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ABSTRACT

This paper offers a methodology for calculating optimal

bounds on tail risk probabilities by deriving upper and

lower semiparametric bounds, given only the first two mo-

ments of the distribution. We apply this methodology to de-

termine bounds for probabilities of two tail events. The first

tail event occurs when two financial variables simultane-

ously have extremely low values. The second occurs when

the sum of two financial variables takes a very low value.

In both cases we are finding bounds for actual or physical

probabilities of these events rather than probabilities for

a pricing or risk neutral measure. We use sum of squares

optimization programs to obtain the desired bounds. To

illustrate our ideas, we present several numerical exam-

ples. This approach is suitable in the situations when it is

difficult to make exact distributional assumptions due to,

for instance, scarcity and/or high volatility of data. Even

in the situations when distributional assumptions can be

made, this approach can be used to check the consistency

of those assumptions.

KEYWORDS

Semiparametric bounds, joint tail probabilities, value at risk, moments,
sum of square programming

VOLUME 4/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 47



Variance Advancing the Science of Risk

1. Introduction
Modeling extreme events like the U.S. stock

market crash in 1929 and catastrophe insurance

losses is certainly a major task for risk managers.

In such events, typically, complete information of

the underlying distribution is not available. In-

stead, one has only partial information such as

estimates of mean, variance, covariance or range

based on a relatively small sample. Moreover,

the sample may contain no extreme observations.

While it is almost impossible to obtain accurate

tail risk measures based on incomplete informa-

tion, one can use limited information to com-

pute bounds on the tail risk measures. This paper

presents a method to obtain bounds on tail prob-

abilities using only moment information for two

kinds of extreme events based on two random

variables. These problems are called semipara-

metric bound problems or generalized Tcheby-

shev bound problems.

Scarf (1958) applies these ideas in inventory

management and Lo (1987) applies them in

mathematical finance. Other applications in fi-

nance focus on option pricing in the well-known

Black and Scholes (1973) setting (Merton 1973,

Levy 1985, Ritchken 1985, Boyle and Lin 1997,

Bruckner 2007, Schepper and Heijnen 2007)

and other asset pricing and portfolio problems

(Gallant, Hansen, and Tauchen 1990, Hansen

and Jagannathan 1991, Ferson and Siegel 2001,

Ferson and Siegel 2003).

The purpose of this paper is to apply the semi-

parametric bounds approach to estimate the tail

probability of joint events which, in many cases,

cannot be reliably estimated by traditional sta-

tistical methods (e.g., the parametric approach).

In particular, our approach is useful in the sit-

uations when it is very difficult or inappropri-

ate to make distributional assumptions about ran-

dom variables of interest, among others, due to

scarcity and/or very high volatility of available

data. Our approach also aims at tackling the prob-

lem of estimating the likelihood of extreme (tail)

events for which we have very few observations

of outliers. Traditional methods do not work for

such tasks because these approaches typically

produce a good fit in those regions in which most

of the data reside but at the expense of a good

fit in the tails (Hsieh 2004).

To address this problem, instead of assuming

full knowledge of the distributions of the random

variables of interest, we show how to numerically

compute upper and lower bounds on the prob-

abilities Pr(X1 · t1 and X2 · t2) and Pr(w1X1 +
w2X2 · a) for some appropriate values of t1, t2,
w1,w2,a 2 R, when only second order moment
information (means, variances, and covariance)

and the support of random variables X1 and X2
are known. Our approach explicitly considers

correlations between variables when estimating

the bounds. Incorporating variable correlations

is important because many models (e.g., mod-

els of risk-based capital and enterprise risk man-

agement) often involve several random variables,

most of which are correlated. For example, let

X1 and X2 stand for a random discount factor

and a random future insurance payment. If the

insurance payment X2 is subject to economic in-

flation, it will be correlated with the interest rate

which determines the discount factor X1. As an-

other example, the variables X1 and X2 can be

the returns of two stocks, both of which respond

to security market forces.

Following the work of Smith (1990), Cox

(1991), Brochett, Cox, Golany, Phillips, and

Song (1995), Zuluaga (2004), Popescu (2005),

and Bertsimas and Popescu (2005), we obtain

a range of possible values for each of our tail

risk measures, corresponding to every distribu-

tion that has given moments on a given support.

This range can be considered as a 100% con-

fidence interval for the tail risk measure. Gen-

erally, semiparametric bounds are robust bounds

that any reasonable model must satisfy. It is

worth pointing out that the bounds provide “best-

case” estimates and “worst-case” estimates of the
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probabilities of extreme events. They would be

useful for very risk-loving and very risk-averse

investors. Moreover, in situations when distribu-

tional assumptions can be made, they provide a

mechanism for checking the consistency of such

assumptions, as well as an initial estimate for

cumulative probabilities regardless of any model

specifications.

The remainder of the paper is organized as fol-

lows. In Section 2, we formally state the semi-

parametric bound problems considered here and

explain the methodology for solving them. Sec-

tions 3 and 4 show how the desired semipara-

metric bounds can be numerically computed with

readily available optimization solvers. We present

relevant numerical experiments to illustrate the

application of our results. In Section 5, we dis-

cuss the possible extension of our methodology

to obtain bounds when only confidence intervals

on moments are given. Section 6 concludes the

paper.

2. Preliminaries and notation
For a function Á(x1,x2) of two random vari-

ables with joint cumulative distribution function

F(X1,X2), its expected value is

EF[Á(X1,X2)] =
Z
D
Á(X1,X2)dF(x1,x2),

where the set D μ R2 is the support of random
variables X1 and X2 and

R
D dF(x1,x2) = 1.

The semiparametric upper bound of EF[Á(X1,
X2)] given up to second order moment informa-

tion can be expressed as follows:

p̄=max EF[Á(X1,X2)]

subject to EF(Xi) = ¹i, i= 1,2,

EF(X2i ) = ¹
(2)
i , i= 1,2,

EF(X1X2) = ¹12,

F(x1,x2) a probability distribution on D,
(2.1)

where ¹i, ¹
(2)
i and ¹12 are the given first and sec-

ond order non-central moments of Xi (i = 1,2),D
is the given support of the distribution and p̄ de-

notes the upper bound value. In order to simplify

our presentation, let’s assume for the moment

that the “point estimates” of the moments of the

interested random variables are known. Later, in

Section 5, we will show how our results can be

adapted in a straightforward fashion to take into

account the situation in which confidence inter-

vals rather than point estimates of the moments

are known.

The corresponding semiparametric lower

bound problem is analogous, except that the ob-

jective function is

p=minEF[Á(X1,X2)], (2.2)

with the same constraints as (2.1).

Notice that from the definitions of p̄ and p in

problems (2.1) and (2.2), the interval [p, p̄] is a

sharp (or tight) 100% confidence interval on the

expected value of Á(X1,X2) for all joint distri-

butions of X1 and X2 with the given moments

and support. It follows that for any p̄0 ¸ p̄ and
p0 · p, the interval [p0, p̄0] is also a 100% con-

fidence interval, although not necessarily sharp.

Our aim is to numerically compute useful 100%

confidence intervals for relevant choices of the

function Á(X1,X2), balancing computational ef-

fort

and tightness of the confidence interval, using

recent advances in optimization.

In particular, given t1, t2 2 R+ and non-negative
random variables X1 and X2, we compute 100%

confidence intervals on the probability of the ex-

treme events X1 · t1 and X2 · t2, by setting

Á(X1,X2) = IfX1·t1 and X2·t2g and D = R+2, where
IS is the indicator function of the set S. Simi-
larly, given w1,w2,a 2 R, we compute 100% con-

fidence intervals on the probability Pr(w1X1 +

w2X2 · a), by setting Á(X1,X2) = Ifw1X1+w2X2·ag
and D =R2. In the second case, we strengthen
the bounds in problems (2.1) and (2.2) by adding

an additional moment constraint, EF[(X1¡X2)+]
= ° where x+ =maxfx,0g. That is, we strengthen
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the bounds by only considering distributions of

X1, X2 that can replicate the expected payoff °

of an exchange option on X1 and X2. This il-

lustrates how additional information can improve

the semiparametric bounds. More details are

shown in Sections 3 and 4.

The following is the dual of the upper bound

problem (2.1) (see, e.g., Karlin and Studden

1966; Bertsimas and Popescu 2002; and Zulu-

aga and Peña 2005):

d̄ =min
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢
subject to p(x1,x2)¸ Á(x1,x2),

for all (x1,x2) 2 D: (2.3)

The dual of the lower bound problem (2.2) is

d =max
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢
subject to p(x1,x2)· Á(x1,x2),

for all (x1,x2) 2 D, (2.4)

where the quadratic polynomial p(x1,x2) is de-

fined as

p(x1,x2) = y00 + y10x1 + y01x2 + y20x
2
1

+ y02x
2
2 + y11x1x2:

It is not difficult to see that weak duality holds

between (2.1) and (2.3), or between (2.2) and

(2.4); that is, p̄· d̄ (or p¸ d) (Bertsimas and
Popescu 2005, Theorem 2.1, p. 785). Further-

more, strong duality holds, i.e., p̄= d̄ (or p= d),

if the following conditions are satisfied (Zuluaga

and Peña, 2005, Proposition 4.1(ii)):

PROPOSITION 1. If problem (2.1) is feasible and
there exist y00,y01,y10,y20,y02,y11 such that

p(x1,x2)> Á(x1,x2), for all (x1,x2) 2 D,
then p̄= d̄. Similarly, if problem (2.2) is feasible
and there exist y00,y01,y10,y20,y02,y11 such that

p(x1,x2)< Á(x1,x2), for all (x1,x2) 2 D,
then p= d.

Notice that for the two problems to be solved

in Sections 3 and 4, Á(x1,x2) is an indicator func-

tion bounded on [0,1]. Therefore, the inequality

p(x1,x2)> Á(x1,x2) for problem (2.1) holds if we

set y00 > 1 and yij = 0 for all (i,j) 6= (0,0). Sim-
ilarly, setting y00 < 0 and yij = 0 for all (i,j) 6=
(0,0), the inequality p(x1,x2)< Á(x1,x2) holds for

the lower bound problem (2.2). Thus, as long as

problem (2.1) or problem (2.2) is feasible when

Á(x1,x2) is an indicator function, strong duality

p̄= d̄ (or p= d) holds. Therefore one can solve

(2.3) (or (2.4)) to obtain the desired semipara-

metric bounds. Before explaining how to solve

(2.3) and (2.4), we introduce the following well-

known definition and theorems relevant to the

discussion to follow.

DEFINITION 1 (SOS polynomials). A polynom-

ial

p(x) = p(x1, : : : ,xn) =
X

i1,:::,in2N
a(i1,:::,in)x

i1
1 ¢ ¢ ¢xinn

is said to be a sum of squares (SOS) if

p(x) =
X
i

[qi(x)]
2

for some polynomials qi(x) = qi(x1, : : : ,xn).

THEOREM 1 (Diananda 1962). Let p(x1, : : : ,xn)
be a quadratic polynomial. If n· 3, then
p(x1, : : : ,xn)¸ 0, for all x1, : : : ,xn ¸ 0 if and only
if p(x21, : : : ,x

2
n) is a SOS polynomial.

Theorem 1 states that to check if

p(x1,x2) = y00 + y10x1 + y01x2 + y20x
2
1

+ y02x
2
2 + y11x1x2

is positive for all x1,x2 ¸ 0, one can check

whether

p(x21,x
2
2) = y00 + y10x

2
1 + y01x

2
2 + y20x

4
1

+ y02x
4
2 + y11x

2
1x
2
2

is a SOS. Here we present Diananda’s Theorem

in a form (shown as Theorem 1) that will be

suitable for our purposes, instead of presenting
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it in its original form. Parrilo (2000) and Zulu-

aga (2004) discuss the equivalence of the original

version of Diananda’s Theorem and Theorem 1.

Loosely speaking, in order to solve (2.3), or

(2.4), we break the constraint

p(x1,x2)¸ (or ·) Á(x1,x2),
for all (x1,x2) 2 D

into a number of constraints of the form

pi(x1,x2)¸ 0, for all (x1,x2) 2 R+2,

i= 1, : : : ,m, (2.5)

where pi, i = 1, : : : ,m are suitable quadratic poly-

nomials whose coefficients are linear functions

of the coefficients of p(x1,x2). Theorem 1 im-

plies that (2.5) is equivalent to

pi(x
2
1,x

2
2) is a SOS polynomial, i= 1, : : : ,m:

As we will show in detail in Sections 3 and 4,

this allows us to reformulate problems (2.3) and

(2.4) as SOS programs; that is, as an optimization
problem, the variables are coefficients of poly-

nomials, the objective is a linear combination of

the polynomial coefficients, and the constraints

are given by the polynomials being SOS. A de-

tailed discussion about SOS programming is be-

yond the scope of this article, but the key fact is

that these SOS programs can be readily solved

by recently developed SOS programming solvers

such as SOSTOOLS (Prajna, Papachristodoulou,

and Parrilo 2002), GloptiPoly (Henrion and

Lasserre 2003), or YALMIP (Löfberg 2004).

These SOS programming solvers enable us

to find the desired bounds on problems (2.1)

and (2.2). This approach has been widely used

to solve semiparametric bound problems in

other areas (see, e.g., Bertsimas and Popescu

2002; Boyle and Lin 1997; and Lasserre

2002).

Parrilo (2000) and Todd (2001) show that any

SOS program can be reformulated as a semidefi-

nite program (SDP). Specifically, SOS program-

ming solvers work by reformulating a SOS pro-

gram as a SDP, and then applying SDP solvers

such as SeDuMi (Sturm 1999). However, the

SDP formulations of SOS programs can be fairly

involved. To make it easy to present and repro-

duce our results, throughout the article we use

SOS programming formulations instead of di-

rectly reformulating problems (2.1) and (2.2) as

SDPs.

3. Extreme probability bounds

In this section, we consider the problem of

finding upper and lower bounds on the probabil-

ity Pr(X1 · t1 and X2 · t2) of two non-negative
random variables X1 and X2, attaining values

lower than or equal to t1, t2 2 R+ respectively,

without making any assumption on the distribu-

tion of X1 and X2, other than the knowledge of

the first and second order moments of their joint

distribution (means, variances, and covariance).

3.1. SOS programming formulations

The upper semiparametric bounds for this

problem come from problem (2.1) with Á(X1,X2)

= IfX1·t1 and X2·t2g and D =R+2 (Section 2):

p̄Extreme = max EF[IfX1·t1 and X2·t2g]

subject to EF(Xi) = ¹i, i = 1,2,

EF(X2i ) = ¹
(2)
i , i = 1,2,

EF(X1X2) = ¹12,

F(x1,x2) a probability

distribution on R+2:
(3.1)

Similarly, the lower semiparametric bounds for

this problem can be obtained by setting the ob-

jective function of problem (2.2) as follows:

p
Extreme

= minEF[IfX1·t1 and X2·t2g], (3.2)

with the same constraints as (3.1).
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Before obtaining the SOS programming for-

mulation of these problems, let us first exam-

ine their feasibility in terms of the moment in-

formation. Using Theorem 1 and convex duality

(Rockafellar 1970), one can show that problems

(3.1) and (3.2) are feasible (i.e., they have so-

lutions), if the moment matrix § is a positive

definite matrix (i.e., all eigenvalues are greater

than zero) and all elements of § are greater than

zero, where the moment matrix § is

§ =

2664
1 ¹1 ¹2

¹1 ¹(2)1 ¹12

¹2 ¹12 ¹(2)2

3775 :
Now we derive SOS programs to numerically

approximate p̄Extreme and pExtreme with SOS pro-

gramming solvers.

3.1.1. Upper bound
To derive a SOS program for problem (3.1),

we begin by stating its dual explicitly:

d̄Extreme = min
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢
subject to p(x1,x2)¸ Ifx1·t1 and x2·t2g,

for all x1,x2 ¸ 0: (3.3)

To formulate problem (3.3) as an SOS pro-

gram, we proceed as follows. First notice that

the constraint in (3.3) is equivalent to

p(x1,x2)¸ 1, for all 0· x1 · t1, 0· x2 · t2
p(x1,x2)¸ 0, for all x1,x2 ¸ 0: (3.4)

While the second constraint of (3.4) can

be directly reformulated as an SOS constraint

using Theorem 1, the first constraint is difficult to

reformulate as an SOS constraint. That is, there is

no linear transformation from 0· x1 · t1,
0· x2 · t2 to R+2 (that would allow us to use

Theorem 1). Thus, we change the problem to

obtain a SOS program that either exactly or

approximately solves problem (3.4). Specific-

ally, consider the following problem related

to (3.4):

d̄0Extreme = min
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢
subject to p(x1,x2)¸ 1,

for all x1 · t1,x2 · t2
p(x1,x2)¸ 0,

for all x1 ¸ 0, x2 ¸ 0: (3.5)

We relaxed the requirement that x1 and x2 are

non-negative in the first constraint. Notice that

the constraints in (3.5) are stricter than those in

(3.4) since the first constraint of (3.5) includes

more values of x1 and x2. Thus, d̄
0
Extreme is a (not

necessarily sharp) upper bound on d̄Extreme; that

is, d̄0Extreme ¸ d̄Extreme.
After we apply the substitution x1! t1¡ x1,

x2! t2¡ x2 to the first constraint of (3.5), the
constraints of (3.5) can be rewritten as

p(t1¡ x1, t2¡ x2)¡ 1¸ 0, for all x1,x2 ¸ 0
p(x1,x2)¸ 0, for all x1,x2 ¸ 0:

(3.6)

To finish, we apply Theorem 1 to the con-

straints (3.6) and conclude that (3.5) is equivalent

to the following SOS program:

d̄0Extreme = min
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢
subject to p(t1¡ x21, t2¡ x22)¡ 1

is an SOS polynomial

p(x21,x
2
2)

is an SOS polynomial:

(3.7)

The SOS program (3.7) can be readily solved

with an SOS programming solver. Thus, if prob-

lem (3.1) is feasible, we can numerically ob-

tain a (not necessarily sharp) semiparametric up-

per bound on the extreme probability, Pr(X1 ·

52 CASUALTY ACTUARIAL SOCIETY VOLUME 4/ISSUE 1



Bounds for Probabilities of Extreme Events Defined by Two Random Variables

t1, X2 · t2)· d̄0Extreme, by solving problem (3.7)

with an SOS solver.

3.1.2. Lower bound
The dual of the lower bound problem (3.2) can

be expressed as

dExtreme = max
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢

subject to p(x1,x2)· Ifx1·t1 and x2·t2g,
for all x1,x2 ¸ 0: (3.8)

The constraint in problem (3.8) is equivalent

to

p(x1,x2)· 1, for all 0· x1 · t1, 0· x2 · t2
p(x1,x2)· 0, for all x1 ¸ t1, x2 ¸ 0
p(x1,x2)· 0, for all x1 ¸ 0, x2 ¸ t2: (3.9)

Proceeding in the same way as for the

upper bound problem, we now change the prob-

lem to obtain an SOS program that either exactly

or approximately solves problem (3.8). Specifi-

cally, consider the following problem related to

(3.8):

d0Extreme = max
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1 + y02¹

(2)
2 + y11¹12

¢
subject to p(x1,x2)· 1, for all x1 · t1, x2 · t2

p(x1,x2)· 0, for all x1 ¸ t1, x2 ¸ 0
p(x1,x2)· 0, for all x1 ¸ 0, x2 ¸ t2: (3.10)

Notice that the constraints in (3.10) are stricter

than those in (3.8). Thus, d0Extreme is a (not nec-

essarily sharp) lower bound on dExtreme; that is,

d0Extreme · dExtreme.
Applying the substitutions x1! t1¡ x1, x2!

t2¡ x2 to the first constraint of (3.10) and x1!
t1 + x1, x2! t2 + x2 to the second and third con-

straints respectively, it follows that problem

(3.10) is equivalent to the following SOS pro-

gram when Theorem 1 is applied:

d0Extreme = max
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1 + y02¹

(2)
2 + y11¹12

¢
subject to 1¡p(t1¡ x21, t2¡ x22) is a SOS polynomial

¡p(t1 + x21,x22) is a SOS polynomial

¡p(x21, t2 + x22) is a SOS polynomial: (3.11)

Following the same route, we can also derive

the upper and lower bounds on the joint survival

probability Pr(X1 ¸ t1 and X2 ¸ t2) of two non-
negative random variables X1 and X2. The details

are shown in Appendix A.

3.2. Example of extreme probability
bounds

We select from the NAIC database a major

property/casualty insurance company, which we

call insurer A. Suppose the insurer faces the

problem of managing its risk of unexpectedly

high claims and simultaneously unanticipated

poor asset returns. This leads insurer A to cal-

culate the bounds on Pr(R · t1, M · t2) given
moment information, where R is the company’s

return on its invested assets and M is the margin

on its insurance business.
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The return Ri of asset i in insurer A’s portfo-

lio is equal to Pi,t=Pi,t¡1¡ 1 where Pi,t¡1 and Pi,t
denote the prices of asset i at the beginning and

the end of the period. Insurer A’s asset portfolio

return R is the weighted average return of six as-

set classes: stocks, government bonds, corporate

bonds, real estates, mortgages, and short-term in-

vestments; that is

R =
6X
i=1

wiRi =
6X
i=1

wi

Ã
Pi,t
Pi,t¡1

¡ 1
!

=
6X
i=1

wi
Pi,t
Pi,t¡1

¡ 1 = X1¡ 1,

where wi is the weight of asset class i (i = 1,2,

: : : ,6) in the portfolio and X1 =
P6
i=1wiPi,t=Pi,t¡1.

The following inequalities are equivalent:

R · t1 () X1 · t1 +1: (3.12)

We make this shift from asset returns to price

ratios to apply our SOS results because we need

non-negative random variables.

The margin on the insurance business is de-

fined as

M = 1¡CR= 1¡LR¡ER,
where CR is the combined ratio, LR is the loss

ratio and ER is the expense ratio.1 So M is the

profit from the underwriting business.

1Following a standard measure in the insurance literature (Cum-

mins 1990; Phillips, Cummins, and Allen 1998; Yu and Lin 2007),

we calculate the economic loss ratio as

LR =

P12

k=1
PVFk £NLIkP12

k=1
NPEk

,

where PVFk is the present value factor for future losses for loss cat-

egory k, NLIk is the net loss incurred for category k, and NPEk is

the net premium earned for category k (k = 1,2, : : : ,12). According

to the NAIC classifications, we classify insurer A’s business into 12

categories. The twelve insurance business categories include farm-

owners and homeowners multiple peril; private passenger auto li-

ability; workers compensation; commercial multiple peril; medical

malpractice; special liability; special property; automobile physical

damage; fidelity and surety; other; financial guarantee and mort-

gage guarantee; and other liability and product liability. The present

value factor PVFk is calculated from the industry liability payout

factor for loss category k and the term structure of interest rates.

The interest rates are the risk-free rates estimated from the U.S.

Treasury spot-rate yield curves (Data source: the Federal Reserve

Bank of St. Louis’ Federal Reserve Economic Data (FRED)).

In order to reformulate the condition M · t2
so that the condition fits our SOS results, we re-

placeM · t2 with X2 · t2 +1 where X2 =M +1.

Using this with (3.12) we get the following:

Pr(R · t1, M · t2) = Pr(X1 · t1 +1, X2 · t2 +1):
The weights wi of different asset categories

were calculated from the quarterly data of the

National Association of Insurance Commission-

ers (NAIC). We used the quarterly returns of the

Standard & Poor’s 500 (S&P500), the Lehman

Brothers intermediate term total return, the do-

mestic high-yield corporate bond total return, the

National Association of Real Estate Investment

Trusts (NAREIT) total return, the Merrill Lynch

mortgage backed securities total return, and the

U.S. 30-Day T-Bill as proxies for insurer A’s

stock returns, government bond returns, corpo-

rate bond returns, real estate returns, mortgage

returns and short-term investment returns, re-

spectively. Based on insurer A’s quarterly losses,

expenses, and premiums, we calculate the mo-

ments of X1 and X2 as follows:

E(X1) = 1:0442, E(X21 ) = 1:0967

E(X2) = 1:1555, E(X22 ) = 1:3715

E(X1X2) = 1:2086, Cov(X1,X2) = 0:0021

Var(X1) = 0:0063, Var(X2) = 0:0364

½= 0:1387:

Insurer A’s average margin on its insurance busi-

ness (E(M) = 0:1555) is higher than its average

asset return (E(R) = 0:0442), while the margin is

more volatile (Var(M)>Var(R)). Moreover, the

asset return and insurance margin are somewhat

positively correlated (0.1387). This implies that

occasionally insurer A’s insurance business and

Similarly the expense ratio is calculated as follows:

ER =

P12

k=1
NEkP12

k=1
NPWk

,

where NEk and NPWk are the net expenses and net premium written

for the line of business k, respectively.
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Figure 1. The upper left plot shows the upper bound of the joint probability Pr(R · t1, M · t2) where R is the
invested asset return and M is the insurance business margin of insurer A. The upper right one is the bivariate
normal cumulative probabilities with the same moments. The ratio of the upper bound to the bivariate normal
cumulative joint probabilities is shown in the lower left graph. The lower right one is a zoom-in plot of the ratio,
illustrating a special case of Pr(R · 0, M · 0). The vertical axis of the upper graphs is the probability. It is the ratio
for the lower graphs. The two axes at the bottom in all graphs represent the value of return R and the value of
insurance margin M.

investment performances move in the same di-

rection.

Next we compute bounds on the tail prob-

ability Pr(R · t1, M · t2) using SOS program-
ming. Then we compare it to the bivariate nor-

mal cumulative joint probability with the same

moments. The upper left plot in Figure 1 shows

the upper bounds of the joint probability Pr(R ·
t1, M · t2) for different values of t1 and t2, and
the upper right one is the corresponding bivari-

ate normal cumulative joint probabilities. Since

we are looking at low values of t1 and t2 corre-

sponding to joint extreme events, it is not sur-

prising that our calculated lower bound is zero

over this range of their values. The ratios of the

upper bounds to the bivariate normal cumula-

tive joint probabilities are shown in the lower

graphs.

The ratio is large when t1 and t2 are low. For

example, consider the event that insurer A has

negative investment earnings and simultaneously

it has an aggregate loss on its insurance business.

In addition to the case with zero investment and

insurance returns, this is stated as R · 0, M ·
0. From the lower right graph of Figure 1, we

see that for t1 = 0 and t2 = 0, the upper bound is

about 7.2 times higher than the cumulative joint

normal probability. This means that the actual

joint distribution may have a much fatter tail than

the joint normal distribution. In other words, an
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extreme event may be more likely to occur than

the normal distribution suggests.

4. Value-at-risk probability bounds

Here we find upper and lower bounds on the

probability that a portfolio w1X1 +w2X2 (w1,w2
2 R+) attains values lower than or equal to a 2 R,
given up to the second order moment informa-

tion (means, variances, and covariance) on the

random variables X1,X2 (X1,X2 2 R).

4.1. SOS programming formulations

Finding the sharp upper and lower semipara-

metric bounds for this problem can be formu-

lated by setting Á(X1,X2) = Ifw1X1+w2X2·ag, and
D =R2. To obtain tighter bounds (see numerical
results in Section 4.2), we include the informa-

tion of the expected payoff ° of an exchange

option on the assets; that is, we add the mo-

ment constraint EF[(X1¡X2)+] = ° (where x+ =
maxf0,xg) to illustrate how to incorporate addi-
tional information. This is the resulting semipara-

metric upper bound problem:

p̄VaR = max EF[Ifw1X1+w2X2·ag]

subject to EF(Xi) = ¹i, i = 1,2,

EF(X2i ) = ¹
(2)
i , i = 1,2,

EF(X1X2) = ¹12,

EF[(X1¡X2)+] = °,
F(x1,x2) a probability distribution on R2: (4.1)

The corresponding lower bound problem has

the same constraints as (4.1) and its objective

function is

p
VaR

= minEF[Ifw1X1+w2X2·ag]: (4.2)

Problems (4.1) and (4.2) have solutions if and

only if the moment matrix § is a positive semi-

definite matrix and p
Exch

<° < p̄Exch, where pExch

and p̄Exch are the upper and lower bounds

of problems (2.1) and (2.2) with Á(x1,x2) =

(x1¡ x2)+ (which can be readily computed using
SOS techniques (Zuluaga and Peña 2005).

The dual of problem (4.1) is

d̄VaR =min
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12 + y0°

¢
subject to p(x1,x2) + y0(x1¡ x2)+

¸ Ifw1x1+w2x2·ag,
for all x1,x2 2 R: (4.3)

Similarly, the dual of problem (4.2) is:

dVaR = max
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12 + y0°

¢
subject to p(x1,x2) + y0(x1¡ x2)+

· Ifw1x1+w2x2·ag,
for all x1,x2 2 R: (4.4)

A straightforward generalization of Proposi-

tion 1, and the discussion after Proposition 1

shows that if problems (4.1) and (4.2) are fea-

sible, then p̄VaR = d̄VaR and pVaR = dVaR. Thus,

if problems (4.1) and (4.2) are feasible, we can

solve (4.3) and (4.4) to obtain the desired bounds.

Finally, notice that setting y0 = 0 in (4.3) and

(4.4) is equivalent to solving the semiparametric

bounds (4.1) and (4.2) without using information

about the exchange option expected payoff.
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4.1.1. Upper bound
The upper bound problem (4.3) is equivalent to

d̄VaR = min
¡
y00 + y10¹1 + y01¹2 + y20¾

2
1 + y02¾

2
2 + y11¾12 + y0°

¢
subject to p(x1,x2)+ y0(x1¡ x2)¸ 1, for all x1,x2 with w1x1 +w2x2 · a,x1 ¸ x2

p(x1,x2)¸ 1, for all x1,x2 with w1x1 +w2x2 · a,x1 · x2
p(x1,x2)+ y0(x1¡ x2)¸ 0, for all x1,x2 with x1 ¸ x2
p(x1,x2)¸ 0, for all x1,x2 with x1 · x2: (4.5)

In order to use Theorem 1, we will use the

following transformations:

Applying the upper left transformation in (4.6)

to the first and third constraints of problem (4.5)

and applying the upper right transformation in

(4.6) to the second and fourth constraints of prob-

lem (4.5), the constraints in (4.5) are equivalent

to

p(z1 + z2,z2)+ y0z1 ¸ 1, for all z1,z2 with w1(z1 + z2)+w2z2 · a,z1 ¸ 0
p(z1,z1 + z2)¸ 1, for all z1,z2 with w1z1 +w2(z1 + z2)· a,z2 ¸ 0

p(z1 + z2,z2)+ y0z1 ¸ 0, for all z1,z2 with z1 ¸ 0
p(z1,z1 + z2)¸ 0, for all z1,z2 with z2 ¸ 0: (4.7)

Now applying the lower left and right trans-

formations in (4.6) to the first two constraints

of (4.7) respectively, these two constraints are

equivalent to

p

μ
t1 +

a¡w1t1
w1 +w2

¡ t2,
a¡w1t1
w1 +w2

¡ t2
¶
+ y0t1 ¸ 1,

for all t1 ¸ 0, t2 ¸ 0

p

μ
a¡w2t2
w1 +w2

¡ t1,
a¡w2t2
w1 +w2

¡ t1 + t2
¶
¸ 1,

for all t1 ¸ 0, t2 ¸ 0: (4.8)

Finally, the last two constraints in (4.7) are

equivalent to

p(z1 + z2,z2)+ y0z1 ¸ 0, for all z1 ¸ 0,z2 ¸ 0
p(z1¡ z2,¡z2)+ y0z1 ¸ 0, for all z1 ¸ 0,z2 ¸ 0

p(z1,z1 + z2)¸ 0, for all z1 ¸ 0,z2 ¸ 0
p(¡z1,¡z1 + z2)¸ 0, for all z1 ¸ 0,z2 ¸ 0:

After applying Theorem 1, we obtain the SOS

formulation for the upper bound of problem

(4.3):

d̄VaR =min
¡
y00 + y10¹1 + y01¹2 + y20¾

2
1

+ y02¾
2
2 + y11¾12 + y0°

¢
(4.9)
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subject to the following being SOS polynomials:

p

μ
t21 +

a¡w1t21
w1 +w2

¡ t22,
a¡w1t21
w1 +w2

¡ t22
¶
+ y0t

2
1 ¡ 1

p

μ
a¡w2t22
w1 +w2

¡ t21,
a¡w2t22
w1 +w2

¡ t21 + t22
¶
¡ 1

p(z21 + z
2
2,z

2
2)+ y0z

2
1

p(z21 ¡ z22,¡z22)+ y0z21
p(z21,z

2
1 + z

2
2)

p(¡z21,¡z21 + z22):

4.1.2. Lower bound
The lower bound problem (4.4) is equivalent

to

dVaR =max
¡
y00 + y10¹1 + y01¹2 + y20¾

2
1 + y02¾

2
2 + y11¾12 + y0°

¢
subject to p(x1,x2)+ y0(x1¡ x2)· 1, for all x1,x2 with x1 ¸ x2

p(x1,x2)· 1, for all x1,x2 with x1 · x2
p(x1,x2)+ y0(x1¡ x2)· 0, for all x1,x2 with w1x1 +w2x2 · a,x1 ¸ x2
p(x1,x2)· 0, for all x1,x2 with w1x1 +w2x2 · a,x1 · x2: (4.10)

Here we will use the following extra transfor-

mations:

Following steps analogous to those taken in

Section 4.1.1 for problem (4.5), we obtain that

problem (4.4) is equivalent to

dVaR =max
¡
y00 + y10¹1 + y01¹2 + y20¾

2
1

+ y02¾
2
2 + y11¾12 + y0°

¢
(4.12)

subject to the following being SOS polynomials:

1¡p(z21 + z22 ,z22)¡ y0z21
1¡p(z21 ¡ z22 ,¡z22)¡ y0z21
1¡p(z21 ,z21 + z22)
1¡p(¡z21 ,¡z21 + z22)

¡p
μ
t21 +

a¡w1t21
w1 +w2

+ t22,
a¡w1t21
w1 +w2

+ t22

¶
¡ y0t21

¡p
μ
a¡w2t22
w1 +w2

+ t21,
a¡w2t22
w1 +w2

+ t21 + t
2
2

¶
:

4.2. Example of value-at-risk probability
bounds
Given a specified tail probability ¯, the weights

w1 and w2, as well as the moment information

on X1 and X2, the value-at-risk bound problem

finds the upper and lower bounds on a where

Pr(w1X1 +w2X2 · a) = ¯. To solve this problem,
we find bounds on Pr(w1X1 +w2X2 · a) for dif-
ferent values of a and then solve the inverse prob-

lem for bounds on a given ¯.

We first calculate the semiparametric VaR

probability bounds given only the mean, vari-

ance and covariance of the two components of

the portfolio. Then we add one more constraint

that the expected value of the exchange option

between X1 and X2, EF[(X1¡X2)+], must equal
°. The following example shows that the VaR

bounds with exchange option information are

tighter since we add more constraints to the op-

timization.

We analyze a portfolio investing in the S&P

500 Index and the Dow Jones U.S. Small-Cap
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Figure 2. Comparison of VaR probability bounds with and without exchange option information.

Index. Suppose we invest 1/3 of our assets in

the S&P 500 Index, 1/3 in the Dow Jones U.S.

Small-Cap Index, and 1/3 in a risk-free fund pay-

ing a flat 0.01 percent per day. Thus, our portfo-

lio daily return is (1=3)X1 + (1=3)X2 + (1=3)0:01.

The moments are based on the daily histori-

cal log-returns from February 24, 2000 to Oc-

tober 24, 2007. There are 1,923 observations in

our sample. Let X1 and X2 be the log-return of

the S&P 500 Index and Dow Jones U.S. Small-

Cap Index in percentage per day (Xi(t) =

100log(Si(t+1)=Si(t)) for day t). Their moments

are as follows:

E(X1) = 0:0059, E(X21 ) = 1:2158

E(X2) =¡0:2117, E(X22 ) = 112:8609

E(X1X2) = 1:4161, Cov(X1,X2) = 1:41736

Var(X1) = 1:2158, Var(X2) = 112:8160

½= 0:1210, E((X1¡X2)+) = 0:4464:
(4.13)

Apparently, the Dow Jones U.S. Small-Cap In-

dex is much more volatile than the S&P 500

(112.8160 percent vs. 1.2158 percent).

We now calculate the upper and lower bounds

for the probability when the portfolio return falls

below a given level a, i.e.,

Pr((1=3)X1 + (1=3)X2 + (1=3)0:01· a):

The corresponding bounds are shown in Figure

2. The lines with —o— represent the upper and

lower bounds on the VaR probability, without

using the exchange option information. These

bounds are obtained by setting y0 = 0 in Equa-

tions (4.9) and (4.12). The lines with —*— rep-

resent the upper and lower bounds on the VaR

probability, using the exchange option informa-

tion. Obviously the exchange option information

tightens the VaR probability bounds significantly.

These semiparametric upper and lower bounds

apply to all possible joint probabilities, includ-

ing the bivariate normal joint probability. The

VaR probability corresponding to a normal dis-

tribution with the same first and second order

moments is drawn with the broken line in the

middle. Interestingly, the normal VaR probability

lies outside the tighter bounds using the ex-

change option information. This means that the

normal model does not satisfy the constraint

EF[(X1¡X2)+] = °.
Here we use the VaR probability bounds in

Figure 2 to obtain the upper and lower bounds

VOLUME 4/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 59



Variance Advancing the Science of Risk

of the VaR itself, with and without the exchange

option price constraint. Figure 2 gives us an idea

of how likely the return of this portfolio will be

lower than a in 1 day under different conditions.

Consider a 5% VaR. We look at the horizontal

line through the 0.05 level on the vertical axis–

it intersects the —o— curves at a values of ¡16
and 1. The best we can say is that

¡16%<VaR0:05 < 1%
per day. Then reading the curves with the ex-

change option information (—*—), we find that

¡6:2%<VaR0:05 < 0%
per day. Clearly the additional information great-

ly improves our knowledge of future possible

outcomes.

5. Semiparametric bounds given
confidence intervals on moments
Thus far in this paper we have assumed that

the moments information is given in the form of

point estimates of the moments of the random

variables of interest. In practice, it is typical to

have not only a point estimate but also a con-

fidence interval estimate on a moment, which

provides information about the accuracy of the

point estimate. Therefore, an important question

is how to adapt the results presented so far in or-

der to handle the situation in which the moment

information is given in the form of confidence in-

tervals on the moments. To answer this question,

consider the following general upper semipara-

metric bound problem:

max fEF[Á(X1, : : : ,Xn)]g
subject to EF[fj(X1, : : : ,Xn)] = ¾j ,

j = 1, : : : ,m,

F(x1, : : : ,xn) a probability

distribution on D μ Rn, (5.1)

where ¾j , j = 1, : : : ,m, represent the moments.

Assume now that instead of knowing the point

estimates of the moments, we have an estimate

of the moments in the form of confidence

intervals. Loosely speaking, assume that the

estimates are given in the form ¾̂j 2 [¾̂¡j , ¾̂+j ] =
[¾̂j ¡ ±j , ¾̂j + ±j], where ¾̂j , j = 1, : : : ,m, is the
point estimate. With these estimates, one can

compute a 100% confidence interval on the ex-

pected value of Á(X1, : : : ,Xn) over all distribu-

tions of the random variables with moments

within the confidence intervals by solving the

problem

max fEF[Á(X1, : : : ,Xn)]g
subject to ¾̂¡j · EF[fj(X1, : : : ,Xn)]· ¾̂+j ,

j = 1, : : : ,m,

F(x1, : : : ,xn) a probability

distribution on D μ Rn: (5.2)

Using the same duality arguments discussed

in Section 2, under suitable conditions (similar to

Proposition 1), the objective value of the problem

above can be found by solving the following dual

problem:

min

8<:y0 +
mX
j=1

(y+j ¾̂
+
j ¡ y¡j ¾̂¡j )

9=;
subject to y0 +

mX
j=1

(y+j ¡ y¡j )fj(x1, : : : ,xn)

¸ Á(x1, : : : ,xn),
for all (x1, : : : ,xn) 2 D,

y+j ,y
¡
j 2 R+, j = 1, : : : ,m,

y0 2 R: (5.3)

Note that the dual of the original problem (5.1)

is:

min

8<:y0 +
mX
j=1

yj¾j

9=;
subject to y0 +

mX
j=1

yjfj(x1, : : : ,xn)

¸ Á(x1, : : : ,xn),
for all (x1, : : : ,xn) 2 D,

yj 2 R, j = 0, : : : ,m:

(5.4)

60 CASUALTY ACTUARIAL SOCIETY VOLUME 4/ISSUE 1



Bounds for Probabilities of Extreme Events Defined by Two Random Variables

In both problems (5.3) and (5.4), the objec-

tive function is linear, and all the constraints are

linear except for the first constraint of the prob-

lem. In fact, the difficulty of solving any of these

problems comes from the first constraint, which

is the “same” for both problems. For the par-

ticular semiparametric bound problems we have

considered here, we have shown how to address

this first constraint using SOS techniques. Be-

cause the difference between these two problems

is the addition of extra variables that are linear

in the objective and in the extra constraints, hav-

ing an SOS formulation for the original prob-

lem given point estimates of moments means that

an SOS formulation for the problem with con-

fidence intervals on moments can be obtained

in straightforward fashion by accordingly chang-

ing the objective of the SOS formulation of the

original problem, and adding the adequate linear

constraints. The resulting SOS formulation can

then be efficiently solved using SOS optimiza-

tion softwares such as SOSTOOLS. As an exam-

ple, the SOS formulation (3.5) to obtain a semi-

parametric upper bound for the extreme prob-

ability Pr(X1 · t1 and X2 · t2) can be modified
as follows, in order to consider the situation in

which only the confidence intervals on the mo-

ments are available:

min
¡
y00 + y

+
10¹

+
1 + y

+
01¹

+
2 + y

+
20¹

(2)
1

+
+ y+02¹

(2)
2

+
+ y+11¹

+
12

¡ y¡10¹¡1 ¡ y¡01¹¡2 ¡ y¡20¹(2)1
¡ ¡ y¡02¹(2)2

¡ ¡ y¡11¹¡12
¢

subject to p(t1¡ x21, t2¡ x22)¡ 1 is a SOS polynomial,

p(x21,x
2
2) is a SOS polynomial,

y+10,y
¡
10,y

+
01,y

¡
01,y

+
20,y

¡
20,y

+
02,y

¡
02,y

+
11,y

¡
11 2 R+,

y00 2 R: (5.5)

Above, the f¢g+ and f¢g¡ in the moments, rep-
resent the upper and lower bounds of the con-

fidence interval used to estimate the moments.

Similar straightforward modifications can be

made for all the SOS formulations of semipara-

metric bound problems considered in the paper.

It is important to note that in our discussion

above we have assumed that the confidence inter-

vals have been obtained independently for each

moment. Developing SOS formulations for rel-

evant semiparametric bound problems consider-

ing more complex (dependent) confidence inter-

vals will be the topic of future work.

6. Conclusions
In this paper, we have illustrated a new op-

timization technique known as sum of squares

(SOS) programming to find optimal bounds for

the probability of extreme events involving two

random variables, given only the first and sec-

ond order moment information. An interesting

aspect is that we work solely under the physical

measure. This avoids the difficulty of estimating

moments of the risk-neutral distribution.

We extend the application of classical moment

problems (or semiparametricmethods) to finance,

insurance and actuarial science by examining two

extreme probability problems, both taking into

account correlations between random variables.

The first problem allows us to put “100% confi-

dence intervals” on the probability of joint ex-

treme events. The second finds VaR probabil-

ity bounds on the sum of two variables, given

up-to-the-second moment information. In each

case the moment information is given by point
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estimates, which are based on historical obser-

vations or judgements from scenario analysis.

We provide the examples to illustrate the poten-

tial usefulness of moment methods in assessing

probability of rare events. We also show that the

proposed method can be modified in a straight-

forward fashion to obtain semiparametric bounds

based on confidence intervals rather than point

estimates of the moments.

There are other applications where our ap-

proach could be useful. For example, this ap-

proach can be used to estimate the default prob-

ability of fixed-income securities where incom-

plete knowledge on the enterprise and economic

factors drives the credit risk. In other areas such

as inventory and supply chain management, this

approach can be applied to find inventory poli-

cies that will be applicable to different (unknown)

demand distributions in the future. Even when

the distributions of the random variables are as-

sumed to be known, this approach can be imple-

mented to measure sensitivity of a joint proba-

bility, VaR, or other variables to model misspec-

ification as in Lo (1987) and Hobson, Laurence,

and Wang (2005).

Some important issues for future research

clearly deserve more investigation. For example,

it will be interesting to analyze the bounds on tail

distribution given the moments of extreme values

instead of the moments of the whole distribution.

A further question involves to what extent our

results would change if we incorporate distribu-

tion class information (e.g., continuous, symmet-

ric, unimodal, etc.) in our bound problems. We

leave these questions for future research.

Appendix A. Bounds on
Pr(X1 ¸ t1, X2 ¸ t2)
Finding the upper and lower semiparamet-

ric bounds on the probability Pr(X1 ¸ t1 and
X2 ¸ t2) can be (respectively) formulated as the
following optimization problems, obtained by

setting in problem (2.1) (Section 2) Á(X1,X2)

= IfX1¸t1 and X2¸t2g and D = R+2:

p̄Survival = max
¡
EF(IfX1¸t1 and X2¸t2g)

¢
subject to EF(Xi) = ¹i, i= 1,2,

EF(X2i ) = ¹
(2)
i , i= 1,2,

EF(X1X2) = ¹12,

F(x1,x2) a probability

distribution on R+2, (A.1)
and

p
Survival

= min
¡
EF(IfX1¸t1 and X2¸t2g)

¢
subject to EF(Xi) = ¹i, i = 1,2,

EF(X2i ) = ¹
(2)
i , i = 1,2,

EF(X1X2) = ¹12,

F(x1,x2) a probability

distribution on R+2: (A.2)

The sufficient feasibility conditions in terms

of the moment constraints are the same as that

of its complementary problem of bounds on

Pr(X1 · t1, X2 · t2) (see Section 3.1). Now we

derive SOS programs to numerically compute

p̄Survival and pSurvival by using SOS programming

solvers.

A.1. Upper bound

We obtain the dual problem of (A.1) as fol-

lows:

d̄Survival = min
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢
subject to p(x1,x2)¸ Ifx1¸t1 and x2¸t2g,

for all x1,x2 ¸ 0: (A.3)

The constraint in (A.3) is equivalent to

p(x1 + t1,x2 + t2)¡ 1¸ 0, for all x1,x2 ¸ 0
p(x1,x2)¸ 0, for all x1,x2 ¸ 0:
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When we apply Theorem 1 to the above inequal-

ities, then the problem (A.3) is equivalent to:

d̄Survival = min
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1 + y02¹

(2)
2 + y11¹12

¢
subject to p(x21 + t1,x

2
2 + t2)¡ 1 is a SOS polynomial

p(x21,x
2
2) is a SOS polynomial: (A.4)

A.2. Lower bound
The corresponding dual problem of (A.2) is

dSurvival = max
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢
subject to p(x1,x2)· Ifx1¸t1 and x2¸t2g,

for all x1,x2 ¸ 0: (A.5)

We rewrite the constraint in problem (A.5) as

p(x1,x2)· 1, for all x1 ¸ t1,x2 ¸ t2
p(x1,x2)· 0, for all x1 ¸ 0,0· x2 · t2,
p(x1,x2)· 0, for all 0· x1 · t1,x2 ¸ 0:

(A.6)

Using a similar technique as in Section 3.1, we

change the problem to end up with a SOS pro-

gram that approximately solves problem

(A.6). Specifically, consider the following prob-

lem related to (A.6):

d0Survival = max
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1 + y02¹

(2)
2 + y11¹12

¢
subject to p(x1,x2)· 1, for all x1 ¸ t1,x2 ¸ t2

p(x1,x2)· 0, for all x1 ¸ 0,x2 · t2,
p(x1,x2)· 0, for all x1 · t1,x2 ¸ 0: (A.7)

The constraints of (A.7) are stricter than those

of (A.6) since the last two constraints of (A.7)

include more values of x1 and x2. Thus, d
0
Survival

is a lower bound on dSurvival; that is d
0
Survival ·

dSurvival. Using substitutions x1! t1 + x1, t2 + x2

! x2 + t2 to the first constraint of (A.7) and x2!
t2¡ x2, x1! t1¡ x1 to the second and third con-

straints respectively, it follows that problem (A.7)

is equivalent to the following SOS program when

Theorem 1 is applied:

d0Survival = max
¡
y00 + y10¹1 + y01¹2 + y20¹

(2)
1

+ y02¹
(2)
2 + y11¹12

¢
subject to 1¡p(t1 + x21, t2 + x22)

is a SOS polynomial

¡p(x21, t2¡ x22)
is a SOS polynomial

¡p(t1¡ x21,x22)
is a SOS polynomial:

(A.8)

A.3. Examples

To focus on the joint right-tail events, we set

both t1 and t2 at very high levels. It doesn’t make

too much sense to figure out the upper bound

of Pr(X1 ¸ t1, X2 ¸ t2) when the two variables
are negatively correlated. In this case, we will be

asking for the highest probability of both vari-

ables to be very large. This should be near zero

above the mean of the random variables since
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Figure 3. Bounds on Pr(X1 ¸ t1, X2 ¸ t2). The left and right graphs show bounds with covariance of X1 and X2
equals 0.5 and ¡1, respectively. The vertical axis stands for probability, and the horizontal axis is the number of
standard deviations from the mean, z. That is, t1 = ¹1 + z¾1 and t2 = ¹2 + z¾2.

they are negatively correlated. Therefore, the up-

per bounds on joint survival probabilities make

more sense for two random variables that are

positively correlated, or have a low negative cor-

relation.

Considering the following example:

E(X1) = 1

E(X2) = 1

E(X21 ) = 3

E(X22 ) = 3

E(X1X2) = 1:5:

The bounds of the above example is drawn in

the left plot of Figure 3. In this case, Cov(X1,X2)

= 0:5. On the other hand, if E(X1X2) = 0, the

covariance between X1 and X2 equals ¡1. We
get the right plot in Figure 3, which confirms

our previous prediction that when the two vari-

ables are negatively corrected, upper bounds on

the joint right-tail events do not make sense.
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