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Bayesian Predictive Modeling 
for Exponential-Pareto 
Composite Distribution

by M. S. Aminzadeh and Min Deng

ABSTRACT

Composite distributions have well-known applications in the 

insurance industry. In this paper, a composite exponential-

Pareto distribution is considered, and the Bayes estimator under 

the squared error loss function is derived for the parameter q, 

which is the boundary point for the supports of the two dis-

tributions. A predictive density is constructed under an inverse 

gamma prior distribution for the parameter q, and the density  

is used to estimate the value at risk (VaR). Goodness of fit 

of the composite model is verified for a generated data set. 

The accuracy of the Bayes and VaR estimates is assessed via 

simulation studies. The “best” value for hyperparameters of the 

inverse gamma prior distribution are found via an upper bound 

on the variance of the prior distribution. Simulation studies 

indicate that when the “best” values of hyperparameters are used 

in the Bayes estimator, the estimator is consistently more accu-

rate than maximum likelihood estimation.
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hood estimates for two unknown parameters, and 
compared the two models’ accuracy.

Pareto distribution has a fatter tail than normal 
distribution. Therefore, Pareto is a good model to 
capture large losses in insurance data, but it is not 
good for small losses with high frequencies. That is 
why many other distributions, such as exponential, 
lognormal, and Weibull, have been combined with 
the Pareto distribution to model losses with small 
values in a data set. Cooray and Ananda (2005) dis-
cuss modeling actuarial data based on a composite  
lognormal-Pareto composite model. Cooray and 
Cheng (2015) provide Bayes estimates for parameters 
of a lognormal-Pareto composite model. Scollnik 
and Sun (2012) discuss several Weibull-Pareto com-
posite models.

The aim of this paper is to develop a Bayesian 
predictive density based on the composite exponential-
Pareto distribution. In the Bayesian framework, a 
predictive density is developed via the composite 
density and then, based on a random sample, a Bayes 
estimate and the VaR are estimated. The following 
section develops a posterior probability density 
function (pdf ) via an inverse gamma prior for q. It 
also explains how to use a search method to compute 
the Bayes estimate for q based on a sample. Sec-
tion 3 derives the predictive density for Y, where its 
realization, y, is considered as a future observation 
from the composite distribution. The first moment, 
E [Y |x], of the predictive pdf is undefined because 
E [X ] is also undefined for the composite pdf. Sec-
tion 4 investigates the accuracy of VaR and shows, 
through a summary of simulation studies, that Bayes 
estimation of q under a squared error loss function is 
consistently more accurate than maximum likelihood 
estimation (MLE). The section also gives a method 
for choosing the “best” values for hyperparameters 
of the prior distribution to get an accurate Bayes 
estimate. Section 5 contains a numerical example for 
computational purposes. Three Mathematica codes 
are given in the Appendix, one for computing the 
MLE of q, the second for computing a Bayes estimate 
and VaR using a single sample, and the third for a 

1. Introduction

Two important operations in actuarial science—
using data to construct a model and estimating param-
eters of interest based on the model—are used in the 
insurance industry. In this paper, both processes are 
presented in the context of a composite distribution.

Because insurance data is skewed via a fat tail, 
it is very difficult to find a classical parametric dis-
tribution to model data. The central limit theorem is 
not very useful for the insurance industry because 
insurance data usually has high frequencies for small 
losses, and large losses occur with small probabilities. 
Therefore, many researchers have developed com-
posite models for insurance data or data with similar  
characteristics. Klugman, Panjer, and Willmot (2012) 
discussed how to use data to build a model in the 
actuarial science field and the insurance industry, 
including many important concepts, such as value  
at risk (VaR). VaR, one of the most important risk 
measures in the business world, is the percentile of 
the distribution of losses. It lets actuaries and risk 
managers look at “the chance of an adverse outcome” 
and helps them to make a decision. This paper uses 
Bayesian inference to estimate VaR based on a pre-
dictive model.

Teodorescu and Vernic (2006) introduced the 
composite exponential-Pareto distribution, which is 
a one-parameter distribution. They derived a maxi-
mum likelihood estimator for the unknown param-
eter q, which represents the boundary between small 
and large losses in a data set. In a subsequent paper, 
the same authors worked on different types of 
exponential-Pareto composite models (Teodorescu 
and Vernic 2009). Both models have one unknown 
parameter. Researchers have proposed many other 
composite distributions. Preda and Ciumara (2006), 
for example, introduced the Weibull-Pareto and  
lognormal-Pareto composite models, pointing out 
that they could be used to model actuarial data  
collected from the insurance industry. The authors 
compared the models using different parameters, 
developed algorithms to find the maximum likeli-
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the percentile at a specific level, say 0.99, is increas-
ing in q. Teodorescu and Vernic (2006) compared the 
exponential distribution with the composite expo-
nential-Pareto distribution and derived an MLE for 
q via an ad hoc procedure using a search method. 
They concluded that when q = 10, the composite dis-
tribution fades to 0 more slowly than the exponential 
distribution. The implication of this result is that the 
composite distribution could be a better choice to 
model insurance data containing large losses. In this 
situation, we could be able to avoid charging insuffi-
cient premiums to cover potential future losses.

2. Derivation of posterior density 
and Bayes estimator

Let x1, . . . , xn be a random sample for the com-
posite pdf in (1.1) and, without loss of generality, 
assume that x1 < x2 < . . . < xn is an ordered random 
sample from the pdf in (1.1). The likelihood func-
tion, also given in Teodorescu and Vernic (2006), is 
written as

( )θ = θ ∑− − θ
=L x k en m x

i

n

, (2.1)0.35 1.35 1.35 11
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∏
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. To formulate the like-

lihood function, it is assumed that there is an  
m(m = 1, 2, . . . , n − 1) such that in the ordered 
sample xm ≤ q ≤ xm+1.

simulation that can be used to search for the “best” 
values of hyperparameters to find an accurate Bayes 
estimate.

Teodorescu and Vernic (2006) developed the com-
posite exponential-Pareto model as follows:

Let X be a random variable with the pdf
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f1(x) is the pdf of an exponential distribution with 
parameter l, and f2(x) is the pdf of a Pareto distribu-
tion with parameters q and α.

In order to make the composite density function 
smooth, it is assumed that the pdf is continuous and 
differential at q. That is,

f f f f, .1 2 1 2( ) ( ) ( ) ( )θ = θ ′ θ = ′ θ

Solving the above equations simultaneously gives

c1.35, 0.35, 0.574.λθ = α = =

As a result, the initial three parameters are reduced to 
only one parameter, q, for the composite exponential-
Pareto distribution whose pdf is given by

( )θ =
θ

< ≤ θ

θ θ ≤ < ∞










−
θ

f x

e x

x
x

x

x.775
0

.2
. (1.1)

1.35

.35

1.35

Figure 1.1 provides graphs of the composite pdf for 
different values of q, revealing that as q increases, 
the tail of the pdf becomes heavier. This implies that 
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Figure 1.1. Composite pdf for different  
values of p
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density f (y|x). In the Bayesian framework, predictive 
density is used to estimate measures such as E[Y |x]  
or Var[Y |x], or other measures, such as VaR, which 
is considered in this paper.
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where h1(q|A + 1, B + 1.35y) is the pdf of the inverse 
gamma with parameters A + 1 and B + 1.35y. Also, 
h2(q|A − 0.35,B) is the pdf of the inverse gamma dis-
tribution with parameters A − .35 and B. Using the 
above results, the predictive density, f (y |x), is given by

f y x f x f y d f x f y d
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To derive a posterior distribution for q, we use 
a conjugate prior inverse gamma distribution for q 
with the pdf

b e

a
b a
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From (2.1) and (2.2), the posterior pdf can be  
written as
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It can be seen from (2.3) that the expression on the 
right-hand side is the kernel of inverse gamma (A, B), 
where A = (a − 0.35n + 1.35m) and B = (b + 1.35∑m

i=1xi). 
Therefore, under a squared error loss function, the 
Bayes estimator for q is
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Given an ordered sample x1 < x2 < . . . < xn, we need 
to identify the correct value of m in order to compute 
q̂Bayes. We use the following algorithm:

1. Start with j = 1, and check to see if ≤
−

≤
1

1 2x
B

A
x ; 

if yes, then m = 1. Otherwise, go to step 2.

2. For j = 2, check to see if ≤
−

≤
1

2 3x
B

A
x ; if yes, 

then m = 2. Otherwise, let j = 3 and continue until 
the correct value for m has been found.

The idea is to find the correct value for j so that 

≤
−

≤ +
1

1x
B

A
xj j . The Mathematica code used for 

simulation studies in this article is based on the above 
algorithm to compute q̂Bayes.

3. Derivation of predictive density

Let y be a realization of the random variable Y from 
the composite density. Based on the observed sample 
data x, we are interested in deriving the predictive 
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in (4.1), b would need to increase. And this causes 
the expected value in (4.1) to increase. Simulation 
results, as shown in Table 4.1 for q = 5,10, indicate 
that the accuracy of the Bayes estimate depends on 
the choice of a (b is found via a), which depends on 
n as well as q. To identify a “good” value for a, we 
propose the following method.

Simulations indicate that a large q produces larger 
sample points; as a result both the Bayes estimate 
of q and its mean squared error (MSE) increase. 
To overcome this, we propose an upper bound on 
Var(q) and let the upper bound be a decreasing func-
tion of n. Let

( )
( ) ( )

θ =
− −

≤b

a a n
Var

1 2

1
. (4.2)

2

2 1 3

The idea is to have a decreasing function of n on 
the right-hand side of (4.2). Other functions for an 
upper bound that are decreasing in n may also work, 
but simulations show that the above choice works 
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H2 is the cumulative density function (cdf) of 
the inverse gamma distribution with parameters  
(A − 0.35, B), and H1 is the cdf of the inverse gamma 
distribution with parameters (A + 1, B + 1.35y). 
Similar to the composite density, for which E[X]  
is undefined, E[Y |x] is also undefined for the pre-
dictive pdf.

4. Simulation

This section describes simulation studies conducted 
to assess the accuracy of q̂Bayes as well as VaR. For 
selected values of n, q and the “best” values of hyper-
parameters (a, b), N = 300 samples from the composite 
density (1.1) are generated.

For each generated sample, observations are ranked 
and the correct value for m is identified through a 

search method so that ≤
−

≤ +x
B

A
xm m

1
1. Simulation 

results indicate that the accuracy of the Bayes estimate 
depends on the selected values for hyperparameters 
a and b. The following method is proposed to produce 
an accurate Bayes estimate.

For the inverse gamma prior distribution, we have

[ ] ( )
( ) ( )

θ =
−

θ =
− −

E
b

a

b

a a1
, Var

1 2
. (4.1)

2

2

Also, note that A = (a − 0.35n + 1.35m) because 
one of the parameters of the posterior distribution 
must be positive, and that m takes values 1, 2, . . . , 
(n − 1). Therefore, a > 0.35n − 1.35m, and as a result, 
the value for a should be at least 0.35n – 1.35 to 
avoid computational errors. For example, for n = 50, 
a should be at least 17. Simulation studies indicate 
that for a given sample size n, generally larger values 
of a provide more accurate Bayes estimates. How-
ever, as a increases, for a desired level of variance 

Table 4.1. MSE of Bayes estimate as a function of ` and p

n q a x(q̂Bayes) n q a x(q̂Bayes)

20 5 17 3.590 20 10 17 43.370

20 5 30 1.800 20 10 30 38.010

20 5 50 0.264 20 10 50 29.080

20 5 70 0.063 20 10 70 21.910

20 5 80 0.331 20 10 80 18.980

— — — — 20 10 250 0.106

— — — — 20 10 260 0.020

— — — — 20 10 280 0.051

50 5 50 0.491 50 10 50 28.670

50 5 70 0.037 50 10 70 24.460

50 5 80 0.019 50 10 80 20.17

50 5 90 0.120 50 10 70 24.46

— — — — 50 10 340 0.043

— — — — 50 10 350 0.006

— — — — 50 10 370 0.043

100 5 60 0.095 100 10 350 0.876

100 5 70 0.039 100 10 410 0.072

100 5 80 0.033 100 10 420 0.027

100 5 90 0.077 100 10 450 0.032
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and it can be found via a search method for m = 1,  
2, . . . , (n − 1). Simulation studies indicate that 
among many generated samples (k = 300), only a 
few (1 or 2 out of 300) lead to extremely large MLE 
values, and as result, the MSE of the MLE is inflated. 
Even when such outliers do not occur, the Bayes 
estimator still outperforms MLE.

Tables 4.2 and 4.3 summarize simulation studies 
carried out to assess the accuracy of the Bayes esti-
mator, MLE, and VaR. Both tables use “best” values 
of a from Table 4.1 to compare the Bayes estimate 
with the MLE. Tables 4.2 and 4.3 reveal that both 
q̂MLE and q̂Bayes are more accurate for larger values 
of n than for smaller ones. The tables also reveal that 
q̂
–

Bayes, the average Bayes estimate, is closer to the 
actual value of q than is q̂

–
MLE, the average of MLEs. 

For all values of n in Tables 4.2 and 4.3, we note that 
MSE(Bayes) = x(q̂Bayes) is considerably smaller than 
MSE(MLE) = x(q̂MLE).

Figures 4.1 through 4.3 provide graphs of the 
predictive density for different values of q and a, 
revealing that as n increases, the tail of the predictive 
density becomes heavier, and as a result, at a specific 
level, say 0.99, VaR increases. Simulation studies 
confirm this conclusion. Figure 4.3 is a graph of the 
predictive density for fixed values n = 50, a = 50, and 
for three different values of q based on which sam-
ples from the composite pdf are generated. Similar to 
what is shown in Figure 1.1, as q increases, the tail of 
the predictive density becomes heavier, causing VaR 
at a specific level, say 0.99, to increase.

very well. For a selected value of a, (4.2) is used to 
find b by solving

( ) ( )− −
≤b

a a n1 2

1
.

2

2 1 3

As shown in Table 4.1, for selected values of n  
and q, the MSE of the Bayes estimate has a mini-
mum when a takes its “best” value. For selected 
values of n and q, Table 4.1 lists the turning points of 
the MSE. The Mathematica code for the simulation 
given in the Appendix can be used to make a list of 
“best” values of a as a function of n and q. In this 
paper, n = 20, 50, 100, and q = 5, 10 are considered.

Note that since, in practice, the true value of q  
is unknown, it can be guessed by using its MLE. 
In particular, the MLE would be a good guess if n is 
large. Note that in simulation studies, in each itera-
tion, the MLE was not used to find a and b because 
the variability in the MLE would create more vari-
ability in the Bayes estimate. For example, in simula-
tion studies for each generated sample and a selected 
value of a, we tried to find b via b = (a − 1)q̂MLE, due 
to the E[q] formula in (4.1), but under this method, 
the variability of q̂Bayes becomes extremely large and 
the results are not desirable.

As mentioned earlier, VaR at the 0.90 level is a 
useful measure for big losses in the insurance indus-
try. We used 0.70 to compute the Bayes estimate of 
VaR. Even with 0.70 and N = 300 interations, it takes 
several hours for the program to run. Computation of 
VaR via (3.1) cannot be done analytically, and there-
fore a numerical method is required. The idea is to 
find the value of y in (3.1) so that ∫ y

0 f (y |x)dy = 0.70. 
Mathematica is used to find an estimated value of y 
based on selected input parameters and a generated 
sample from the composite density (1.1). As men-
tioned above, computation of VaR at the 0.90 level 
is possible, but an extended computer memory is 
required (in particular when a is large) to solve equa-
tions in the code numerically.

Teodorescu and Vernic (2006) derived the MLE of q. 

The MLE should satisfy 
Σ≤
−

≤=
+x

x

m n
xm

i
m

i
m

1.35

1.35 0.35
1

1, 

Table 4.3. Accuracy of Bayes estimator, MLE, and VaR, p = 10

n a q̂Ba

––
yes

–––
x(q̂Bayes) VaR

––––
Std(VaR) q̂M

––
LE

––
x(q̂MLE)

20 260 9.89 0.08 63.36 0.50 13.71 71.72

50 350 9.92 0.07 62.43 0.54 12.30 14.70

100 420 9.94 0.02 61.93 0.58 12.45 12.33

Table 4.2. Accuracy of Bayes estimator, MLE, and VaR, p = 5

n a q̂Ba

––
yes

–––
x(q̂Bayes) VaR

––––
Std(VaR) q̂M

––
LE

––
x(q̂MLE)

20 70 5.24 0.06 32.65 1.01 8.03 25.82

50 80 5.15 0.02 30.22 1.21 7.17 18.45

100 80 5.07 0.04 27.99 1.36 6.20 3.28
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Figure 4.1. Predictive density for selected values 
of n and a, p = 5
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Graphs are based on generated samples from composite pdf.

n is 100, a is 100

Figure 4.2. Predictive density for selected values 
of n and a, p = 10
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Figure 4.3. Predictive density with various p values, 
n = 50 and a = 50

5. Numerical example

The data set in Table 5.1 is a random sample  
of size 200 generated from the exponential-Pareto 
composite pdf (1.1) with parameter q = 5. For this 
data set, the value of m is 86. The Bayes estimate 
is 4.9878, and the MLE is 4.935488. Simulation 
studies indicate that the Bayes estimator is more  
accurate than the MLE. Due to the long-tailed com-
posite distribution, based on a sample of size n = 200, 
nine intervals of unequal widths are used to assess 
the goodness of fit of the data via a chi-square test. 
The observed and expected frequencies for the pro-
portion of observations within each class-interval 
are given in Table 5.1.

In Table 5.2, pk denotes the observed percentage of 
observations in the class-interval k, k = 1, 2, . . . , 9. 
ek denotes the expected proportion of observations 
in the class-interval k. Note that to get ek, a Bayes 
estimate of 4.98786 for q is used in the cdf of the 
composite distribution. At the 0.05 level of signifi-
cance with 7 degrees of freedom, the critical value 
for the chi-square test is 14.067. As a result, there is 
not enough evidence to reject the null hypothesis that 
q̂Bayes = 5.

6. Conclusion

A Bayes estimator via inverse gamma prior for 
the boundary parameter q, which separates large 
losses from small losses in insurance data, is derived 
based on the exponential-Pareto composite model. 
A Bayesian predictive density is derived via the pos-
terior pdf for q. The “best” value for a is selected 
through an upper limit (a decreasing function of n) 
on the variance of the inverse gamma prior distribu-
tion. Simulation studies indicate that even for a large 
sample size, the Bayes estimate outperforms MLE 
if the “best” values of hyperparameters a and b are 
used in computations. Having values for the hyper-
parameters, the predictive density is used along with 
a numerical method in Mathematica to compute VaR 
at the 70% level.
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Table 5.2. Chi-square goodness-of-fit test for the generated sample

Interval nk pk ek

n
p

p e
e

k

k

k k

k

2( )











–

[0,4) 79 0.395 0.3795840 0.125218

[4,8) 29 0.145 0.1338970 0.184136

[8,25) 27 0.135 0.1600050 0.781538

[25,100) 25 0.125 0.1255210 0.000433

[100,600) 19 0.095 0.0936368 0.003969

[600,2500) 12 0.060 0.0422084 1.499896

[2500,10000) 4 0.020 0.0250448 0.203236

[10000,100000) 4 0.020 0.0221899 0.043224

[100000, ∞) 1 0.005 0.0179136 1.861838

Total 200 1 1 4.703487

Table 5.1. Generated sample, n = 200, p = 5

0.036 0.038 0.046 0.052 0.105 0.115 0.140 0.425

0.469 0.471 0.489 0.540 0.559 0.583 0.617 0.632

0.693 0.728 0.728 0.746 0.880 0.905 0.938 0.940

0.949 1.0176 1.024 1.048 1.068 1.122 1.176 1.207

1.224 1.229 1.253 1.324 1.538 1.540 1.551 1.588

1.689 1.714 1.720 1.720 1.7536 1.757 1.766 1.945

1.956 2.017 2.073 2.073 2.107 2.183 2.194 2.208

2.293 2.333 2.370 2.487 2.660 2.703 2.844 2.870

3.105 3.1628 3.337 3.389 3.393 3.401 3.644 3.645

3.690 3.715 3.756 3.813 3.816 3.845 3.988 4.261

4.364 4.367 4.578 4.645 4.646 4.848 5.025 5.127

5.207 5.227 5.347 5.486 5.503 5.612 5.784 5.877

6.126 6.209 6.301 6.388 6.466 6.494 6.867 6.935

7.525 7.722 7.756 7.906 8.415 8.565 8.933 9.449

8.899 10.260 10.438 10.967 11.822 12.6443 12.999 14.093

14.11 16.77 16.89 17.41 18.22 19.943 21.52 21.99

23.19 23.38 23.48 23.9 24.17 24.27 24.82 25.52

27.99 28.56 30.42 31.14 31.42 34.50 37.38 37.56

39.39 42.16 43.66 46.66 49.06 52.56 57.4 61.82

70.87 71.06 72.95 74.16 76.19 77.96 88.36 94.17

102.4 106.0 127.5 134.0 137.4 161.04 163.6 178.9

241.3 258.7 330.3 342.1 345.3 388.1 389.4 448.5

487.5 551.8 573.9 645.2 669.1 708.6 738.9 836.4

957.6 1,094.7 1,234.6 1,462.7 1,547.6 2,035.5 2,318.3 3,125.4

4,054.9 7,531.3 7,613.1 17,133.2 28,138.0 31,874.1 87,341.1 189,075.8
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w1 = 1;
While[w1 < n,
If[Rankdata[[w1]] ≤ U2[[w1]] ≤ Rankdata[[w1 + 1]],
f2 = U2[[w1]]];
w1++; ];
MLE= f2;
Print[MLE];

Mathematica code 2: Computes Bayes 
estimate and VaR based on the data set 
used in code 1

data=;
n = ;
a = “user inputs ‘best’ value. Use Mathematica 

Code 3”;

g[β]: = 
a a( ) ( )

β
− −1 2

2

2 ;

N g
n

[ ]= β ==





sol Solve
1

;1 3

b = β/. sol[[2]];
Array[data, n];
Array[Rankdata, n];
Array[BE, n];
Array[U1, n];
Rankdata = Sort[data];
j = 1;
While[j < n + 1,
B = (b + 1.35 p Sum[Rankdata[[d]], {d, 1, j}]);
A = (a −.35n + 1.35j);
BE[j] = B/(A − 1);
ML[j] = (1.35 Sum[Rankdata[[d]],{d, 1, j}])/ 

(1.35 j − .35 n);
j++;];
U1 = Table[BE[j], {j, 1, n}];
U1 = Sort[U1];
s = 1;
While[s < n,
If[Rankdata[[s]] ≤ U1[[s]] ≤ Rankdata[[s + 1]],  

{m = s, f1 = U1[[s]]}];
s++;
];
Bayes = f1;
Ap = (a − .35n + 1.35*m);
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Appendix

Mathematica code 1 computes the MLE of q. 
Mathematica Code 2 computes q̂Bayes and VaR using 
the “best” value of a provided by a user. The “best” 
values for a (based on n and a good guess for q [MLE 
in particular when n is large]) can be obtained by 
using Mathematica code 3. Code 3 uses a simulation 
to find the “best” value of a.

Mathematica code 1:  
Finds MLE for a given sample

data={};
n = ;
Array[data, n];
Array[Rankdata, n];
Array[ML, n];
Array[U2, n];
Rankdata = Sort[data];
While[j < n + 1,
ML[j] = (1.35 Sum[Rankdata[[d]],{d, 1, j}])/ 

(1.35 j − .35 n);
j++; ];
U2 = Table[ML[j], {j, 1, n}];
U2 = Sort[U2];
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b = β /. sol[[2]];
k = 300;
Array[Bayes, k];
Array[data, n];
Array[Rankdata, n];
Array[BE, n];
dist = ProbabilityDistribution[Piecewise[{{(0.775/q)*
Exp[−1.35x/q],{0 < x ≤ q},{.2 p (q.35)/x1.35,  

x > q}}],{x, 0, ∞}];
data = RandomVariate[dist, n];
data = Flatten[data];
Rankdata = Sort[data];
i = 1;
While[i < k + 1,
j = 1;
While[j < n + 1,
B = (b + 1.35 p Sum[Rankdata[[d]], d, 1, j]);
A = (a − .35 p n + 1.35 p j);
BE[j] = B/(A − 1);
j++; ];
U1 = Table[BE[j], j, 1, n];
U1 = Sort[U1];
s = 1;
While[s < n,
If[Rankdata[[s]] ≤ U1[[s]] ≤ Rankdata[[s + 1]],  

m = s, f1 = U1[[s]]];
s++; ];
Bayes[i] = f1;
i++;
];
EstB = Table[Bayes[i], i, 1, k];
g1 = Mean[EstB];
g2 = Mean[(EstB – q2];
Print[g1,g2]

Bp=(b + 1.35 p Sum[Rankdata[[v]],{v,1,m}]);
k2 = ((.775 p Ap(Bp)Ap)/(Bp + 1.35y)(Ap+1))*
(1-CDF[InverseGammaDistribution [Ap + 1,  

Bp + 1.35y],y]);
k1=(1/y1.35) p (.20 p Bp(.35) p Gamma[Ap − .35])*
(CDF[InverseGammaDistribution[Ap − .35, Bp],y])/

(Gamma[Ap]);
f[r-?NumberQ]:=NIntegrate[k1+k2,{y,0,r}];
Sol=r/.NSolve[f[r]= =.70,r]; it takes a few minutes  

to find r.
VaR=Sol[[1]];
Print[VaR]

Mathematica code 3 can be used to search for the 
“best” value of a. The user needs to provide a “good” 
guess (e.g., the MLE based on a large sample) for q.

Start with an initial choice for a with at least 
0.35n – 1.35 + 1. After each run, increase a until the 
MSE of the Bayes estimate starts to increase. Simu-
lations used in the paper indicate that for given n and q, 
the MSE has a minimum value that is attained at the 
“best” value of a. Once we use the “best” value of a 
in Mathematica code 2, we get an accurate Bayes 
estimate.

Mathematica code 3:  
Finds the “best” value of a

q = “a good guess such as MLE based on large 
sample”;

n = ;
a = “starts with at least .35 n − 1.35 + 1”;
g[β]: = β2/((a − 1)2(a – 2));
sol = N[Solve[g[β] = = 1/n(1/3), β];
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