calculate Equations (3.31)
and (3.32).
Define N(s j s¡ 1), W(s j s¡ 1) as

N(s j s¡ 1) = [¡ (s j s¡ 1)]¡1[I+ 1
2Q(s j s¡ 1)]DIAG

£ expfM(s j s¡ 1)E[¯(s j s¡ 1)]g,
(A.11)

W(s j s¡ 1) =N(s j s¡ 1)[h¡1(s j s¡ 1)]: (A.12)

Then

¯(s j s¡ 1)
=M(s j s¡ 1)T log(N(s j s¡ 1)¡1W(s j s¡ 1)):

(A.13)
Further define:

B(s j s¡ j) = DIAG expfM(s j s¡ j)¯(s j s¡ 1)g
j = 0,1, (A.14)

G(s) = DIAG expfX(s)¯(s j s¡ 1)g:
(A.15)

and P(s) and D(s) as the orthogonal and diagonal
matrices respectively satisfying

P(s)TD(s)P(s)

=N(s j s¡ 1)B(s j s¡ 1)
+M(s j s¡ 1)X(s)T¤(s)G(s)X(s)M(s j s¡ 1)T:

(A.16)
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Then

M(s j s) = P(s)M(s j s¡ 1): (A.17)

And

J(s) = P(s)TB(s j s)P(s)[N(s j s¡ 1)
£B(s j s¡ 1)+M(s j s¡ 1)X(s)T

¤(s)G(s)X(s)M(s j s¡ 1)T]¡1

£M(s j s¡ 1)X(s)T¤(s): (A.18)

Equation (3.33) may then be calculated. The iter-
ation of the filter then concludes with Equations
(3.34) and (3.37).

Appendix B. Calculation of
variances of GLM innovations

B.1. Definition of some common terms

Let ˆ̄ = ¯+ ± where E[±] = 0 and Var(±) =
V±(= R(s)) where R(s) is that from Equation (3.3)
and let E(¯) = ˜̄ , Var(¯) = V̄ . At each step, ˜̄

and V̄ are assumed to be the current values from
Equations (3.18) and (3.19). Further, let ¹Yi =

E[eXi¯] where Yi represents the ith element of Y(s)
and Xi is the ith row of the matrix X.
Using the approximation

E[g(X)]¼ g
μ
¹X +

1
2
¾2X
g00(¹X)
g0(¹X)

¶
, (B.1)

where ¹X = E[X] and ¾
2
X =Var[X], then

¹Y = expfXi ˜̄ + 1
2XiV̄ X

T
i g: (B.2)

Further let

V̄ ± = V̄ +V±: (B.3)

B.2. Variance of gamma/log innovations

Equation (3.24) may be rewritten as

1=h¡1(s j s) = expf¡M(s j s)¯(s j s¡ 1)g
¡P(s)J(s)[H(¡1)(s j s¡ 1)¡1Y(s)¡ 1],

(B.4)

and

H(¡1)(s j s¡ 1) = DIAGh¡1(X(s)¯(s j s¡ 1))
(B.5)

(refer to Equations (6.51) and (6.52) of Taylor
(2008)).
Rearranging (B.4), it is seen that the covari-

ance of 1=h¡1(s j s)¡ expf¡M(s j s)¯(s j s¡ 1)g
depends on the covariance of the quantity
H(¡1)(s j s¡ 1)¡1Y(s).
Note that

Cov(AB,CD)

= Cov[(¹A+ "A)(¹B + "B), (¹C + "C)(¹D+ "D)]

= ¹A¹CCBD +¹A¹DCBC +¹B¹CCAD +¹B¹DCAC

+ third and higher order terms in "i (B.6)

where E["I] = 0, I = A,B,C,D and ¹I = E[I] for
I = A,B,C,D, and CIJ =Cov[I,J] = E[IJ].
Then, letting H¡1 =H(¡1)(s j s¡ 1)¡1 and H¡1i

be the ith diagonal element of H¡1,

Cov(H¡1i Yi,H
¡1
j Yj)

= ¹H¡1i
¹H¡1j

CYiYj +¹H¡1i
¹YjCH¡1j Yi

+¹Yi¹H¡1j
CH¡1

i
Yj
+¹Yi¹YjCH¡1i H¡1

j
:

(B.7)

Thus the following must be calculated: ¹H¡1i
,

¹Yi , CYiYj , CH¡1i Yj
, CH¡1i H¡1j

. It will be necessary to

use Equation (B.1) in these calculations.

¹H¡1i
= E[e¡Xi

ˆ̄
]

¼ exp¡
8<:Xi ˜̄ + 12XiVar(¯+ ±)XTi e¡Xi ˜̄

¡e¡Xi ˜̄

9=;
= exp¡fXi ˜̄ ¡ 1

2XiV̄ ±X
T
i g (B.8)

and ¹Yi is as defined in Equation (B.2).
An approximation parallel to (B.1) is

Cov[f(X),Y]¼ f 00(¹X)Cov[X,Y]: (B.9)

Then

Cov(H¡1i ,Yj) =
¡1
¹2Hi

Cov(Hi,Yj): (B.10)
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Now

Cov(Hi,Yj) = Cov(e
Xi
ˆ̄
,eXj¯)

= Cov(eXi¯+Xi±,eXj¯)

= E[eXi±e(Xi+Xj )¯]¡E[eXi±eXi¯]E[eXj¯]

= E[eXi±](E[e(Xi+Xj )¯]¡E[eXi¯]E[eXj¯])

= E[eXi±]Cov(eXi¯eXj¯) (B.11)

eXi± ¼ exp
½
Xi(0)+

1
2
XiV±X

T
i

eXi±

eXi±

¾
= expf 12XiV±XTi g (B.12)

Cov(eXi¯ ,eXj¯) = E[e(Xi+Xj )¯]¡E[eXi¯]E[eXj¯]

= exp[(Xi +Xj)
˜̄ + 1

2 (Xi +Xj)V̄ (Xi+Xj)
T]

¡¹Yi¹Yj (B.13)

Cov(Yi,Yj) = Cov(e
Xi¯ + "i,e

Xj¯ + "j)

= E[e(Xi+Xj )¯ + "ie
Xj¯ + "je

Xi¯ + "i"j]

¡E[eXi¯]E[eXj¯]

= E[e(Xi+Xj )¯] +E["i"j]¡¹Yi¹Yj
= expf(Xi +Xj) ˜̄ + 1

2 (Xi+Xj)V̄ (Xi+Xj)
Tg

+¢i=jVar("j)¡¹Yi¹Yj (B.14)

¢i=j is 1 i = j and 0 otherwise. "i represents
the data error where

Yi = expfXi¯g+ "i: (B.15)

Var["i] = Var[Yi¡ expfXi¯g]

= Var[Yi]+Var[expfXi¯g]

¡ 2Cov[Yi,expfXi¯g]

= ¹2Y=¤
2 + (E[expf2Xi¯g]¡E[expfXi¯g]2)

¡ 2(E[expf2Xi¯g]¡E[Yi]E[expfXi¯g])

= ¹2Y=¤
2¡E[expf2Xi¯g]+¹2Y

= ¹2Y=¢
2¡ expf2Xi¯gf1+2XiV̄ XTi g+¹2Y

(B.16)

using the approximation E[f(x)] ¼ f(¹x)+
1
2¾

2
xf
00(¹x) and where ¤ is the reciprocal of the

square of the coefficient of variation (refer back
to Section 3.3.1).

Finally,

Cov(H¡1i ,H¡1j )

= Cov(e¡Xi
ˆ̄
e¡Xj

ˆ̄
) = Cov(e¡Xi(¯+±)e¡Xj (¯+±))

= E[e¡(Xi+Xj )(¯+±)]¡E[e¡Xi(¯+±)]E[e¡Xj (¯+±)]

= exp¡f(Xi+Xj) ˜̄¡ 1
2 (Xi+Xj)V̄ ±(Xi+Xj)

Tg

¡¹H¡1
i
¹H¡1

j
: (B.17)

It is now possible to calculate Cov[H(¡1)(s j
s¡ 1)¡1Y(s)]. The covariance of 1=h¡1(s j s)¡
expf¡M(s j s)¯(s j s¡ 1)gmay then be calculated
using a rearranged Equation (B.4).

B.3. Variance of Poisson/log innovations

Substituting Equation (3.33) into Equation

(3.34), it may be seen that

Cov[h¡1(s j s)¡ expfM(s j s)¯(s j s¡1)g]

= Cov[P(s)J(s)[Y(s)¡ expfX(s)¯(s j s¡ 1)g]]
(B.18)

meaning that it is necessary to calculate Cov[Y(s)

¡ expfX(s)¯(s j s¡ 1)g].
With some abuse of notation, let h¡1 =

expfX(s)¯(s j s¡ 1)g and let h¡1i be the ith com-

ponent of h¡1. Then

Cov[Yi¡ h¡1i ,Yj ¡ h¡1j ]

= E[(Yi¡ h¡1i )(Yj ¡ h¡1j )]¡E[(Yi¡ h¡1i )]E[(Yj ¡ h¡1j )]

= Cov[Yi,Yj] +Cov[h
¡1
i ,h

¡1
j ]¡Cov[h¡1i ,Yj]¡Cov[h¡1j ,Yi]

(B.19)

Cov[Yi,Yj] was previously defined in (B.14).

The remainder of the terms are calculated as fol-

lows:
¹
h¡1
i
= E[expfXi ˆ̄g]

= E[expfXi(¯+ ±)g]

¼ expfXi ˜̄ + 1
2XiV̄ ±X

T
i g, (B.20)
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Cov[h¡1i ,h
¡1
j ] = E[expfXi ˆ̄gexpfXj ˆ̄g]

¡E[expfXi ˆ̄g]E[expfXj ˆ̄g]

= expf(Xi+Xj) ˜̄ + 1
2 (Xi +Xj)V̄ ±(Xi+Xj)

Tg

¡¹h¡1
i
¹h¡1

j
, (B.21)

and

Cov[h¡1i ,Yj]

= E[expfXi ˆ̄gexpfXj¯g]

¡E[expfXi ˆ̄g]E[expfXj¯g]

= E[expfXi±g]fE[expf(Xi+Xj)¯g]

¡E[expfXi¯g]E[expfXj¯g]g

¼ expf 12XiV±XTi g

£
"
expf(Xi +Xj) ˜̄ + 1

2 (Xi +Xj)V̄ (Xi+Xj)
Tg

¡¹Yi¹Yh

#
(B.22)

It is now possible to calculate Equation (B.19)
and then Cov[h¡1(s j s)¡ expfM(s j s)¯(s j
s¡ 1)g].
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