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ABSTRACT

A representative data set is used to provide an example com­

paring classical and Bayesian approaches to making inferences 

about the point in a sequence of random variables at which the 

underlying distribution may shift. Inferences about the under­

lying distributions themselves are also made. Most of the under­

lying R code used in the analysis is shown in the appendix.

KEYWORDS

Changepoints, Bayesian inference, hierarchical Bayes models,  
Markov chain Monte Carlo, JAGS, R, sensitivity testing



A Survey of Approaches to a Changepoint Problem in an Actuarial Context 

VOLUME 9/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 65

and health actuarial context, see Gandy, Jensen, and 
Lütkebohmert 2005).

The data set that will be analyzed can be found in 
Table A1. This is a list of 29 artificial annual aver­
age loss severities in chronological order, together with 
their respective ranks. Figure 1 is a line plot of the data.

A first glance at the data shows that severities in the 
last few years, the last four in particular, are larger than 
usual. A basic response to a data set of this nature is to 
find a changepoint, evaluate the data on either side of 
it, decide whether or not it truly is different, and, based 
on that decision, use either all or a subset of the data to 
make a prediction.

In the remainder of the paper, Section 2 will pre­
sent some classical analyses, Section 3 will present 
a Bayesian approach and models, and Section 4  
will demonstrate some sensitivity testing using the 
Bayesian framework. Appendix A contains tables not 
included in the text of the paper itself, and Appendix B 
contains most of the code used to generate the results 
in this paper, with the idea that it can serve as a build­
ing block for others interested in this kind of analysis. 
Experience with R (2014) and JAGS (Plummer 2003), 
while not necessary, will enhance understanding and 
repeatability of the analysis.1

2. Classical analysis

2.1. Finding the changepoint

One of the more basic tools for identifying the exis­
tence and timing of any change is the moving aver­
age (Page 1954). Figure 2 shows the plots of moving 

1. Introduction

“Past performance does not necessarily indicate 
future results” is a ubiquitous phrase, whether in 
radio ads or the fine print of a prospectus. Actuar­
ies, however, do base a large portion of their analyses 
on the assumption that, when properly restated, past 
performance can be indicative of future results. Of 
course, this is not always the case. Sometimes, per­
formance may have radically changed in the recent 
past, and the long­term history should not be used to 
predict the future. When is the past sufficiently dif­
ferent from the future?

This question is referred to as a “changepoint” 
problem, a problem wherein historical data can be 
analyzed, including what may seem to be drastic 
shifts, and then used to identify both the timing and 
magnitude of said shifts. More formally, a sample 
of independent observations (x1, x2, . . . , xn) is said 
to have a changepoint at m, if the null hypothesis— 
that all the observations come from the same distri­
bution F(x |q)—is rejected in favor of the alternative  
hypothesis—that there exists an m, m < n, such 
that (x1, x2, . . . , xm-1) comes from F(x |q) and  
(xm, xm+1, . . . , xn) comes from F(x |q′), where q ≠ q′ 
(Page 1955). The condition of independence is not 
necessary, but tends to simplify much of the under­
lying derivations (Carlin, Gelfand, and Smith 1992; 
Smith 1975). Although the changepoint problem cov­
ers the potential for multiple shifts, this paper will 
focus on the case with “at most one change” (AMOC). 
While there is extensive general statistical literature 
about changepoint problems from both classical and 
Bayesian perspectives, there appears to be less focus 
in the actuarial literature (for one example in a life 
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Figure 1. Average loss severity over the 29-year data set

1The calculations and graphics in this paper were generated using R and 
the knitr package for R (Xie 2013).
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quent years would almost certainly indicate a change. 
Moreover, in hindsight, year 26 began the upward 
trend, which is consistent with the moving average 
indications. Therefore, a preliminary approach to this 
problem would be to determine if there is a statisti­
cally significant difference between the first 25 and 
the last 4 years of the data.

2.2. Comparing distributions  
across the changepoint

2.2.1. Normal assumption
Although property and casualty actuaries are condi­

tioned to consider data coming from non­normal dis­
tributions, it is educational to start the analysis from 
a perspective of total ignorance. The most important 
summary statistics for the data are the sample mean 
and sample standard deviations for the two blocks of 
years. These are shown in Table 1.

One of the first investigations that can be done is a 
test for normality using the empirical mean and stan­
dard deviation as estimates for the underlying popu­
lation. One of the most common tests for normality is 

averages of various durations. The plots all show a 
distinct increase in the moving average around year 26.  
Although Page focuses on quality inspection in 
that paper, he does describe a more general change­
point test, which he expands in a subsequent paper  
(Page 1955). Assuming that the overall mean of the 
original distribution, q, is known, Page suggests 
calculating the cumulative sums Sr = ∑r

i-1(xi - q), S0 = 0,  
and “acting” when Sr - min0≤i<r Si ≥ h for some 
threshold h. A reasonable procedure to keep track of 
changepoints using Page’s process would be to take 
a long­term average after the data has stabilized, con­
sider that value to be the known mean, and then use it 
as the q to track future Sr sums. The data and Figure 1 
indicate that the values do not seem to settle down until 
year 8. Taking the 10­year average between years 8 
and 17 as the long­term average gives a q of 19,666.20. 
The process inspection Sr sums from years 18 through 
29 using this value are plotted in Figure 3.

The plot shows that the long­term average is reason­
able until year 26. While the difference in year 26 itself 
may not have been enough to flag a review, subse­

Figure 2. Moving averages over the 29 year data set
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Figure 3. Process inspection scheme—mean based on the 10-year average 
loss between years 8 and 17



A Survey of Approaches to a Changepoint Problem in an Actuarial Context 

VOLUME 9/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 67

Given the assumption that the first 25 years come 
from a normal distribution, the data would indicate 
that there is no greater than about a 5.5% chance of 
any one of the last four years coming as independent 
draws from the distribution defined above. Further­
more, as the sum of n normally­distributed random 
variables is itself normally distributed with mean and 
variance equal to the sum of the means and variances 
of the n components (DeGroot 1986, p. 270), the prob­
ability of the block of the last four years coming from 
the distribution defined by the first 25 can be shown 
to be very improbable—approximately 0.00000019. 
This is orders of magnitude smaller than any contigu­
ous set of four years in the first 25 years.

To test for the difference between the two distri­
butions, as the means and standard deviations used 
are themselves estimates and not known values, and 
the variances of both groups are not necessarily—
nor likely—to be equal, Welch’s t­test (Welch 1947) 
should be used. This test returns a one­sided p­value 
of approximately 0.0093, indicating that it is signifi­
cant that the second group comes from a distribu­
tion with a greater mean than the first. This further 
confirms that nearly all of the past history may not 
be helpful in predicting future results, and that from 
year 26 and on, the loss process is different.

2.2.2. Beyond the normal
The normal distribution, however, is not one com­

monly seen in property/casualty insurance work. 
To test whether or not another distributional family 
may be more appropriate, the method of maximum 
likelihood estimation (MLE) can be used to find 
the “best­fitting” parameters for various families of 
distributions. Those distributions can then be com­
pared with each other using one of various informa­
tion criteria. Using the Akaike information criterion 
with small sample correction (AICc),2 the three best 
resulting families for the first 25 years from a set of 
about 15 distributions are the gamma, normal, and 

Pearson’s c2 test, although now the G test, of which 
Pearson’s c2 test is an estimate, is often suggested 
(Sokal and Rohlf 1995). An issue with these tests, 
however, is that as they require placing the data into 
bins, the results may be subject to how the under­
lying bins are created (D’Agostino and Stephens 
1986, chap. 3.2).

Table 2 shows the results of the tests using bins that 
generate at least 5 observations in each, and Table 3 
shows the results of the tests using equiprobable bins 
selected per chapter 3.2.4 of D’Agostino and Stephens  
(1986). In both, at the 0.05 level of significance, 
neither the c2 nor the G tests support the rejection of  
the null hypothesis that the first 25 data elements 
come from a normal distribution with the sample 
mean and standard deviation as shown.

There are other tests for normality which are not 
subject to potential bias due to binning, often based 
on testing the goodness­of­fit against the empirical 
CDF. These tests, such as the Cramér–von Mises 
and Anderson–Darling tests for normality, also do 
not allow the rejection of the null hypothesis at the 
0.05 level of significance, as seen in Table 4.

Table 1. Sample means and standard deviations  
for test data

Data Sample Mean
Sample Standard 

Deviation

First 25 Years 17,728.34 4,038.93

Last 4 Years 27,977.08 4,845.92

All Years 19,141.96 5,425.33

Table 2. 2 and G tests—Equal observation bins

Bin Observed Expecteda c2 G

0–15,000 5 6.242 0.247 -1.109

15,000–16,000 5 2.117 3.926 4.297

16,000–19,000 5 7.230 0.688 -1.844

19,000–22,000 5 5.783 0.106 -0.727

22,000–∞ 5 3.628 0.519 1.604

Total 25 25.000 5.486 4.441

p-valueb 0.064 0.109
ax–25 = 17,728.337, s25 = 4,038.935
bn = 5 and p = 3 so 2 degrees of freedom

2 k k

n k

( )= + +
− −

AICc AICc
2 1

1
 (Burnham and Anderson 2002, p. 66)
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tests that can be used to determine whether or not 
the mean of one group of data is significantly differ­
ent than that of another group without any assump­
tions about the underlying distributions. One of 
the more popular of these non­parametric tests is the 
Mann–Whitney–Wilcoxon (MWW) test (Thas 2010, 
pp. 225–230). Given two sets of samples, not neces­
sarily of equal size, the MWW test compares the null 
hypothesis that both sets of samples come from the 
same distribution against the alternative hypothesis 
that they do not. It does so through the assumption 
that if the two samples come from the same distri­
bution, the probability of a randomly selected value 
from the first sample exceeding a randomly selected 
value from the second sample is equal to the reverse. 
More precisely, it tests the null hypothesis H0 : F1(x) =  
F2(x) "x ∈ S against the alternative hypothesis H1:  

P{X1 ≤ X2} ≠ 
1

2
 for the two­sided version, and  

{≤, ≥
1

2
} for the one­sided version. With the data 

lognormal distributions.3 Their AICc values, together 
with those of the poorly fitting Pareto distribution for 
comparison, are shown in Table 5.4

Interestingly, the initial assumption of a normal 
distribution was not so bad in hindsight. With the 
assumption that the first 25 years come from a gamma 
distribution, there is no greater than about a 6.4% 
chance of any one of the last four years coming from 
the gamma distribution defined by the first 25 years. 
The gamma distribution also has the property that a 
sum of n independent gamma variables, each with 
shape ai and identical scale q, is itself gamma distrib­
uted with shape equal to ∑n

i=1ai and the original scale q 
(DeGroot 1986, p. 289). In this case, the probability of 
the last four years coming from the historical distribu­
tion is about 0.0000054. While this is almost 28 times 
more likely than under the normal assumption, it is 
still orders of magnitude smaller than any contiguous 
set of four years in the first 25 years.

2.2.3. Transcending distributional form
The tests performed until now all depended on an 

assumption of distributional form. However, there are Table 4. Various tests for normality of the first 25 yearsa

Test Statistic p-value

Cramér–von Mises 0.058 0.391

Anderson–Darling 0.302 0.551

Shapiro–Francia 0.978 0.767

Lilliefors (Kolmogorov-Smirnov) 0.137 0.263
aStatistics and p-values calculated in R using the nortest package (Gross and 
Ligges 2012).

Table 3. 2 and G tests—Equiprobable bins

Bin Observed Expecteda c2 G

0–13,082.151 2 3.125 0.405 -0.892

13,082.151–15,004.117 3 3.125 0.005 -0.122

15,004.117–16,441.374 7 3.125 4.805 5.645

16,441.374–17,728.337 1 3.125 1.445 -1.139

17,728.337–19,015.301 2 3.125 0.405 -0.893

19,015.301–20,452.557 5 3.125 1.125 2.350

20,452.557–22,374.523 1 3.125 1.445 -1.139

22,374.523–∞ 4 3.125 0.245 0.987

Total 25 25.000 9.880 9.593

(l)3-5 p-valueb 0.079 0.088
ax–25 = 17,728.337, s25 = 4,038.935
bn = 8 and p = 3 so 5 degrees of freedom

3The nloptr package for R (Ypma 2014) using an implementation of the 
Subplex algorithm (Rowan 1990) found in (Johnson 2010) was used as 
the non­linear optimization routine.
4There are often multiple definitions for the same probability distributions 
used in statistical literature. For consistency, unless otherwise noted, this 
paper follows Appendix A of Klugman, Panjer, and Willmot (1998).
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bution, and the prediction for next year would be an 
expected loss of 27,968.53 with a standard deviation 
of 4,038.21. Unfortunately, this estimate is based on a  
small sample of the experience—possibly too small 
to give significant credibility to an estimate based 
solely on those four data elements. An actuary would 
certainly want to look for a complement of credibil­
ity and weight that against the four years’ experience, 
but what the complement of credibility should be, and 
how much weight to give it, remains an open question.

2.4. Combined changepoint  
and distribution model

Another approach to the changepoint problem is to 
consider the distribution on both sides of the change­
point as one, with the changepoint itself being one of 
the parameters of the distribution. Under the assump­
tion that there exists at most a single changepoint, m, 
at which the random variables switch from one dis­
tribution, F(x), to a different one, G(x), where m ∈ 1, 
2, . . . , n, the likelihood of the entire problem can be 
written as: 

L m f X g Xi

i

m

i

i m

n

∏ ∏( ) ( ) ( )=
=

−

=

X; (1)
1

1

Unlike prior approaches, such as Hinkley (1970), 
the advances in modern computing power and non­
linear optimizers allow for investigating this prob­

under analysis, the alternative hypothesis is that the last 
four years are not only different from the first 25, but 
that they are larger, so the one­sided test is appropriate. 
Thus, the null hypothesis will be that the two sets of 
data tend to have similar magnitudes, and the alterna­
tive hypothesis will be that the first 25 years of data 
tend to have lower magnitudes than the last 4 years. 
Using the MWW’s asymptotic normal approximation, 
the test returns a (one­sided) p­value of 0.0012. Using 
the more precise calculation based on actual enumera­
tion or Monte Carlo estimates of the distribution of the 
null hypothesis, as programmed by the coin package 
(Hothorn et al. 2008) for R, the “exact” p­value is cal­
culated to be 0.00017. Once again, this demonstrates 
that from a classical perspective, the last four years’ 
results are generated from a different process than 
those of the first 25 years.

2.3. Prediction based  
on known changepoint

Now that the existence of a change in the loss pro­
cess is recognized, how can the timing and magnitude 
of that change best be estimated? At this point, having 
shown that the last four years are statistically signifi­
cantly different than the previous twenty­five, the sim­
plest procedure is to parameterize a model using only 
those last four years.

The best­fitting option, according to the informa­
tion criteria shown in Table 6, is the lognormal distri­

Table 5. MLE results for first 25 years

Gamma Normal Lognormal Pareto

Shape or Mean 19.52 17,728.34 9.76 2,222,899.62

Scale or SD 907.99 3,957.33a 0.23a 39,574,910,823.53

AICc 489.48 489.66 490.02 543.69
aThe MLE estimate for the standard deviation of the normal and lognormal distribution is the population 
estimate, not the sample estimate.

Table 6. MLE results for last 4 years

Gamma Normal Lognormal Pareto

Scale or Mean 47.24 27,977.08 10.23 14,667,166.44

Shape or SD 592.25 4,196.69a 0.14a 412,183,303,322.15

AICc 93.79 94.09 93.66 105.91
aThe MLE estimate for the standard deviation of the normal and lognormal distribution is the population 
estimate, not the sample estimate.
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more comprehensive, introduction to Bayesian analy­
sis, the interested reader is directed to Lynch (2007).

3.1. Finding the changepoint

An early Bayesian approach to changepoint analysis 
which focuses on finding the changepoint is discussed 
by Chernoff and Zacks (1964). Their framework 
assumes n independently and normally distributed ran­
dom variables X1, X2, . . . , Xn with means µ1, µ2, . . . , µn 
and variances all equal to 1. Each µi is equal to µi-1 
except at changepoints, where the mean shifts. The 
timing of the shifts follows an arbitrary, but specified, 
a priori distribution and the shifts themselves are nor­
mally distributed random variables with mean 0 and 
variance s 2. They then build a Bayesian framework in 
which to obtain the a posteriori distribution for µn— 
the current mean. They also construct a simpler “at most 
one change” (AMOC) test which is easier and more 
efficient to calculate. However, it suffers when there 
are multiple changes with one large earlier change, as 
that can “hide” other subsequent smaller one. To over­
come this issue, and yet have a reasonable algorithm, 
they suggest an ad hoc method for estimating the  
a posteriori of the single changepoint, which uses the 
simpler AMOC test, on a growing sequence, starting 
from the penultimate observation back to the first. This 
way, in the shorter sequences, a later changepoint can 
be seen without being hidden by an earlier, larger one.

Adjusting the data to have s 2 = 1, which preserves 
the rank order, and then applying their procedure indi­
cates clearly that the most likely time for a change was 
immediately after year 25, namely year 26. Tables A6 
and A7 show the results of applying their process. Mov­
ing down the rows of the each table reflects checking 
for the “at most one change” starting at an earlier year, 
the values in the table are the a posteriori probability 
of the changepoint occurring after that point, and each 
row sums to 100%. When the a priori probability for 
a change to occur in any given year is 50%, Table A6 
shows that the a posteriori of the change after year 25 
is between 30% and 36%—significantly higher than 
any other year. Even when the a priori probability for a 
change to occur in any given year is only 5%, Table A7 

lem with just the choice of distributional families to 
be made, and not presupposing the parameters of the 
distributions. Using the four distributional families 
from the previous section, and assuming that the fam­
ily does not change across the changepoint—solely 
the parameters, Table 7 shows a reassuring finding 
in that for each family, the optimal changepoint is at 
year 26 as was presumed above. The full results are 
shown in Tables A2–A5.

3. A Bayesian approach

One shortcoming of the changepoint analysis meth­
ods based on classical statistical theory is that while 
they give an indication of when the change may have 
occurred, they cannot provide any measure of how 
likely the change is at that, or at any other, point. At 
best, an estimate of how likely or unlikely the result of 
the test is under the null hypothesis can be calculated, 
but that is not the same as calculating the actual prob­
ability of the results of the test. This is one of the fun­
damental differences between the classical approach to 
statistics and the Bayesian approach. A non­rigorous, 
but helpful, synopsis of the difference between the two 
is that the classical approach to probability believes 
that there are true, fixed parameters, and that an infi­
nite set of trials would uncover those parameters. It is 
the finite sample size of the data that prevents us from 
uncovering those “true” parameters. The Bayesian 
approach believes that all unknowns are random vari­
ables and that the sample data is used to adjust the esti­
mates about the parameters of the distribution—which 
are not fixed. However, this approach requires the rec­
ognition of a preconception about the universe, called 
an a priori, or prior, estimate, and then an analysis as 
to how the data changes that preconception to create an  
a posteriori, or posterior, estimate. For a good, and 

Table 7. MLE results for combined changepoint analysis

Gamma Normal Lognormal Pareto

Changepoint 26 26 26 26

NLL 281.36 281.60 281.57 314.53

AICc 575.33 575.81 575.74 641.67



A Survey of Approaches to a Changepoint Problem in an Actuarial Context 

VOLUME 9/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 71

3.2.1. Basic hierarchical model
A basic hierarchical model would assume the same 

distributional form on either side of the changepoint 
and only allow the parameters of the distribution a 
one­time adjustment at the time of the changepoint. 
There are a number of tools which can be used to cre­
ate the hierarchical model and relationships instead 
of having to build the Markov chain Monte Carlo 
(MCMC) code directly. This paper uses JAGS—Just 
Another Gibbs Sampler—(Plummer 2003), together 
with the runjags package (Denwood, in press), to cre­
ate, run, and summarize the models.

In order to run JAGS using runjags, one needs to 
load both the data and a model. The data needs to be 
a named R list, while the model can either be a list 
or an external file. In this paper, the data is shown 
in Appendix B.14.1. The model files, some of which 
are replicated in Appendix B.14.2–B.14.4, describe 
the desired parameters—including hyperparameters 
if necessary, functions of those parameters, and any 
potential relationship between the parameters which 
should be modeled.

At this point, the a priori distribution of the model 
parameters needs to be formulated. Based on the clas­
sical analysis above, a reasonable assumption would 
be that the losses follow a gamma distribution with 
parameters a  and q , which themselves are allowed 
to “switch” on either side of the changepoint m. Both 
a and q  themselves need prior distributions. For that, 
the assumption will be made that the first 25 years are 
more authoritative, so a i : G(0.5,40); i ∈ {1,2} and q i:  
G(0.5,2000); i ∈ {1,2}. Thus, all a have an expected 
mean of 20 and all q  have an expected mean of 1000, 
roughly based on Table 5, but the distributions have a 
wide enough CV to allow for values significantly dif­
ferent than the mean. The changepoint m itself is dis­
cretely uniformly distributed between 1 and 29. If the 
posterior distribution for the changepoint shows that 
the most likely value is at the endpoints, or equally 
likely throughout the span of time, that would imply 
the data does not indicate a change.

Some MCMC­specific selections also need to be 
made. In this paper, unless otherwise stated, all mod­

shows that the a posteriori probability of the change 
being after year 25 remains consistently between 20% 
and 30%—still significantly higher than any other 
year. Unlike the classical methods above, this process 
can answer the question of what is the probability of 
the changepoint being a given year.

3.2. Hierarchical model

As with the classical approach, a combined change­
point and distributional model can be analyzed. The 
key difference is that in the classical approach, the 
analysis was restricted to the likelihood. The Bayesian 
approach requires an a priori estimate of the distribu­
tion, which allows for the calculation of an a posteriori 
distribution of the parameters as well (Carlin, Gelfand, 
and Smith 1992). Moreover, there can be explicit 
recognition that some parameters may jointly depend 
with other parameters on a set of hyper parameters. In 
Bayesian analysis, this is called a hierarchical model—
a model where there is some sort of hierarchical struc­
ture to the parameters (Lynch 2007, p. 232). Creating 
a model with such structure allows the joint probabil­
ity model to reflect potential dependencies between 
the parameters (Gelman et al. 2014, p. 101).

Assuming a parametric family based on q and h  
for the pre­ and post­changepoint distributions respec­
tively, q and h possibly being vector­valued, and a 
joint prior p (q, h, m) on the parameters, the likelihood 
becomes:

X ∏ ∏θ η θ η( ) ( )( )=
=

−

=
; , , (2)

1

1

L m f X g Xi
i

m

i
i m

n

and the joint distribution can be represented as:

X θ η π θ η( ) ( ); , , , , (3)L m m

Analysis of hierarchical models is most often 
focused on developing a posterior distribution for m,  
the loss processes based on q and h , and possibly 
their components. Models such as the one above 
can also be extended to a generalized hierarchical  
Bayesian framework with hyperparameters on q 
and h as well (Carlin, Gelfand, and Smith 1992).
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is 28,365.61.5 The R̂ value is the potential scale 
reduction factor (Gelman and Shirley 2011, p. 170), 
which is a diagnostic for checking convergence of 
the MCMC chains. When its value is near 1, below 
1.1 is usually accepted as “near enough,” the chains 
are considered to have converged.

Another key difference between the classical and 
Bayesian approaches to analysis relates to error bounds. 
In classical analysis, one does not have a distribution 
of the parameters in question. When using p­values, 
it is not the uncertainty around the parameter that is 
being measured, but the likelihood of achieving the 
observed result given that the null hypothesis is true. 
For example, when rolling two fair six­sided dice, 
the probability of getting “snake­eyes”—a pair of 
ones—is 136, or 0.028. Using a p­value of 0.05 one 
would reject the null hypothesis that the dice are fair. 
Of course, a sample size of one should not be con­
sidered conclusive, but the p­value does not give us 
information about the distribution of the parameters. 
Similarly, a , the type­1 error, also does not give us 
information about the probability of the observed 
parameters but about the probability of improperly 
rejecting a true null hypothesis.

The Bayesian approach, however, is one that gen­
erates a probability distribution about parameters and 
other metrics of interest. In the case above, there is a 
posterior distribution not only around the shape and 
scale of the gamma, but around the expected loss as 
well. Therefore, instead of a 95% confidence interval 
around rejecting the null hypothesis, a 95% credible 
interval around the expected loss itself can be given. 
The interval suggested is usually the highest den-
sity interval (HDI), which is not the interval which 
trims the lowest and highest 2.5% (equal­tailed cred­
ible interval), but the smallest interval which com­
prises 95% of the probability (Kruschke 2014). For 
comparison, from Table 6, the MLE estimate for the 
gamma shape and scale post­changepoint were 47.24 

els will be run with 5 simultaneous chains, a thinning 
value of 3, and for 65000 total iterations of which 
the first 20000 are adaptation and burn­in. With each 
chain collecting 15000 observations, the model dis­
tributions are based on a pooled 75000 observations. 
One last important element is to select the starting 
point from which the MCMC chains will run. A 
poorly chosen start value can prevent convergence 
in reasonable time, especially for highly correlated 
parameters, as these are. The initial starting point 
for the parameters of the gamma distribution will be 
based on the expected values of their a priori dis­
tributions with some small random perturbations for 
each chain. The changepoint will start at either 1, 2, 
or 3 with probability 80%, 15%, and 5% respectively.

Table 8 summarizes some of the results of the 
Bayesian model. Most importantly, the model indi­
cates that a changepoint exists, and that the distribu­
tion for the last 4 years is more severe than that of the 
first 25—as was expected. The mean of the poste­
rior distribution for the changepoint is 25.08 and the 
mode of the posterior distribution for the changepoint 
is 25.99. The graph of the posterior distribution for m, 
shown in Figure 4, shows that the preponderance of 
the probability for the changepoint is around year 26, 
but that there is some small probability earlier, around 
years 6 and 7, which affects the mean. The mean  
of the posterior distribution for the pre­changepoint  
loss process, generated from the simulations of aprior 
and qprior, is approximately 17,768.43, and the best 
estimate of the mean of the post­changepoint loss pro­
cess, generated from simulations of apost and qpost, 

Table 8. Split gamma model—29 years

Parameter Mean Mode R̂

Loss (year < m) 17,768.43 16,800.77 1.02

Loss (year ≥ m) 28,365.61 27,314.80 1.00

m 25.08 25.99 1.00

aprior 18.44 17.22 1.02

apost 30.86 14.56 1.00

qprior 1,051.69 900.11 1.00

qpost 1,404.32 693.19 1.00

DIC 576.46 pD 7.51

5It should be noted that the expected value of the posterior distributions 
of the pre­ and post­changepoint losses do not equal the product of the 
expected values of their corresponding a  and q, as the average of a 
function does not necessarily equal the function of the average.



A Survey of Approaches to a Changepoint Problem in an Actuarial Context 

VOLUME 9/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 73

of the model, together with the data upon which it is 
based, often results in having a lower value for effec­
tive parameters than their actual count. For example, if 
the hyperpriors affect lower­level parameters similarly, 
those lower­level parameters are not independent, and 
may not contribute “full­value” to the penalty.

Using DIC is one way different models can be 
compared, as long as they are based on the exact same 
data, of course. It is educational, therefore, to com­
pare this model with one which has no split—there is 
only one a and one q, both of whose posterior distri­
butions are based on all 29 years. This model can be 
found in Appendix B.14.3, and plots of the posterior 
distributions can be found in Figure 5.

Table 9 shows a difference in the DIC between the 
models. When comparing information criteria across 
models, regardless of the type of criterion, it is not the 
magnitude of the value, but the difference between 
the lowest value and all the others, which is impor­
tant (Burnham and Anderson 2002, p. 63). Rules of 
thumb for AICc and DIC are that a difference of 0–2 
implies model similarity, a difference of 4–7 shows 
that the model with the higher value has little support 
with respect to the model with the lower value, and 
larger differences imply that the higher­valued model 
should really not be considered at all (Burnham  
and Anderson 2002, pp. 70–71; Spiegelhalter et al. 

and 592.25 respectively. Using the normal approxi­
mation to the gamma described in Krishnamoorthy 
Mathew, and Mukherjee (2008), the 95% confidence 
interval would be (14,234.00–47,973.65). This is the 
interval in which rejecting the null hypothesis would 
be incorrect 95% of the time. From the analysis 
above, the 95% HDI for the post­changepoint loss 
is (12,761.10–44,057.50)—a slightly narrower range 
of smaller values. We can now talk about the distri­
bution of the quantity of interest, not how often we 
may be incorrectly rejecting null hypotheses.

The last two entries in the table are measures of 
model fit and complexity. Information criteria, such as 
AICc, are used as model goodness­of­fit measures. To 
measure model effectiveness in the Bayesian context, 
Spiegelhalter et al. (2002) introduced DIC—the devi­
ance information criterion. Just as AICc can be decom­
posed into likelihood and parameter components, DIC 
is a goodness­of­fit measure which reflects the loglike­
lihood of the model when using the posterior mean of 
the parameters subject to a penalty based on the num­
ber of “effective” parameters—pD. Twice the negative 
loglikelihood of the model when using the posterior 
mean of the parameters, together with some standard­
izing factor that often cancels out of any calculations, 
is called the deviance of the model, thus the name. 
When dealing with a hierarchical model, the structure 

Figure 4. Posterior distributions of the parameters—29 years—Split model
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change model described in Albert (2009, pp. 268–272)  
can be adapted to the data in this paper. The step­
change model used is replicated in section B.14.4.

The same a priori assumptions made for the prior 
hyperparameters in section 3.2.1 will apply to this 
model. What is different now is that instead of having 
pre­ and post­changepoint parameters, there will be 
one long­term prior a  and long­term prior q  to which 
“step” parameters, either positive or negative, will be 
added. These parameters will be both set as N : (µ = 0,  
s 2 = 104),6 to represent uninformed priors and the 
“changed” a  and q  will be constrained to be positive 
to ensure the distribution is valid.7 Table 10 summa­
rizes the result of using this model to explain the full 
29 years of data, with the posterior distribution plot­
ted in Figure 6.

The step­change model’s DIC is about 2.50 lower 
than that of the split model, and 7.29 less than the 
no­split model, which implies that the step­change 
model is somewhat better than the split model, and far 
better than the no­split model, in explaining the full 
29 years of data. The step­change idea is not dissimi­
lar to having a form of credibility­weighting, where 
weight is given to both the pre­ and post­change year 

2002). Often, however, there is no one model that 
dominates all the others, but a group of models that 
each performs relatively well. In these cases, multi­
model inference may be a better approach than 
selecting one model over all others (Burnham and 
Anderson 2002). Here, the split model has a DIC 
of about 4.79 less than that of the non­split model. 
Thus, it is reasonable to say that the split model does 
a significantly better job than the non­split model in 
explaining the full 29 years of data.

3.2.2. Step-change model
The model in section 3.2.1 assumed a new set of 

parameters on either side of the changepoint. The flex­
ibility of the Bayesian framework allows a different 
model to be investigated—one which assumes a long­
term set of parameters to which a change may be added 
or subtracted at a point in time. This differs from the 
previous philosophy in that the parameters “gleaned” 
from the data prior to the changepoint are still used 
when fitting the data beyond the changepoint. This type 
of model is often referred to as a “step­change” model. 
There is a much­analyzed data set in changepoint 
statistical literature (Jarett 1979) for which the step­

Figure 5. Posterior distributions of the parameters—29 years—No-split model

Table 9. No-split gamma model—29 years

Parameter Mean Mode R̂

Loss 19,171.06 17,638.49 1.00

a 13.29 12.11 1.00

q 1,541.60 1,348.39 1.00

DIC 581.25 pD 2.05

6As is common with Bayesian analyses, the normal distribution is param­
eterized with the mean, µ, and precision, t , which is the reciprocal of the 
variance. This is done so that some of the closed­form calculations for 
the posterior distributions become more tractable (Gelman et al., 2014,  
p. 40). Therefore, the model code has t  = 10-4 instead of s 2 = 104.
7The parameters will have a floor of 10-4.
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preconceptions. Another important question would 
be how sensitive is the finding of a changepoint to 
the last few years? What would the results have been 
if this analysis was done last year, or the year before, 
or the year before that? In the Bayesian framework, 
both of these questions can be addressed.

4.1. Informative priors

In the basic hierarchical model described in sec­
tion 3.2.1, a discrete uniform prior (MPrior in the 
model) was used for the changepoint. Instead, an 
“informed” prior can be substituted. If, for example, 
there was reason to believe that a change has not 
occurred, one could put more weight on the probabil­
ity that the first year is the changepoint. Adjusting the 
model so that there is a 50% probability that the first 
year is the changepoint, with the rest of the probabil­
ity split evenly across the remaining 28 years, can be 
easily implemented by changing the MPrior vector in 
the data file to have the first entry be 28 instead of 1.  
Now a full 50% weight is given to the first year, 
which is 28 times as likely to have the changepoint 

experience. Using the step­change model, the 95% 
HDI is (16,375.40–42,661.50), noticeably narrower 
than that of the split model.

4. Sensitivity testing

One of the key differences between classical and 
Bayesian analysis, the necessity to have an a priori 
distribution, is itself one of its key strengths. Requir­
ing each analysis to have an explicit preconception 
about the data allows analyses based on different 

Table 10. Step-change gamma model—29 years

Parameter Mean Mode R̂

Loss (year < m) 17,832.83 17,342.10 1.00

Loss (year ≥ m) 29,055.73 27,001.05 1.00

m 26.09 25.99 1.03

a prior 19.36 17.44 1.05

a step 13.03 10.62 1.00

qprior 988.76 863.08 1.00

qstep -9.14 -13.01 1.00

DIC 573.96 pD 6.20

Figure 6. Posterior distributions of the parameters—29 years—Step-change model
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tion. This model’s DIC, however, indicates that it is 
an inferior model to the step and split models, and 
not significantly better than the no­split model, and 
so should be ignored in favor of the split, or more 
accurately, the step model. This model is valuable in 
demonstrating that an a priori assumption of a full 
50% weight given to no change still results in the 
most likely changepoint being year 26.

4.2. Looking back

From both the classical and Bayesian perspective, 
there is strong reason to believe that there has been 
a change in the underlying severity distribution. Of 
course, this is supported by three out of the last four 
years being significantly different than the previous 
twenty­some­odd years. A question that can be con­
sidered is were this model to have been run last year, 
would the results be different? This is easily consid­
ered by realizing that the only difference would be 
that there would have been 28 data points instead of 
29. The data file can be adjusted so that N is defined 
as 28, the value 34737.79201 is removed from the 
loss list, and that there are only 28 entries in the 
changepoint prior likelihood list. Table 12 reflects 
the application of the split model to the first 28 years.

as any one other year, or equally likely to have the 
changepoint as opposed to all the rest of them com­
bined. Table 11 summarizes the key parameters and 
the plots of the posterior distributions are in Figure 7.

Despite the fact that so much weight is given to the 
first year, the most probable changepoint, the mode 
of the posterior distribution for m, remains year 26. 
However, as the plots show, the unbalanced prior of 
no changepoint is almost as likely. This explains why 
the mean of the posterior distribution for loss subse­
quent to the changepoint is lower than the mode, as 
almost as often as not, the changepoint is year 1, and 
all the losses must come from one gamma distribu­

Table 11. Split gamma model—29 years—50% weight given 
to m  1

Parameter Mean Mode R̂

Loss (year < m) 18,026.98 677.80 1.01

Loss (year ≥ m) 24,954.49 23,559.39 1.00

m 16.14 26.44 1.00

aprior 18.98 15.77 1.02

apost 24.78 12.88 1.01

qprior 1,019.15 924.62 1.01

qpost 1,450.41 1,292.84 1.01

DIC 580.91 pD 8.12

Figure 7. Posterior distributions of the parameters—29 years—Split model—50% prior for m  1
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are obtained. Similar to the results on the full  
29 years of data, the step model’s DIC is lower than 
the split model’s DIC by 0.89, indicating that the  
step model does perform better in explaining  
the data restricted to the first 28 years, although 
the convergence for the loss pre­changepoint is 
more strained.

Continuing the pattern, applying the split model 
to the first 27 years is summarized in Table 14 and 
plotted in Figure 10. Should this analysis have been 
run two years ago, the density plots indicate that 
a change any time in the first 10 years, especially 
around year 8, would have been just as, if not more, 
likely as one around year 26. Moreover, the shape and 
scale parameters are less different, and the means of 
the posterior distributions for loss are also relatively 

From the plot of the change year, shown in Figure 8,  
it can be seen that similarly to section 4.1, the mean 
changepoint is more truly an average of a bimodal 
distribution. While year 26 is still the most likely 
time for a change to have happened, the first 10 years 
indicate some possibility of being the changepoint 
as well. With the changepoint having more possi­
bility of being earlier, the posterior estimate of the 
mean of the losses post­changepoint is lower, similar 
to section 4.1. More years of loss would be attrib­
uted to the post­changepoint regime, most of which 
are lower than the last four years. As the data has 
changed—only 28 years are used—the DIC cannot 
be compared with previous models.

Using the step­change model instead of the 
split mode, the results in Table 13 and Figure 9 

Table 12. Split gamma model—28 years

Parameter Mean Mode R̂

Loss (year < m) 18,237.98 16,487.88 1.01

Loss (year ≥ m) 23,301.63 23,632.81 1.00

m 18.36 26.19 1.00

aprior 18.97 16.45 1.01

apost 29.55 15.79 1.01

qprior 1,087.07 878.86 1.00

qpost 1,254.64 1,004.22 1.01

DIC 555.17 pD 7.11

Figure 8. Posterior distributions of the parameters—28 years—Split model

Table 13. Gamma model—28 years

Parameter Mean Mode R̂

Loss (year < m) 17,389.28 16,707.15 1.05

Loss (year ≥ m) 24,197.88 23,266.71 1.00

m 20.72 26.14 1.01

aprior 19.44 18.28 1.02

astep 8.83 4.98 1.02

qprior 963.36 819.33 1.00

qstep -10.11 -2.25 1.00

DIC 553.35 pD 6.23
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only two years post changepoint for the step to be 
active, and the post­changepoint loss depends on the 
highly correlated sets of prior and step parameters, 
standard MCMC often takes an inordinately long 
time, and may never properly converge.

Finally, Table 16 and Figure 12 show the results 
of running the no­split model against the 27 years of 
data. The no­split model’s DIC is 1.93 lower than the 
split model and 0.81 lower than the barely­converging  
step model, which indicates that while the models 
have similar explanatory powers as regards first 
27 years, the no­split model would be preferred, 
or given more weight in a multimodel inference 
procedure.

Thus, the sensitivity testing supports that it is the 
recent run of three years that made the initial results so 
convincing, and that had this analysis been done pre­
viously, the decision may have been different. When 
compared to a prediction based on the classic ten­year 
rolling average, the Bayesian procedure appears to be 
more responsive, as seen in Figure 13, where using 

close. The 27­year step­change model is summarized 
in Table 15 and plotted in Figure 11.

What can be seen from the tables is that as the 
number of years of available data decreases, for the 
step models, the R̂ convergence statistic rises, and 
at 27 years, it is near 1.10. Variables often have dif­
ficulty achieving convergence when their posterior 
distributions are highly correlated (Stan Develop­
ment Team, 2013, vi). In this case, where there are 

Figure 9. Posterior distributions of the parameters—28 years—Step-change model

Table 14. Split gamma model—27 years

Parameter Mean Mode R̂

Loss (year < m) 17,142.38 15,818.04 1.00

Loss (year ≥ m) 19,997.55 18,149.93 1.00

m 10.66 1.09 1.00

aprior 19.66 16.03 1.01

apost 23.58 16.94 1.01

qprior 1,066.64 874.06 1.01

qpost 1,111.37 930.69 1.01

DIC 533.08 pD 5.37
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Figure 10. Posterior distributions of the parameters—27 years—Split model

Table 15. Step-change gamma model—27 years

Parameter Mean Mode R̂

Loss (year < m) 16,520.26 15,312.43 1.09

Loss (year ≥ m) 20,585.93 18,827.06 1.00

m 13.18 7.26 1.00

aprior 18.60 16.67 1.03

astep 5.05 3.24 1.06

qprior 946.99 834.44 1.00

qstep 1.14 -6.67 1.00

DIC 531.96 pD 5.08

Figure 11. Posterior distributions of the parameters—27 years—Step-change model

Table 16. No-split gamma model—27 years

Parameter Mean Mode R̂

Loss 18,239.88 17,652.77 1.00

a 17.56 15.95 1.00

q 1,116.63 954.94 1.00

DIC 531.15 pD 2.02
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hierarchical models including multiple changepoints 
or allowing different distributional forms, using more 
sophisticated sampling and MCMC techniques to han­
dle highly correlated cases, and extending this kind of 
analysis beyond a pricing exercise.
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Appendix A. Tables

Table A1. Data and ranks

Year Value Rank

1 16,527 13

2 19,424 17

3 15,261 6

4 15,379 7

5 9,460 1

6 13,203 3

7 17,753 14

8 22,563 22

9 19,433 18

10 24,110 24

11 15,932 10

12 16,009 11

13 26,602 27

14 20,217 20

15 13,437 4

16 22,168 21

17 16,189 12

18 20,140 19

19 18,517 15

20 14,943 5

21 23,189 23

22 15,747 9

23 11,999 2

24 19,407 16

25 15,597 8

26 24,750 26

27 24,200 25

28 28,221 28

29 34,738 29

Table A2. MLE results for combined loss and 
changepoint—gammaa

m NLL a1 q1 a2 q2

1 288.62 13.49 1,418.93 0.00 0.00

2 285.16 10,000.00 1.65 13.16 1,461.93

3 287.01 153.69 116.96 12.69 1,514.76

4 286.60 98.34 173.59 12.52 1,547.60

5 285.63 103.84 160.32 12.34 1,582.94

6 286.48 18.97 801.84 14.96 1,334.53

7 285.32 21.44 693.93 15.83 1,279.30

8 285.32 22.75 672.09 15.33 1,328.63

9 286.55 17.71 914.78 14.76 1,373.30

10 286.70 18.64 887.98 14.08 1,442.33

11 287.57 16.10 1,075.35 13.69 1,468.15

12 287.16 17.52 980.80 13.48 1,508.65

13 286.67 18.97 900.96 13.28 1,550.59

14 287.79 15.58 1,143.85 13.29 1,521.43

15 287.80 16.47 1,092.48 12.47 1,621.53

16 287.28 16.26 1,087.68 13.31 1,555.33

17 287.55 16.44 1,092.75 12.43 1,656.27

18 287.12 17.29 1,033.30 12.13 1,727.19

19 287.02 18.04 997.15 11.15 1,885.44

20 286.66 19.02 947.32 10.33 2,060.86

21 286.03 19.41 920.29 10.59 2,075.37

22 286.35 19.09 948.83 9.47 2,305.75

23 285.66 19.68 915.14 9.46 2,399.58

24 284.56 18.32 968.99 15.73 1,556.30

25 284.08 18.99 938.32 15.46 1,649.72

26 281.36 19.52 907.99 47.24 592.25

27 282.51 18.60 967.53 45.47 638.95

28 282.59 18.13 1,005.33 93.00 338.50

29 281.92 16.50 1,126.58 10,000.00 3.47
aValues for row 2 and 29 are not reliable as MLE does not necessarily converge 
properly when there is only one data point. Parameters were capped at 
unreasonable values to prevent even more unreasonable results.
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Table A3. MLE results for combined loss and 
changepoint—normala

m NLL µ1 s1 µ2 s2

1 290.01 19,141.96 5,330.97 0.00 0.00

2 287.51 16,527.24 500.00 19,235.34 5,401.97

3 288.25 17,975.62 1,448.38 19,228.35 5,500.97

4 287.70 17,070.73 1,742.47 19,380.95 5,549.40

5 286.61 16,647.87 1,677.36 19,541.01 5,600.14

6 287.45 15,210.31 3,243.03 19,961.05 5,315.77

7 286.25 14,875.83 3,053.48 20,254.86 5,235.86

8 285.96 15,286.87 3,000.92 20,368.57 5,325.69

9 287.46 16,196.44 3,697.43 20,264.06 5,428.93

10 287.39 16,556.07 3,631.35 20,305.61 5,559.74

11 288.49 17,311.48 4,123.57 20,105.36 5,633.44

12 287.91 17,186.05 3,951.63 20,337.23 5,698.88

13 287.26 17,088.00 3,797.35 20,591.81 5,763.77

14 288.81 17,819.86 4,442.76 20,216.16 5,735.72

15 288.66 17,991.10 4,325.45 20,216.09 5,923.82

16 288.16 17,687.52 4,330.41 20,700.28 5,837.94

17 288.31 17,967.56 4,330.91 20,587.37 6,043.57

18 287.76 17,862.95 4,222.38 20,953.89 6,149.96

19 287.48 17,989.44 4,136.43 21,027.89 6,418.31

20 286.94 18,017.22 4,027.83 21,278.95 6,679.88

21 286.20 17,863.50 3,982.61 21,982.97 6,680.00

22 286.49 18,117.08 4,048.69 21,832.27 7,070.77

23 285.66 18,009.36 3,986.29 22,701.56 7,147.92

24 284.71 17,748.05 4,086.79 24,485.29 6,110.35

25 283.97 17,817.15 4,014.45 25,501.02 6,213.96

26 281.60 17,728.34 3,957.33 27,977.08 4,196.69

27 282.62 17,998.38 4,108.68 29,052.94 4,342.02

28 282.57 18,228.08 4,198.55 31,479.33 3,258.47

29 282.52 18,584.96 4,520.74 34,737.79 500.00
aValues for row 2 and 29 are not reliable as MLE does not necessarily converge 
properly when there is only one data point. Parameters were capped at 
unreasonable values to prevent even more unreasonable results.

Table A4. MLE results for combined loss and 
changepoint—lognormala

m NLL µ1 s1 µ2 s2

1 288.46 9.82 0.27 0.00 0.00

2 285.06 9.71 0.01 9.83 0.28

3 286.89 9.79 0.081 9.82 0.28

4 286.55 9.74 0.10 9.83 0.29

5 285.63 9.72 0.097 9.84 0.29

6 286.38 9.60 0.24 9.87 0.26

7 285.22 9.58 0.22 9.88 0.25

8 285.36 9.61 0.22 9.89 0.26

9 286.48 9.66 0.25 9.88 0.26

10 286.73 9.69 0.24 9.88 0.27

11 287.52 9.73 0.26 9.87 0.27

12 287.19 9.72 0.25 9.88 0.27

13 286.79 9.72 0.24 9.89 0.28

14 287.73 9.76 0.26 9.88 0.27

15 287.82 9.77 0.25 9.87 0.28

16 287.29 9.75 0.25 9.90 0.27

17 287.59 9.77 0.25 9.89 0.28

18 287.24 9.76 0.25 9.91 0.29

19 287.22 9.77 0.24 9.91 0.30

20 286.95 9.77 0.24 9.92 0.31

21 286.36 9.76 0.23 9.95 0.31

22 286.70 9.78 0.23 9.94 0.33

23 286.07 9.77 0.23 9.98 0.34

24 284.84 9.76 0.24 10.07 0.26

25 284.51 9.76 0.23 10.11 0.26

26 281.57 9.76 0.23 10.23 0.14

27 282.78 9.77 0.24 10.27 0.15

28 282.93 9.78 0.24 10.35 0.10

29 282.18 9.80 0.25 10.46 0.01
aValues for row 2 and 29 are not reliable as MLE does not necessarily converge 
properly when there is only one data point. Parameters were capped at  
unreasonable values to prevent even more unreasonable results.
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Table A5. MLE results for combined loss and changepoint—Paretoa

m NLL a1 q1 a2 q2

1 314.93 4,046,223.25 77,774,516,626.88 0.00 0.00

2 316.41 0.23 209.62 11,283,084.59 217,010,623,797.69

3 314.93 11,754,517.26 212,243,020,458.65 21,630,174.57 417,769,438,224.60

4 314.91 11,818,702.42 202,659,258,666.88 7,967,909.34 154,421,619,973.69

5 314.89 21,726,760.23 363,324,415,575.75 13,534,438.18 265,660,278,575.22

6 314.79 1,428,416.19 21,745,404,704.90 9,746,105.91 194,540,524,750.42

7 314.72 4,046,644.53 60,197,483,451.95 4,046,213.41 81,956,473,256.65

8 314.72 674,614.82 10,312,424,171.49 21,506,651.48 440,019,348,785.54

9 314.79 9,807,891.64 159,563,627,282.92 20,096,176.08 409,051,462,334.91

10 314.80 2,222,878.21 36,802,949,953.89 155,510.45 3,157,679,260.96

11 314.86 44,263,694.49 769,696,137,860.09 16,812,772.01 339,541,564,002.52

12 314.83 24,142,337.18 416,757,851,832.29 28,028,782.79 572,593,331,539.20

13 314.81 4,061,151.14 69,429,197,580.31 4,063,953.20 83,665,320,908.97

14 314.87 9,085,553.03 161,892,445,389.15 15,331,984.14 309,943,740,977.08

15 314.88 24,725,915.46 446,845,775,847.67 24,703,975.26 501,662,345,580.49

16 314.84 8,195,815.50 144,969,177,021.88 8,711,674.07 180,321,267,099.25

17 314.86 12,663,810.66 227,557,899,887.73 15,673,518.08 322,694,335,744.16

18 314.84 16,541,946.87 296,825,695,133.74 675,436.01 14,155,449,927.80

19 314.85 4,046,241.75 73,091,855,189.21 15,389,349.06 323,634,871,362.93

20 314.84 4,046,232.16 72,900,184,441.45 177,839.94 3,784,201,190.10

21 314.79 673,097.17 12,023,799,320.98 1,658,693.03 36,462,800,857.88

22 314.83 28,970,769.73 527,210,331,049.49 14,855,219.87 324,351,675,507.97

23 314.78 4,063,079.15 73,172,505,179.95 1,443,019.76 32,758,897,325.45

24 314.67 4,046,242.47 72,110,995,225.37 27,883,334.39 685,795,311,106.64

25 314.64 4,046,232.16 72,089,606,864.56 673,097.08 17,164,553,964.32

26 314.53 2,222,436.85 39,406,144,233.44 14,668,587.95 411,957,598,899.48

27 314.58 4,046,232.40 72,825,896,800.90 22,410,960.21 653,856,701,803.49

28 314.60 7,330,713.30 133,625,884,112.08 19,887,018.35 628,829,953,858.90

29 314.71 12,607,465.11 234,192,258,008.28 62.97 2,170,218.12
aValues for row 2 and 29 are not reliable as MLE does not necessarily converge properly when there is only one data point. Parameters were capped 
at unreasonable values to prevent even more unreasonable results.
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Table A6. Chernoff–Zacks procedure on adjusted dataa, a priori probability of change in a given year—50%

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m ↓ bk → 28 27 26 25 24 23 22 21 20 19 18 17 16 15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 0.008

17 0.016 0.012

18 0.012 0.008 0.008

19 0.010 0.011 0.006 0.006

20 0.012 0.008 0.008 0.007 0.007

21 0.010 0.009 0.008 0.008 0.006 0.006

22 0.011 0.009 0.009 0.007 0.007 0.007 0.007

23 0.011 0.009 0.008 0.007 0.007 0.007 0.006 0.006

24 0.012 0.011 0.007 0.007 0.005 0.006 0.007 0.005 0.005

25 0.014 0.024 0.020 0.010 0.008 0.005 0.006 0.007 0.004 0.004

26 0.006 0.013 0.024 0.021 0.010 0.008 0.005 0.006 0.008 0.004 0.004

27 0.005 0.005 0.014 0.026 0.023 0.011 0.009 0.005 0.006 0.008 0.004 0.004

28 0.005 0.004 0.004 0.010 0.018 0.017 0.009 0.008 0.005 0.006 0.008 0.004 0.004

29 0.005 0.004 0.004 0.004 0.010 0.018 0.017 0.009 0.008 0.005 0.006 0.008 0.004 0.004
aData is adjusted to have standard deviation of 1
bFirst column is m—the number of years from the end selected as data, the remaining columns are k—how far along the subset of years, data in table is B(m, m - k)— 
the posterior probability of the change occurring in that year.
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Table A6. (continued)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 None

14 13 12 11 10 9 8 7 6 5 4 3 2 1 m

0.479 0.521

0.322 0.352 0.327

0.205 0.262 0.288 0.245

0.229 0.198 0.248 0.203 0.122

0.081 0.234 0.195 0.235 0.169 0.086

0.071 0.085 0.332 0.199 0.187 0.093 0.034

0.021 0.073 0.089 0.366 0.196 0.165 0.069 0.021

0.020 0.020 0.057 0.078 0.318 0.203 0.189 0.087 0.028

0.019 0.013 0.018 0.062 0.084 0.352 0.201 0.169 0.066 0.018

0.012 0.016 0.011 0.017 0.060 0.083 0.351 0.202 0.168 0.063 0.016

0.012 0.011 0.015 0.011 0.016 0.057 0.080 0.340 0.204 0.173 0.065 0.017

0.011 0.009 0.009 0.014 0.010 0.016 0.059 0.082 0.354 0.202 0.163 0.057 0.013

0.011 0.010 0.009 0.009 0.013 0.010 0.015 0.054 0.078 0.332 0.205 0.174 0.064 0.016

0.012 0.008 0.009 0.008 0.008 0.013 0.009 0.015 0.058 0.082 0.358 0.201 0.157 0.051 0.011

0.009 0.007 0.008 0.008 0.008 0.013 0.009 0.015 0.056 0.080 0.349 0.203 0.162 0.053 0.012

0.009 0.008 0.008 0.008 0.008 0.012 0.010 0.015 0.049 0.073 0.309 0.203 0.179 0.067 0.016

0.008 0.007 0.007 0.007 0.008 0.012 0.009 0.015 0.051 0.075 0.323 0.204 0.173 0.061 0.014

0.007 0.006 0.007 0.007 0.007 0.012 0.009 0.014 0.052 0.077 0.334 0.203 0.166 0.055 0.012

0.007 0.006 0.007 0.007 0.008 0.011 0.009 0.014 0.049 0.073 0.312 0.203 0.175 0.062 0.014

0.007 0.006 0.007 0.007 0.007 0.011 0.009 0.014 0.048 0.072 0.310 0.203 0.176 0.062 0.014

0.007 0.006 0.007 0.007 0.008 0.011 0.009 0.014 0.046 0.070 0.296 0.201 0.180 0.066 0.015

0.006 0.006 0.007 0.007 0.007 0.011 0.009 0.014 0.046 0.070 0.300 0.202 0.177 0.064 0.014

0.006 0.005 0.006 0.006 0.007 0.011 0.008 0.014 0.048 0.073 0.316 0.200 0.167 0.055 0.012

0.006 0.005 0.006 0.006 0.006 0.010 0.008 0.013 0.051 0.074 0.328 0.190 0.145 0.043 0.008

0.006 0.005 0.006 0.006 0.006 0.011 0.008 0.013 0.051 0.075 0.332 0.187 0.139 0.039 0.006

0.006 0.004 0.006 0.006 0.006 0.011 0.007 0.013 0.052 0.075 0.336 0.184 0.133 0.036 0.006

0.006 0.005 0.006 0.006 0.006 0.011 0.008 0.013 0.053 0.076 0.340 0.188 0.137 0.037 0.007

0.006 0.004 0.006 0.006 0.006 0.011 0.007 0.013 0.053 0.077 0.343 0.187 0.135 0.036 0.006
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Table A7. Chernoff–Zacks procedure on adjusted dataa, a priori probability of change in a given year—5%

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m ↓ bk → 28 27 26 25 24 23 22 21 20 19 18 17 16 15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 0.007

17 0.012 0.009

18 0.009 0.007 0.006

19 0.008 0.009 0.005 0.005

20 0.009 0.007 0.007 0.006 0.005

21 0.008 0.007 0.006 0.006 0.005 0.005

22 0.009 0.007 0.007 0.006 0.006 0.005 0.005

23 0.009 0.007 0.006 0.006 0.005 0.005 0.005 0.005

24 0.010 0.009 0.006 0.006 0.004 0.005 0.005 0.004 0.004

25 0.012 0.021 0.017 0.008 0.007 0.004 0.005 0.006 0.004 0.003

26 0.005 0.012 0.022 0.019 0.009 0.008 0.004 0.005 0.007 0.004 0.003

27 0.005 0.005 0.012 0.023 0.021 0.010 0.008 0.004 0.006 0.007 0.004 0.003

28 0.004 0.004 0.004 0.009 0.016 0.016 0.008 0.007 0.004 0.005 0.007 0.004 0.003

29 0.004 0.003 0.003 0.004 0.009 0.016 0.016 0.008 0.007 0.004 0.005 0.007 0.004 0.003
aData is adjusted to have standard deviation of 1
bFirst column is m—the number of years from the end selected as data, the remaining columns are k—how far along the subset of years, data in table is B(m, m – k)— 
the posterior probability of the change occurring in that year.
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Table A7. (continued)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 None

14 13 12 11 10 9 8 7 6 5 4 3 2 1 m

0.046 0.954

0.047 0.051 0.902

0.038 0.049 0.053 0.860

0.072 0.062 0.078 0.064 0.725

0.032 0.092 0.077 0.092 0.066 0.642

0.044 0.053 0.207 0.124 0.116 0.058 0.399

0.015 0.053 0.065 0.267 0.143 0.120 0.050 0.287

0.014 0.014 0.038 0.052 0.212 0.136 0.127 0.058 0.350

0.014 0.010 0.013 0.047 0.063 0.266 0.152 0.128 0.050 0.258

0.010 0.013 0.009 0.013 0.046 0.064 0.272 0.156 0.130 0.049 0.240

0.009 0.008 0.011 0.008 0.012 0.043 0.061 0.261 0.157 0.133 0.050 0.245

0.009 0.008 0.008 0.011 0.008 0.013 0.047 0.066 0.285 0.163 0.131 0.046 0.205

0.009 0.008 0.007 0.007 0.010 0.008 0.012 0.042 0.061 0.259 0.160 0.136 0.050 0.232

0.010 0.006 0.007 0.007 0.007 0.011 0.008 0.013 0.049 0.068 0.299 0.168 0.131 0.042 0.175

0.008 0.006 0.007 0.006 0.007 0.010 0.008 0.012 0.046 0.066 0.289 0.168 0.134 0.044 0.183

0.007 0.006 0.006 0.006 0.006 0.009 0.008 0.011 0.038 0.056 0.239 0.157 0.139 0.052 0.238

0.006 0.005 0.006 0.006 0.006 0.009 0.007 0.012 0.041 0.060 0.259 0.163 0.138 0.049 0.210

0.006 0.005 0.006 0.006 0.006 0.009 0.007 0.012 0.043 0.063 0.275 0.167 0.137 0.045 0.186

0.005 0.005 0.006 0.006 0.006 0.009 0.007 0.011 0.039 0.058 0.249 0.162 0.140 0.050 0.215

0.005 0.005 0.005 0.005 0.006 0.009 0.007 0.011 0.038 0.058 0.247 0.162 0.140 0.050 0.213

0.005 0.005 0.005 0.005 0.006 0.008 0.007 0.011 0.036 0.054 0.232 0.158 0.141 0.052 0.229

0.005 0.005 0.005 0.005 0.006 0.008 0.007 0.011 0.037 0.056 0.238 0.160 0.141 0.051 0.218

0.005 0.004 0.005 0.005 0.006 0.009 0.007 0.011 0.040 0.060 0.261 0.166 0.138 0.046 0.183

0.005 0.004 0.005 0.005 0.006 0.009 0.007 0.011 0.044 0.065 0.286 0.166 0.127 0.037 0.134

0.005 0.004 0.005 0.005 0.006 0.009 0.007 0.011 0.046 0.066 0.295 0.166 0.123 0.035 0.107

0.005 0.004 0.005 0.005 0.006 0.009 0.007 0.012 0.047 0.067 0.302 0.165 0.119 0.032 0.107

0.005 0.004 0.005 0.005 0.006 0.010 0.007 0.012 0.047 0.068 0.304 0.168 0.123 0.034 0.112

0.005 0.004 0.005 0.005 0.006 0.010 0.007 0.012 0.048 0.069 0.309 0.168 0.121 0.032 0.105
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Appendix B. R code

B.1. Load data
Data <- data.frame(loss = c(16527.23818, 19423.99527, 15260.94623, 15379.31657, 9460.044429, 
13203.41339, 17753.16426, 22563.39599, 19433.13233, 24110.19247, 15931.73295, 16009.41087, 
26602.24242, 20217.20507, 13437.38657, 22168.16504, 16189.10347, 20139.90678, 18517.22265, 
14942.85989, 23188.54532, 15747.2464, 11999.18351, 19406.61283, 15596.77033, 24749.51564, 
24200.16346, 28220.85832, 34737.79201), group = factor(c(rep(“A”, 25), rep(“B”, 4))))

B.2. Data plot
plot(Data$loss, xlab = “Year”, ylab = “Value”, col = “black”, lwd = 2, type = “o”, pch = 20)

B.3. Group means and standard deviations
Means <- c(mean(Data$loss), tapply(Data$loss, Data$group, mean))
SD <- c(sd(Data$loss), tapply(Data$loss, Data$group, sd))

B.4. Moving average plot code
MovingAverage <- function(data, n) {
 filter(data, rep(1/n, n), sides = 1)
}
plot(MovingAverage(Data$loss, 3), xlab = “Year”, ylab = “Moving Average”, col = “black”, lwd = 2)
lines(MovingAverage(Data$loss, 5), col = “blue”, lwd = 2)
lines(MovingAverage(Data$loss, 7), col = “red2”, lwd = 2)
lines(MovingAverage(Data$loss, 10), col = “green3”, lwd = 2)
lines(MovingAverage(Data$loss, 15), col = “yellow3”, lwd = 2)
legend(x = “topleft”, legend = c(“3-year”, “5-year”, “7-year”, “10-year”, “15-year”), col = 
c(“black”, “blue”, “red2”, “green3”, “yellow3”), lwd = 2)

B.5. Process inspection scheme code
runningmin <- function(x) {
 v <- rep(0, length(x))
 v[1] <- x[1]
 for (i in 2:length(x)) {
  if (x[i] <= v[i - 1]) {
   v[i] <- x[i]
  } else {
   v[i] <- v[i - 1]
  }
 }
 return(v)
}
LongTermMean <- mean(Data$loss[8:17])
S0 <- Data$loss - LongTermMean
Si <- cumsum(S0)
Sr <- Si - runningmin(Si)
plot(Sr[18:29], xaxt = “n”, pch = 16, type = “o”, xlab = “Year”, ylab = “Difference”)
axis(1, at = 1:12, labels = seq(18, 29))

B.6. 2 equal observations bin code

Bin boundaries were selected judgmentally to have 5 observations in each.

C5_1 <- sum(Data$loss[1:25] < 15000)
C5_2 <- sum(Data$loss[1:25] < 16000 & Data$loss[1:25] >=15000)
C5_3 <- sum(Data$loss[1:25] < 19000 & Data$loss[1:25] >=16000)
C5_4 <- sum(Data$loss[1:25] < 22000 & Data$loss[1:25] >=19000)
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C5_5 <- sum(Data$loss[1:25] >= 22000)
C5 <- C5_1 + C5_2 + C5_3 + C5_4 + C5_5
E5_1 <- ( pnorm(15000, mean = Means[[2]], sd = SD[[2]]) - 

pnorm(0, mean = Means[[2]], sd = SD[[2]])) * 25
E5_2 <- ( pnorm(16000, mean = Means[[2]], sd = SD[[2]]) - 

pnorm(15000, mean = Means[[2]], sd = SD[[2]])) * 25
E5_3 <- ( pnorm(19000, mean = Means[[2]], sd = SD[[2]]) - 

pnorm(16000, mean = Means[[2]], sd = SD[[2]])) * 25
E5_4 <- ( pnorm(22000, mean = Means[[2]], sd = SD[[2]]) - 

pnorm(19000, mean = Means[[2]], sd = SD[[2]])) * 25
E5_5 <- ( pnorm(Inf, mean = Means[[2]], sd = SD[[2]]) - 

pnorm(22000, mean = Means[[2]], sd = SD[[2]])) * 25
E5 <- E5_1 + E5_2 + E5_3 + E5_4 + E5_5
X5_1 <- (C5_1 - E5_1)ˆ2/E5_1
X5_2 <- (C5_2 - E5_2)ˆ2/E5_2
X5_3 <- (C5_3 - E5_3)ˆ2/E5_3
X5_4 <- (C5_4 - E5_4)ˆ2/E5_4
X5_5 <- (C5_5 - E5_5)ˆ2/E5_5
X5 <- X5_1 + X5_2 + X5_3 + X5_4 + X5_5
G5_1 <- log(C5_1/E5_1) * C5_1
G5_2 <- log(C5_2/E5_2) * C5_2
G5_3 <- log(C5_3/E5_3) * C5_3
G5_4 <- log(C5_4/E5_4) * C5_4
G5_5 <- log(C5_5/E5_5) * C5_5
G5 <- G5_1 + G5_2 + G5_3 + G5_4 + G5_5

B.7. 2 equiprobable bin code
B <- qnorm(seq_len(8)/8, 0, 1)
Bounds <- Means[[2]] + SD[[2]] * B
C8_1 <- sum(Data$loss[1:25] < Bounds[[1]])
C8_2 <- sum(Data$loss[1:25] < Bounds[[2]] & Data$loss[1:25] >= Bounds[[1]])
C8_3 <- sum(Data$loss[1:25] < Bounds[[3]] & Data$loss[1:25] >= Bounds[[2]])
C8_4 <- sum(Data$loss[1:25] < Bounds[[4]] & Data$loss[1:25] >= Bounds[[3]])
C8_5 <- sum(Data$loss[1:25] < Bounds[[5]] & Data$loss[1:25] >= Bounds[[4]])
C8_6 <- sum(Data$loss[1:25] < Bounds[[6]] & Data$loss[1:25] >= Bounds[[5]])
C8_7 <- sum(Data$loss[1:25] < Bounds[[7]] & Data$loss[1:25] >= Bounds[[6]])
C8_8 <- sum(Data$loss[1:25] >= Bounds[[7]])
C8 <- C8_1 + C8_2 + C8_3 + C8_4 + C8_5 + C8_6 + C8_7 + C8_8
E8_1 <- ( pnorm(Bounds[[1]], mean = Means[[2]], sd = SD[[2]]) - 

pnorm(0, mean = Means[[2]], sd = SD[[2]])) * 25
E8_2 <- ( pnorm(Bounds[[2]], mean = Means[[2]], sd = SD[[2]]) - 

pnorm(Bounds[[1]], mean = Means[[2]], sd = SD[[2]])) * 25
E8_3 <- ( pnorm(Bounds[[3]], mean = Means[[2]], sd = SD[[2]]) - 

pnorm(Bounds[[2]], mean = Means[[2]], sd = SD[[2]])) * 25
E8_4 <- ( pnorm(Bounds[[4]], mean = Means[[2]], sd = SD[[2]]) - 

pnorm(Bounds[[3]], mean = Means[[2]], sd = SD[[2]])) * 25
E8_5 <- ( pnorm(Bounds[[5]], mean = Means[[2]], sd = SD[[2]]) - 

pnorm(Bounds[[4]], mean = Means[[2]], sd = SD[[2]])) * 25
E8_6 <- ( pnorm(Bounds[[6]], mean = Means[[2]], sd = SD[[2]]) - 

pnorm(Bounds[[5]], mean = Means[[2]], sd = SD[[2]])) * 25
E8_7 <- ( pnorm(Bounds[[7]], mean = Means[[2]], sd = SD[[2]]) - 

pnorm(Bounds[[6]], mean = Means[[2]], sd = SD[[2]])) * 25
E8_8 <- ( pnorm(Inf, mean = Means[[2]], sd = SD[[2]]) - 

pnorm(Bounds[[7]], mean = Means[[2]], sd = SD[[2]])) * 25
E8 <- E8_1 + E8_2 + E8_3 + E8_4 + E8_5 + E8_6 + E8_7 + E8_8
X8_1 <- (C8_1 - E8_1)ˆ2/E8_1
X8_2 <- (C8_2 - E8_2)ˆ2/E8_2
X8_3 <- (C8_3 - E8_3)ˆ2/E8_3
X8_4 <- (C8_4 - E8_4)ˆ2/E8_4
X8_5 <- (C8_5 - E8_5)ˆ2/E8_5
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X8_6 <- (C8_6 - E8_6)ˆ2/E8_6
X8_7 <- (C8_7 - E8_7)ˆ2/E8_7
X8_8 <- (C8_8 - E8_8)ˆ2/E8_8
X8 <- X8_1 + X8_2 + X8_3 + X8_4 + X8_5 + X8_6 + X8_7 + X8_8
G8_1 <- log(C8_1/E8_1) * C8_1
G8_2 <- log(C8_2/E8_2) * C8_2
G8_3 <- log(C8_3/E8_3) * C8_3
G8_4 <- log(C8_4/E8_4) * C8_4
G8_5 <- log(C8_5/E8_5) * C8_5
G8_6 <- log(C8_6/E8_6) * C8_6
G8_7 <- log(C8_7/E8_7) * C8_7
G8_8 <- log(C8_8/E8_8) * C8_8
G8 <- G8_1 + G8_2 + G8_3 + G8_4 + G8_5 + G8_6 + G8_7 + G8_8

B.8. Tests for normality code
library(nortest)
AD <- ad.test(Data$loss[1:25])
CVM <- cvm.test(Data$loss[1:25])
SW <- sf.test(Data$loss[1:25])
LF <- lillie.test(Data$loss[1:25])

B.9. Welch’s t-test
WT <- t.test(x = Data$loss[1:25], y = Data$loss[26:29], alternative = “l”, var.equal = FALSE, paired 
= FALSE)

B.10. Mann-Whitney-Wilcoxon code and results
library(coin)
wilcox_test(loss ~ group, data = Data, alternative = “less”, distribution = “asymptotic”)

##
## Asymptotic Wilcoxon Mann-Whitney Rank Sum Test
##
## data: loss by group (A, B)
## Z =  -3, p-value = 0.0012
## alternative hypothesis: true mu is less than 0

wilcox_test(loss ~ group, data = Data, alternative = “less”, distribution = “exact”)

##
## Exact Wilcoxon Mann-Whitney Rank Sum Test
##
## data: loss by group (A, B)
## Z =  -3, p-value = 0.0001684
## alternative hypothesis: true mu is less than 0

B.11. Maximum likelihood estimation
library(nloptr)
AICC <- function(NLL, k, n) {return(2 * NLL + 2 * k + 2 * k * (k + 1)/(n - k - 1))}

InitGamma <- function(X) {return(c(mean(X)ˆ2/var(X), var(X)/mean(X)))}

GammaNLL <- function(pars, X) f
 a <- pars[[1]]
 q <- pars[[2]]
 return(sum(-(a * (log(X) - log(q)) - (X/q) - log(X) - lgamma(a))))
}

InitN <- function(X) {return(c(mean(X), sd(X)))}
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NNLL <- function(pars, X) {
 m <- pars[[1]]
 s <- pars[[2]]
 return(sum(log(s) + 0.5 * log(2 * pi) + (X - m)ˆ2/(2 * sˆ2)))
}

InitLN <- function(X) {return(c(mean(log(X)), sd(log(X))))}

LNNLL <- function(pars, X) {
 m <- pars[[1]]
 s <- pars[[2]]
 return(sum(log(X) + log(s) + 0.5 * log(2 * pi) + (log(X) - m)ˆ2/(2 * sˆ2)))
}

InitP <- function(X) {
 m <- mean(X)
 t <- sum(Xˆ2)/length(X)
 a <- max(2 * (t - mˆ2)/(t - 2 * mˆ2), 2.5)
 q <- m * (a - 1)
 return(c(a, q))
}

PNLL <- function(pars, X) {
 a <- pars[[1]]
 q <- pars[[2]]
 return(sum(((a + 1) * log(X + q)) - log(a) - a * log(q)))
}

G25 <- nloptr(x0 = InitGamma(Data$loss[1:25]), eval_f = GammaNLL, lb = c(0, 0), ub = c(Inf, Inf),  
X = Data$loss[1:25], opts = list(maxeval = 30000, xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))

LN25 <- nloptr(x0 = InitLN(Data$loss[1:25), eval_f = LNNLL, lb = c(-Inf, 0), ub = c(Inf, Inf),  
X = Data$loss[1:25], opts = list(maxeval = 30000, xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))

N25 <- nloptr(x0 = InitN(Data$loss[1:25]), eval_f = NNLL, lb = c(0, 0), ub = c(Inf, Inf), X = 
Data$loss[1:25], opts = list(maxeval = 30000, xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))

P25 <- nloptr(x0 = InitP(Data$loss[1:25]), eval_f = PNLL, eval_grad_f = NULL, lb = c(0, 0), ub =  
c(Inf, Inf),
X = Data$loss[1:25], opts = list(maxeval = 30000, xtol_rel = 1e-14, algorithm = “NLOPT_LN_SBPLX”))

G4 <- nloptr(x0 = InitGamma(Data$loss[26:29]), eval_f = GammaNLL, lb = c(0, 0), ub = c(Inf, Inf),  
X = Data$loss[26:29], opts = list(maxeval = 30000, xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))

LN4 <- nloptr(x0 = InitLN(Data$loss[26:29]), eval_f = LNNLL, lb = c(-Inf, 0), ub = c(Inf, Inf),  
X = Data$loss[26:29], opts = list(maxeval = 30000, xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))

N4 <- nloptr(x0 = InitN(Data$loss[26:29]), eval_f = NNLL, lb = c(0, 0), ub = c(Inf, Inf), X = 
Data$loss[26:29], opts = list(maxeval = 30000, xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))

P4 <- nloptr(x0 = InitP(Data$loss[26:29]), eval_f = PNLL, eval_grad_f = NULL, lb = c(0, 0), ub =  
c(Inf, Inf), X = Data$loss[26:29], opts = list(maxeval = 30000, xtol_rel = 1e-14, algorithm =  
“NLOPT_LN_SBPLX”))

B.12. Combined changepoint and data maximum likelihood estimation

The constraints on the parameters and non­ideal initial selections for some of the distributions is a result of 
MLE “misbehaving” when being fit to one data point, as is the case if m ∈ {2,29}.

TT <- function(X) {return(sum(Xˆ2)/length(X))}
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InitGC <- function(X, m) {
 n <- length(X)
 X1 <- X[1:(m - 1)]
 X2 <- X[m:n]
 if (length(X1) == 1) {
  a1 <- 10
 } else {
  a1 <- mean(X1)ˆ2/(TT(X1) - mean(X1)ˆ2)
 }
 if (a1 == 10) {
  q1 <- sum(X1)/10
 } else {
  q1 <- (TT(X1) - mean(X1)ˆ2)/mean(X1)
 }
 if (length(X2) == 1) {
  a2 <- 10
 } else {
  a2 <- mean(X2)ˆ2/(TT(X2) - mean(X2)ˆ2)
 }
 if (a2 == 10) {
  q2 <- sum(X2)/10
 } else {
  q2 <- (TT(X2) - mean(X2)ˆ2)/mean(X2)
 }
 return(c(a1, q1, a2, q2))
}

GCNLL <- function(pars, X, m) {
 n <- length(X)
 a1 <- pars[[1]]
 q1 <- pars[[2]]
 a2 <- pars[[3]]
 q2 <- pars[[4]]
 X1 <- X[1:(m - 1)]
 X2 <- X[m:n]
 LX1 <- a1 * (log(X1) - log(q1)) - (X1/q1) - log(X1) - lgamma(a1)
 LX2 <- a2 * (log(X2) - log(q2)) - (X2/q2) - log(X2) - lgamma(a2)
 return(-(sum(LX1) + sum(LX2)))
}

FitGCC <- function(X) {
 n <- length(X)
 Results <- matrix(ncol = 6, nrow = (n))
 NC <- nloptr(x0 = InitGamma(Data$loss), eval_f = GammaNLL, lb = c(0, 0), ub = c(Inf, Inf),
  X = Data$loss, opts = list(maxeval = 50000, xtol_rel = 1e-12,
  algorithm = “NLOPT_LN_SBPLX”))
 Results[1, 1] <- 1
 Results[1, 2] <- NC$objective
 Results[1, 3] <- NC$solution[[1]]
 Results[1, 4] <- NC$solution[[2]]
 Results[1, 5] <- 0
 Results[1, 6] <- 0
 for (i in 2:29) {
  Results[i, 1] <- i
  GC <- nloptr(x0 = InitGC(Data$loss, i), eval_f = GCNLL, lb = c(0, 0, 0, 0),
  ub = c(10000, Inf, 10000, Inf), X = Data$loss, m = i, opts = list(maxeval = 100000,
  xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))
  Results[i, 2] <- GC$objective
  Results[i, 3] <- GC$solution[[1]]
  Results[i, 4] <- GC$solution[[2]]
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  Results[i, 5] <- GC$solution[[3]]
  Results[i, 6] <- GC$solution[[4]]
 }
 return(Results)
}

NCNLL <- function(pars, X, m) {
 n <- length(X)
 mu1 <- pars[[1]]
 sig1 <- pars[[2]]
 mu2 <- pars[[3]]
 sig2 <- pars[[4]]
 X1 <- X[1:(m - 1)]
 X2 <- X[m:n]
 LX1 <- log(sig1) + 0.5 * log(2 * pi) + (X1 - mu1)ˆ2/(2 * sig1ˆ2)
 LX2 <- log(sig2) + 0.5 * log(2 * pi) + (X2 - mu2)ˆ2/(2 * sig2ˆ2)
 return(sum(LX1) + sum(LX2))
}

FitNCC <- function(X) {
 sdp <- function(z) {
  m <- mean(z)
  u <- (z - m)ˆ2
  return(sqrt(sum(u)/length(u)))
 }
 n <- length(X)
 Results <- matrix(ncol = 6, nrow = n)
 NC <- nloptr(x0 = InitN(Data$loss), eval_f = NNLL, lb = c(0, 0), ub = c(Inf, Inf), X = Data$loss,
  opts = list(maxeval = 30000, xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))
 Results[1, 1] <- 1
 Results[1, 2] <- NC$objective
 Results[1, 3] <- NC$solution[[1]]
 Results[1, 4] <- NC$solution[[2]]
 Results[1, 5] <- 0
 Results[1, 6] <- 0
 for (i in 2:29) {
  Results[i, 1] <- i
  NC <- nloptr(x0 = c(1000, 1000, 1000, 1000), eval_f = NCNLL, lb = c(0, 500, 0, 500),
  ub = c(Inf, Inf, Inf, Inf), X = Data$loss, m = i, opts = list(maxeval = 50000,
  xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))
  Results[i, 2] <- NC$objective
  Results[i, 3] <- NC$solution[[1]]
  Results[i, 4] <- NC$solution[[2]]
  Results[i, 5] <- NC$solution[[3]]
  Results[i, 6] <- NC$solution[[4]]
 }
 return(Results)
}

InitLNC <- function(X, m) {
 n <- length(X)
 X1 <- X[1:(m - 1)]
 X2 <- X[m:n]
 s1 <- sqrt(log(TT(X1)) - 2 * log(mean(X1)))
 m1 <- log(mean(X1)) - s1ˆ2/2
 s2 <- sqrt(log(TT(X2)) - 2 * log(mean(X2)))
 m2 <- log(mean(X2)) - s2ˆ2/2
 return(c(m1, s1, m2, s2))
}

LNCNLL <- function(pars, X, m) {
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 n <- length(X)
 mu1 <- pars[[1]]
 sig1 <- pars[[2]]
 mu2 <- pars[[3]]
 sig2 <- pars[[4]]
 X1 <- X[1:(m - 1)]
 X2 <- X[m:n]
 LX1 <- log(X1) + log(sig1) + 0.5 * log(2 * pi) + (log(X1) - mu1)ˆ2/(2 * sig1ˆ2)
 LX2 <- log(X2) + log(sig2) + 0.5 * log(2 * pi) + (log(X2) - mu2)ˆ2/(2 * sig2ˆ2)
 return(sum(LX1) + sum(LX2))
}

FitLNCC <- function(X) {
 n <- length(X)
 Results <- matrix(ncol = 6, nrow = n)
 LNC <- nloptr(x0 = InitLN(Data$loss), eval_f = LNNLL, lb = c(-Inf, 0), ub = c(Inf, Inf),
  X = Data$loss, opts = list(maxeval = 30000, xtol_rel = 1e-12,
  algorithm = “NLOPT_LN_SBPLX”))
 Results[1, 1] <- 1
 Results[1, 2] <- LNC$objective
 Results[1, 3] <- LNC$solution[[1]]
 Results[1, 4] <- LNC$solution[[2]]
 Results[1, 5] <- 0
 Results[1, 6] <- 0
 for (i in 2:29) {
  Results[i, 1] <- i
  LNC <- nloptr(x0 = c(10, 0.1, 10, 0.1), eval_f = LNCNLL, lb = c(-Inf, 0.01, -Inf, 0.01),
  ub = c(Inf, Inf, Inf, Inf), X = Data$loss, m = i, opts = list(maxeval = 100000,
  xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))
  Results[i, 2] <- LNC$objective
  Results[i, 3] <- LNC$solution[[1]]
  Results[i, 4] <- LNC$solution[[2]]
  Results[i, 5] <- LNC$solution[[3]]
  Results[i, 6] <- LNC$solution[[4]]
 }
 return(Results)
}

InitPC <- function(X, m) {
 n <- length(X)
 X1 <- X[1:(m - 1)]
 X2 <- X[m:n]
 if (length(X1) == 1) {
  a1 <- 1000
 } else {
  a1 <- max((2 * (TT(X1) - mean(X1)ˆ2)/(TT(X1) - 2 * mean(X1)ˆ2)), 2.5)
 }
 if (a1 == 1000) {
  q1 <- sum(X1)/1000
 } else {
  q1 <- mean(X1) * (a1 - 1)
 }
 if (length(X2) == 1) {
  a2 <- 1000
 } else {
  a2 <- max((2 * (TT(X2) - mean(X2)ˆ2)/(TT(X2) - 2 * mean(X2)ˆ2)), 2.5)
 }
 if (a2 == 1000) {
  q2 <- sum(X2)/1000
 } else {
  q2 <- mean(X2) * (a2 - 1)
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 }
 return(c(a1, q1, a2, q2))
}

PCNLL <- function(pars, X, m) {
 n <- length(X)
 a1 <- pars[[1]]
 q1 <- pars[[2]]
 a2 <- pars[[3]]
 q2 <- pars[[4]]
 X1 <- X[1:(m - 1)]
 X2 <- X[m:n]
 LX1 <- ((a1 + 1) * log(X1 + q1)) - log(a1) - a1 * log(q1)
 LX2 <- ((a2 + 1) * log(X2 + q2)) - log(a2) - a2 * log(q2)
 return(sum(LX1) + sum(LX2))
}

FitPCC <- function(X) {
 n <- length(X)
 Results <- matrix(ncol = 6, nrow = n)
 PC <- nloptr(x0 = InitP(Data$loss), eval_f = PNLL, eval_grad_f = NULL, lb = c(0, 0),
  ub = c(Inf, Inf), X = Data$loss, opts = list(maxeval = 30000, xtol_rel = 1e-14,
  algorithm = “NLOPT_LN_SBPLX”))
 Results[1, 1] <- 1
 Results[1, 2] <- PC$objective
 Results[1, 3] <- PC$solution[[1]]
 Results[1, 4] <- PC$solution[[2]]
 Results[1, 5] <- 0
 Results[1, 6] <- 0
 for (i in 2:29) {
  Results[i, 1] <- i
  LNC <- nloptr(x0 = InitPC(Data$loss, i), eval_f = PCNLL, lb = c(0, 0, 0, 0),
  ub = c(Inf, Inf, Inf, Inf), X = Data$loss, m = i, opts = list(maxeval = 100000,
  xtol_rel = 1e-12, algorithm = “NLOPT_LN_SBPLX”))
  Results[i, 2] <- LNC$objective
  Results[i, 3] <- LNC$solution[[1]]
  Results[i, 4] <- LNC$solution[[2]]
  Results[i, 5] <- LNC$solution[[3]]
  Results[i, 6] <- LNC$solution[[4]]
 }
 return(Results)
}
CombinedGamma <- FitGCC(Data$loss)
CombinedNormal <- FitNCC(Data$loss)
CombinedLogNormal <- FitLNCC(Data$loss)
CombinedPareto <- FitPCC(Data$loss)

B.13. Chernoff–Zacks changepoint procedure
Phi <- function(k, X, m, sigma) {
 n <- length(X)
 s2 <- sigma * sigma
 mk <- m - k
 front <- 1/sqrt(s2 * k * mk + m)
 part1 <- (kˆ2 * mkˆ2 * s2)/((mˆ2 + (s2 * m * k * mk)) * 2)
 Xbar_km <- if (k == 0) {
  0
 } else {
  sum(X[(n - m + 1):(n - m + k)])/k
 }
 Xbarstar_km <- sum(X[(n - m + k + 1):n])/(m - k)
 inner <- (Xbar_km - Xbarstar_km)ˆ2
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 return(front * exp(part1 * inner))
}
Dstar_m <- function(X, m, sigma, p) {
 D <- (1 - p)ˆ(m - 1) * Phi(0, X, m, sigma)
 ps <- p * (1 - p)ˆ(m - 2)
 for (k in 1:(m - 1)) {
  D <- D + ps * Phi(k, X, m, sigma)
 }
 return(D)
}

B <- function(X, m, k, sigma, p) {
 p_km <- (1 - p)ˆ(m - 2)
 PKM <- if (k == 0) {
  p_km * (1 - p)
 } else {
  p_km * p
 }
 Q <- PKM * Phi(k, X, m, sigma)
 return(Q/Dstar_m(X, m, sigma, p))
}

B.14. JAGS files

B.14.1. Data for JAGS
DL29 <- list(Loss = c(16527.23818, 19423.99527, 15260.94623, 15379.31657, 9460.044429, 13203.41339,
17753.16426, 22563.39599, 19433.13233, 24110.19247, 15931.73295, 16009.41087, 26602.24242, 
20217.20507, 13437.38657, 22168.16504, 16189.10347, 20139.90678, 18517.22265, 14942.85989, 
23188.54532, 15747.2464, 11999.18351, 19406.61283, 15596.77033, 24749.51564, 24200.16346, 
28220.85832, 34737.79201), N = 29, MPrior = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))

DL2950 <- list(Loss = c(16527.23818, 19423.99527, 15260.94623, 15379.31657, 9460.044429, 
13203.41339, 17753.16426, 22563.39599, 19433.13233, 24110.19247, 15931.73295,
16009.41087, 26602.24242, 20217.20507, 13437.38657, 22168.16504, 16189.10347, 20139.90678, 
18517.22265, 14942.85989, 23188.54532, 15747.2464, 11999.18351, 19406.61283, 15596.77033, 
24749.51564, 24200.16346, 28220.85832, 34737.79201), N = 29, MPrior = c(28, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))

DL28 <- list(Loss = c(16527.23818, 19423.99527, 15260.94623, 15379.31657, 9460.044429, 13203.41339, 
17753.16426, 22563.39599, 19433.13233, 24110.19247, 15931.73295, 16009.41087, 26602.24242, 
20217.20507, 13437.38657, 22168.16504, 16189.10347, 20139.90678, 18517.22265, 14942.85989, 
23188.54532, 15747.2464, 11999.18351, 19406.61283, 15596.77033, 24749.51564, 24200.16346, 
28220.85832), N = 28, MPrior = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1))

DL27 <- list(Loss = c(16527.23818, 19423.99527, 15260.94623, 15379.31657, 9460.044429, 13203.41339,
17753.16426, 22563.39599, 19433.13233, 24110.19247, 15931.73295, 16009.41087, 26602.24242, 
20217.20507, 13437.38657, 22168.16504, 16189.10347, 20139.90678, 18517.22265, 14942.85989, 
23188.54532, 15747.2464, 11999.18351, 19406.61283, 15596.77033, 24749.51564, 24200.16346), N = 27,  
MPrior = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))

B.14.2. Gamma split model file
var N, Loss[N], MPrior[N];
model {
for (year in 1:N) {
alpha[year] <- ifelse(year < m, alpha.prior[1], alpha.prior[2])
lambda[year] <- ifelse(year < m, lambda.prior[1], lambda.prior[2])
Loss[year] ~ dgamma(alpha[year], lambda[year])
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}
for (i in 1:2) {
alpha.prior[i] ~ dgamma (0.5, 0.025)
lambda.prior[i] <- pow(theta.prior[i],  -1)
theta.prior[i] ~ dgamma (0.5, 5.0E-4)
}
Loss.prior ~ dgamma(alpha.prior[1], lambda.prior[1])
Loss.post ~ dgamma(alpha.prior[2], lambda.prior[2])
m ~ dcat(MPrior)
}

B.14.3. Gamma no-split model file
var N, Loss[N], MPrior[N];
model {
for (year in 1:N) {
alpha[year] <- alpha.prior
lambda[year] <- pow(theta.prior,  -1)
Loss[year] ~ dgamma(alpha[year], lambda[year])
}
alpha.prior ~ dgamma (0.5, 0.025)
theta.prior ~ dgamma (0.5, 5.0E-4)
Loss.prior ~ dgamma(alpha.prior, pow(theta.prior,  -1))
m ~ dcat(MPrior)
}

B.14.4. Gamma step model file
var N, Loss[N], MPrior[N];
model {
for (year in 1:N) {
alpha[year] <- ifelse(year < m, alpha.prior, max(alpha.prior + alpha.step, 1.0E-4))
theta[year] <- ifelse(year < m, theta.prior, max(theta.prior + theta.step, 1.0E-4))
lambda[year] <- pow(theta[year],  -1)
Loss[year] ~ dgamma(alpha[year], lambda[year])
}
alpha.prior ~ dgamma (0.5, 0.025)
alpha.step ~ dnorm(0.0, 1.0E-4)
theta.prior ~ dgamma (0.5, 5.0E-4)
theta.step ~ dnorm(0.0, 1.0E-4)
Loss.prior ~ dgamma(alpha.prior, 1/theta.prior)
Loss.post ~ dgamma(max(alpha.prior + alpha.step, 1.0E-4), 1/max(theta.prior + theta.step, 
1.0E-4))
m~ dcat(MPrior)
}

B.14.5. R code to call JAGS
Note that while specific seeds have been set for repeatability, in practice, random or changing seeds should 

be used to test the sensitivity of the parameter fits. Calls for adjusted files are the same with only the file names 
changing as appropriate.

library(rjags)
library(runjags)
set.seed(187)
inits <- function(chain) {
list(alpha.prior = 20 + rnorm(2, 0, 1), theta.prior = 1000 + rnorm(2, 0, 10), m = 
sample(c(1, 2, 3), size = 1, prob = c(0.8, 0.15, 0.05)), .RNG.seed = chainˆ2 + 1, .RNG.
name = “base::Mersenne-Twister”)
}
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Fit29 <- run.jags(model = “GammaModelSplit.bug”, monitor = c(“alpha.prior”, “theta.prior”, “m”, 
“Loss.prior”, “Loss.post”, “pd”, “dic”, “deviance”), data = DL29, inits = inits, n.chains = 5, sample 
= 15000, burnin = 10000, adapt = 10000, psrf.target = 1.05, thin = 3, method = “interruptible”, 
silent.jags = TRUE)

FM29 <- as.matrix(Fit29$mcmc)

B.14.6. R code to calculate statistics
There are two accepted ways to calculate pD, either the difference between the average deviance and the devi­

ance at the posterior parameter means, or one­half the posterior variance of the deviance (Gelman et al., 2014,  
pp. 172–173).8 This paper is using the former, as programmed into JAGS.

mSpot29 <- which(rownames(Fit29$summary$statistics) == “m”)
FLSpot29 <- which(rownames(Fit29$summary$statistics) == “Loss.post”)
CLSpot29 <- which(rownames(Fit29$summary$statistics) == “Loss.prior”)
a1Spot29 <- which(rownames(Fit29$summary$statistics) == “alpha.prior[1]”)
a2Spot29 <- which(rownames(Fit29$summary$statistics) == “alpha.prior[2]”)
t1Spot29 <- which(rownames(Fit29$summary$statistics) == “theta.prior[1]”)
t2Spot29 <- which(rownames(Fit29$summary$statistics) == “theta.prior[2]”)
devSpot29 <- which(rownames(Fit29$summary$statistics) == “deviance”)
Pmode29 <- apply(FM29, 2, post.mode)
Pmean29 <- Fit29$summary$statistics[, 1]
Pquant29 <- Fit29$summary$quantiles
Rhat29 <- Fit29$psrf$psrf
pD29 <- Fit29$dic$meanpd
DIC29 <- Fit29$dic$dic
HDI29 <- HDI(FM29[, 4], 0.95)

B.14.7. Posterior mode function
post.mode <- function(x, . . .) {
 return(density(x, . . .)$x[which.max(density(x, . . .)$y)])
}

B.14.8. Highest density interval
HDI <- function(SampVec, prob = 0.95) {
# Returns Highest Density Interval Based on Kruschke
# 2014, pp. 727–728 Finds shortest interval containing
# prob% of sample Assumes unimodal distribution
n <- length(SampVec)
SortSamp <- sort(SampVec)
ProbWidth <- ceiling(prob * n) #Length of interval containing prob% of sample
TestIntervals <- n - ProbWidth #Number of intervals of this length in sample
StartIndices <- seq_len(TestIntervals)
IntervalWidths <- SortSamp[StartIndices + ProbWidth] - SortSamp[StartIndices]
HDIStart <- SortSamp[which.min(IntervalWidths)]
HDIStop <- SortSamp[which.min(IntervalWidths) + ProbWidth]
return(c(HDIStart, HDIStop))
}

8Gelman et al. have changed their parametrization between the second and third editions of their text, but the actual values are mathematically equivalent 
between the versions.
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B.15. Session info
## R version 3.1.2 (2014-10-31)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] splines stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] runjags_1.2.1-0 rjags_3-14 coda_0.16-1 lattice_0.20-29
## [5] coin_1.0-24 survival_2.37-7 nloptr_1.0.4 nortest_1.0-2
## [9] knitr_1.9
##
## loaded via a namespace (and not attached):
## [1] codetools_0.2-10 digest_0.6.8 evaluate_0.5.5
## [4] formatR_1.0 grid_3.1.2 highr_0.4
## [7] modeltools_0.2-21 mvtnorm_1.0-2 parallel_3.1.2
## [10] stats4_3.1.2 stringr_0.6.2 tools_3.1.2


