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ABSTRACT

Often in non-life insurance, claim reserves are the largest
position on the liability side of the balance sheet. There-
fore, the estimation of adequate claim reserves for a port-
folio consisting of several run-off subportfolios is relevant
for every non-life insurance company. In the present paper
we provide a framework in which we unify the multivariate
chain-ladder (CL) model and the multivariate additive loss
reserving (ALR) model into one model. This model allows
for the simultaneous study of individual run-off subport-
folios in which we use both the CL method and the ALR
method for different subportfolios. Moreover, we derive an
estimator for the conditional mean square error of predic-
tion (MSEP) for the predictor of the ultimate claims of the
total portfolio.
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1. Introduction and motivation
1.1. Claims reserving for several
correlated run-off subportfolios

Often, claim reserves are the largest position
on the liability side of the balance sheet of a
non-life insurance company. Therefore, given the
available information about the past develop-
ment, the prediction of adequate claim reserves
as well as the quantification of the uncertainties
in these reserves is a major task in actuarial prac-
tice and science (e.g., Wüthrich and Merz (2008),
Casualty Actuarial Society (2001), or Teugels
and Sundt (2004)).
In this paper we consider the claim reserv-

ing problem in a multivariate context. More pre-
cisely, we consider a portfolio consisting of sev-
eral correlated run-off subportfolios. On some
subportfolios we use the chain-ladder (CL)
method and on the other subportfolios we use
the additive loss reserving (ALR) method to esti-
mate the claim reserves. Since in actuarial prac-
tice the conditional mean square error of pre-
diction (MSEP) is the most popular measure to
quantify the uncertainties, we provide an MSEP
estimator for the overall reserves. This means
that we provide a first step towards an estimate of
the overall MSEP for the predictor of the ultimate
claims for aggregated subportfolios using differ-
ent claims reserving methods for different sub-
portfolios. These studies of uncertainties are cru-
cial in the development of new solvency guide-
lines where one exactly quantifies the risk pro-
files of the different insurance companies.

1.2. Multivariate claims reserving
methods

The simultaneous study of several correlated
run-off subportfolios is motivated by the fact that:

1. In practice it is quite natural to subdivide a
non-life run-off portfolio into several corre-
lated subportfolios, such that each subport-
folio satisfies certain homogeneity properties

(e.g., the CL assumptions or the assumptions
of the ALR method).

2. It addresses the problem of dependence be-
tween run-off portfolios of different lines of
business (e.g., bodily injury claims in auto li-
ability and in general liability business).

3. The multivariate approach has the advantage
that by observing one run-off subportfolio we
learn about the behavior of the other run-off
subportfolios (e.g., subportfolios of small and
large claims).

4. It resolves the problem of additivity (i.e., the
estimators of the ultimate claims for the whole
portfolio are obtained by summation over the
estimators of the ultimate claims for the indi-
vidual run-off subportfolios).

Holmberg (1994) was probably one of the first
to investigate the problem of dependence between
run-off portfolios of different lines of business.
Braun (2004) and Merz and Wüthrich (2007;
2008) generalized the univariate CL model of
Mack (1993) to the multivariate CL case by in-
corporating correlations between several run-off
subportfolios. Another feasible multivariate
claims reserving method is given by the multi-
variate ALR method proposed by Hess, Schmidt,
and Zocher (2006) and Schmidt (2006a) which
is based on a multivariate linear model. Under
the assumptions of their multivariate ALR model
Hess, Schmidt, and Zocher (2006) and Schmidt
(2006a) derived a formula for the Gauss-Markov
predictor for the nonobservable incremental
claims which is optimal in terms of the classical
optimality criterion of minimal expected squared
loss. Merz and Wüthrich (2009) derived an esti-
mator for the conditional MSEP in the multivari-
ate ALR method using the Gauss-Markov pre-
dictor proposed by Hess, Schmidt, and Zocher
(2006) and Schmidt (2006a).

1.3. Combination of the multivariate CL
and ALR methods

In the sequel we provide a framework in which
we combine the multivariate CL model and the
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multivariate ALR model into one multivariate
model. The use of different reserving methods
for different subportfolios is motivated by the
fact that

1. in general not all subportfolios satisfy the
same homogeneity assumptions; and/or

2. sometimes we have a priori information (e.g.,
premium, number of contracts, external
knowledge from experts, data from similar
portfolios, market statistics) for some selected
subportfolios which we want to incorporate
into our claims reserving analysis.

That is, we use the CL method for a subset
of subportfolios on the one hand and we use
the ALR method for the complementary subset
of subportfolios on the other hand. From this
point of view it is interesting to note that the CL
method and the ALR method are very different
in some aspects and therefore exploit differing
features of the data belonging to the individual
subportfolios:

1. The CL method is based on cumulative claims
whereas the ALR method is applied to incre-
mental claims.

2. Unlike the CL method, the ALR method com-
bines past observations in the upper triangle
with external knowledge from experts or with
a priori information.

3. The ALR method is more robust to outliers in
the observations than the CL method.

Organization of this paper. In Section 2
we provide the notation and data structure for
our multivariate framework. In Section 3 we de-
fine the combined model and derive the prop-
erties of the estimators for the ultimate claims
within the framework of the combined method.
In Section 4 we give an estimation procedure for
the conditional MSEP in the combined method
and our main results are presented in Estimator
4.7 and Estimator 4.8. Section 5 is dedicated to

the estimation of the model parameters, and, fi-
nally, in Section 6 we give an example. An in-
terested reader will find proofs of the results in
Section 7.

2. Notation and multivariate
framework
We assume that the subportfolios consist of

N ¸ 1 run-off triangles of observations of the
same size. However, the multivariate CL method
and the multivariate ALR method can also be ap-
plied to other shapes of data (e.g., run-off trape-
zoids). In these N triangles the indices

n, 1· n·N , refer to subportfolios
(triangles),

i, 0· i · I, refer to accident years
(rows),

j, 0· j · J = I, refer to development
years (columns).

The incremental claims (i.e., incremental pay-
ments, change of reported claim amounts or num-
ber of newly reported claims) of run-off triangle
n for accident year i and development year j are
denoted by X(n)i,j and cumulative claims (i.e., cu-
mulative payments, claims incurred or total num-
ber of reported claims) are given by

C(n)i,j =
jX
k=0

X(n)i,k : (1)

Figure 1 shows the claims data structure for N in-
dividual claims development triangles described
above.
Usually, at time I, we have observations

D(n)I = fC(n)i,j ; i+ j · Ig, (2)

for all run-off subportfolios n 2 f1, : : : ,Ng. This
means that at time I (calendar year I) we have a
total of observations over all subportfolios given
by

DNI =
N[
n=1

D(n)I , (3)
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Figure 1. Claims development of triangle n 2
f1, : : : ,Ng

and we need to predict the random variables in
its complement

DN,cI = fC(n)i,j ; i · I, i+ j > I, 1· n·Ng:
(4)

In the sequel we assume without loss of general-
ity that we use the multivariate CL method for the
first K (i.e., K ·N) run-off triangles n= 1, : : : ,K
and the multivariate ALR method for the remain-
ing n=K +1, : : : ,N triangles. Therefore, we in-
troduce the following vector notation

CCLi,j =

0BB@
C(1)i,j

...

C(K)i,j

1CCA , XCLi,j =

0BB@
X(1)i,j

...

X(K)i,j

1CCA ,
(5)

CADi,j =

0BB@
C(K+1)i,j

...

C(N)i,j

1CCA and XADi,j =

0BB@
X(K+1)i,j

...

X(N)i,j

1CCA
for all i 2 f0, : : : ,Ig and j 2 f0, : : : ,Jg. In partic-
ular, this means that the cumulative/incremental
claims of the whole portfolio are given by the
vectors

Ci,j =

Ã
CCLi,j
CADi,j

!
and Xi,j =

Ã
XCLi,j
XADi,j

!
:

(6)

We define the first k+1 columns of CL obser-
vations by

BKk = fCCLi,j ; i+ j · I and 0· j · kg (7)

for k 2 f0, : : : ,Jg. Finally, we define L-dimen-
sional column vectors for L=N , K, N ¡K con-
sisting of ones by 1L = (1, : : : ,1)

0 2 RL, and de-
note by

D(a) =

0BB@
a1 0

. . .

0 aL

1CCA and

D(c)b =

0BB@
cb1 0

. . .

0 cbL

1CCA
(8)

the L£L-diagonal matrices of the L-dimensional
vectors a=(a1, : : : ,aL)

0 2RL and (cb1, : : : ,cbL)0 2RL+,
where b 2 R and c= (c1, : : : ,cL)0 2 RL+.

3. Combined multivariate CL and
ALR method
The following model is a combination of the

multivariate CL model and the multivariate ALR
model presented in Merz and Wüthrich (2008)
and Merz and Wüthrich (2009), respectively.

ASSUMPTIONS 3.1 (CombinedCLandALRmodel)

² Incremental claims Xi,j of different accident
years i are independent.

² There exist K-dimensional constants
fj = (f

(1)
j , : : : ,f(K)j )0 and

¾CLj = (¾(1)j , : : : ,¾
(K)
j )0

(9)

with f(k)j > 0, ¾(k)j > 0 and K-dimensional ran-
dom variables

"CLi,j+1 = ("
(1)
i,j+1, : : : ,"

(K)
i,j+1)

0, (10)

such that for all i 2 f0, : : : ,Ig and j 2 f0, : : : ,
J ¡ 1g we have
CCLi,j+1 = D(fj) ¢CCLi,j +D(CCLi,j )1=2 ¢D("CLi,j+1) ¢¾CLj :

(11)
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² There exist (N ¡K)-dimensional constants
mj = (m

(1)
j , : : : ,m

(N¡K)
j )0 and

¾ADj¡1 = (¾
(K+1)
j¡1 , : : : ,¾(N)j¡1)

0,
(12)

with ¾(n)j¡1 > 0 and (N ¡K)-dimensional ran-
dom variables

"ADi,j = ("
(K+1)
i,j , : : : ,"(N)i,j )

0, (13)

such that for all i 2 f0, : : : ,Ig and j 2 f1, : : : ,Jg
we have

XADi,j =Vi ¢mj +V1=2i ¢D("ADi,j ) ¢¾ADj¡1,
(14)

whereVi 2 R(N¡K)£(N¡K) aredeterministic pos-
itive definite symmetric matrices.

² The N-dimensional random variables

"i,j+1 =

Ã
"CLi,j+1

"ADi,j+1

!
and "k,l+1 =

Ã
"CLk,l+1

"ADk,l+1

!

are independent for i 6= k or j 6= l, with E["i,j+1]
= 0 and

Cov("i,j+1,"i,j+1)

= E["i,j+1 ¢ "0i,j+1]

=

0BBBBBBBBBB@

1 ½(1,2)j ¢ ¢ ¢ ¢ ¢ ¢ ½(1,N)j

½(2,1)j 1 ¢ ¢ ¢ ¢ ¢ ¢ ½(2,N)j

...
...

. . .
...

...
...

. . .
...

½(N,1)j ½(N,2)j ¢ ¢ ¢ ¢ ¢ ¢ 1

1CCCCCCCCCCA
,

(15)
for fixed ½(n,m)j 2 (¡1,1) for n 6=m.

We introduce the notation

¾j = (¾
CL
j ,¾

AD
j )0,

§j = E[D("i,j+1) ¢¾j ¢¾0j ¢D("i,j+1)], (16)
§(C)j = E[D("CLi,j+1) ¢¾CLj ¢ (¾CLj )0 ¢D("CLi,j+1)],

§(A)j = E[D("ADi,j+1) ¢¾ADj ¢ (¾ADj )0 ¢D("ADi,j+1)],

§(C,A)j = E[D("CLi,j+1) ¢¾CLj ¢ (¾ADj )0 ¢D("ADi,j+1)],

§(A,C)j = E[D("ADi,j+1) ¢¾ADj ¢ (¾CLj )0 ¢D("CLi,j+1)] (17)

= (§(C,A)j )0:

Thus, we have

§j =

0BBBBBBBBBB@

(¾(1)j )
2 ¾(1)j ¾

(2)
j ½

(1,2)
j ¢ ¢ ¢ ¢ ¢ ¢ ¾(1)j ¾

(N)
j ½(1,N)j

¾(2)j ¾
(1)
j ½

(2,1)
j (¾(2)j )

2 ¢ ¢ ¢ ¢ ¢ ¢ ¾(2)j ¾
(N)
j ½(2,N)j

...
...

. . .
...

...
...

. . .
...

¾(N)j ¾(1)j ½
(N,1)
j ¾(N)j ¾(2)j ½

(N,2)
j ¢ ¢ ¢ ¢ ¢ ¢ (¾(N)j )2

1CCCCCCCCCCA
=

Ã
§(C)j §(C,A)j

§(A,C)j §(A)j

!
: (18)

The Multivariate Model 3.1 is suitable for port-
folios of N correlated subportfolios in which the
first K subportfolios satisfy the homogeneity as-
sumptions of the CL method, and the other N ¡
K subportfolios satisfy the homogeneity assump-
tions of the ALR method. Under Model Assump-
tions 3.1, the properties of the cumulative claims
CCLi,j and the incremental claims XADi,j are con-
sistent with the assumptions of the multivariate
CL time series model (see Merz and Wüthrich
(2008)) and the multivariate ALR model (see
Merz andWüthrich (2009)). In particular for K =
N and K = 0 Model Assumptions 3.1 reduce to
the model assumptions of the multivariate CL
time series model and the multivariate ALR
model, respectively.

REMARK 3.2
² The factors fj are called K-dimensional devel-
opment factors, CL factors, age-to-age factors
or link-ratios. The N ¡K-dimensional con-
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stants mj are called incremental loss ratios and
can be interpreted as a multivariate scaled ex-
pected reporting/cashflow pattern over the dif-
ferent development years.

² In most practical applications, Vi is chosen to
be diagonal so as to represent a volume mea-
sure of accident year i, a priori known (e.g.,
premium, number of contracts, expected num-
ber of claims, etc.) or external knowledge from
experts, similar portfolios or market statistics.
Since we assume that Vi is a positive defi-
nite symmetric matrix, there is a well-defined
positive definite symmetric matrix V1=2i (called

square root of Vi) satisfying Vi =V
1=2
i ¢V1=2i .

² Within the CL and ALR framework, Braun
(2004) and Merz and Wüthrich (2007; 2008;
2009) proposed the development year-based
correlations given by (15). Often correlations
between different run-off triangles are attribut-
ed to claims inflation. Under this point of view
it may seem more reasonable to allow for cor-
relation between the cumulative or incremen-
tal claims of the same calender year (diago-
nals of the claims development triangles). This
would introduce dependencies between acci-
dent years. However, at the moment it is not
mathematically tractable to treat such year-
based correlations within the CL and ALR
framework. That is, all calender year-based de-
pendencies should be removed from the data
before calculating the reserves with the CL
or ALR method. However, after correcting the
data for the calender year-based correlations,
further direct and indirect sources for corre-
lations between different run-off triangles of
a portfolio exist and should be taken into ac-
count (cf. Houltram (2003)). This is exactly
what our model does.

² Matrix §(C)j¡1 reflects the correlation structure
between the cumulative claims of development
year j within the first K subportfolios and ma-
trix §(A)j¡1 the correlation structure between
the incremental claims of development year j

within the last N ¡K subportfolios. The ma-
trices §(C,A)j¡1 and §(A,C)j¡1 reflect the correlation
structure between the cumulative claims of de-
velopment year j in the first K subportfolios
and the incremental claims of development
year j in the last N ¡K subportfolios.

² There may occur difficulties about positivity
in the time-series definition (11), which can
be solved in a mathematically correct way. We
omit these derivations since they do not lead
to a deeper understanding of the model. Refer
to Wüthrich, Merz, and Bühlmann (2008) for
more details.

² The indices for ¾ and " differ by 1, since it
simplifies the comparability with the deriva-
tions and results in Merz and Wüthrich (2008;
2009).

We obtain for the conditionally expected ulti-
mate claim E[Ci,J j DNI ]:
LEMMA 3.3 Under Model Assumptions 3:1 we
have for all 1· i · I:
a)

E[CCLi,J j DNI ] = E[CCLi,J j Ci,I¡i] = E[CCLi,J jCCLi,I¡i]

=
J¡1Y
j=I¡i

D(fj) ¢CCLi,I¡i,

b)

E[CADi,J j DNI ] = E[CADi,J j Ci,I¡i] = E[CADi,J j CADi,I¡i]

=CADi,I¡i+Vi ¢
JX

j=I¡i+1
mj :

PROOF This immediately follows from Model
Assumptions 3.1.

This result motivates an algorithm for estimat-
ing the outstanding claims liabilities, given the
observations DNI . If the K-dimensional CL fac-
tors fj and the (N ¡K)-dimensional incremental
loss ratios mj are known, the outstanding claims
liabilities of accident year i for the first K and the
last N ¡K correlated run-off triangles are pre-
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dicted by

E[CCLi,J j DNI ]¡CCLi,I¡i =
J¡1Y
j=I¡i

D(fj) ¢CCLi,I¡i¡CCLi,I¡i

(19)and

E[CADi,J j DNI ]¡CADi,I¡i =Vi ¢
JX

j=I¡i+1
mj ,

(20)

respectively. However, in practical applications
we have to estimate the parameters fj and mj
from the data in the N upper triangles. Pröhl and
Schmidt (2005) and Schmidt (2006a) proposed
the multivariate CL factor estimates for fj (j =
0, : : : ,J ¡ 1)

f̂j = (f̂
(1)
j , : : : , f̂(K)j )0

=

Ã
I¡j¡1X
i=0

D(CCLi,j )
1=2(§(C)j )¡1D(CCLi,j )

1=2

!¡1

¢
I¡j¡1X
i=0

D(CCLi,j )
1=2(§(C)j )¡1D(CCLi,j )

¡1=2 ¢CCLi,j+1:

(21)

In the framework of the multivariate ALR
method Hess, Schmidt, and Zocher (2006) and
Schmidt (2006a) proposed the multivariate es-
timates for the incremental loss ratios mj (j =
1, : : : ,J)

m̂j = (m̂
(1)
j , : : : ,m̂

(N¡K)
j )0

=

0@I¡jX
i=0

V1=2i ¢ (§(A)j¡1)¡1 ¢V1=2i
1A¡1

¢
I¡jX
i=0

V1=2i ¢ (§(A)j¡1)¡1 ¢V¡1=2i ¢XADi,j :
(22)

REMARK 3.4
² In the case K = 1 (i.e., only one CL run-off
subportfolio) the estimator (21) coincides with
the classical univariate CL estimator of Mack
(1993). Analogously, in the case N ¡K = 1

(i.e., only one additive run-off subportfolio)
the estimator (22) coincides with the univariate
incremental loss ratio estimates

m̂j =
I¡jX
i=0

Xi,j
I¡jX
k=0

Vk

(23)

with deterministic one-dimensional weights Vi
(see, e.g., Schmidt (2006a; 2006b)).

² With respect to the criterion of minimal ex-
pected squared loss the multivariate CL fac-
tor estimates (21) are optimal unbiased lin-
ear estimators for fj (cf. Pröhl and Schmidt
(2005) and Schmidt (2006a)) and the multi-
variate incremental loss ratio estimates (22) are
optimal unbiased linear estimators for mj (cf.
Hess, Schmit, and Zocher (2006) and Schmidt
(2006a)).

² For uncorrelated cumulative and incremental
claims in the different run-off subportfolios
(i.e., we set § = I, where I denotes the identity
matrix) we obtain the (unbiased) estimators for
fj and mj

f̂(0)j =

0@I¡j¡1X
i=0

D(CCLi,j )

1A¡1 ¢ I¡j¡1X
i=0

CCLi,j+1

(24)
and

m̂(0)j =

0@I¡jX
i=0

Vi

1A¡1 ¢ I¡jX
i=0

XADi,j : (25)

For a given §, both f̂j and f̂
(0)
j as well as m̂j

and m̂(0)j are unbiased estimators for the multi-
variate CL factor fj and multivariate incremen-
tal loss ratio mj , respectively (see Lemma 3.6

below). However, only f̂j and m̂j are optimal
in the sense that they have minimal expected
squared loss; see the second bullet of these re-
marks.

In the sequel we predict the cumulative claims
CCLi,j of the first K run-off triangles and the cu-
mulative claims CADi,j of the last N ¡K run-off
triangles for i+ j > I by the multivariate CL pre-
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dictors

dCi,jCL = (dC(1)i,j CL, : : : , dC(K)i,j

CL
)0 = Ê[CCLi,j j DNI ]

=
j¡1Y
l=I¡i

D(f̂l) ¢CCLi,I¡i (26)

and the multivariate ALR predictors

dCi,jAD = ( d
C(K+1)i,j

AD
, : : : ,

d
C(N)i,j

AD
)0 = Ê[CADi,j j DNI ]

=CADi,I¡i+Vi ¢
jX

l=I¡i+1
m̂l: (27)

This means that we predict the N-dimensional
ultimate claims Ci,J by

dCi,J =
0@ dCi,JCLdCi,JAD

1A : (28)

ESTIMATOR 3.5 (Combined CL and ALR estima-
tor) The combined CL and ALR estimator for
E[Ci,j j DNI ] is for i+ j > I given by

dCi,j = Ê[Ci,j j DNI ] =
0@dCi,jCLdCi,jAD

1A :
The following lemma collects results from
Lemma 3:5 in Merz and Wüthrich (2008) as well
as from Property 3:4 and Property 3:7 in Merz
and Wüthrich (2009).

LEMMA 3.6 Under Model Assumptions 3.1 we
have:
a) f̂j is, given BKj , an unbiased estimator for

fj , i.e., E[f̂j j BKj ] = fj;
b) f̂j and f̂k are uncorrelated for j 6= k, i.e.,

E[f̂j ¢ f̂0k] = fj ¢ f0k = E[f̂j] ¢E[f̂k]0;
c) m̂j is an unbiased estimator for mj , i.e.,

E[m̂j] =mj;
d) m̂j and m̂k are independent for j 6= k;
e) Var(m̂j) =

³PI¡j
l=0 V

1=2
l ¢ (§(A)j¡1)¡1 ¢V1=2l

´¡1
;

f) dCi,J is, given Ci,I¡i, an unbiased estimator
for E[Ci,J jDNI ], i.e., E[dCi,J jCi,I¡i] = E[Ci,J jDNI ]
= E[Ci,J j Ci,I¡i].

REMARK 3.7
² Note that Lemma 3.6 f) shows that we have
unbiased estimators of the conditionally ex-
pected ultimate claim E[Ci,J j DNI ]. Moreover,
it implies that the estimator of the aggregated
ultimate claims for accident year i

KX
n=1

d
C(n)i,J

CL
+

NX
n=K+1

d
C(n)i,J

AD

= 10 ¢dCi,J = 10K ¢dCi,JCL + 10N¡K ¢dCi,JAD
is, given Ci,I¡i, an unbiased estimator for

PN
n=1

E[C(n)i,J jCi,I¡i].
² Note that the parameters for the CL method
are estimated independently from the observa-
tions belonging to the ALR method and vice
versa. That is, here we could even go one step
beyond and learn from ALR method obser-
vations when estimating CL parameters and
vice versa. We omit these derivations since for-
mulas get more involved and neglect the fact
that one may even improve estimators. Our
goal here is to give an estimate for the overall
MSEP for the parameter estimators (21) and
(22).

4. Conditional MSEP
In this section we consider the prediction un-

certainty of the predictors
KX
n=1

d
C(n)i,J

CL
+

NX
n=K+1

d
C(n)i,J

AD
and

IX
i=1

Ã
KX
n=1

d
C(n)i,J

CL
+

NX
n=K+1

d
C(n)i,J

AD
!
,

given the observationsDNI , for the ultimate claims.
This means our goal is to derive an estimate of
the conditional MSEP for single accident years
i 2 f1, : : : ,Ig which is defined as

msep
§Nn=1C

(n)
i,J
jDN
I

Ã
KX
n=1

dC(n)i,J CL + NX
n=K+1

dC(n)i,J AD
!

= E

24Ã KX
n=1

dC(n)i,J CL + NX
n=K+1

dC(n)i,J AD¡ NX
n=1

C(n)i,J

!2 ¯̄̄̄
¯DNI

35 ,
(29)
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as well as an estimate of the conditional MSEP
for aggregated accident years given by

msep§i,nC
(n)
i,J jDNI

Ã
IX
i=1

KX
n=1

d
C(n)i,J

CL

+
IX
i=1

NX
n=K+1

d
C(n)i,J

AD
!

= E

"Ã
IX
i=1

KX
n=1

d
C(n)i,J

CL

+
IX
i=1

NX
n=K+1

d
C(n)i,J

AD

¡
IX
i=1

NX
n=1

C(n)i,J

!2 ¯̄̄̄
¯DNI

35 : (30)

4.1. Conditional MSEP for single
accident years

Wechoose i 2 f1, : : : ,Ig. The conditionalMSEP
(29) for a single accident year i decomposes as

msep
§Nn=1C

(n)
i,J jDNI

Ã
KX
n=1

d
C(n)i,J

CL
+

NX
n=K+1

d
C(n)i,J

AD
!

=msep
§Kn=1C

(n)
i,J jDNI

Ã
KX
n=1

d
C(n)i,J

CL
!

+msep
§Nn=K+1C

(n)
i,J jDNI

Ã
NX

n=K+1

d
C(n)i,J

AD
!

+2 ¢E
"Ã

KX
n=1

d
C(n)i,J

CL
¡

KX
n=1

C(n)i,J

!

¢
Ã

NX
n=K+1

d
C(n)i,J

AD
¡

NX
n=K+1

C(n)i,J

! ¯̄̄̄
¯DNI

#
:

(31)

The first two terms on the right-hand side of
(31) are the conditional MSEP for single acci-
dent years i if we use the multivariate CL method
for the first K run-off triangles (numbered by
n= 1, : : : ,K) and the multivariate ALR method
for the last N ¡K run-off triangles (numbered
by n=K +1, : : : ,N), respectively. Estimators for
these two conditional MSEPs are derived in Merz
and Wüthrich (2008; 2009) and are given by Es-
timator 4.1 and Estimator 4.2, below.

ESTIMATOR 4.1 (MSEP for single accident years,
CL method, cf. Merz and Wüthrich (2008)) Un-
der Model Assumptions 3:1 we have the estimator

for the conditional MSEP of the ultimate claims in
the first K run-off triangles for a single accident
year i 2 f1, : : : ,Ig

dmsep
§Kn=1C

(n)
i,J jDNI

Ã
KX
n=1

d
C(n)i,J

CL
!

= 10K ¢
Ã

JX
l=I¡i+1

J¡1Y
k=l

D(f̂k) ¢ §̂Ci,l¡1 ¢
J¡1Y
k=l

D(f̂k)

!
¢ 1K

+ 10K ¢D(CCLi,I¡i) ¢ (¢̂(n,m)i,J )1·n,m·K ¢D(CCLi,I¡i) ¢ 1K ,
(32)

with

§̂Ci,l¡1 = D( dCi,l¡1CL)1=2 ¢ §̂(C)l¡1 ¢D( dCi,l¡1CL)1=2, (33)

¢̂(n,m)i,J =
J¡1Y
l=I¡i

Ã
f̂(n)l ¢ f̂(m)l +

I¡l¡1X
k=0

âknjl ¢ §̂(C)l ¢ (âkmjl)0
!

¡
J¡1Y
l=I¡i

f̂(n)l ¢ f̂(m)l , (34)

where âknjl and â
k
mjl are the nth and mth row of

Âkl =

0@I¡l¡1X
i=0

D(CCLi,l )
1=2 ¢ (§̂(C)l )¡1 ¢D(CCLi,l )1=2

1A¡1

¢D(dCk,lCL)1=2 ¢ (§̂(C)l )¡1 (35)

and the parameter estimates §̂(C)l¡1 are given in Sec-
tion 5.

ESTIMATOR 4.2 (MSEP for single accident years,
ALR method, cf. Merz and Wüthrich (2009))
Under Model Assumptions 3:1 we have the esti-
mator for the conditional MSEP of the ultimate
claims in the last N ¡K run-off triangles for a
single accident year i 2 f1, : : : ,Ig

dmsep
§Nn=K+1C

(n)
i,J jDNI

Ã
NX

n=K+1

d
C(n)i,J

AD
!

= 10N¡K ¢V1=2i ¢
JX

j=I¡i+1
§̂(A)j¡1 ¢V1=2i ¢ 1N¡K

+ 10N¡K ¢Vi

¢
JX

j=I¡i+1

Ã
I¡jX
l=0

V1=2l ¢ (§̂(A)j¡1)¡1 ¢V1=2l
!¡1

¢Vi ¢ 1N¡K , (36)
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where the parameter estimates §̂(A)j¡1 are given in
Section 5.

REMARK 4.3
² The first terms on the right-hand side of (32)
and (36) are the estimators of the conditional
process variances and the second terms are the
estimators of the conditional estimation errors,
respectively.

² For K = 1 Estimator 4.1 reduces to the esti-
mator of the conditional MSEP for a single
run-off triangle in the univariate CL time se-
ries model of Buchwalder et al. (2006).

² For N ¡K = 1 Estimator 4.2 reduces to the es-
timator of the conditional MSEP for a single
run-off triangle in the univariate ALR model
(see Mack (2002)).

In addition to Estimators 4.1 and 4.2 we have
to estimate the cross product terms between the
CL estimators and the ALR method estimators,
namely (see (31))

E

"Ã
KX
n=1

d
C(n)i,J

CL
¡

KX
n=1

C(n)i,J

!

¢
Ã

NX
n=K+1

d
C(n)i,J

AD
¡

NX
n=K+1

C(n)i,J

! ¯̄̄̄
¯DNI

#

= 10K ¢Cov(CCLi,J ,CADi,J j DNI ) ¢ 1N¡K
+ 10K ¢ (dCi,JCL¡E[CCLi,J j DNI ])
¢ (dCi,JAD¡E[CADi,J j DNI ])0 ¢ 1N¡K:

(37)

That is, this cross product term, again, decouples
into a process error part and an estimation error
part (first and second term on the right-hand side
of (37)).

4.1.1. Conditional cross process variance
In this subsection we provide an estimate of

the conditional cross process variance. The fol-
lowing result holds:

LEMMA 4.4 (Cross process variance for single ac-
cident years) Under Model Assumptions 3:1 the

conditional cross process variance for the ultimate
claims Ci,J of accident year i 2 f1, : : : ,Ig, given
the observations DNI , is given by

10K ¢Cov(CCLi,J ,CADi,J j DNI ) ¢ 1N¡K

= 10K ¢
JX

j=I¡i+1

J¡1Y
l=j

D(fl) ¢§CAi,j¡1 ¢ 1N¡K ,
(38)

where

§CAi,j¡1 = E[D(C
CL
i,j¡1)

1=2 ¢§(C,A)j¡1 j Ci,I¡i] ¢V1=2i :

(39)

PROOF See appendix, Section 7.1.

If we replace the parameters fl and §
CA
i,j¡1 in

(38) by their estimates (cf. Section 5), we ob-
tain an estimator of the conditional cross process
variance for a single accident year.

4.1.2. Conditional cross estimation error
In this subsection we deal with the second term

on the right-hand side of (37). Using Lemma 3.3
as well as definitions (26) and (27), we obtain
for the cross estimation error of accident year
i 2 f1, : : : ,Ig the representation

10K ¢ (dCi,JCL¡E[CCLi,J j DNI ]) ¢ (dCi,JAD¡E[CADi,J j DNI ])0
¢ 1N¡K

= 10K ¢
0@ J¡1Y
j=I¡i

D(f̂j)¡
J¡1Y
j=I¡i

D(fj)

1A ¢CCLi,I¡i
¢
0@ JX
j=I¡i+1

(dXi,jAD¡E[XADi,j ])
1A0

¢ 1N¡K

= 10K ¢D(CCLi,I¡i) ¢ (ĝijJ ¡ gijJ )

¢
0@ JX
j=I¡i+1

(m̂j ¡mj)

1A0

¢Vi ¢ 1N¡K ,

(40)
where ĝijJ and gijJ are defined by

ĝijJ =D(f̂I¡i) ¢ : : : ¢D(f̂J¡1) ¢ 1K ,
gijJ =D(fI¡i) ¢ : : : ¢D(fJ¡1) ¢ 1K:

(41)
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In order to derive an estimator of the conditional
cross estimation error we would like to calcu-
late the right-hand side of (40). Observe that the
realizations of the estimators f̂I¡i, : : : , f̂J¡1 and
m̂I¡i+1, : : : ,m̂J are known at time I, but the “true”
CL factors fI¡i, : : : ,fJ¡1 and the incremental loss
ratios mI¡i+1, : : : ,mJ are unknown. Hence (40)
cannot be calculated explicitly. In order to deter-
mine the conditional cross estimation error we
analyze how much the “possible” CL factor esti-
mators and the incremental loss ratio estimators
fluctuate around their “true” mean values fj and
mj . In the following, analogously to Merz and
Wüthrich (2008), we measure these volatilities
of the estimators f̂j and m̂j by means of resam-

pled observations for f̂j and m̂j . For this purpose
we use the conditional resampling approach pre-
sented in Buchwalder et al. (2006), Section 4.1.2,
to get an estimate for the term (40). By condition-
ally resampling the observations for f̂I¡i, : : : , f̂J¡1
and m̂I¡i+1, : : : ,m̂J , given the upper triangles DNI ,
we take into account the possibility that the ob-
servations for f̂j and m̂j could have been different
from the observed values. This means that, given
DNI , we generate “new” observations C̃CLi,j+1 and
X̃ADi,j+1 for i 2 f0, : : : ,Ig and j 2 f0, : : : ,J ¡ 1g us-
ing the formulas (conditional resampling)

C̃CLi,j+1 = D(fj) ¢CCLi,j +D(CCLi,j )1=2 ¢D("̃CLi,j+1) ¢¾CLj
(42)

and

X̃ADi,j+1 = Vi ¢mj+1 +V1=2i ¢D("̃ADi,j+1) ¢¾ADj ,

(43)
with

"̃i,j+1 =

Ã
"̃CLi,j+1

"̃ADi,j+1

!
, "i,j+1 =

Ã
"CLi,j+1

"ADi,j+1

!
(44)

are independent and identically distributed cop-
ies.
We define

Wj =

0@I¡j¡1X
k=0

D(CCLk,j )
1=2(§(C)j )¡1D(CCLk,j )

1=2

1A¡1

and

Uj =

0@I¡j¡1X
k=0

V1=2k (§(A)j )¡1V1=2k

1A¡1 :
The resampled representations for the estimates
of the multivariate CL factors and the incremen-
tal loss ratios are then given by (see (21) and
(22))

f̂j = fj +Wj

I¡j¡1X
i=0

D(CCLi,j )
1=2(§(C)j )¡1D("̃CLi,j+1)¾

CL
j ,

(45)
and

m̂j+1 =mj+1 +Uj

I¡j¡1X
i=0

V1=2i (§(A)j )
¡1D("̃ADi,j+1)¾

AD
j :

(46)

Note, in (45) and (46) as well as in the fol-
lowing exposition, we use the previous notations
f̂j and m̂j+1 for the resampled estimates of the
multivariate CL factors fj and the incremental
loss ratios mj+1, respectively, to avoid an over-
loaded notation. Furthermore, given the obser-
vations DNI , we denote the conditional probabil-
ity measure of these resampled multivariate es-
timates by P¤DN

I

. For a more detailed discussion

of this conditional resampling approach we re-
fer to Merz and Wüthrich (2008). We obtain the
following lemma:

LEMMA 4.5 Under Model Assumptions 3:1 and
resampling assumptions (42)—(44) we have:
a) f̂0, : : : , f̂J¡1 are independent under P¤DNI

, m̂1,

: : : ,m̂J are independent under P
¤
DNI
, and f̂j and m̂k

are independent under P¤DNI
if k 6= j+1,

b) E¤DN
I

[f̂j] = fj and E¤DN
I

[m̂j+1] =mj+1 for

0· j · J ¡ 1 and
c) E¤DNI

[f̂(m)j m̂(n)j+1] = f
(m)
j m(n)j+1 +Tj(m,n),

where Tj(m,n) is the entry (m,n) of the K£
(N ¡K)-matrix

Tj =Wj

I¡j¡1X
i=0

D(CCLi,j )
1=2(§(C)j )¡1§(C,A)j

¢ (§(A)j )¡1V1=2i Uj : (47)
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PROOF See appendix, Section 7.2.

Using Lemma 4.5 we choose for the condi-

tional cross estimation error (40) the estimator

10K ¢D(CCLi,I¡i) ¢E¤DN
I

24(ĝijJ ¡ gijJ ) ¢
0@ JX
j=I¡i+1

(m̂j ¡mj)

1A035
¢Vi ¢ 1N¡K

= 10K ¢D(CCLi,I¡i) ¢Cov¤DN
I

0@ĝijJ , JX
j=I¡i+1

m̂j

1A
¢Vi ¢ 1N¡K: (48)

We define the matrix

ªk,i = (ª
(m,n)
k,i )m,n =Cov

¤
DN
I

0@ĝkjJ , JX
j=I¡i+1

m̂j

1A
=

JX
j=I¡i+1

Cov¤DNI (ĝkjJ ,m̂j) (49)

for all k, i 2 f1, : : : ,Ig. The following result holds
for its components ª (m,n)

k,i :

LEMMA 4.6 Under Model Assumptions 3:1 and

resampling assumptions (42)—(44) we have for

m= 1, : : : ,K and n= 1, : : : ,N ¡K

ª (m,n)
k,i =

JX
j=(I¡i+1)_(I¡k+1)

J¡1Y
r=I¡k

f(m)r

1

f(m)j¡1
Tj¡1(m,n):

PROOF See appendix, Section 7.3.

Putting (31), (37), (38) and (48) together and

replacing the parameters by their estimates we

motivate the following estimator for the condi-

tional MSEP of a single accident year in the mul-

tivariate combined method:

ESTIMATOR 4.7 (MSEP for single accident years,

combined method) Under Model Assumptions 3:1

we have the estimator for the conditional MSEP

of the ultimate claims for a single accident year

i 2 f1, : : : ,Ig

dmsep
§Nn=1C

(n)
i,J jDNI

Ã
KX
n=1

d
C(n)i,J

CL
+

NX
n=K+1

d
C(n)i,J

AD
!

= dmsep
§Kn=1C

(n)
i,J jDNI

Ã
KX
n=1

d
C(n)i,J

CL
!

+ dmsep
§Nn=K+1C

(n)
i,J jDNI

Ã
NX

n=K+1

d
C(n)i,J

AD
!

+2 ¢ 10K ¢
JX

j=I¡i+1

J¡1Y
l=j

D(f̂l) ¢ §̂CAi,j¡1 ¢ 1N¡K

+2 ¢ 10K ¢D(CCLi,I¡i) ¢ (ª̂ (m,n)
i,i )m,n ¢Vi ¢ 1N¡K ,

(50)
with

§̂CAi,j¡1 = D( dCi,j¡1CL)1=2 ¢ §̂(C,A)j¡1 ¢V1=2i , (51)

ª̂ (m,n)
k,i = ĝ(m)kjJ

JX
j=(I¡i+1)_(I¡k+1)

1

f̂(m)j¡1
T̂j¡1(m,n):

(52)

Thereby, the first two terms on the right-hand side

of (50) are given by (32) and (36), ĝ(m)kjJ denotes the

mth coordinate of ĝkjJ (cf. (41)) and the parameter
estimates §̂(C,A)j¡1 as well as T̂j¡1(m,n) (entry (m,n)

of the estimate T̂j¡1 for the K £ (N ¡K)-matrix
Tj¡1) are given in Section 5.

4.2. Conditional MSEP for aggregated
accident years

Now, we derive an estimator of the conditional

MSEP (30) for aggregated accident years. To

this end we consider two different accident years

1· i < l · I. We know that the ultimate claims

Ci,J and Cl,J are independent but we also know

that we have to take into account the dependence

of the estimators dCi,J and dCl,J . The conditional
MSEP for two aggregated accident years i and l
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is given by

msep
§Nn=1(C

(n)
i,J +C

(n)
l,J )jDNI

Ã
KX
n=1

d
C(n)i,J

CL

+
NX

n=K+1

d
C(n)i,J

AD

+
KX
n=1

d
C(n)l,J

CL

+
NX

n=K+1

d
C(n)l,J

AD
!

=msep
§Nn=1C

(n)
i,J jDNI

Ã
KX
n=1

d
C(n)i,J

CL

+
NX

n=K+1

d
C(n)i,J

AD
!
+msep

§Nn=1C
(n)
l,J jDNI

Ã
KX
n=1

d
C(n)l,J

CL

+
NX

n=K+1

d
C(n)l,J

AD
!

+2 ¢E
"Ã

KX
n=1

d
C(n)i,J

CL

+
NX

n=K+1

d
C(n)i,J

AD

¡
NX
n=1

C(n)i,J

!
¢
Ã

KX
n=1

d
C(n)l,J

CL

+
NX

n=K+1

d
C(n)l,J

AD

¡
NX
n=1

C(n)l,J

! ¯̄̄̄
¯DNI

#
: (53)

The first two terms on the right-hand side of (53)
are the conditional prediction errors for the two
single accident years 1· i < l · I, respectively,
which we estimate by Estimator 4.7. For the third
term on the right-hand side of (53) we obtain the
decomposition

E

"Ã
KX
n=1

d
C(n)i,J

CL

+
NX

n=K+1

d
C(n)i,J

AD

¡
NX
n=1

C(n)i,J

!

¢
Ã

KX
n=1

d
C(n)l,J

CL

+
NX

n=K+1

d
C(n)l,J

AD

¡
NX
n=1

C(n)l,J

! ¯̄̄̄
¯DNI

#

= E

"Ã
KX
n=1

d
C(n)i,J

CL

¡
KX
n=1

C(n)i,J

!

¢
Ã

NX
n=K+1

d
C(n)l,J

AD

¡
NX

n=K+1

C(n)l,J

! ¯̄̄̄
¯DNI

#

+E

"Ã
NX

n=K+1

d
C(n)i,J

AD

¡
NX

n=K+1

C(n)i,J

!

¢
Ã

KX
n=1

d
C(n)l,J

CL

¡
KX
n=1

C(n)l,J

! ¯̄̄̄
¯DNI

#

+E

"Ã
KX
n=1

d
C(n)i,J

CL

¡
KX
n=1

C(n)i,J

!

¢
Ã

KX
n=1

d
C(n)l,J

CL

¡
KX
n=1

C(n)l,J

! ¯̄̄̄
¯DNI

#

+E

"Ã
NX

n=K+1

d
C(n)i,J

AD

¡
NX

n=K+1

C(n)i,J

!

¢
Ã

NX
n=K+1

d
C(n)l,J

AD

¡
NX

n=K+1

C(n)l,J

! ¯̄̄̄
¯DNI

#
:

(54)

Using the independence of different accident
years we obtain for the first two terms on the
right-hand side of (54)

E

"Ã
KX
n=1

d
C(n)i,J

CL

¡
KX
n=1

C(n)i,J

!

¢
Ã

NX
n=K+1

d
C(n)l,J

AD

¡
NX

n=K+1

C(n)l,J

! ¯̄̄̄
¯DNI

#

= 10K ¢ (dCi,JCL¡E[CCLi,J j DNI ])
¢ (dCl,JAD¡E[CADl,J j DNI ])0 ¢ 1N¡K

= 10K ¢
0@ J¡1Y
j=I¡i

D(f̂j)¡
J¡1Y
j=I¡i

D(fj)

1A ¢CCLi,I¡i
¢
0@ JX
j=I¡l+1

(dXl,jAD¡E[XADl,j ])
1A0

¢ 1N¡K

= 10K ¢D(CCLi,I¡i) ¢ (ĝijJ ¡ gijJ )

¢
0@ JX
j=I¡l+1

(m̂j ¡mj)

1A0

¢Vl ¢ 1N¡K , (55)

and analogously

E

"Ã
NX

n=K+1

d
C(n)i,J

AD
¡

NX
n=K+1

C(n)i,J

!

¢
Ã

KX
n=1

d
C(n)l,J

CL
¡

KX
n=1

C(n)l,J

! ¯̄̄̄
¯DNI

#
= 10K ¢D(CCLl,I¡l) ¢ (ĝljJ ¡ gljJ )

¢
0@ JX
j=I¡i+1

(m̂j ¡mj)
1A0 ¢Vi ¢ 1N¡K:

(56)

282 CASUALTY ACTUARIAL SOCIETY VOLUME 3/ISSUE 2



Combining Chain-Ladder and Additive Loss Reserving Methods for Dependent Lines of Business

Under the conditional resampling measure P¤DNI
these two terms are estimated by (see also Lemma
4.6), s= i, l and t = l, i,

10K ¢D(CCLs,I¡s) ¢E¤DN
I

"
(ĝsjJ ¡ gsjJ ) ¢

Ã
JX

j=I¡t+1
(m̂j ¡mj)

!0#
¢Vt ¢ 1N¡K

= 10K ¢D(CCLs,I¡s) ¢ (ª (m,n)
s,t )m,n ¢Vt ¢ 1N¡K:

Now we consider the third term on the right-
hand side of (54). Again, using the independence
of different accident years we obtain

E

"Ã
KX
n=1

d
C(n)i,J

CL
¡

KX
n=1

C(n)i,J

!

¢
Ã

KX
n=1

d
C(n)l,J

CL
¡

KX
n=1

C(n)l,J

! ¯̄̄̄
¯DNI

#

= 10K ¢ (dCi,JCL¡E[CCLi,J j DNI ])
¢ (dCl,JCL¡E[CCLl,J j DNI ])0 ¢ 1K

= 10K ¢D(CCLi,I¡i) ¢ (ĝijJ ¡ gijJ )
¢ (ĝljJ ¡ gljJ )0 ¢D(CCLl,I¡l) ¢ 1K: (57)

This term is estimated by

10K ¢D(CCLi,I¡i) ¢E¤DNI [(ĝijJ ¡ gijJ )

¢ (ĝljJ ¡ gljJ )0] ¢D(CCLl,I¡l) ¢ 1K
= 10K ¢D(CCLi,I¡i) ¢ (¢(n,m)i,J )1·n,m·K

¢D(CCLl,I¡l) ¢
I¡i¡1Y
k=I¡l

D(fk) ¢ 1K , (58)

where ¢(n,m)i,J is estimated by

¢̂(n,m)i,J =
J¡1Y
l=I¡i

Ã
f̂(n)l ¢ f̂(m)l +

I¡l¡1X
k=0

âknjl ¢ §̂(C)l ¢ (âkmjl)0
!

¡
J¡1Y
l=I¡i

f̂(n)l ¢ f̂(m)l : (59)

The parameter estimates âknjl and â
k
mjl are the nth

and mth row of (35) and the parameter estimate
§̂(C)l is given in Section 5 (see also Merz and
Wüthrich (2008)).

Finally, we obtain for the last term on the right-
hand side of (54)

E

"Ã
NX

n=K+1

d
C(n)i,J

AD
¡

NX
n=K+1

C(n)i,J

!

¢
Ã

NX
n=K+1

d
C(n)l,J

AD
¡

NX
n=K+1

C(n)l,J

! ¯̄̄̄
¯DNI

#

= 10N¡K ¢ (dCi,JAD¡E[CADi,J j DNI ])
¢ (dCl,JAD¡E[CADl,J j DNI ])0 ¢ 1N¡K ,

(60)

which is estimated by (see also Merz and Wüth-
rich (2009))

10N¡K ¢E[(dCi,JAD¡E[CADi,J j DNI ])
¢ (dCl,JAD¡E[CADl,J j DNI ])0] ¢ 1N¡K

= 10N¡K ¢Vi

¢
264 JX
j=I¡i+1

0@I¡jX
k=0

V1=2k ¢ (§(A)j¡1)¡1 ¢V1=2k
1A¡1

375
¢Vl ¢ 1N¡K: (61)

Putting all the terms together and replacing the
parameters by their estimates we obtain the fol-
lowing estimator for the conditional MSEP of ag-
gregated accident years in the multivariate com-
bined method:

ESTIMATOR 4.8 (MSEP for aggregated accident
years, combined method) Under Model Assump-
tions 3:1 we have the estimator for the conditional
MSEP of the ultimate claims for aggregated acci-
dent years

dmsep§i§nC(n)i,J jDNI
Ã

IX
i=1

KX
n=1

d
C(n)i,J

CL

+
IX
i=1

NX
n=K+1

d
C(n)i,J

AD
!

=
IX
i=1

dmsep§nC(n)i,J jDNI
Ã

KX
n=1

d
C(n)i,J

CL

+
NX

n=K+1

d
C(n)i,J

AD
!

+2 ¢
X

1·i<l·I
10K ¢D(CCLi,I¡i) ¢ (ª̂ (m,n)

i,l )m,n ¢Vl ¢ 1N¡K
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+2 ¢
X

1·i<l·I
10K ¢D(CCLl,I¡l) ¢ (ª̂ (m,n)

l,i )m,n ¢Vi ¢ 1N¡K

+2 ¢
X

1·i<l·I
10K ¢D(CCLi,I¡i) ¢ (¢̂(m,n)i,J )m,n

¢D(CCLl,I¡l) ¢
I¡i¡1Y
j=I¡l

D(f̂j) ¢ 1K

+2 ¢
X

1·i<l·I
10N¡K ¢Vi

¢
JX

j=I¡i+1

Ã
I¡jX
k=0

V1=2k ¢ (§̂(A)j¡1)¡1 ¢V1=2k
!¡1

¢Vl ¢ 1N¡K: (62)

4.3. Conditional MSEP with f̂(0)j and m̂(0)
j

In some cases, it may be more convenient to

use estimators (24) and (25) to estimate fj and

mj , respectively, instead of (21) and (22). Esti-

mators (24) and (25) do not reflect the correla-

tion among subportfolios and are thus simpler to

calculate, but being less than optimal, will have

greater MSEP than estimators (21) and (22).

The changes that occur when estimators (24)

and (25) are used are noted here. In Estimator

4.1, (35) becomes

Âkl =

0@I¡l¡1X
i=0

D(CCLi,l )

1A¡1 ¢D(dCk,lCL)1=2:
In Estimator 4.2, the last term of (36) becomes

10N¡K ¢Vi ¢
24 JX
j=I¡i+1

Ã
I¡jX
l=0

Vl

!¡1

¢
Ã
I¡jX
l=0

V1=2l ¢ §̂(A)j¡1 ¢V1=2l
!
¢
Ã
I¡jX
l=0

Vl

!¡135
¢Vi ¢ 1N¡K:

Wj becomes 0@I¡j¡1X
k=0

D(CCLk,j )

1A¡1 ,

Uj becomes 0@I¡j¡1X
k=0

Vk

1A¡1 ,
and Tj becomes

Wj

I¡j¡1X
i=0

D(CCLi,j )
1=2§(C,A)j V1=2i Uj ,

with analogous changes to their estimators. The

right-hand side of (61) and the expression to the

right of the first summation sign in the last term
of (62) become

10N¡K ¢Vi ¢
24 JX
j=I¡i+1

Ã
I¡jX
k=0

Vk

!¡1

¢
Ã
I¡jX
k=0

V1=2k ¢ §̂(A)j¡1 ¢V1=2k
!
¢
Ã
I¡jX
k=0

Vk

!¡135
¢Vl ¢ 1N¡K:

5. Parameter estimation

For the estimation of the claim reserves and the

conditional MSEP we need estimates of the K-

dimensional parameters fj , the (N ¡K)-dimen-
sional parameters mj as well as the covariance
matrices §(C)j , §(A)j and §(C,A)j . Observe the fact

that the multivariate CL factor estimates and in-
cremental loss ratio estimates f̂j and m̂j , respec-
tively, can only be calculated if the covariance

matrices §(C)j and §(A)j are known (cf. (21) and
(22)). On the other hand, the covariance matrices

§(C)j , §(A)j and §(C,A)j are estimated by means of

f̂j and m̂j . Therefore, as in the multivariate CL
method (cf. Merz and Wüthrich (2008)) and the
multivariate ALR method (cf. Merz and Wüth-

rich (2009)), in the following we propose an iter-

ative estimation of these parameters. In this spirit,
the “true” estimation error is slightly larger be-

cause it should also involve the uncertainties in

the estimates of the variance parameters. How-
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ever, in order to obtain a feasible MSEP formula
we neglect this term of uncertainty.
Estimation of fj and mj . As starting values

for the iteration we use the unbiased estimators
f̂(0)j¡1 and m̂

(0)
j defined by (24) and (25) for j =

1, : : : ,J . From f̂(0)j¡1 and m̂
(0)
j we derive the esti-

mates §̂(C)(1)j¡1 and §̂(A)(1)j¡1 of the covariance ma-

trices §(C)j¡1 and §
(A)
j¡1 for j = 1, : : : ,J (see estima-

tors (64) and (67) below). Then these estimates
§̂(C)(1)j¡1 and §̂(A)(1)j¡1 are used to determine f̂(1)j¡1 and
m̂(1)j via (s¸ 1)

f̂(s)j¡1 =

Ã
I¡jX
i=0

D(CCLi,j¡1)
1=2(§̂(C)(s)j¡1 )

¡1D(CCLi,j¡1)
1=2

!¡1

¢
I¡jX
i=0

D(CCLi,j¡1)
1=2(§̂(C)(s)j¡1 )

¡1D(CCLi,j¡1)
¡1=2 ¢CCLi,j

(63)
and

m̂(s)j =

0@I¡jX
i=0

V1=2i ¢ (§̂(A)(s)j¡1 )
¡1 ¢V1=2i

1A¡1

¢
I¡jX
i=0

V1=2i ¢ (§̂(A)(s)j¡1 )
¡1 ¢V¡1=2i ¢XADi,j :

This algorithm is then iterated until it has suffi-
ciently converged.
Estimation of §(C)j¡1, §

(A)
j¡1 and §

(C,A)
j¡1 . The co-

variance matrices §(C)j¡1 and §
(A)
j¡1 are estimated

iteratively from the data for j = 1, : : : ,J . For the
covariance matrices §(C)j¡1 we use the estimator
proposed by Merz and Wüthrich (2008) (s¸ 1)

§̂(C)(s)j¡1 =Qj ¯
I¡jX
i=0

D(CCLi,j¡1)
1=2 ¢ (FCLi,j ¡ f̂(s¡1)j¡1 )

¢ (FCLi,j ¡ f̂(s¡1)j¡1 )
0 ¢D(CCLi,j¡1)1=2, (64)

where ¯ denotes the Hadamard product (entry-
wise product of two matrices),

FCLi,j =D(C
CL
i,j¡1)

¡1 ¢CCLi,j and

Qj =

0@ 1

I¡ j¡ 1+w(n,m)j

1A
1·n,m·K

(65)

with

w(n,m)j =

0@I¡jX
l=0

r
C(n)l,j¡1 ¢

r
C(m)l,j¡1

1A2
I¡jX
l=0

C(n)l,j¡1 ¢
I¡jX
l=0

C(m)l,j¡1

: (66)

For more details on this estimator see Merz and
Wüthrich (2008), Section 5.
For the covariance matrices §(A)j¡1 we use the

iterative estimation procedure suggested by Merz
and Wüthrich (2009) (s¸ 1)

§̂(A)(s)j¡1 =
1
I¡ j ¢

I¡jX
i=0

V¡1=2i ¢ (XADi,j ¡Vi ¢ m̂(s¡1)j )

¢ (XADi,j ¡Vi ¢ m̂(s¡1)j )0 ¢V¡1=2i : (67)

For more details on this estimator see Merz and
Wüthrich (2009), Section 5.
Motivated by estimators (64) and (67) for ma-

trices §(C)j¡1 and §
(A)
j¡1, we propose for the covari-

ance matrix §(C,A)j¡1 = (§(A,C)j¡1 )
0 estimator

§̂(C,A)j¡1 =
1
I¡ j ¢

I¡jX
i=0

D(CCLi,j¡1)
1=2 ¢ (FCLi,j ¡ f̂j¡1)

¢ (XADi,j ¡Vi ¢ m̂j)0 ¢V¡1=2i : (68)

Estimation of §CAi,j and Tj . With these esti-
mates we obtain as estimates of the matrices §CAi,j
and Tj

d§i,jCA =D(dCi,jCL)1=2§̂(C,A)j V1=2i ,

T̂j = Ŵj

I¡j¡1X
i=0

D(CCLi,j )
1=2

¢ (§̂(C)j )¡1§̂(C,A)j (§̂(A)j )¡1V1=2i Ûj ,

where

Ŵj =

0@I¡j¡1X
k=0

D(CCLk,j )
1=2(§̂(C)j )¡1D(CCLk,j )

1=2

1A¡1

and

Ûj =

0@I¡j¡1X
k=0

V1=2k (§̂(A)j )¡1V1=2k

1A¡1 :
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The matrices §̂(C)j and §̂(A)j are the resulting es-
timates in the iterative estimation procedure for
the parameters §(C)j and §(A)j (cf. (64) and (67)).

REMARK 5.1
² For a more detailed motivation of the estimates
for the different covariance matrices see Merz
and Wüthrich (2008; 2009) and Sections 8.2.5
and 8.3.5 in Wüthrich and Merz (2008).

² If we have enough data (i.e., I > J), we are
able to estimate the parameters §(C)J¡1, §

(A)
J¡1

and §(C,A)J¡1 = (§
(A,C)
J¡1 )

0 by (64), (67) and (68)
respectively. Otherwise, if I = J , we do not
have enough data to estimate the last covari-
ance matrices. In such cases we can use the
estimates '̂(m,n)j¡1 of the elements '(m,n)j¡1 of §(C)j¡1
for j · J ¡ 1 (i.e., '̂(m,n)j¡1 is an estimate of '

(m,n)
j¡1

= ¾(m)j¡1 ¢¾(n)j¡1 ¢ ½(m,n)j¡1 , cf. (16)) to derive esti-
mates '̂(m,n)J¡1 of the elements '(m,n)J¡1 of §(C)J¡1
for all 1·m, n· K. For example, this can be
done by extrapolating the usually decreasing
series

j'̂(m,n)0 j, : : : , j'̂(m,n)J¡2 j (69)

by one additional member '̂(m,n)J¡1 for 1·m, n·
K. Analogously, we can derive estimates for
§(A)J¡1, §

(C,A)
J¡1 and §(A,C)J¡1 = (§

(C,A)
J¡1 )

0 (see Merz
and Wüthrich (2008; 2009) and the example
below). However, in all cases it is important to
verify that the estimated covariance matrices
are positive definite.

² Observe that the K £K-dimensional estimate
§̂(C)(s)j¡1 is singular if j ¸ I¡K +2 since in this
case the dimension of the linear space gener-
ated by any realizations of the (I¡ j+1) K-
dimensional random vectors

D(CCLi,j¡1)
1=2 ¢ (FCLi,j ¡ f̂(s¡1)j¡1 ) with i 2 f0, : : : ,I¡ jg

(70)

is at most I¡ j+1· I¡ (I¡K +2)+1 = K
¡1. Analogously, the (N ¡K)£ (N ¡K)-
dimensional estimate §̂(A)(s)j¡1 is singular when
j ¸ I¡ (N ¡K) +2. Furthermore, the random
matrix §̂(C)(s)j¡1 and/or §̂(A)(s)j¡1 may be ill-con-

ditioned for some j < I¡K +2 and j < I¡
(N ¡K)+2, respectively. Therefore, in practi-
cal application it is important to verify whether
the estimates §̂(C)(s)j¡1 and §̂(A)(s)j¡1 are well-con-
ditioned or not and to modify those estimates
(e.g., by extrapolation as in the example be-
low) which are ill-conditioned (see also Merz
and Wüthrich (2008; 2009)).

6. Example

To illustrate the methodology, we consider two
correlated run-off portfolios A and B (i.e.,N = 2)
which contain data of general and auto liability
business, respectively. The data is given in Tables
1 and 2 in incremental and cumulative form, re-
spectively. This is the data used in Braun (2004)
and Merz and Wüthrich (2007; 2008; 2009). The
assumption that there is a positive correlation be-
tween these two lines of business is justified by
the fact that both run-off portfolios contain lia-
bility business; that is, certain events (e.g., bodily
injury claims) may influence both run-off port-
folios, and we are able to learn from the obser-
vations from one portfolio about the behavior of
the other portfolio.
In contrast to Merz and Wüthrich (2008) (mul-

tivariate CL method for both portfolios) and
Merz and Wüthrich (2009) (multivariate ALR
method for both portfolios) we use different
claims reserving methods for the two portfolios
A and B. We now assume that we only have es-
timates Vi of the ultimate claims for portfolio A
and use the ALR method for portfolio A. The CL
method is applied for portfolio B. This means we
have K =N ¡K = 1, and the parameters fj , mj ,
§(C)j , §(A)j , §(C,A)j as well as the a priori estimates
Vi of the ultimate claims in the different accident
years i in portfolio A are now scalars. More-
over, it holds that §(C)j = (¾CLj )

2 = (¾(1)j )
2, §(A)j =

(¾ADj )2 = (¾(2)j )
2 and §(C,A)j = §(A,C)j = ¾CLj ¢¾ADj

¢½(1,2)j = ¾(1)j ¢¾(2)j ¢ ½(1,2)j .
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Table 1. Portfolio A (incremental claims X (2)
i,j ), source Braun (2004)

General Liability Run-Off Triangle

AY/DY 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 59,966 103,186 91,360 95,012 83,741 42,513 37,882 6,649 7,669 11,061 ¡1,738 3,572 6,823 1,893
1 49,685 103,659 119,592 110,413 75,442 44,567 29,257 18,822 4,355 879 4,173 2,727 ¡776
2 51,914 118,134 149,156 105,825 78,970 40,770 14,706 17,950 10,917 2,643 10,311 1,414
3 84,937 188,246 134,135 139,970 74,450 65,401 49,165 21,136 596 24,048 2,548
4 98,921 179,408 170,201 113,161 79,641 80,364 20,414 10,324 16,204 ¡265
5 71,708 173,879 171,295 144,076 93,694 72,161 41,545 25,245 17,497
6 92,350 193,157 180,707 153,816 121,196 86,753 45,547 23,202
7 95,731 217,413 240,558 202,276 101,881 104,966 59,416
8 97,518 245,700 232,223 193,576 165,086 85,200
9 173,686 285,730 262,920 232,999 186,415

10 139,821 297,137 372,968 364,270
11 154,965 373,115 504,604
12 196,124 576,847
13 204,325

Table 2. Portfolio B (cumulative claims C(1)
i,j ), source Braun (2004)

Auto Liability Run-Off Triangle

AY/DY 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 114,423 247,961 312,982 344,340 371,479 371,102 380,991 385,468 385,152 392,260 391,225 391,328 391,537 391,428
1 152,296 305,175 376,613 418,299 440,308 465,623 473,584 478,427 478,314 479,907 480,755 485,138 483,974
2 144,325 307,244 413,609 464,041 519,265 527,216 535,450 536,859 538,920 539,589 539,765 540,742
3 145,904 307,636 387,094 433,736 463,120 478,931 482,529 488,056 485,572 486,034 485,016
4 170,333 341,501 434,102 470,329 482,201 500,961 504,141 507,679 508,627 507,752
5 189,643 361,123 446,857 508,083 526,562 540,118 547,641 549,605 549,693
6 179,022 396,224 497,304 553,487 581,849 611,640 622,884 635,452
7 205,908 416,047 520,444 565,721 600,609 630,802 648,365
8 210,951 426,429 525,047 587,893 640,328 663,152
9 213,426 509,222 649,433 731,692 790,901
10 249,508 580,010 722,136 844,159
11 258,425 686,012 915,109
12 368,762 909,066
13 394,997

Table 3 shows the estimates of the ultimate
claims for the two subportfolios A and B as well
as the estimates for the whole portfolio consist-
ing of both subportfolios.
Since I = J = 13 we do not have enough data

to derive estimates of the parameters §(C)12 , §
(A)
12

and §(C,A)12 = §(A,C)12 by means of the proposed es-
timators. Therefore, we use the extrapolations

§̂(C)12 = minf§̂(C)10 , (§̂
(C)
11 )

2=§̂(C)10 g,

§̂(A)12 = minf§̂(A)10 , (§̂(A)11 )2=§̂(A)10 g, and (71)

§̂(C,A)12 = §̂(A,C)12 = minfj§̂(C,A)10 j, (§̂(C,A)11 )2=j§̂(C,A)10 jg

to derive estimates of §(C)12 , §
(A)
12 and §(C,A)12 =

§(A,C)12 . Moreover, so that §̂11 and §̂12 are positive
definite, we estimate §(A)11 and §

(C,A)
11 = §(A,C)11 by

§̂(A)11 = minf§̂(A)9 , (§̂(A)10 )2=§̂(A)9 g, and
(72)

§̂(C,A)11 = §̂(A,C)11 = minfj§̂(C,A)9 j, (§̂(C,A)10 )2=j§̂(C,A)9 jg:
Table 4 shows the estimates for the parameters.

The one-dimensional estimates m̂j and (§̂
(A)
j )1=2

are the parameter estimates used in the univari-
ate ALR method applied to the individual sub-
portfolio A. Analogously, the one-dimensional
estimates f̂j and (§̂

(C)
j )1=2 are the parameter esti-

mates used in the univariate CL method applied
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Table 3. Estimates of the ultimate claims for subportfolio A,
subportfolio B, and the whole portfolio

Subportfolio A Subportfolio B Portfolio
i Vi cCi,JCL cCi,JCL

Total

0 510,301 549,589 391,428 941,017
1 632,897 564,740 483,839 1,048,579
2 658,133 608,104 540,002 1,148,107
3 723,456 795,248 486,227 1,281,475
4 709,312 783,593 508,744 1,292,337
5 845,673 837,088 552,825 1,389,913
6 904,378 938,861 639,113 1,577,973
7 1,156,778 1,098,200 658,410 1,756,610
8 1,214,569 1,154,902 684,719 1,839,620
9 1,397,123 1,431,409 845,543 2,276,952

10 1,832,676 1,735,433 962,734 2,698,167
11 2,156,781 2,065,991 1,169,260 3,235,251
12 2,559,345 2,660,561 1,474,514 4,135,075
13 2,456,991 2,274,941 1,426,060 3,701,001

Total 17,758,413 17,498,658 10,823,418 28,322,077

to the individual subportfolio B. From the esti-
mates §̂(C,A)j of the covariances §(C,A)j =§(A,C)j

we obtain estimates ½̂(1,2)j of the correlation co-

efficients ½(1,2)j by §̂(C,A)j =
q
§̂(A)j ¢ §̂(C)j .

Note: Since both the CL method and the

ALR method are applied to one-dimensional tri-

angles, the parameter estimates f̂j and m̂j can be

calculated directly (using the univariate methods)

and one can omit the iteration described in Sec-

tion 5.

The first two columns of Table 5 show for each

accident year the reserves for subportfolios A

and B estimated by the (univariate) ALR method

and the (univariate) CL method, respectively. The

Table 4. Parameter estimates for the parameters mj , fj , (§(A)
j

)1=2, (§(C)
j

)1=2 and §(C,A)
j

Portfolio
A/B 0 1 2 3 4 5 6 7 8 9 10 11 12 13

m̂
j

0.19969 0.20638 0.17528 0.12117 0.08466 0.04852 0.02474 0.01403 0.01186 0.00606 0.00428 0.00529 0.00371

f̂
j

2.22582 1.26945 1.12036 1.06676 1.03542 1.01677 1.00968 1.00006 1.00374 0.99946 1.00387 0.99891 0.99972

(§̂(A)
j

)1=2 31.58 20.03 14.42 18.92 13.64 13.91 5.79 7.15 12.21 6.09 1.84 0.56 0.17

(§̂(C)
j

)1=2 105.38 24.64 17.94 19.07 12.50 5.55 4.52 2.13 5.14 1.40 3.21 1.37 0.58

§̂ (C,A)
j

¡661:28 349.61 148.48 117.50 46.70 24.65 ¡2:15 11.39 20.71 5.62 ¡0:84 0.13 0.02

½̂(1,2)
j

¡0:19874 0.70835 0.57411 0.32569 0.27382 0.31925 ¡0:08215 0.74851 0.32998 0.66028 ¡0:14250 0.16613 0.19367

Table 5. Estimated reserves

Subportfolio A Subportfolio B Portfolio
Reserves Reserves Reserves

i ALR Method CL Method Total

1 2,348 ¡135 2,213
2 5,923 ¡740 5,183
3 9,608 1,211 10,819
4 13,717 992 14,709
5 26,386 3,132 29,518
6 40,906 3,661 44,567
7 80,946 10,045 90,991
8 143,915 21,567 165,482
9 283,823 54,642 338,465

10 594,362 118,575 712,937
11 1,077,515 254,151 1,331,666
12 1,806,833 565,448 2,372,281
13 2,225,221 1,031,063 3,256,284

Total 6,311,503 2,063,612 8,375,115

last column, denoted by “Portfolio Reserves To-
tal,” shows the estimated reserves for the entire
portfolio.
Table 6 shows for each accident year the es-

timates for the conditional process standard de-
viations and the corresponding estimates for the
coefficients of variation. The first two columns
contain the values for the individual subportfo-
lios A and B calculated by the (univariate) ALR
method and the (univariate) CL method, respec-
tively. The last column, denoted by “Portfolio
Total,” shows the values for the entire port-
folio.
The same overview is generated for the square

roots of the estimated conditional estimation er-
rors in Table 7.
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Table 6. Estimated conditional process standard deviations

Subportfolio A Subportfolio B Portfolio
i ALR Method CL Method Total

1 133 5.7% 404 ¡299:8% 449 20.3%
2 471 7.9% 1,091 ¡147:5% 1,258 24.3%
3 1,640 17.1% 2,461 203.2% 2,815 26.0%
4 5,381 39.2% 2,708 273.1% 6,498 44.2%
5 12,669 48.0% 4,750 151.7% 14,769 50.0%
6 14,763 36.1% 5,384 147.1% 17,415 39.1%
7 17,819 22.0% 6,577 65.5% 20,535 22.6%
8 23,840 16.6% 8,127 37.7% 27,258 16.5%
9 30,227 10.6% 14,609 26.7% 36,849 10.9%

10 43,067 7.2% 24,366 20.5% 55,163 7.7%
11 51,294 4.8% 33,227 13.1% 70,155 5.3%
12 64,413 3.6% 47,888 8.5% 96,211 4.1%
13 80,204 3.6% 117,293 11.4% 144,183 4.4%

Total 131,444 2.1% 134,676 6.5% 202,746 2.4%

And finally the first three columns in Table 8
give the same overview for the estimated predic-
tion standard errors.
Moreover, the last two columns in Table 8 con-

tain the results for the estimated prediction stan-
dard errors assuming no correlation and perfect
positive correlation between the corresponding
claims reserves of the two subportfolios A and
B. These values are calculated by

dmsepCi,J jDNI = dmsep
C(1)
i,J jDNI

+ dmsep
C(2)
i,J jDNI

+2c dmsep1=2
C(1)i,J jDNI

dmsep1=2
C(2)i,J jDNI

(73)

Table 8. Estimated prediction standard errors

Subportfolio A Subportfolio B Portfolio Portfolio Portfolio
i ALR Method CL Method Total Correlation = 0 Correlation = 1

1 200 8.5% 604 ¡448:2% 672 30.4% 636 28.7% 804 36.3%
2 602 10.2% 1,436 ¡194:2% 1,648 31.8% 1,557 30.0% 2,038 39.3%
3 1,961 20.4% 2,912 240.4% 3,353 31.0% 3,510 32.4% 4,872 45.0%
4 6,120 44.6% 3,202 322.8% 7,432 50.5% 6,907 47.0% 9,322 63.4%
5 14,337 54.3% 5,418 173.0% 16,701 56.6% 15,326 51.9% 19,755 66.9%
6 16,724 40.9% 6,221 169.9% 19,740 44.3% 17,844 40.0% 22,945 51.5%
7 20,677 25.5% 7,483 74.5% 23,735 26.1% 21,990 24.2% 28,160 30.9%
8 27,131 18.9% 9,123 42.3% 30,928 18.7% 28,624 17.3% 36,254 21.9%
9 34,424 12.1% 16,191 29.6% 41,675 12.3% 38,041 11.2% 50,615 15.0%

10 49,589 8.3% 26,742 22.6% 62,569 8.8% 56,340 7.9% 76,331 10.7%
11 59,660 5.5% 36,737 14.5% 79,959 6.0% 70,064 5.3% 96,397 7.2%
12 75,250 4.2% 53,399 9.4% 109,712 4.6% 92,271 3.9% 128,649 5.4%
13 90,670 4.1% 126,615 12.3% 158,684 4.9% 155,731 4.8% 217,284 6.7%

Total 216,613 3.4% 162,874 7.9% 295,038 3.5% 271,015 3.2% 379,488 4.5%

Table 7. Square roots of estimated conditional estimation
errors

Subportfolio A Subportfolio B Portfolio
i ALR Method CL Method Total

1 149 6.3% 449 ¡333:3% 500 22.6%
2 375 6.3% 934 ¡126:3% 1,064 20.5%
3 1,074 11.2% 1,556 128.5% 1,823 16.8%
4 2,916 21.3% 1,708 172.2% 3,607 24.5%
5 6,710 25.4% 2,606 83.2% 7,798 26.4%
6 7,859 19.2% 3,115 85.1% 9,294 20.9%
7 10,490 13.0% 3,570 35.5% 11,902 13.1%
8 12,953 9.0% 4,144 19.2% 14,614 8.8%
9 16,473 5.8% 6,980 12.8% 19,467 5.8%

10 24,583 4.1% 11,022 9.3% 29,528 4.1%
11 30,469 2.8% 15,669 6.2% 38,363 2.9%
12 38,904 2.2% 23,625 4.2% 52,727 2.2%
13 42,287 1.9% 47,683 4.6% 66,271 2.0%

Total 172,174 2.7% 91,599 4.4% 214,339 2.6%

with c= 0 and c= 1, respectively. Except for ac-
cident year 3, for all single accident years and
aggregated accident years, we observe that the
estimates in the third column are between the
ones assuming no correlation and perfect positive
correlation. Note that accounting for the correla-
tion between subportfolios adds about 9% to the
estimated prediction standard error for the entire
portfolio (295,038 vs. 271,015).

7. Appendix: Proofs
In this section we present the proofs for Lem-

mas 4.4, 4.5, and 4.6.
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7.1. Proof of Lemma 4.4

By induction we prove that

Cov(CCLi,k ,X
AD
i,j jCi,I¡i) =

k¡1Y
l=j

D(fl) ¢§CAi,j¡1, (74)

where §CAi,j¡1 is defined by (39) for all k ¸ j ¸
I¡ i+1 and i= 1, : : : ,I.
a) Assume k = j. Then, using (17), we have

Cov(CCLi,j ,X
AD
i,j jCi,I¡i)

= E[D(CCLi,j¡1)
1=2 ¢D("CLi,j )

¢¾CLj¡1 ¢ (V1=2i ¢D("ADi,j ) ¢¾ADj¡1)0 jCi,I¡i]

= E[D(CCLi,j¡1)
1=2 ¢E[D("CLi,j ) ¢¾CLj¡1

¢ (V1=2i ¢D("ADi,j ) ¢¾ADj¡1)0 jCi,j¡1] jCi,I¡i]

= E[D(CCLi,j¡1)
1=2 ¢§(C,A)j¡1 jCi,I¡i]

¢V1=2i = §CAi,j¡1: (75)

This completes the proof for k = j.
b) Induction step. Assume that the claim is

true for k ¸ j. We prove that it is also true for
k+1. Using the induction step, we have condi-
tional on Ci,l, l · k,

Cov(CCLi,k+1,X
AD
i,j jCi,I¡i)

= D(fk) ¢Cov(CCLi,k ,XADi,j jCi,I¡i)+ 0

=
kY
l=j

D(fl) ¢§CAi,j¡1:

This finishes the proof of claim (74). Using result
(74) leads to the proof of Lemma 4.4.

7.2. Proof of Lemma 4.5

a) Follows from (45) and (46) and the fact that
"̃i,j+1, "̃i,k+1 are independent for j 6= k.
b) Follows from (45) and (46) and the fact that

E¤DN
I

["̃i,j+1] = 0.
c) Using the independence of different acci-

dent years we obtain

Cov¤DNI (f̂j ,m̂j+1)

=Wj

I¡j¡1X
i=0

D(CCLi,j )
1=2(§(C)j )¡1

¢Cov¤DNI (D("̃
CL
i,j+1)¾

CL
j ,D("̃

AD
i,j+1)¾

AD
j )

¢ (§(A)j )¡1V1=2i Uj

=Wj

I¡j¡1X
i=0

D(CCLi,j )
1=2

¢ (§(C)j )¡1§(C,A)j (§(A)j )¡1V1=2i Uj = Tj :

Hence,

E¤DN
I
[f̂(m)j m̂(n)j+1] = f

(m)
j m(n)j+1 +Cov

¤
DNI (f̂

(m)
j ,m̂(n)j+1)

= f(m)j m(n)j+1 +Tj(m,n),

where Tj(m,n) is the entry (m,n) of the K £
(N ¡K)-matrix Tj . This completes the proof of
Lemma 4.5.

7.3. Proof of Lemma 4.6

The components ª (m,n)
k,i are defined by (49).

Hence, we calculate the terms

Cov¤DN
I
(ĝkjJ ,m̂j) = E

¤
DN
I
[ĝkjJm̂

0
j]¡E¤DN

I
[ĝkjJ ]E

¤
DN
I
[m̂0j]:

This expression is equal to 0 (i.e., the K£
(N ¡K)-matrix consisting of zeros) for j¡ 1 <
I¡ k. Hence

ªk,i = (ª
(m,n)
k,i )m,n =

JX
j=(I¡i+1)_(I¡k+1)

Cov¤DN
I
(ĝkjJ ,m̂j):

For j¡ 1¸ I¡ k we have, using Lemma 4.5, that
the (m,n)-component of the covariance matrix on
the right-hand side of the above equality is equal
to

j¡2Y
r=I¡k

f(m)r (f(m)j¡1m
(n)
j +Tj¡1(m,n))

J¡1Y
r=j

f(m)r ¡
J¡1Y
r=I¡k

f(m)r m(n)j

=
J¡1Y
r=I¡k

f(m)r

1

f(m)j¡1
Tj¡1(m,n):

This completes the proof of Lemma 4.6.
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