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ABSTRACT

Over the past twenty years many actuaries have claimed
and argued that the chain-ladder method of loss reserving
is biased; nonetheless, the chain-ladder method remains the
favorite tool of reserving actuaries. Nearly everyone who
acknowledges this bias believes it to be upward. Although
supporting these claims and beliefs, the author proposes
herein to deal with two deeper issues. First, does some-
thing inherent in the chain-ladder method dispose it to
bias? Is there a diagnostic whereby one can predict how
the chain-ladder method will fare with a particular loss tri-
angle? To resolve this issue basic regression theory will
suffice, specifically, the much misunderstood concept of
regression toward the mean. And second, what lessons can
we learn from the phenomenon of bias; in particular, is
there a difference between actuarial methods and statis-
tical models? These two issues constitute the reason and
meaning of chain-ladder bias.
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1. Introduction

The chain-ladder method is a common tech-
nique whereby actuaries develop losses from a
less mature present to a more mature future. At
each stage of development the actuary determines
a link ratio or age-to-age factor, namely, the ratio
of cumulative losses at the later age to those at
the earlier. Immature losses climb toward matu-
rity when multiplied by a concatenation of these
ratios, hence the apt description “chain-ladder
(CL) method.” The origin of the method is ob-
scured in the antiquity of the Casualty Actuar-
ial Society.1 Actuaries themselves probably bor-
rowed it from underwriters, along with such other
stock-in-trade practices as on-leveling and trend-
ing. Actuaries and academicians now recognize
these practices as rather naive and deterministic,
and since the 1990s they have sought to bring
modern statistical theory to bear on the prob-
lems of loss development, particularly seeking
regression-model interpretations of the CL
method. However, seldom has this modern the-
ory been unleashed; most of its proponents un-
wittingly incorporate accidents of the CL method
into their modeling attempts. We will attempt to
demonstrate here that modern statistical model-
ing constitutes a revolution against, rather than
an improvement of, the CL method. But for max-
imum effect, our demonstration will take the
form of an inside job; we will start with the fa-
miliar issue of whether the method, as applied to
loss triangles, is biased.

1A reviewer suggested that “seeds” of the method come from
Thomas F. Tarbell [16]. But the ideas and formulas therein are
exposure-related, i.e., IBNR= exposure£ frequency£ severity,
with suitable adjustments. Development from latest loss is sug-
gested only in one paragraph (p. 277) that begins, “It has also been
contended that the incurred but not reported reserve may be de-
termined as a function of the reserve for known cases.” But even
here the dependent variable is case reserves, which excludes paid
losses. The method that Tarbell had in mind is not clear; but what
he deduced from it is inconsistent with the CL method: “For the
major [casualty] lines the reserve [determined as a function of the
reserve for known cases] will be too low if the volume of business
is increasing and conversely if the volume of business is decreasing
the reserve will be too high.” As interesting as the paper is, we do
not detect in it a primitive CL method.

2. Simulated and anecdotal
chain-ladder bias

The issue of chain-ladder bias was raised by
James N. Stanard in his 1985 Proceedings pa-
per, “A Simulation Test of Prediction Errors of
Loss Reserve Estimation Techniques” [15]. Sta-
nard simulated thousands of (5£ 5)2 loss rectan-
gles, applied four projection methods (viz., chain-
ladder or age-to-age, Bornhuetter-Ferguson,
Cape-Cod or Stanard-Bühlmann, and additive) to
their upper-left triangles, and compared the pro-
jections with their lower-right triangles. He con-
cluded: “The results indicate that the commonly
used age-to-age factor approach gives biased es-
timates and is inferior to the three other meth-
ods tested” [15, p. 124] and “The results show
that simple age-to-age factors produced biased
results” [15, p. 132].3 Now bias can be either
upward or downward, and Stanard never speci-
fied its direction. However, in each of his eight
exhibits the CL method overpredicted; hence, we
are to understand that the bias is upward, i.e., that
the CL method predicts too much loss.
Stanard deserves credit for raising the issue of

CL bias, and it saddens this author that the pa-
per is no longer on the CAS Examination Syl-
labus. Nonetheless, Stanard did not prove the
CL method to be biased upward, even though
he believed that his appended “Analytical Argu-
ment” proved that it was biased in some direc-
tion.4 Perhaps for some triangles the bias would
be upward, for others downward, and overall un-
biased. Perhaps even for some triangles the bias
would be zero. Then the issue of bias would be
how to determine a priori how the method would

2Actually the rectangles were (6£ 5). However, the losses were
considered known as of the end of the fifth accident year. Hence,
there was no observation of the sixth year (being, as it were, a
ratemaking year), and the CL method could project only five years.
3Stanard here mentions that he first asserted the bias of the CL
method in his 1980 discussion paper, “Experience Rates as Esti-
mators: A Simulation of their Bias and Variance” [14].
4In this Appendix Stanard inferred CL bias from the premise that
the expectation of a quotient is not equal to the quotient of the
expectations. But this premise is not required of CL regression
models.
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fare with the triangle in question. To borrow the
words of Goldilocks, as applied to a particular
triangle is the CL method “too hot, too cold, or
just right?”
This prompts us to clarify what we mean by

“bias.” Stanard used “bias” in different senses. In
footnote 1 and in Appendix A of his paper “bias”
approximated the statistically accepted meaning,
i.e., that the expectation of the estimator equals
what it purports to estimate. In his footnote 13,
he claimed that simple-average factors are “likely
to produce substantial additional bias” as com-
pared with weighted-average factors–a claim
that mistakes the bias of an estimator for the size
of its variance. But most commonly, by “bias” he
meant that the method missed the mark. In this
sense all four methods are biased, as we see in
one of his concluding statements:

The additive method 4 and the average-then-
adjust method 3 have significantly lower vari-
ances than methods 1 and 2 [CL and Born-
huetter-Ferguson], and small biases (if ad-
justed for inflation). In fact, method 4 may
be completely unbiased. [15, p. 135]

We say “approximated” in the first instance, be-
cause even here the bias applies to the total pro-
jection. Although the total projection is of great-
est importance, how can a method be trusted to
be unbiased on the total, if it is biased on the
subtotals?5

In actuality, Stanard demonstrated only that the
CL method was the least accurate of his four
methods as far as his simulated rectangles were
concerned. In footnote 8 he claimed that his find-
ings “are not particularly sensitive to the choice
of the underlying loss generation model.” We are
unconvinced that his computer model, even with
an inflation provision, adequately mimics real

5Furthermore, actuarial (informed) judgment is no antidote to bias,
as if actuaries possessed some expertise or intuition to herd or prod
methods into correctness. Inevitable failures will only bring oppro-
brium and discredit upon the profession. Actuaries must not pre-
sume to judge what they cannot scientifically model.

loss triangles.6 But more disconcerting than the
poor performance of the CL method relative to
other methods is the fact that it consistently over-
predicted. Was this just an accident of his simu-
lation? There is anecdotal evidence that the CL
method overpredicts with real loss triangles more
often than it underpredicts; however, “anecdote”
may be just a fancy word for “feeling” or “opin-
ion.” The author knows of no ex post testing of
large numbers of real triangles; even though Bar-
nett and Zehnwirth have modeled hundreds of
real triangles, and believe the CL method to be
out of step with most datasets, they do not cite
statistics of how often or in what circumstances
the method will overpredict, underpredict, or be
just right.
In fact, we see little value in such testing and

tabulation. If something is not good enough gen-
erally, time is more profitably spent in searching
for something else than in identifying the specific
situations in which it works well enough. How-
ever, there is heuristic value in seeking to diag-
nose the behavior of the CL method. We will do
this in the next section, arriving at an explanation
for CL bias, particularly for overprediction.

3. Diagnosing chain-ladder bias

The triangle in Table 1, taken from Brosius [4,
Table 6], illustrates how to diagnose the bias of
the chain-ladder method, i.e., to diagnose whether
the method in this case will underpredict or over-
predict the expected development.7 From this il-
lustration we will be able to form general conclu-
sions. In Exhibit 1 [see Appendix A] are found
premiums, link ratios, their weighted averages,
and chain-ladder projections to sixty months.

6Venter, himself no CL advocate, suggests that Stanard’s simula-
tion method handicapped the CL method [19, p. 817f.]. Barnett and
Zehnwirth [2, p. 297] too argue that simulation method is impor-
tant, and that a model cannot distinguish the real data for which it
was designed from data simulated from the model itself.
7Bias has to do with the expected outcome. If we conclude that the
chain-ladder method will overpredict this triangle (and we will),
we should not be lulled into thinking that the actual ultimate losses
will (with 100% probability) be less than the chain-ladder ultimates,
whether by accident year or by total.
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Figure 1A. First link, 12 to 24 months

Table 1. Cumulative case-incurred losses

AY @12 @24 @36 @48 @60

1985 102,000 104,000 209,000 650,000 847,000
1986 0 543,000 1,309,000 2,443,000 3,033,000
1987 412,000 2,310,000 3,083,000 3,358,000 4,099,000
1988 219,000 763,000 1,637,000 1,423,000
1989 969,000 4,090,000 3,801,000
1990 0 3,467,000
1991 932,000

There are six observations of loss develop-
ment from 12 to 24 months, which in Figure
1A are marked with the “+” symbol. The x-
axis measures the loss at 12 months, the y-axis
the loss at 24 months. We would like the ob-
served points to lie close to a one-dimensional
curve, viz., y ¼ f(x). Then it would be a simple
matter to develop AY (accident year) 1991 to
24 months as f(932,000). For several reasons,
but especially due to the scarcity of observa-
tions, we will consider only functions linear in x,
i.e., y ¼ ¯0 +¯1x. With a random error term, we
make the formula exact, and arrive at a so-called
“regression” model y= ¯0 +¯1x+ e. The expres-
sion “regression model” is unfortunate; a better
name is “linear statistical model.” Appendix B
details the theory of the linear statistical model.

That the observations in Figure 1A do not line

up well means that if the relation between E[y]
and x is linear, it is obscured by an error term

of significant variance. Nevertheless, the general
line with intercept ¯0 = $1,094,448 and slope
¯1 = 2:768 (the red-colored line) must fit the ob-
servations better than the line constrained to pass
through the origin (the green-colored line). This
constrained line, with intercept zero and slope
° = 6:626 is the “regression-model” equivalent
of the chain-ladder method. Appendix C spec-
ifies the variance assumptions of the two mod-
els (viz., the two-parameter is homoskedastic, the
one-parameter is heteroskedastic), and proves
that both lines must intersect at the centroid of
the observations, i.e., at the average point (x̄, ȳ).
For all loss triangle applications the centroid will
lie in the first quadrant of the Cartesian plane.
Because the intercept of the general line is posi-
tive and the centroid lies in the first quadrant, to
the left of the centroid the constrained line is be-
low the general, and to the right of the centroid
it is above.
Now our diagnosis rests on the following as-

sumption: The general line is preferable to the
constrained line. Our rationale is simple: For the
purposes of diagnosing CL bias we have limited
ourselves to linear functions, and the constrained
line is a special case of the general. With the
CL method we are, in effect, projecting along
the constrained (green-colored) line, whereas we
would be better off using the general (red-colored)
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Figure 1B. Second link, 24 to 36 months

Figure 1C. Third link, 36 to 48 months

line. So we develop AY 1991 as $932,000£
6.626= $6,175,184, which point on the constrain-
ed line is marked with the “ ” symbol. The point
directly underneath on the general line would
have a height of $3.7 million. On the basis of
our assumptions, the CL method has consider-
ably overpredicted.
To diagnose the next link of the chain, the de-

velopment from 24 to 36 months, we rely on
Figure 1B. Now we are limited to five obser-
vations, which the figure shows as “+” signs.
The general and the constrained lines are fit-
ted, and their intersection is marked as the cen-

troid. Again we find the intercept of the general
line to be positive. Hence, according to our as-
sumption, projections from x values to the left
of the centroid will be too small, and projections
to the right will be too large. AY 1990 at 24
months lies moderately to the right of the cen-
troid and is moderately overpredicted. AY 1991
at 24 months, now marked with the “ ” symbol,
lies extremely to the right of the centroid and is
much more overpredicted. In fact, the CL method
has compounded the overprediction of AY 1991,
since it first overpredicted its development from
12 to 24 months.
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Figure 1D. Fourth link, 48 to 60 months

Table 2. Chain-ladder projections by year

Ratio to
AY @12 @24 @36 @48 @60 EarnPrem

1985 102,000 104,000 209,000 650,000 847,000 20%
1986 0 543,000 1,309,000 2,443,000 3,033,000 55%
1987 412,000 2,310,000 3,083,000 3,358,000 4,099,000 53%
1988 219,000 763,000 1,637,000 1,423,000 1,760,055 20%
1989 969,000 4,090,000 3,801,000 4,797,864 5,934,298 56%
1990 0 3,467,000 4,456,493 5,625,269 6,957,684 58%
1991 932,000 6,175,184 7,937,603 10,019,347 12,392,554 96%

We repeat the diagnosis for the development
from 36 to 48 months Figure 1C. Although con-
fidence in our lines is lessening, we still find the
intercept to be positive; and all predictions are
from x values to the right of the centroid. There-
fore, we diagnose AY 1989 to be simply overpre-
dicted, and AY 1990—1991 to be multiply over-
predicted.
Finally, Figure 1D shows development from

48 to 60 months. At this stage the lines are nearly
coincident; the CL method is trustworthy. Our
final diagnosis rests on Table 2. AY 1988 at 60
months is fairly estimated as $1.76 million. The
later accident years have been overestimated at
60 months, the overestimation compounding as
the years advance. AY 1991 is overestimated to
an uncharacteristically large 96% loss ratio.
In Exhibits 2—4 we apply the diagnostic to con-

solidated Schedule-P triangles [3, pp. 199—213].

These exhibits are more quantitative than Figures
1A—1D in that they contain the estimates, stan-
dard errors, and t statistics of the intercept and
slope of the general lines.8 Since the t statistic
equals the estimate divided by the standard er-
ror, the estimate is “t-stat” standard errors away
from zero. If the error terms of the regression
model are normally distributed, the t-stat will be
t-distributed with n¡ 2 degrees of freedom, and
a probabilistic significance can be assigned to it.
Never assuming normally distributed error terms,
we will simply abide by such qualitative stan-
dards as when the absolute value of the t statistic
is greater than one the difference of the estimate
from zero is fairly significant, when greater than
two quite significant, and when greater than three
very significant.

8Exhibit 5 provides this quantitative information for the 12-to-24-
month regression of the Brosius triangle.
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The first two development stages of the paid
Workers’ Compensation triangle (Exhibit 2)
show significant negative intercepts. Neverthe-
less, the CL-predictions are always close to their
respective centroids. Development to 60 months
is unexceptional. The paid Medical Malpractice
triangle (Exhibit 3) displays mildly positive inter-
cepts in the first and fourth development stages.
We suspect AY 2001 to be slightly overpredicted.
Exhibit 4 is the most interesting. To obtain this
case-incurred triangle for Products Liability Oc-
currence we had to subtract the bulk+ IBNR re-
serves (Schedule P, Part 4) from the incurred tri-
angle (Schedule P, Part 2). The first two devel-
opment stages have large positive intercepts, and
the fourth has a large negative one. AY 2004 at
36 months has been twice overpredicted. Every-
thing else stays close to the centroids, except for
one underprediction from 48 to 60 months. This
underprediction pertains to AY 2004, so at 60
months this AY has been twice overpredicted and
once underpredicted, overall apparently netting a
slight overprediction.
At each link or development stage, chain-

ladder bias depends on the intercept of the gen-
eral line. If it is positive, projections from less-
than-average x values (to the left of the centroid)
will underestimate, projections from greater-
than-average x values (to the right of the cen-
troid) will overestimate. The relation is reversed
in the case of a negative intercept: projections to
the right of the centroid underestimate, those to
the left overestimate. CL bias becomes more se-
rious as the intercept moves more significantly
away from zero. The method is unbiased, if the
regression lines coincide.
From this we venture to explain the anecdotes

that the chain-ladder method overpredicts. First,
in our experience with loss triangles, we have
found significant positive intercepts more often
than significant negative ones. Not having kept
records, we cannot cite the proportions (signif-
icantly positive, significantly negative, not sig-

nificantly different from zero). Certainly we do
encounter intercepts significantly less than zero;
here we found them in Exhibits 2 and 4. Nev-
ertheless, not only are positive slopes more fre-
quent than negative; they tend to be more statis-
tically significant, as well.
Because the centroids are in the first quadrant,

we can state the first empirical finding: Based
on the preponderance of positive intercepts, more
often than not the CL method will overpredict, or
overdevelop, losses that are greater than average
at any given maturity, i.e., losses to the right of
the centroid. And second, as with the rest of the
economy, it is normal for the insurance business
to grow. In this condition exposures increase, and
one expects the amounts down any column of a
loss triangle to increase. Hence, the CL method
commonly projects losses that lie to the right of
the centroid. The combination of positive inter-
cepts and business expansion makes for over-
prediction. The CL method would actually un-
derpredict with the combination of positive in-
tercepts and business contraction. The reverse
would hold, if the intercepts were negative. In
a triangle of mixed intercepts (i.e., some positive
and some negative) conflicting forces would be
at work; probably, however, forces at the earlier
links would prevail at the overall level.
This explanation discredits appeals to “skew-

ness,” i.e., to arguments that the upside of over-
prediction is unlimited, whereas the downside is
limited to zero. For, indeed, the CL method is
on average unbiased over the empirical distri-
bution of the observed ordered pairs, and over
any bivariate distribution that might be fitted to
their moments. The observed (x,y) variables that
average to the centroid may each have positive
skewness. But the smaller number of large bi-
ases to the right of the centroid is offset by the
larger number of small biases to the left. Of im-
portance is the relation of the two lines over the
domain of the x values that need to be devel-
oped.
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4. Chain-ladder bias and the
regression intercept
One might be tempted from the previous sec-

tion to “fix” the chain-ladder method by project-
ing from the general line. At this point we are
still within the framework of deterministic meth-
ods, i.e., methods that yield point estimates and
provide no information about higher moments
or probability distributions. Since the 1990s ac-
tuaries have advanced from methods to models
in order to obtain probabilistic information. And
within the modeling framework, this “fix” is tan-
tamount to a movement from the Mack [12, p.
107] model, E[y j x= x] = °x, to the Murphy [13,
p. 187] model, y= ¯0 +¯1x+ e or E[y j x= x] =
¯0 +¯1x (both models expressed in our notation).
But habits and paradigms are hard to identify,

and hence to change. This can dispose one to
read a model into, rather than out of, the data.
Some have not pondered whether their models
are truly reasonable and whether they really fit
the data. As for a lack of fit, Barnett and Zehn-
wirth [2, p. 250] faults the Mack model: “It turns
out that the assumption that, conditional on x(i),
the “average” value of y(i) is bx(i), is rarely true
for real loss development arrays.” And apart from
the question of fitness, the Murphy-like addi-
tion of an intercept makes for an unreasonable
model. For consider the general model of Fig-
ure 1A, whose parameters are estimated in Ex-
hibit 5. The model for the six observations is
y= $1,094,448+2:768x+ e, where the standard
deviation of the error term is

p
2:134E+12 =

$1,460,829. Above all, a model should be rea-
sonable, and we fail to understand why the loss
at 24 months should start from a base amount of
$1,094,448. Accordingly, Gregory Alff [1, p. 89]
has written, “A constant does nothing to describe
the underlying contributory causes of change in
the dependent variable.” We can even imagine a
condition in which an intercept must be rejected,
namely, when one derives a negative intercept

and projects from such a small x value that the
projection itself is negative.
Furthermore, since the centroid is in the first

quadrant, if the intercept is positive, the slope of
the general line must be less than that of the con-
strained line. The flattened slope might well not
differ significantly from unity.9 In such a situ-
ation it is not the ratio of the later loss to the
earlier that is important, but the difference of the
later loss from the earlier. If y¡ x is fairly con-
stant, then it deserves modeling, not the quotient
y=x.
Finally, the exposures of the six accident years

range must vary widely. For the growth of pre-
mium from $4.3 to $12.0 million (and to $12.9
million in 1991) cannot be attributed to rate in-
creases; exposure must be climbing over these
years. If the exposure of one AY were twice
that of another, perhaps its intercept should be
twice.10 This reasonable thinking would lead the
modeler to replace the constant with an exposure
variable »: y= ¯1x+¯2»+ e. However, the ear-
lier loss x and the exposure » usually compete,
and one can be eliminated without much loss of
explanatory power. The key to understanding this
competition (“multicollinearity” in statistical par-
lance) is regression toward the mean, to which
we now turn.

5. Regression toward the mean

The term “regression toward the mean” origi-
nated with Sir Francis Galton (1822—1911), who
among other biological subjects applied it to the
inheritance of height [7]. (See also [21].) In this
section we will simplify the excellent discussion
in Chapter 12 “Regression and Correlation” of
Bulmer [5], and analogize from height inheri-
tance to loss development.

9Both Venter [19, p. 815f and 821] and Barnett and Zehnwirth [2,
p. 255 and pp. 258—260] note this.
10Murphy concedes at one place [13, p. 204]: “An increase in ex-
posure from one accident year to the next will cause an upward
parallel shift in the development regression line.”
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Figure 2A. Empirical heights of fathers and sons

In Figure 2A are graphed twenty-five pairs of
heights of fathers and sons, with their centroid
and their best-fitting general and constrained
lines. Although these points are simulated, they
have all the verisimilitude of the data that Galton
studied. To reveal up front our simulation mech-
anism would spoil the joy of repeating Galton’s
discovery; we will discuss it shortly.
The centroid is (66.34, 68.60) inches. The in-

tercept and the slope of the general line are 11.23
inches and 0.865; the slope of the constrained
line is 1.034. We allowed for height “inflation”
due to better care and nutrition: sons are on av-
erage about two inches taller than their fathers.
One would like to regard a son’s height as pro-
portional to his father’s; but the intercept of the
general line with its standard error (11:23§ 4:32
inches) puts the intercept at a quite significant
2.60 standard errors away from zero. In other
words, the data rebels against a line through the
origin.
Data that regresses toward the mean is not to

be confused with a process that reverts toward
the mean. Figure 2A is a picture of regression to-
ward the mean; the best-fitting line, though shar-
ing the centroid of the constrained line, lies be-

tween the constrained line and a horizontal line
through the centroid. This implies that the inter-
cept of the best line lies between zero and the
ordinate of the centroid. A significant difference
between the two lines means that somehow the
data is defying proportionality.11

Galton was convinced that the inheritance of
height should be a proportion; there is no reason
why nature should begin with 11.23 inches. So
he drew the ingenious distinction between ge-
netic height and empirical height. With a tape
measure one records empirical height; but one’s
empirical height is the sum of one’s genetic
height and an environmental error term of mean
zero. If one could peer into genetic height, one
would see that that a son’s genetic height is pro-
portional to his father’s. If one knew the genetic
heights of fathers, the line that best fit the points
of the fathers’ genetic heights and the sons’ em-
pirical heights would pass through the origin.
Hence, a best-fitting line regresses toward the
mean because the independent variable actually

11We know of no term for the opposite case, in which the con-
strained line lies between the general line and the centroidal hori-
zon. An apt name for it might be “progression from the mean.”
That no one seems to have studied it indicates that it is deemed,
when encountered, as a random accident. See footnote 17.
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Figure 2B. Sons’ empirical heights versus fathers’ genetic heights

used is a proxy (even though an unbiased proxy)
for a better or truer variable.
To a father 58.83 inches tall belongs leftmost

point in Figure 2A; to a father 73.13 inches tall
the rightmost. Even though the mean of the en-
vironmental error term is zero, given that we are
looking at a relatively short father, we infer that
he is genetically taller than 58.83 inches, and
that his error term is negative. So the short fa-
ther is probably genetically less short than he
is empirically. Similarly, the tall father is proba-
bly genetically less tall than he is empirically.
And the more a father’s empirical height dif-
fers from the average (66.34 inches), the more
his error term is expected to differ from zero.
Lifting the veil from the fathers’ genetic heights
(which we can do, since it’s a simulation), we
have the result of Figure 2B. The centroid and
the constrained line have not changed, but now
the general line does not regress as much toward
the mean. Its intercept and slope now are 5.96
inches and 0.945, which are not significantly dif-
ferent from the true values 0.00 inches and 1.030
(= 68=66). Switching the independent variable
from empirical height to genetic contracts the x-

axis toward the abscissa of the centroid and piv-
ots counterclockwise the general line toward the
constrained line.
Moreover, the better a variable proxies for the

true variable, the less the general line will regress
toward the mean; the worse it proxies, the more
the line regresses. As for our simulation mecha-
nism, the genetic heights of the fathers were nor-
mally distributed as 66§ 4 inches. Then these
values were multiplied by 68=66 to simulate the
sons’ genetic heights. To both sets of heights
were added normally distributed environmental
terms whose mean and standard deviation were
zero and one inch. So here the fathers’ genetic
heights are relatively discernible; in actuarial par-
lance, the variance of the hypothetical means is
(4 inches)2 and the expectation of the process
variance is (1 inch)2. But in Figure 2C, starting
with the same genetic heights and environmental
errors, we’ve doubled the fathers’ environmental
errors. This increases the regression toward the
mean, the intercept and slope of the general line
(with standard errors) now being 20:59§ 5:59
inches and 0:724§ 0:084. Environmental error
weighs more heavily on genetic height; actuar-
ies would say that the fathers’ heights are less
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Figure 2C. Fathers’ heights after doubling environmental effect

credible.12 If the standard deviation of environ-
mental error were many times the standard devia-
tion of genetic height, a father’s empirical height
would indicate little about his or his son’s ge-
netic height, and the general line would be nearly
flat–extreme regression toward the mean.13

The analogy of Galton’s problem to loss devel-
opment is straightforward. The father’s empirical
height corresponds to the loss at the earlier stage
of development, the son’s empirical height to the
loss at the later stage. The common phenomenon
of regression toward the mean indicates that the

12Some actuaries would prefer to say that the sons’ heights, as
predicted from this new set of fathers’ heights, are less credible.
The next section will show that credibility can be interpreted either
way. Hence, actuarial tradition has relegated credibility to judging
the effectiveness of a proxy; by implication, the true variable is
fully credible. Statistical modeling can free credibility for its true
and rightful purpose of incorporating prior knowledge.
13Econometricians treat regression toward the mean as a theme
within the problem of stochastic regressors (footnote 29). Halli-
well [8, p. 441] was aware of the general problem in loss-triangle
modeling, but did not recognize its specific nature as regression
toward the mean. Judge et al. [10, pp. 582—585] and Kennedy
[11, pp. 137—140 and p. 149] treat proxy variables as “measure-
ment errors” and “errors in variables.” Modeling with proxy vari-
ables is biased, even asymptotically with the luxury of limitless
observation. For explanations of regression toward the mean in
sports and investment (i.e., why winning and losing streaks end) see
www.sportsci.org/resource/stats and www.travismorien.com/FAQ
/portfolios/meanregression.htm.

loss at the earlier stage is a proxy for something
else. Without doubt, zero loss, as in Figure 1A,
is a (misleading) proxy for a positive exposure.14

But this, we believe, is always the case. Even if
a line that best fits the adjacent columns of a
loss triangle passes tolerably close to the origin,
it indicates only that the earlier loss is a tolerable
proxy. In Figure 1D, losses at 48 months were a
tolerable proxy for a variable truly predictive of
losses at 60 months; in Figures 1A—C the earlier
losses were not good proxies.
To take another example, Medical Malprac-

tice is regarded as a volatile line of business;
yet our diagnosis of its paid loss development
to 60 months (Exhibit 3) showed that a chain-
ladder projection would happen to be reliable.
The regression toward the mean in the 12-to-24-
month stage is rendered innocuous by the fact
that the projection of AY 2004 is close to the
centroid. Nevertheless, the earlier losses are still
just proxies of something else. Sometimes prox-
ies are good enough; but when they are not, we
must expend the effort to recover the true vari-
ables.

14The loss incurred from zero exposure must have mean and vari-
ance zero. See Appendix C, Figure C1.
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In the previous section we mustered reasons
why an intercept should make way for an expo-
sure variable. Models that incorporate both ear-
lier loss x and exposure » usually suffer from
multicollinearity; the earlier loss usually has lit-
tle of its own to say, merely mimicking exposure.
So it will come as no surprise by now that the
earlier loss is none other than a proxy of ex-
posure.15 The loss triangle is a workhorse for
the actuary, and will not be put out to pasture in
the foreseeable future. But our diagnosis of tri-
angles and our explanation of regression toward
the mean together suggest that a column of ex-
posures should be deemed an integral part of ev-
ery loss triangle. The information really resides
in the exposures–a fact obvious to ratemaking,
but hardly less important to reserving.16

6. Credibility and regression
toward the mean

In the previous section we made passing refer-
ence to actuarial credibility theory. One actuary,
Gary G. Venter [18] related credibility theory to
regression toward the mean; another, Eric Bro-
sius [4] related it to loss development. But neither
saw how significant regression toward the mean
is to loss development, namely, that it indicates
proxy variables. Furthermore, they both thought
of credibility “forwards,” i.e., as applying to the
dependent variable. Venter, for example, wrote,
“Least squares credibility can be thought of as
a least-squares regression estimate in which the
dependent variable has not yet been observed.”

15In Galton’s example the proxy and true variables were of the
same scale, i.e., x= »+´. But for linear modeling, only variable
relativities matter, i.e., x/ »+´.
16A nagging fear of the insurance industry, whether real or imag-
ined, is that the exposures for which actuaries determine rates bear
slight relation to the exposures that are underwritten. We see a
call for consistency in Halliwell [8, p. 442]: “If there is enough
information in the form of a loss triangle to produce development
factors, then there must also be substantial knowledge of the under-
lying exposures. Otherwise, how would the actuary know that the
rows of the triangle were commensurate, or that they represented
the same process of development?” Feldblum [6, p. 784] specifies
manual deviations and schedule credits as the major reasons for the
discrepancy.

[18, p. 134]. But the “backward” view to be pre-
sented here, applying credibility to the indepen-
dent variable, will lend support to what we’ve
just said about proxy variables.
Consider again the 12-to-24-month stage of

the Brosius triangle, as modeled in Exhibit 5.
The centroid of the six observations (x̄, ȳ) equals
($283,667, $1,879,500). The slope of the con-
strained line is ȳ=x̄= $1,879,500=$283,667 =
6:626 = °, and we express this line in the func-
tional form g(x) = °x= 6:626x. We express the
general line in the form f(x) = ¯0 +¯1x =
$1,094,448+2:768x. Since both lines intersect
at the centroid, ȳ = f(x̄) = g(x̄). Therefore:

f(x) = 0+f(x)

= ȳ¡f(x̄)+f(x)
= ȳ¡¯0¡¯1x̄+¯0 +¯1x
= ȳ+¯1(x¡ x̄)

= ȳ+
¯1
°
(°x¡ °x̄) [) ° 6= 0]

= ȳ+
¯1
°
(g(x)¡ ȳ)

=
μ
1¡ ¯1

°

¶
ȳ+

μ
¯1
°

¶
g(x)

= (1¡Z)ȳ+Zg(x):

The general line can be interpreted as a credi-
bility-weighted average of the constrained line
and the centroidal horizon. The credibility given
to the chain-ladder projection, i.e., to g(x) = °x,
is Z = (¯1=°) = (¯1x̄=ȳ), which in this case is
41.8%. The credibility of the CL projection is the
ratio of the slopes, namely that of the general line
to that of the constrained.17 The complement of

17So long as the intercept of the general line is between zero and ȳ,
credibility will be between zero and one. Provided that ȳ is positive,
an intercept less than zero implies a credibility greater than one; an
intercept greater than ȳ (ignorable in practice) would imply a cred-
ibility less than zero. Footnote 11 suggested that an intercept less
than zero should be deemed a random accident, to which Brosius
[4, p. 17] would agree: “[W]hen this [negative intercept] happens
we set Z = 1 and use a simple link ratio estimate, ignoring the
budgeted loss estimate.”
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the credibility applies to the “prior hypothesis”
ȳ.
Credibility-weighting the CL projection y =

g(x) with ȳ is what we call the “forward” view
of credibility; credibility is applied to the depen-
dent variable y. Even more interesting, and re-
vealing of the proxy status of earlier losses, is
what we will call the “backward” view of cred-
ibility. The backward view is like the switching
in the previous section of the independent vari-
able x, an attempt to peer behind the proxy into
the true variable. We remarked that contracting
the x-axis toward the abscissa of the centroid,
pivots the general line counterclockwise into co-
incidence with the constrained line.
Credibility-weight each observed independent

variable x with the average value, i.e., with the
abscissa of the centroid x̄, to form the “contract-
ed” variable w = (1¡Z)x̄+Zx. This does not
disturb the centroid, because w̄ = x̄. Because
g is linear and invariant to Z, for any credibil-
ity Z:

(1¡Z)ȳ+Zg(x) = (1¡Z)g(x̄)+Zg(x)

= g((1¡Z)x̄+Zx)

= g(w):

Consequently, credibility-weighting the CL-fitted
dependent variables with ȳ is equivalent to CL-
fitting the credibility-weighted independent vari-
ables with x̄; in other words, credibility-weight-
ing and CL-fitting (i.e., regressing through the
origin) are commutative at any credibility.
But consider the regression of y against w ac-

cording to the general line y = °0 + °1w. Using
the formula of Appendix C and removing con-
stants from the covariances, we derive:

°1 =
Cov[w,y]
Cov[w,w]

=
Cov[(1¡Z)x̄+Zx,y]

Cov[(1¡Z)x̄+Zx, (1¡Z)x̄+Zx]

=
Cov[Zx,y]
Cov[Zx,Zx]

=
1
Z

Cov[x,y]
Cov[x,x]

=
1
Z
¯1:

Here ¯1 is the slope estimator of the general line
modeled on the uncontracted (or fully credible)
independent variables. Desiring to unwind the re-
gression toward the mean, we choose Z such that
°0 = 0, or equivalently, °1 = ȳ=w̄ = ȳ=x̄. Hence,

Z =
1μ
1
Z

¶ = ¯1μ
1
Z
¯1

¶ = ¯1
°1
=

¯1μ
ȳ

x̄

¶ = ¯1x̄
ȳ
,

which is the credibility that we derived in the for-
ward view. Though equivalent mathematically,
the forward and backward views differ as to in-
terpretation. Whereas the forward view faults the
model while passing the data, the backward view
faults the data while passing the model. Or,
whereas the forward view shores up the outputs
of the model, the backward view shores up the
inputs. Recognizing this alternative viewpoint
should open actuaries to consider earlier losses
as exposure proxies. Just as tall fathers are ge-
netically tall, but probably not quite as tall genet-
ically as empirically, so too large losses conceal
large relative exposures, but probably not quite as
large relatively to the actual losses. Correspond-
ingly, just as short fathers are genetically short,
but probably not quite as short genetically as em-
pirically, so too small losses conceal small rela-
tive exposures, but probably not quite as small
relatively to the actual losses. Progress depends
on piercing the veil.18

7. Standard models of loss
development

The standard models of loss development are
all of the same form:

y= (X)¯+ e, Var[e] = ¾2©,

yij = (aij»i)¯j + eij , Var[eij] = ¾
2Áij:

18A tentative step behind the veil is to use earned premium as the
independent variable, especially in reinsurance, where most expo-
sure is in the form of “subject premium.” However, because of
underwriting cycles, earned premium is often a poor proxy of ex-
posure, sometimes even a worse proxy than the developing losses!
The next step is to place earned premiums on the same level. But
this is still a half measure; the exposures themselves must be cap-
tured, as much in reserving as in ratemaking.
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The dependent variable yij is the incremental loss
of the ith exposure period at the jth stage of de-
velopment, i.e., the ijth cell of the loss rectangle.
As an example, Schedule P exhibits, apart from

the “Prior” line, have ten accident years (rows)
and ten development years (columns), which
make for 10£ 10 = 100 cells. If the experience is
complete, 55 cells are observed (when i+ j
· 11) and 45 require prediction (i+ j > 11).
The vector y is then the 100 cells unraveled as
a (100£ 1) column vector. The design matrix
X has 100 rows; the number of its columns,
which equals the number of parameters in ¯,
depends on the model. The error term e, like y,
is (100£ 1). The model requires the variance
of e, a (100£ 100) matrix of the covariances
of the elements of e.
Variance considerations lead us to incremen-

tal formulations. Because variance structures are
on the order of n2, it is desirable to keep them
simple. The variances of these standard models
are zero off the diagonal, but not necessarily con-
stant (viz., unity) on the diagonal. In terms of the
indices of the cells of the original rectangle:

Cov[eij,ekl] = ¾
2

(
Áij if i= k and j = l

0 otherwise
:

If all the Áij are equal, the variance structure is
“homoskedastic”; otherwise it is “heteroskedas-
tic.” Homoskedasticity is the sparsest variance
structure, on the order of n0, or 1. Heteroskedas-
ticity is a less sparse variance structure on the
order of n; but it too asserts that no two cells of
the rectangle covary. Non-covarying incremen-
tal losses within an exposure period imply co-
varying cumulative losses. For example, the co-
variance of cumulative losses at 48 months with
those at 24 months in terms of 12-month incre-
mental error terms is:

Cov[e12 + e24 + e36 + e48,e12 + e24]

= Cov[e12 + e24,e12 + e24]

+Cov[e36 + e48,e12 + e24]

= Cov[e12 + e24,e12 + e24]+ 0

= Var[e12 + e24]:

The covariance of two intraperiod cumulative
losses equals the variance of the earlier cumu-
lative loss. Devising a variance for incremental
losses whose cumulative variance is zero off the
diagonal is no more than a mathematical chal-
lenge; it is quite unrealistic. To avail ourselves
of the simplicity of homo- and heteroskedastic
models, we must model incremental losses, not
cumulative. Incremental losses may indeed co-
vary; but non-covariance will be our default as-
sumption, an assumption that is testable.19

The exposure of the ith exposure period is »i,
e.g., car-years, insured value, sales, or payroll.
For the examples here, the aij factors will be
unity; however, they allow the modeler to ad-
just, or to index, the exposures, much as Stanard
[15, p. 128] did with Butsic’s inflation model.
Perhaps the awareness that losses as proxies im-
pound a simple accident-date inflation lent cre-
dence to the CL model. However, this benefit
does not validate the use of a proxy when the
true variable is available; nor is this a benefit in
the more complicated situations. Actuaries have
done their homework when they explicitly calcu-
late and apply the adjustments–not only to the
observed part of the triangle, but also and espe-
cially to the future part.
Considerable thought should be given to the

variance relativities Áij . Most basically, they
should be proportional to exposure. But they
should be quadratic to the adjustment factors.
Moreover, though our examples will ignore it,
models should recognize that, per unit of expo-
sure, some development stages are more volatile
than others. If Àj denotes the variance in stage

19The most common test for (auto)correlation is the Durbin-
Watson. Halliwell [8] has made a start at autocorrelated variance
structures, according to which an error term in one increment cor-
relates (positively or negatively) with the other incremental er-
ror terms. Another variance structure, one which considers infla-
tion, provides for covariance between incremental losses of the
same calendar periods. Barnett and Zehnwirth [2, p. 294] side with
incremental-loss models for an empirical reason: “: : : for most real
loss development arrays, ELRF analysis indicates that the data were
generated incrementally.”
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j per unit of exposure, a reasonable formula is
Áij = a

2
ij»iÀj . Fortunately, however, less depends

on the variance structure than on the design; an
inexact or even an improper variance structure
detracts from the optimality (“bestness”–the
“B” in BLUE20) of the predictions, but not from
the unbiasedness.
The equation yij = (aij»i)¯j + eij specifies the

additive model, the fourth of Stanard’s models.
The parameter ¯j represents the pure premium of
the jth development stage. This would be the raw
input to pricing a policy that covered the portion
of incurred loss that emerges in the jth develop-
ment stage. Perhaps not a marketable idea, it has
theoretical value inasmuch as an ordinary pol-
icy could be synthesized from non-overlapping
policies that cover all the time after inception.
The additive method is the most flexible of

the standard methods; it presumes the least in-
formation about the loss development and hence
has the greatest parameter variance. But if one
knew what fraction of loss developed at each
stage (fj , which sum to unity),21 one could ex-
press ¯j as fj¯. The model would then be yij =
(aij»ifj)¯+ eij , and only one parameter, ¯, the
whole pure premium, would be estimated. This
statistical model corresponds to the Stanard-
Bühlmann, or Cape-Cod, method, the third of
Stanard’smethods.22 Presumingmore knowledge
of the loss development and consequently reduc-
ing the number of parameters to just one, this
model’s parameter variance is less than that of
the additive model.

20BLUE stands for “Best Linear Unbiased Estimation.” See Ap-
pendix B.
21Such knowledge resides in collateral data sources. For example,
many insurance companies, rating bureaus, and consulting firms
compile “development factor” databases.
22The correspondence is not exact in that the method is applied only
to the latest diagonal of the cumulative triangle, whereas the model
applies to whole triangle of incremental losses. The model makes
more use of the data than does the method. Feldblum’s paper [6] on
this method can be read appreciatively and profitably, provided that
one recognize its limitations, viz., that it is method-oriented (deter-
ministic) and that it finds no fault with the chain-ladder method
and ignores the additive method.

Table 3. Continuum of standard models

y= (X)(¯) + e

yij = (aij»i)(¯j Ã fj¯) + eij Additive

yij = (aij»ifj)(¯) + eij Stanard-Bühlmann
P
fj = 1

yij = (aij»ifj¯)(1)+ eij Bornhuetter-Ferguson

If one knows not only the relativities of the
loss-development pattern (i.e., the fj factors),
but also the magnitude of it (i.e., the whole
pure premium ¯),23 one reduces to the Born-
huetter-Ferguson model yij = (aij»i¯j) ¢ 1+ eij =
(aij»ifj¯) ¢ 1+ eij , Stanard’s second method. This
is a “high-information” model in which no pa-
rameters are estimated; hence, its predictions
have no parameter variance. At most, one esti-
mates the variance magnitude ¾2, and derives the
process variances ¾̂2Áij .
Table 3 shows the continuity of these three

models in descending order of parameter com-
plexity. The descending complexity appears in
the leftward movement of variables from the pa-
rameter vector (¯) to the design matrix (X). Fi-
nally, we will illustrate these models on the Bro-
sius triangle.

8. Standard models of the Brosius
triangle

In Exhibit 6 we have readied the information
for the three models. The Brosius triangle has
seven accident years and five development stages
for a total of 35 cells. The observations form an
upper-left trapezoid of 25 cells; the predictions
form a lower-right triangle of 10 cells. These
two regions are the two boxes of the exhibit,
whose rows are indexed by AY and Age. For lack
of anything better, earned premium will serve
as our exposure »i. Losses yij are here incre-
mentalized from the cumulative format of

23The left hand of reserving could receive this information from the
right hand of ratemaking or underwriting. Many reinsurers reserve
some of their liabilities with loss-ratio “picks” and development
patterns. This constitutes the Bornhuetter-Ferguson method, whose
namesakes were reinsurance actuaries.
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Exhibit 1. As mentioned in the previous section,
all exposure and variance-relativity adjustments,
aij and Àj , are unity for the sake of simplic-
ity. The next column contains the adjusted ex-
posures aij»i, which form the design matrix of
the additive model. The following column equals
Áij = a

2
ij»iÀj , which we above claimed as a rea-

sonable formula for variance relativity. These rel-
ativities will be used in all three models. The
rightmost two columns contain the elements of
the design matrices of the Stanard-Bühlmann and
Bornhuetter-Ferguson models, as per the formu-
las of Table 3. However, the fj factors and the
overall “pure premium” (more accurately here,
“loss ratio”) ¯, were borrowed from the additive
solution ¯ in Exhibit 7A. Therefore, the predic-
tions from all three models must be the same;
only the prediction-error variances will differ.
Exhibit 7A models the 25 observations (y) ac-

cording to the additive design (X). Because the
additive model has five parameters, the additive
entries of Exhibit 6 must be slotted into the
proper columns, as determined by the Age in-
dex (i.e., [0—]12 months slots into the first col-
umn, [12—]24 months into the second, etc.). The
“©” column is the main diagonal of a (25£ 25)
matrix of variance relativities; but in Excel it is
just easier to treat it as a column and to multiply
element-wise instead of matrix-wise.
Below these matrices are intermediate calcula-

tions that lead to the estimator ˆ̄ = (X 0©¡1X)¡1

¢X 0©¡1y. This is the estimator of Appendix B,
but it has been modified for heteroskedasticity
(i.e., © 6= I). Appendix C shows a particular in-
stance of this modification. The formula for
“Var[¯]” is ¾2(X 0©¡1X)¡1, the square root of
whose diagonal is “Std[¯].” Thus we estimate
probabilistically ¯12 as 0:043§ 0:029.
Let M be the (25£ 3) matrix whose columns

are y, X¯, and e (the observed, fitted, and resid-
ual values). The “sums-of-squares-and-cross-
products” (SSCP) matrix is M 0©¡1M . If a pa-
rameter is fit, the diagonal elements of this ma-

trix satisfy the equation m11 =m22 +m33. A rho-
square statistic (without intercept) based on this
equation allows us to say that this model explains
69.7% of what was observed. Finally,

¾̂2 =
m33
t¡ k =

(y¡X ˆ̄ )0©¡1(y¡X ˆ̄ )
t¡ k

is the estimator for the scale of the variances;
it is just the formula of Appendix B adjusted
for heteroskedasticity (©¡1). The formula for the
standardized residuals, Std[e],24 is e=

p
¾2©.

Standardized results outside the range [¡2,2]
may indicate model deficiencies.
Exhibit 7B applies this solution to the pre-

diction of the 10 cells of the lower-right trian-
gle. The design of the prediction is the (10£ 5)
matrix Xp. The expectation of the prediction is
E[yp] = Xp

ˆ̄ . Again, the “©” column is the main
diagonal of a (10£ 10) matrix of variance rela-
tivities. The formula for the prediction-error vari-
ance, i.e., for Var[yp¡E[yp]], is XpVar[ ˆ̄ ]X 0p+
¾2©, whose two terms respectively are the pa-
rameter and the process variance. We summa-
rized the Xp matrix by accident year, since the
exhibit more easily accommodates (4£ 4) matri-
ces than (10£ 10). All future “Age” values in the
summarization are labeled “IBNR.”
A powerful feature of the linear statistical

model is that the best linear unbiased estima-
tor (BLUE) of a linear combination of a random
vector is the linear combination of the BLUE of
the vector, i.e., BLUE[Ay] = A BLUE[y]. So the
formula XpVar[

ˆ̄ ]X 0p+¾2© holds true, whether
Xp and © are summarized or not. Both parts of
the total prediction-error variance utilize the
estimator ¾̂2. The square root of the diagonal
of this variance matrix (the “Std” column) is
the prediction-error standard deviation by acci-
dent year. Hence, this method probabilistically
estimates AY 1991 IBNR as $5,196,558
§$1,954,838. The variance of the AY 1988—1991

24To be precise, we should use Std[ê], whose formula is derived in
Halliwell [8, Appendix D].
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Table 4. Summary of model predictions (Exhibits 7–9)

BF Model SB Model Additive Model

AY E[yp] Std[Pred] E[yp] Std[Pred] E[yp] Std[Pred]

1988 IBNR 770,164 601,298 770,164 622,379 770,164 824,468
1989 IBNR 1,582,078 931,518 1,582,078 974,250 1,582,078 1,277,014
1990 IBNR 2,501,198 1,210,602 2,501,198 1,280,547 2,501,198 1,649,700
1991 IBNR 5,196,558 1,448,683 5,196,558 1,635,443 5,196,558 1,954,838

Total IBNR 10,049,998 2,189,412 10,049,998 2,611,616 10,049,998 3,890,789

total is the sum of all the elements of the total
prediction-error variance; hence the total IBNR
is $10,049,998§ $3,890,789.
Exhibits 8A and 8B solve and predict accord-

ing to the Stanard-Bühlmann model. This model
has only one parameter; hence, the “SB” col-
umn of Exhibit 6 is the (25£ 1) design matrix
X. The Bornhuetter-Ferguson (BF) model of Ex-
hibits 9A and 9B seems to have one parameter;
but in reality, it is set to unity, which is why the
betas of Exhibit 9A are not in the bold font in-
dicative of random variables, why the rho-square
statistic is not applicable,25 and why the variance
of the parameter is zero. Hence, the BF parame-
ter variance in Exhibit 9B is zero.
Table 4 compares the accident-year IBNR re-

sults of the three models. As mentioned above,
because the fj factors and the overall ¯ were bor-
rowed from the additive solution ¯, the models
yield the same expected results. But the table il-
lustrates the increasing prediction-error variance,
primarily due to the progression of parameters
from zero, to one, and then to five.26

9. Conclusion

Is the chain-ladder method biased? In Section
2 we found the pioneering work of James Sta-
nard suggestive of an answer, but not conclusive.
In the next two sections we created a diagnostic
tool and learned how the CL method behaves

25Only our borrowing the additive solution keeps the SSCP matrix
invariant; realistically, m11 would not equal the sum of m22 and
m33.
26Consequently, the M and SSCP matrices of the three models are
identical. But the estimates for ¾2 differ because of the degrees of
freedom. So increasing process variance is a secondary reason.

when regression lines refuse to pass through the
origin. We discovered that regression toward the
mean, coupled with business expansion, biases
the CL method to overpredict. Next, in Section
5, Galton showed us that regression toward the
mean is symptomatic of proxy variables. The fol-
lowing section reinforced this insight from the
actuarial perspective of credibility. From all this
we conclude that the chain-ladder method is bi-
ased. The bias most commonly takes the form
of regression toward the mean, which indicates
that earlier losses are serving as proxies for expo-
sure–and the poorer the proxy, the more biased
the method. The lesson to be learned from chain-
ladder bias, or its meaning for us, is that loss-
development models, in addition to being rea-
sonable and empirically tested, should be free
of proxy variables as much as possible. In Sec-
tions 7 and 8 we reformulated the Bornhuetter-
Ferguson, Stanard-Bühlmann, and additive meth-
ods as a continuum of exposure-based loss-
development models. It was because of this well-
chosen base that Stanard found their performance
superior to that of the chain-ladder method.
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Appendix A

Exhibit 1. Brosius, “loss development using credibility,” from [4], p. 16

Cumulative Case-Incurred Losses
AY @12 @24 @36 @48 @60 EarnPrem

1985 102,000 104,000 209,000 650,000 847,000 4,260,000
1986 0 543,000 1,309,000 2,443,000 3,033,000 5,563,000
1987 412,000 2,310,000 3,083,000 3,358,000 4,099,000 7,777,000
1988 219,000 763,000 1,637,000 1,423,000 8,871,000
1989 969,000 4,090,000 3,801,000 10,645,000
1990 0 3,467,000 11,986,000
1991 932,000 12,873,000

Link Ratios
AY 24/12 36/24 48/36 60/48

1985 1.020 2.010 3.110 1.303
1986 #DIV/0! 2.411 1.866 1.242
1987 5.607 1.335 1.089 1.221
1988 3.484 2.145 0.869
1989 4.221 0.929
1990 #DIV/0!

Avg 6.626 1.285 1.262 1.237

Chain-Ladder Projections
AY @12 @24 @36 @48 @60

1985 102,000 104,000 209,000 650,000 847,000
1986 0 543,000 1,309,000 2,443,000 3,033,000
1987 412,000 2,310,000 3,083,000 3,358,000 4,099,000
1988 219,000 763,000 1,637,000 1,423,000 1,760,055
1989 969,000 4,090,000 3,801,000 4,797,864 5,934,298
1990 0 3,467,000 4,456,493 5,625,269 6,957,684
1991 932,000 6,175,184 7,937,603 10,019,347 12,392,554
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Exhibit 2. Schedule P–Part D–Workers’ Compensation
Cumulative paid net losses and defence and cost containment expenses
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Exhibit 3. Schedule P–Part F–Section 2–Medical Malpractice–Claims-Made
Cumulative paid net losses and defence and cost containment expenses
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Exhibit 4. Schedule P–Part R–Section 1–Products Liability–Occurrence
Cumulative case-incurred net losses and defence and cost containment expenses
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Exhibit 5. 12-24 diagnosis of the Brosius triangle

AY 1 x y xx xy Residuals
1985 1 102,000 104,000 1.040E+10 1.061E+10 ¡1,272,735
1986 1 543,000 ¡551,448
1987 1 412,000 2,310,000 1.697E+11 9.517E+11 75,336
1988 1 219,000 763,000 4.796E+10 1.671E+11 ¡937,534
1989 1 969,000 4,090,000 9.390E+11 3.963E+12 313,829
1990 1 3,467,000 2,372,552
1991

Total 6 1,702,000 11,277,000 1.167E+12 5.093E+12 df 4
Avg 1 283,667 1,879,500 1.945E+11 8.488E+11 ¾2 2.134E+12

Two-Parameter Normal Equations
1 283,667 ¯0 = 1,879,500

283,667 1.945E+11 ¯1 8.488E+11
Std[¯] t-stat

¯0 = 1,094,448 778,859 1.41
¯1 2.768 1.766 1.57

Inv X 0X
0.28426185 ¡4.1455E-07
¡4.1455E-07 1.46141E-12
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Exhibit 6. Information for the Brosius models

AY Age Premium Incr Loss adjust adjust Additive SB BF
i j »i yij aij Àj aij»i Áij aij»ifj aij »ifj¯

1985 12 4,260,000 102,000 1.000 1.000 4,260,000 4,260,000 405,788 181,054
1985 24 4,260,000 2,000 1.000 1.000 4,260,000 4,260,000 1,861,827 830,710
1985 36 4,260,000 105,000 1.000 1.000 4,260,000 4,260,000 573,388 255,834
1985 48 4,260,000 441,000 1.000 1.000 4,260,000 4,260,000 590,082 263,283
1985 60 4,260,000 197,000 1.000 1.000 4,260,000 4,260,000 828,916 369,845
1986 12 5,563,000 0 1.000 1.000 5,563,000 5,563,000 529,905 236,433
1986 24 5,563,000 543,000 1.000 1.000 5,563,000 5,563,000 2,431,301 1,084,797
1986 36 5,563,000 766,000 1.000 1.000 5,563,000 5,563,000 748,769 334,086
1986 48 5,563,000 1,134,000 1.000 1.000 5,563,000 5,563,000 770,570 343,813
1986 60 5,563,000 590,000 1.000 1.000 5,563,000 5,563,000 1,082,455 482,970
1987 12 7,777,000 412,000 1.000 1.000 7,777,000 7,777,000 740,801 330,530
1987 24 7,777,000 1,898,000 1.000 1.000 7,777,000 7,777,000 3,398,926 1,516,532
1987 36 7,777,000 773,000 1.000 1.000 7,777,000 7,777,000 1,046,769 467,047
1987 48 7,777,000 275,000 1.000 1.000 7,777,000 7,777,000 1,077,246 480,646
1987 60 7,777,000 741,000 1.000 1.000 7,777,000 7,777,000 1,513,257 675,185
1988 12 8,871,000 219,000 1.000 1.000 8,871,000 8,871,000 845,010 377,026
1988 24 8,871,000 544,000 1.000 1.000 8,871,000 8,871,000 3,877,057 1,729,865
1988 36 8,871,000 874,000 1.000 1.000 8,871,000 8,871,000 1,194,020 532,748
1988 48 8,871,000 ¡214,000 1.000 1.000 8,871,000 8,871,000 1,228,784 548,259
1989 12 10,645,000 969,000 1.000 1.000 10,645,000 10,645,000 1,013,993 452,423
1989 24 10,645,000 3,121,000 1.000 1.000 10,645,000 10,645,000 4,652,381 2,075,799
1989 36 10,645,000 ¡289,000 1.000 1.000 10,645,000 10,645,000 1,432,797 639,285
1990 12 11,986,000 0 1.000 1.000 11,986,000 11,986,000 1,141,730 509,417
1990 24 11,986,000 3,467,000 1.000 1.000 11,986,000 11,986,000 5,238,463 2,337,297
1991 12 12,873,000 932,000 1.000 1.000 12,873,000 12,873,000 1,226,222 547,115

1988 60 8,871,000 1.000 1.000 8,871,000 8,871,000 1,726,129 770,164
1989 48 10,645,000 1.000 1.000 10,645,000 10,645,000 1,474,513 657,898
1989 60 10,645,000 1.000 1.000 10,645,000 10,645,000 2,071,316 924,180
1990 36 11,986,000 1.000 1.000 11,986,000 11,986,000 1,613,293 719,819
1990 48 11,986,000 1.000 1.000 11,986,000 11,986,000 1,660,264 740,777
1990 60 11,986,000 1.000 1.000 11,986,000 11,986,000 2,332,249 1,040,603
1991 24 12,873,000 1.000 1.000 12,873,000 12,873,000 5,626,125 2,510,264
1991 36 12,873,000 1.000 1.000 12,873,000 12,873,000 1,732,681 773,088
1991 48 12,873,000 1.000 1.000 12,873,000 12,873,000 1,783,129 795,596
1991 60 12,873,000 1.000 1.000 12,873,000 12,873,000 2,504,843 1,117,610

SB Information BF Information
f12 0.095 ¯ 44.6%
f24 0.437
f36 0.135
f48 0.139
f60 0.195

Total 1.000
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Exhibit 7A. Additive model with solution

AY Age y X © y X¯ e Std[e]
1985 12 102,000 4,260,000 0 0 0 0 4,260,000 102,000 181,054 ¡79,054 ¡0:17
1985 24 2,000 0 4,260,000 0 0 0 4,260,000 2,000 830,710 ¡828,710 ¡1:78
1985 36 105,000 0 0 4,260,000 0 0 4,260,000 105,000 255,834 ¡150,834 ¡0:32
1985 48 441,000 0 0 0 4,260,000 0 4,260,000 441,000 263,283 177,717 0.38
1985 60 197,000 0 0 0 0 4,260,000 4,260,000 197,000 369,845 ¡172,845 ¡0:37
1986 12 0 5,563,000 0 0 0 0 5,563,000 0 236,433 ¡236,433 ¡0:44
1986 24 543,000 0 5,563,000 0 0 0 5,563,000 543,000 1,084,797 ¡541,797 ¡1:02
1986 36 766,000 0 0 5,563,000 0 0 5,563,000 766,000 334,086 431,914 0.81
1986 48 1,134,000 0 0 0 5,563,000 0 5,563,000 1,134,000 343,813 790,187 1.48
1986 60 590,000 0 0 0 0 5,563,000 5,563,000 590,000 482,970 107,030 0.20
1987 12 412,000 7,777,000 0 0 0 0 7,777,000 412,000 330,530 81,470 0.13
1987 24 1,898,000 0 7,777,000 0 0 0 7,777,000 1,898,000 1,516,532 381,468 0.61
1987 36 773,000 0 0 7,777,000 0 0 7,777,000 773,000 467,047 305,953 0.49
1987 48 275,000 0 0 0 7,777,000 0 7,777,000 275,000 480,646 ¡205,646 ¡0:33
1987 60 741,000 0 0 0 0 7,777,000 7,777,000 741,000 675,185 65,815 0.10
1988 12 219,000 8,871,000 0 0 0 0 8,871,000 219,000 377,026 ¡158,026 ¡0:24
1988 24 544,000 0 8,871,000 0 0 0 8,871,000 544,000 1,729,865 ¡1,185,865 ¡1:76
1988 36 874,000 0 0 8,871,000 0 0 8,871,000 874,000 532,748 341,252 0.51
1988 48 ¡214,000 0 0 0 8,871,000 0 8,871,000 ¡214,000 548,259 ¡762,259 ¡1:13
1989 12 969,000 10,645,000 0 0 0 0 10,645,000 969,000 452,423 516,577 0.70
1989 24 3,121,000 0 10,645,000 0 0 0 10,645,000 3,121,000 2,075,799 1,045,201 1.42
1989 36 ¡289,000 0 0 10,645,000 0 0 10,645,000 ¡289,000 639,285 ¡928,285 ¡1:26
1990 12 0 11,986,000 0 0 0 0 11,986,000 0 509,417 ¡509,417 ¡0:65
1990 24 3,467,000 0 11,986,000 0 0 0 11,986,000 3,467,000 2,337,297 1,129,703 1.45
1991 12 932,000 12,873,000 0 0 0 0 12,873,000 932,000 547,115 384,885 0.48

X 0©¡1y X 0©¡1X SSCP
2,634,000 61975000 0 0 0 0 3365661.6 2346725.299 1018936.301
9,575,000 0 49102000 0 0 0 2346725.299 2346725.299 1.09139E-10
2,229,000 0 0 37116000 0 0 1018936.301 2.00089E-11 1018936.301
1,636,000 0 0 0 26471000 0
1,528,000 0 0 0 0 17600000 100.0% 69.7% 30.3%

¯ (X 0©¡1X)¡1

0.043 1.61355E-08 0 0 0 0 t 25
0.195 0 2.03658E-08 0 0 0 k 5
0.060 0 0 2.69426E-08 0 0 df 20
0.062 0 0 0 3.77772E-08 0 ¾2 50946.81507
0.087 0 0 0 0 5.68182E-08

Std[¯] Var[¯]
0.029 0.000822054 0 0 0 0
0.032 0 0.001037571 0 0 0
0.037 0 0 0.001372638 0 0
0.044 0 0 0 0.001924628 0
0.054 0 0 0 0 0.002894705
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Exhibit 7B. Additive model predictions

AY Age E[yp] Xp ©

1988 60 770,164 0 0 0 0 8,871,000 8,871,000
1989 48 657,898 0 0 0 10,645,000 0 10,645,000
1989 60 924,180 0 0 0 0 10,645,000 10,645,000
1990 36 719,819 0 0 11,986,000 0 0 11,986,000
1990 48 740,777 0 0 0 11,986,000 0 11,986,000
1990 60 1,040,603 0 0 0 0 11,986,000 11,986,000
1991 24 2,510,264 0 12,873,000 0 0 0 12,873,000
1991 36 773,088 0 0 12,873,000 0 0 12,873,000
1991 48 795,596 0 0 0 12,873,000 0 12,873,000
1991 60 1,117,610 0 0 0 0 12,873,000 12,873,000

AY Summarized by AY
1988 IBNR 770,164 0 0 0 0 8,871,000 8,871,000
1989 IBNR 1,582,078 0 0 0 10,645,000 10,645,000 21,290,000
1990 IBNR 2,501,198 0 0 11,986,000 11,986,000 11,986,000 35,958,000
1991 IBNR 5,196,558 0 12,873,000 12,873,000 12,873,000 12,873,000 51,492,000

Total IBNR 10,049,998

AY Std Total Prediction-Error Variance
1988 IBNR 824,468 6.797E+11 2.734E+11 3.078E+11 3.306E+11
1989 IBNR 1,277,014 2.734E+11 1.631E+12 6.149E+11 6.604E+11
1990 IBNR 1,649,700 3.078E+11 6.149E+11 2.722E+12 9.554E+11
1991 IBNR 1,954,838 3.306E+11 6.604E+11 9.554E+11 3.821E+12

Total IBNR 3,890,789

Parameter Variance
2.278E+11 2.734E+11 3.078E+11 3.306E+11
2.734E+11 5.461E+11 6.149E+11 6.604E+11
3.078E+11 6.149E+11 8.896E+11 9.554E+11
3.306E+11 6.604E+11 9.554E+11 1.198E+12

Process Variance
4.519E+11

1.085E+12
1.832E+12

2.623E+12
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Exhibit 8A. Stanard-Bühlmann model with solution

AY Age y X © y X¯ e Std[e]
1985 12 102,000 405,788 4,260,000 102,000 181,054 ¡79,054 ¡0:19
1985 24 2,000 1,861,827 4,260,000 2,000 830,710 ¡828,710 ¡1:95
1985 36 105,000 573,388 4,260,000 105,000 255,834 ¡150,834 ¡0:35
1985 48 441,000 590,082 4,260,000 441,000 263,283 177,717 0.42
1985 60 197,000 828,916 4,260,000 197,000 369,845 ¡172,845 ¡0:41
1986 12 0 529,905 5,563,000 0 236,433 ¡236,433 ¡0:49
1986 24 543,000 2,431,301 5,563,000 543,000 1,084,797 ¡541,797 ¡1:11
1986 36 766,000 748,769 5,563,000 766,000 334,086 431,914 0.89
1986 48 1,134,000 770,570 5,563,000 1,134,000 343,813 790,187 1.63
1986 60 590,000 1,082,455 5,563,000 590,000 482,970 107,030 0.22
1987 12 412,000 740,801 7,777,000 412,000 330,530 81,470 0.14
1987 24 1,898,000 3,398,926 7,777,000 1,898,000 1,516,532 381,468 0.66
1987 36 773,000 1,046,769 7,777,000 773,000 467,047 305,953 0.53
1987 48 275,000 1,077,246 7,777,000 275,000 480,646 ¡205,646 ¡0:36
1987 60 741,000 1,513,257 7,777,000 741,000 675,185 65,815 0.11
1988 12 219,000 845,010 8,871,000 219,000 377,026 ¡158,026 ¡0:26
1988 24 544,000 3,877,057 8,871,000 544,000 1,729,865 ¡1,185,865 ¡1:93
1988 36 874,000 1,194,020 8,871,000 874,000 532,748 341,252 0.56
1988 48 ¡214,000 1,228,784 8,871,000 ¡214,000 548,259 ¡762,259 ¡1:24
1989 12 969,000 1,013,993 10,645,000 969,000 452,423 516,577 0.77
1989 24 3,121,000 4,652,381 10,645,000 3,121,000 2,075,799 1,045,201 1.55
1989 36 ¡289,000 1,432,797 10,645,000 ¡289,000 639,285 ¡928,285 ¡1:38
1990 12 0 1,141,730 11,986,000 0 509,417 ¡509,417 ¡0:71
1990 24 3,467,000 5,238,463 11,986,000 3,467,000 2,337,297 1,129,703 1.58
1991 12 932,000 1,226,222 12,873,000 932,000 547,115 384,885 0.52

X 0©¡1y X 0©¡1X SSCP
5,259,595 11788058.91 3365661.6 2346725.299 1018936.301

2346725.299 2346725.299 -9.82254E-11
¯ (X 0©¡1X)¡1 1018936.301 -1.2551E-10 1018936.301

0.446 8.48316E-08
100.0% 69.7% 30.3%

Std[¯] Var[¯]
0.060 0.003601584 t 25

k 1
df 24
¾2 42455.67923
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Exhibit 8B. Stanard-Bühlmann predictions

AY Age E[yp] Xp ©

1988 60 770,164 1,726,129 8,871,000
1989 48 657,898 1,474,513 10,645,000
1989 60 924,180 2,071,316 10,645,000
1990 36 719,819 1,613,293 11,986,000
1990 48 740,777 1,660,264 11,986,000
1990 60 1,040,603 2,332,249 11,986,000
1991 24 2,510,264 5,626,125 12,873,000
1991 36 773,088 1,732,681 12,873,000
1991 48 795,596 1,783,129 12,873,000
1991 60 1,117,610 2,504,843 12,873,000

AY Summarized by AY
1988 IBNR 770,164 1,726,129 8,871,000
1989 IBNR 1,582,078 3,545,829 21,290,000
1990 IBNR 2,501,198 5,605,807 35,958,000
1991 IBNR 5,196,558 11,646,778 51,492,000

Total IBNR 10,049,998

AY Std Total Prediction-Error Variance
1988 IBNR 622,379 3.874E+11 2.204E+10 3.485E+10 7.241E+10
1989 IBNR 974,250 2.204E+10 9.492E+11 7.159E+10 1.487E+11
1990 IBNR 1,280,547 3.485E+10 7.159E+10 1.640E+12 2.351E+11
1991 IBNR 1,635,443 7.241E+10 1.487E+11 2.351E+11 2.675E+12

Total IBNR 2,611,616

Parameter Variance
1.073E+10 2.204E+10 3.485E+10 7.241E+10
2.204E+10 4.528E+10 7.159E+10 1.487E+11
3.485E+10 7.159E+10 1.132E+11 2.351E+11
7.241E+10 1.487E+11 2.351E+11 4.885E+11

Process Variance
3.766E+11

9.039E+11
1.527E+12

2.186E+12
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Exhibit 9A. Bornhuetter-Ferguson model with solution

AY Age y X © y X¯ e Std[e]
1985 12 102,000 181,054 4,260,000 102,000 181,054 ¡79,054 ¡0:19
1985 24 2,000 830,710 4,260,000 2,000 830,710 ¡828,710 ¡1:99
1985 36 105,000 255,834 4,260,000 105,000 255,834 ¡150,834 ¡0:36
1985 48 441,000 263,283 4,260,000 441,000 263,283 177,717 0.43
1985 60 197,000 369,845 4,260,000 197,000 369,845 ¡172,845 ¡0:41
1986 12 0 236,433 5,563,000 0 236,433 ¡236,433 ¡0:50
1986 24 543,000 1,084,797 5,563,000 543,000 1,084,797 ¡541,797 ¡1:14
1986 36 766,000 334,086 5,563,000 766,000 334,086 431,914 0.91
1986 48 1,134,000 343,813 5,563,000 1,134,000 343,813 790,187 1.66
1986 60 590,000 482,970 5,563,000 590,000 482,970 107,030 0.22
1987 12 412,000 330,530 7,777,000 412,000 330,530 81,470 0.14
1987 24 1,898,000 1,516,532 7,777,000 1,898,000 1,516,532 381,468 0.68
1987 36 773,000 467,047 7,777,000 773,000 467,047 305,953 0.54
1987 48 275,000 480,646 7,777,000 275,000 480,646 ¡205,646 ¡0:37
1987 60 741,000 675,185 7,777,000 741,000 675,185 65,815 0.12
1988 12 219,000 377,026 8,871,000 219,000 377,026 ¡158,026 ¡0:26
1988 24 544,000 1,729,865 8,871,000 544,000 1,729,865 ¡1,185,865 ¡1:97
1988 36 874,000 532,748 8,871,000 874,000 532,748 341,252 0.57
1988 48 ¡214,000 548,259 8,871,000 ¡214,000 548,259 ¡762,259 ¡1:27
1989 12 969,000 452,423 10,645,000 969,000 452,423 516,577 0.78
1989 24 3,121,000 2,075,799 10,645,000 3,121,000 2,075,799 1,045,201 1.59
1989 36 ¡289,000 639,285 10,645,000 ¡289,000 639,285 ¡928,285 ¡1:41
1990 12 0 509,417 11,986,000 0 509,417 ¡509,417 ¡0:73
1990 24 3,467,000 2,337,297 11,986,000 3,467,000 2,337,297 1,129,703 1.62
1991 12 932,000 547,115 12,873,000 932,000 547,115 384,885 0.53

X 0©¡1y X 0©¡1X SSCP
2,346,725 2346725.299 3365661.6 2346725.299 1018936.301

2346725.299 2346725.299 -9.82254E-11
¯ (X 0©¡1X)¡1 1018936.301 -1.2551E-10 1018936.301

1.000 4.26126E-07
NA NA NA

Std[¯] Var[¯]
0.000 0 t 25

k 0
df 25
¾2 40757.45206
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Exhibit 9B. Bornhuetter-Ferguson predictions

AY Age E[yp] Xp ©

1988 60 770,164 770,164 8,871,000
1989 48 657,898 657,898 10,645,000
1989 60 924,180 924,180 10,645,000
1990 36 719,819 719,819 11,986,000
1990 48 740,777 740,777 11,986,000
1990 60 1,040,603 1,040,603 11,986,000
1991 24 2,510,264 2,510,264 12,873,000
1991 36 773,088 773,088 12,873,000
1991 48 795,596 795,596 12,873,000
1991 60 1,117,610 1,117,610 12,873,000

AY Summarized by AY
1988 IBNR 770,164 770,164 8,871,000
1989 IBNR 1,582,078 1,582,078 21,290,000
1990 IBNR 2,501,198 2,501,198 35,958,000
1991 IBNR 5,196,558 5,196,558 51,492,000

Total IBNR 10,049,998

AY Std Total Prediction-Error Variance
1988 IBNR 601,298 3.616E+11 0.000E+00 0.000E+00 0.000E+00
1989 IBNR 931,518 0.000E+00 8.677E+11 0.000E+00 0.000E+00
1990 IBNR 1,210,602 0.000E+00 0.000E+00 1.466E+12 0.000E+00
1991 IBNR 1,448,683 0.000E+00 0.000E+00 0.000E+00 2.099E+12

Total IBNR 2,189,412

Parameter Variance
0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00

Process Variance
3.616E+11

8.677E+11
1.466E+12

2.099E+12
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Appendix B. The theory of the
linear statistical model27

The equation of the linear statistical model is
y= X¯+ e. The (t£ 1) random vector y is the de-
pendent variable; it contains the t observations.
The (t£ k) matrix X is the “design” matrix; each
of its k columns is an independent variable. The
number of observations must at least equal the
number of columns, and the columns must be lin-
early independent. The (k£ 1) “parameter” vec-
tor ¯ contains coefficients of the independent
variables, because X¯ = X:1¯1 + ¢ ¢ ¢+X:k¯k. The
(t£ 1) random vector e is the source of the ran-
domness of the observations. Its mean is zero,
and in this appendix we will assume the sim-
ple case of homoskedasticity: Var[e] = ¾2I(t£t). It
is important to understand that ¯ is not a ran-
dom vector. If all the error terms were zero (i.e.,
¾2 = 0), we would have t simultaneous equations
in k variables. Since y is observed, the equa-
tions would have to be consistent, and the same
¯ could be determined from any k of the t equa-
tions. However, the errors are not zero, thereby
obscuring ¯. So ¯ is a constant; owing to the
presence of the randomness in the observations
we cannot solve for ¯. Rather, we must estimate
it, and it is the estimator that is the random vari-
able.
The estimator for ¯ of the linear statistical

model is linear in y; in symbols, ˜̄ =W(k£t)y. The
goal is to determine a suitable matrix W. First,
we want an unbiased estimator, i.e, one whose
expected value is ¯. But the expected value of
the estimator is:

E[ ˜̄ ] = E[Wy]

=WE[y]

=WE[X¯+ e]

=WE[X¯]

=WX¯:

27To supplement this brief account we recommend the treatments
in Chapter 5 and Appendix A of Judge et al. [10], Chapter 3 of
Kennedy [11], Appendix A of Halliwell [8], and Appendix A of
Barnett and Zehnwirth [2].

Unbiasedness limits our search to matrices W
such that WX = I(k£k), such matrices being
known as “left-inverses” of X. When t > k the set
of left inverses is infinite, but the simplest left in-
verse is (X 0X)¡1X 0.28 So we define the particular
estimator ˆ̄ = (X 0X)¡1X 0y.
Second, of all unbiased estimators of ¯, we

want the best one, or the one with the smallest
variance. The following derivation of variance
uses the rule Var[We] =WVar[e]W0, the multi-
variate equivalent of the familiar scalar rule
Var[ax] = a2Var[x]:

Var[ ˜̄ ] = E[Wy]

=WVar[y]W0

=WVar[X¯+ e]W0

=WVar[e]W0

=W(¾2I(t£t))W
0

= ¾2WW0:

Note that this derivation employs the assumption
of homoskedastic variance. The variance of the
particular estimator is:

Var[ ˆ̄ ] = ¾2f(X 0X)¡1X 0gf(X 0X)¡1X 0g0

= ¾2(X 0X)¡1X 0X(X 0X)¡1

= ¾2(X 0X)¡1:

We prove that the particular estimator is best
(the Gauss-Markov theorem) by expressing the
variance of the general estimator as the sum of
the variance of the particular estimator and some
other variance matrix:

Var[ ˜̄ ] = ¾2WW0

= ¾2(X 0X)¡1 +¾2WW0 ¡¾2(X 0X)¡1

= Var[ ˆ̄ ] +¾2(WW0 ¡ (X 0X)¡1)
= Var[ ˆ̄ ] +¾2(WW0 ¡ (X 0X)¡1

¡ (X 0X)¡1 + (X 0X)¡1)

28The requirement that the columns of X be linearly independent
ensures the existence of the inverse of the (k£ k) matrix X 0X. If X
is square (i.e., t = k), (X 0X)¡1X 0, along with all other left inverses,
simplifies to X¡1.
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= Var[ ˆ̄ ]+¾2(WW0 ¡ I(k£k)(X 0X)¡1

¡ (X 0X)¡1I(k£k) + (X 0X)¡1I(k£k))
= Var[ ˆ̄ ]+¾2(WW0 ¡WX(X 0X)¡1

¡ (X 0X)¡1X 0W0+(X 0X)¡1X 0X(X 0X)¡1)

= Var[ ˆ̄ ]+¾2fW¡ (X 0X)¡1X 0g
£ fW0 ¡X(X 0X)¡1g

=Var[ ˆ̄ ]+ fW¡ (X 0X)¡1X 0g
£ (¾2I(t£t))fW¡ (X 0X)¡1X 0g0

=Var[ ˆ̄ ]+ fW¡ (X 0X)¡1X 0g
£Var[e]fW¡ (X 0X)¡1X 0g0

=Var[ ˆ̄ ]+Var[We¡ (X 0X)¡1X 0e]
= Var[ ˆ̄ ]+Var[ ˜̄ ¡ ˆ̄ ]
¸Var[ ˆ̄ ]:

An essential element of this proof is the fact that
W is a left inverse of X. Hence, we have just
proven ˆ̄ = (X 0X)¡1X 0y to be the best linear un-
biased estimator (BLUE) of ¯.
Usually, ¾2 is not known, and must be esti-

mated (without bias) as:

¾̂2 =
(y¡X ˆ̄ )0(y¡X ˆ̄ )

t¡ k :

This is the familiar sum of the squared residuals
divided by the degrees of freedom.
The best linear unbiased prediction of yp =

Xp¯+ ep, where ep does not covary with e, is

Xp
ˆ̄ . The variance of its prediction error is

XpVar[
ˆ̄ ]X 0p+Var[ep].

Appendix C. General and
constrained regression lines

The properties of regression lines are most eas-
ily seen when one transforms from the estimator
form to the “normal equation” form:

X 0X ˆ̄ = X 0X(X 0X)¡1X 0y

= X 0y:

Also helpful is to define the fitted values ŷ= X ˆ̄

and the residuals ê= y¡X ˆ̄ . Various reformula-
tions of the normal equation are:

X 0X ˆ̄ = X 0y

X 0ŷ= X 0y

X 0ê= X 0(y¡ ŷ) = 0:

Now the design matrix for the general line (the
line with two-parameters, the intercept and the
slope) is:

X(t£2) =

2664
1 x1
...

...

1 xt

3775 :
In scalar form, the ith observation is yi = 1 ¢¯0 +
xi¯1 + ei. The matrix form is y= X¯+ e. The
variance of e is homoskedastic, i.e., Var[e] =
¾2I(t£t).
So the normal equation for this model is:

X 0X ˆ̄ = X 0y

"
1 ¢ ¢ ¢ 1

x1 ¢ ¢ ¢ xt

#2664
1 x1
...

...

1 xt

3775
" ˆ̄

0

ˆ̄
1

#
=

"
1 ¢ ¢ ¢ 1

x1 ¢ ¢ ¢ xt

#2664
y1
...

yt

3775
"X

1
X

xiX
xi

X
x2i

#" ˆ̄
0

ˆ̄
1

#
=

" X
yiX
xiyi

#
:

Dividing both sides by t will average the sum-
mations:"

1 x̄

x̄ Avg(xx)

#" ˆ̄
0

ˆ̄
1

#
=

"
ȳ

Avg(xy)

#
:

According to the first row of this equation, 1 ¢
ˆ̄
0 + x̄

ˆ̄
1 = ȳ. This proves that the fitted line pass-

es through the centroid (x̄, ȳ).
Inverting the (2£ 2) matrix is easily done by

formula, and gives the solution:" ˆ̄
0

ˆ̄
1

#
=

1
Avg(xx)¡ x̄x̄

"
Avg(xx) ¡x̄
¡x̄ 1

#"
ȳ

Avg(xy)

#
:
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The second row of this equation gives the for-
mula for the slope estimator [4, p. 3], to which
we add a mnemonic form which will prove use-
ful in Section 6:29

ˆ̄
1 =

Avg(xy)¡ x̄ȳ
Avg(xx)¡ x̄x̄ =

Cov[x,y]
Cov[x,x]

:

Next, the scalar form of the constrained line is
yi = xi°+ ei. (Changing the Greek letter for the
parameter helps to distinguish the two lines.)
Again, the error terms do not covary; however,
let the variance matrix be diagonal in the Á rela-
tivities:

Var[e] = ¾2©= ¾2

2664
Á1

. . .

Át

3775 :
This variance structure is heteroskedastic; the
random errors are “differently spread.” However,
dividing each observation by its standard-devia-
tion relativity makes the model homoskedastic in
the new error term ´:
yip
Ái
=

xip
Ái
°+

eip
Ái
=

xip
Ái
°+ i, Var[i] = ¾

2:

The normal equation for the transformed model
is:

·
x1=

q
Á1 ¢ ¢ ¢xt=

q
Át

¸2664
x1=

p
Á1

...

xt=
p
Át

3775 °̂

=
·
x1=

q
Á1 ¢ ¢ ¢xt=

q
Át

¸2664
y1=

p
Á1

...

yt=
p
Á1

3775
"X x2i

Ái

#
°̂ =

·X xiyi
Ái

¸
:

29The covariance form is just a memory device, because the inde-
pendent variable x is not a random variable. Those who express
regression in Bayesian terms (e.g., Mack [12] and Murphy [13],
whose formulations are cited in Section 4; also Brosius [4, p. 7],
and inconsistently Barnett and Zehnwirth [2, p. 252] and Halli-
well [8, p. 446]) are to varying degrees unaware of the problem
of stochastic regressors (see footnote 13). As the linear statisti-
cal model is defined, E[y= x¯+ e j x= a] is no more meaning-
ful than E[f(x) j x= a] = f(a). What is meaningful, however, is
E[y= x¯+ e j e= a].

If ¾2 must be estimated, the formula in several
forms is:

¾̂2 =

XÃ
yip
Ái
¡ xip

Ái
°̂

!2
t¡ 1 =

X 1
Ái
(yi¡ xi°̂)

2

t¡ 1

=
(y¡X°̂)0©¡1(y¡X°̂)

t¡ 1 :

Barnett and Zehnwirth [2, pp. 249—251] consider
the general power expression Ái = x

±
i , especially

for ± 2 f0,1,2g. But if the dependent variable x
is like exposure (which is the point of our ar-
gument from regression toward the mean), we
would expect the exponent to be 1. For expo-
sures are independent units, so the variance of a
sum of n units is n times the variance of 1 unit.
In this case the normal equation becomes:"X x2i

xi

#
°̂ =

·X xiyi
xi

¸
hX

xi

i
°̂ =

hX
yi
i

x̄°̂ = ȳ:

The last form proves that the best-fitting con-
strained line passes through the centroid. But it
does so necessarily only on the assumption that
the variance of the error term is proportional to
the dependent variable.
Figure C.1 graphically compares the two mod-

els. The general line with its one-standard-devia-
tion boundaries is thee parallel lines. This ho-
moskedastic model is oblivious to passing from
quadrant to quadrant. The constrained line with
its one-standard-deviation boundary radiates
from the origin and makes sense only within the
first and fourth quadrants.30 We view this het-

30With a general variance structure the normal equation is X 0©¡1X ˆ̄
= X 0©¡1y. From this equation one can prove that when an inter-
cept is added to the heteroskedastic model, the best-fitting line still
intersects the centroid. Hence, the best-fitting line of a model that
radiates from the y-axis shares the intersection of the solid lines of
Figure B.1. Those troubled that the constrained line is not a special
case of the general due to the different variance structures can redo
Sections 3—6 with a heteroskedastic version of the general model,
viz.: yi = 1 ¢¯0 + xi¯1 + ei, Var[ei] = ¾2xi.
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Figure C.1.

eroskedastic, two-quadrant model as the more
reasonable; in addition, we prefer it to such log-
linear, or lognormal, models as those of Bar-
nett and Zehnwirth [2], Hayne [9], and Verrall
[20].31,32

31To adapt our notation in Section 7, log-linear models presup-
pose the equation yij = aij»i¯jeij , where Prob[eij > 0] = 1. Hence,
the log-transformed version is lnyij = lnaij + ln»i + ln¯j + lneij .
Treating lnaij as a calendar-year parameter (i.e., lnaij = °i+j mod-
els inflation. Constant inflation simplifies to one parameter: lnaij =
(i+ j)°. This replicates most of the Barnett-Zehnwirth model,
which fundamentally is a two-way (log-linear) ANOVA model.
Which form is better depends empirically on whether error is ad-
ditive/linear or multiplicative/log-linear. Too simplistically, Barnett
and Zehnwirth [2, p. 294] argue, “The data are skewed, so we
need to take a transformation.” In reply, first, linear error terms
do not have to be normal, or non-skewed; it is possible to keep
linearity and to work with non-normal error terms (Judge et al.
[10, Chapter 22] calls this “robust estimation”). Second, log-linear
models concede to exposure insufficient importance; rather than
require exposure (as »i in the design matrix X), they allow one to
estimate it (as ln»i in the parameter vector ¯). Third, linear mod-
els admit observations whose values are zero or negative, whereas
such observations must be dropped from log-linear models. And
fourth, linear combinations like AY or CY totals derive analyt-

ically with linear modeling, but require Monte-Carlo simulation
with log-linear modeling (cf. the “BLUE” paragraph of Section 8).
Granted, log-linear models allow one to identify trends in exposure
and inflation; however, identifying such trends exogenously from
insurance and economic data would make them more trustworthy,
and would place less estimation burden on the model. As for em-
pirical error-term distributions, we have seen sets of standardized
residuals whose skewness and kurtosis were ill-suited to the log-
normal; even some whose skewness was negative. Both tails of a
realistic linear error-term distribution, whatever its skewness and
kurtosis, should be infinite; the lognormal distribution (centered
about zero) does not serve well as a linear error-term distribution,
because one of its tails is finite.
32Late in the editing of this paper we learned of a paper by Greg
Taylor [17]. We have not plumbed the formidable mathematics of
this paper; but its thesis (p. 313) is that “under rather general as-
sumptions, [the chain ladder forecast] is biased upward.” Its appar-
ent agreement with ours is merely formal, forasmuch as its reasons
for the bias differ from ours. Mr. Taylor says nothing about expo-
sures, or about losses as exposure proxies.
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