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Advances in Common Shock Modeling
By Z. Ming Li and Paul G. Ferrara

ABSTRACT

In this paper we rigorously investigate the common shock, or 

contagion, model, for correlating insurance losses. In addition, 

we develop additional theory which describes how the com-

mon shock model can be incorporated within a larger set of 

distributions. We also address the issue of calibrating conta-

gion models to empirical data. To this end, we propose several 

procedures for calibrating contagion models using real-world 

industry data. Finally, we demonstrate the efficacy, and effi-

ciency, of these calibration procedures by calibrating aggregate 

loss models, which incorporate contagion. Further, the case study 

illustrates the power of contagion modeling by demonstrating  

how the introduction of contagion can correct for the short-

comings of traditional collective risk modeling.
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empirical data. Last, section 6 provides a case study 
on the application of contagion modeling to general 
insurance losses. In particular, section 6 illustrates 
the application of the elementary calibration scheme 
from section 5 to real-world insurance data, and 
makes clear the potential deficiency of traditional 
collective risk modeling as applied to aggregate annual 
layered losses.

2. Frequency contagion

In what follows, Ni, represents a claim count 
random variable (RV ), where the subscript i, when 
present, can be interpreted as signifying the ith line-
of-business. C represents the random variable which 
interacts with the distribution of Ni so as to induce a 
contagious effect. In what follows, it will be illus-
trated how C often acts in a multiplicative manner on 
the parameters of the distribution of Ni. In this con-
text, the contagion random variable can be viewed as 
representing the randomness of the parameter value, 
as in Bayesian analysis. In what follows, we refer to 
C as the contagion RV. The distribution of C can take 
any form, which we denote by C ~ f (E[C], Var[C]). 
The only restrictions on C are:

1) C has positive support, or that all values of C are 
greater than 0.

2) E(C) = 1 (the expected value of the RV C is 1)

3) Var(C) = c < ∞

The quantity c also plays an important role. As c 
represents the variance of the contagion random 
variable, we also require that c ≥ 0, and refer to c as 
the contagion parameter.

The canonical distribution that is often used to 
introduce frequency contagion is the Poisson dis-
tribution. For a description of the incorporation of 
contagion within the Poisson distribution, the reader 
is referred to Meyers (2007). The literature also con-
tains a procedure which results in a model that is 
equivalent to introducing contagion within the nega-
tive binomial. However, it is the belief of the authors 
that the traditional parameterization of the negative 
binomial facilitates a greater understanding of the 

1. Introduction

The common shock model, which was introduced 
by Heckman and Meyers (1983), Meyers (2005; 
2007), and Mildenhall (2006) and is also called conta-
gion modeling by White (2012), is a recent approach 
to modeling the systematic effect of changing insur-
ance industry and general economic environments on 
losses. These effects include factors specific to the 
insurance industry, such as the so-called underwrit-
ing cycle, as well as cycles in the overall business 
environment, such as economic recessions and legal 
changes. Often the effect of such an environmental 
change is to cause losses to exhibit similar behavior 
both within, as well as across, companies or lines of 
business. This behavior often takes the form of a cor-
relation of losses within or across companies or lines 
of businesses. The common shock model or conta-
gion model method attempts to capture and account 
for the effects of such an influential environment, 
which is referred to as a contagious environment. 
These models accomplish this by determining com-
mon factors which can be incorporated separately 
into both the frequency and severity distributions of 
effected losses. For the sake of simplicity, we use the 
single name contagion model to refer to the common 
shock model.

This paper is structured as follows: section 2 will 
first briefly review contagion, as applied within fre-
quency distributions. We use the context of the nega-
tive binomial distribution to illustrate the application 
of frequency contagion. In section 2, we further pre-
sent a new method for incorporating contagion within 
the binomial distribution. We remark that an incorpo-
ration of contagion within the binomial distribution, 
resulting in positive correlation, has not appeared 
in the literature, and previous authors have com-
mented on the difficulty of achieving this. Section 3 
describes how the effect of a contagious environment 
can be modeled within the severity component of the 
collective risk model. Next, section 4 describes the 
aggregate loss distribution under contagion model-
ing. Section 5 presents an elementary method that 
can be used to easily calibrate contagion models to 
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eterization via N ~ NegBin(r = 1/g, b = gl). Under 
this l, g parameterization, the mean l is multiplied 
by the contagion RV, i.e., N |C ~ NegBin(Cl, g). 
Notice that if C takes the constant value of 1, with 
probability 1, then N will be an ordinary negative 
binomial distribution with mean l and variance  
l(1 + gl), or rb and rb(1 + b). Further, it can 
be seen that E(N) = EC[EN(N |C)] = EC[C z l] =  
EC [C] z l. But, since C is required to have expected 
value of 1, or E[C] = 1, we have

. (2.3)( ) = λE N

Further, since we denote Var[C] by c, it can easily 
be seen that

1 . (2.4)( )( )( ) = λ + λ + γ + γVar N c c

Equation (2.4) shows that if the contagion param-
eter is 0, then the distribution of N reverts to the 
original negative binomial, whereas as c grows, the 
variance increases.

The introduction of contagion, across K lines-of-
business, for which the claim count of each is modeled 
with a negative binomial frequency distribution, can 
be denoted by: Ni

|C ~ NegBin(Cli, gi) for 1 ≤ i ≤ K,  
and: C ~ f (E[C] = 1, Var[C] = c). Next, assume that 
parameters of the best-fitting negative binomial 
have been fit to the data, for each line of business. 
It is important to note that each Ni can have different 
parameters, li and gi, or ri and bi, after fitting to the 
respective data. In this case, it can be seen that the 
resulting correlation between Ni and Nj, for 1 ≤ i, j ≤ K  
and i ≠ j, takes the following form:

1 1

(2.5)

, ( )( )
ρ = λ

+ λ + γ + γ
λ

+ λ + γ + γ
c

c c

c

c c
N N

i

i i i

j

j j j
i j

Again, it is important to note that the correlation 
between Ni and Nj not only depends on the same con-
tagion parameter, c, but also on the parameter values 

nature of contagion modeling, and also makes clear 
the ease of implementation. Moreover, as some sta-
tistical software is not amenable to the mean/variance  
parameterization of the negative binomial, some prac-
titioners may benefit from a more explicit algorithm 
in this situation.

In order to explicitly illustrate how contagion can 
be directly introduced within a negative binomial 
distribution the Klugman (2012), or r, b parameter-
ization is more useful:

Pr 1 1

1 1

for 0 and 0, (2.1)
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Since the negative binomial distribution has two 
parameters, the contagion RV could potentially oper-
ate on the parameters r, b of the negative binomial 
in a multitude of ways. However, for the sake of 
brevity, we straightforwardly present the particular 
operation which is consistent with the presentation 
of negative binomial contagion in the literature. In 
a quite analogous manner to Poisson contagion, the 
contagion RV, C, can simply be multiplied with the 
parameter b, and leave the r parameter unaffected. 
Hence, we can describe the negative binomial distri-
bution, under contagion, by:

~ ,

with ~ 1,

where (2.2)

( )

( )[ ] [ ]

β

= =

∈ +

N C Negbin r C

C f E C Var C c

C R

The r and b parameterization of the negative 
binomial allows the incorporation of the contagion 
RV to be clearly illustrated. However, the charac-
teristics of the resultant model become more clear 
when the negative binomial is parameterized using 
the mean of l, and a dispersion parameter, g, which 
is related to variance-to-mean ratio: 1 + gl, i.e.,  
N ~ NegBin(l, g). For completeness, we note that this 
parameterization is related to the r and b, param-
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to 0, and the formulas for the mean, variance, and 
correlation can be achieved, similarly.

2.1. Binomial-beta contagion

Within actuarial science, claim count RV’s are often 
assumed to be a member of the (a, b, 0) class, which 
includes the Poisson, negative binomial, and binomial 
distributions. For information on the (a, b, 0) class, the 
reader is referred to Klugman (2012). Further, it has 
been the author’s experience that the binomial distri-
bution is used in practice when the variance of event 
count data is significantly less than the corresponding 
mean. Moreover, we note that the existing literature 
on contagion modeling, including the work of Meyers 
(2005; 2007), considers the binomial distribution. For 
these reasons, we feel that the binomial distribution 
should not be ignored. To the authors’ knowledge, a 
viable method for inducing positive correlation, via 
contagion, between binomially distributed random 
variables is absent from the literature. The results of 
this section fill this void by presenting an original 
formulation for the introduction of contagion among 
binomially distributed random variables that results 
in positive correlation.

of each distribution; gi and gj. Hence, a unique cor-
relation can be induced between each Ni and Nj, even 
though the same contagion parameter, c, is used. 
Equation (2.5) also shows that the level of the con-
tagion parameter, c, impacts the correlation between 
Ni & Nj in a way that makes intuitive sense. Namely:

1) As c → 0, which represents a weak, or absent, 
contagious environment, rNi,Nj

 → 0.

2) As c → ∞, which represents a strong contagious  

environment, rNi,Nj
 → 

1

1

1

1
.

1 2+ γ + γ

Figure 1 depicts the pair-wise correlation between 
Ni and Nj as a function of c, and also for different 
combination of the parameters, li, gi and lj, gj. It 
can be seen from Figure 1, that when the dispersion 
parameters are high, there is less correlation. There 
is also a trade-off between the dispersion parameters 
and the means, l. Even when the dispersion param-
eters are relatively large, sufficiently large values of 
the means, li, will offset the deleterious effect on the 
correlation caused by large dispersion parameters. 
Last, note that the Poisson contagion model can be 
achieved by setting the dispersion parameter equal 

Figure 1. Correlation (across-lines) vs. c, and per level of negative 
binomial parameters
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that the resulting posterior predictive distribution for N 
has the desired properties. In particular, it can be seen 
that the mean is unaffected, while at the same time, larger 
values of c result in a larger variance. It can be easily 
seen that: E(N ) = Ep [EN (N |p)] = n̂ z p̂ . Thus the mean 
of the beta-binomial mixture equals the mean of the 
original, best-fitting, binomial, as required. It can also 
be shown that the variance of the beta-binomial mix-
ture is  Var (N) = n̂p̂(1 - p̂) ×  (1 +  n̂p̂c) × (1/(1 + p̂c)).  
Notice that when c → 0, Var (N) → n̂ p̂ (1 - p̂), and as 
c → ∞ ⇒ Var (N) → n̂[n̂ p̂ (1 - p̂)] > n̂ p̂ (1 - p̂).

Now, let Ni be the number of claims for the ith line of 
business, out of K lines of business. Again, assume that 
the best-fitting binomial distribution has been deter-
mined, for each line. Denote the parameter estimates 
which specify these best-fitting binomial distributions 
by {n̂i , p̂i

|1 ≤ i ≤ K}. We propose the following proce-
dure for inducing contagion between binomial claim 
count RVs:

∼

∼

ˆ ,
ˆ

ˆ*
for 1

and
1

,
1 1 ˆ*

ˆ*
(2.8)
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where p̂* = max(p̂1, p̂2, . . . , p̂n), and p̂i is the best-
fitting parameter estimate, for line i. We now illus-
trate that the preceding combination of claim count 
distributions, and the prior distribution, have the 
desired characteristics. First, it can easily be shown 
that, for 1 ≤ i ≤ K, E(Ni) = Ep[ENi

(Ni
|p)] = n̂i z p̂i 

Hence, the proposed model preserves the mean of 
each of the marginal distributions, as required. Next, 
we verify that the variance of each marginal has the 
desired characteristics. Further, it can be shown that, 
for 1 ≤ i ≤ K, the variance for a single binomial RV is
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Before proceeding, the authors wish to impress upon 
the reader that not every association (operation) of the 
contagion RV with (on) the parameters of the claim 
count distribution will lead to a valid contagion model. 
In particular, in order for an association (operation) of 
the contagion RV to be valid, it must result in a claim 
count distribution with the following characteristics:

 i) The mean of Ni should remain unaffected.
 ii) As the variance of the contagion RV increases:
 a. The variance of N should increase.
 b. rNi,Nj

 should increase.
 iii) As the variance of the contagion RV goes to 0:
 a.  the variance of N should equal its value in the 

absence of contagion.
 b. rNi,Nj

 should go to 0.

In addition to the preceding requirements, the fol-
lowing condition is often desired:

 i) For a given level of the contagion parameter, the 
correlation between claim count RVs with large 
means should be stronger than the correlation  
between claim count RVs with small means, given 
that the volatilities are held constant.

The probability density for a binomial distribution 
with parameters ni and pi can be written as

∼ , 1

where 0 and , 0 1 (2.6)

( ) ( )= 
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First, consider a single binomial distribution. Next, 
assume that the best-fitting binomial distribution has 
been fit to the data, and results in the parameter esti-
mates, p̂ and n̂ . Now, we assume that N ~ Binomial 
(n̂ , p), where p is the only parameter that is consid-
ered to be random, i.e., the parameter n is evaluated 
at n̂ . Next, consider the following prior distribution 
for p, where c is the contagion parameter:

∼
1

,
1 1 ˆ

ˆ
(2.7)( )α = β = −




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c c

p

p

Note that both p̂ and c are constants, in this beta 
distribution. Using this distribution for p we can check 
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From Equation (2.10), several observations regard-
ing rNi,Nj

, as a function of c, can be made. For 1 ≤ i,  
j ≤ K and i ≠ j, we have:

1) as c → 0, we have rN1, N2
 → 0.

2) rN1, N2
 in an increasing function of c.

3) as c → ∞, it can be shown that: 
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Figure 2 illustrates the pair-wise correlation, under 
binomial contagion, for various levels of p̂*, p̂1, and 
p̂2. n̂  = 5 is used throughout.

Note that, as for the Poisson and negative binomial 
models, different levels of correlation between dif-
ferent pairs of RV’s can be achieved, despite the use 
of a single contagion parameter. This is so, since the 
pair-wise correlations depend on the parameter val-
ues of the best fitting binomial distributions n̂i, p̂i, and  
n̂j , p̂j , for each line, as well as on c. From Figure 2,  
it can also be seen that the correlation is higher between 
lines for which both p̂i and p̂j are relatively large, 
and hence have a relatively large number of counts, 
on average (n̂i constant). Also note, from the pairs of 

Though it may appear complicated, several impor-
tant observations can be made from this expression. 
First, it can be seen that:

1) as c → 0, we have that: Var (Ni) → n̂i p̂i (1 - p̂i ), 
which is the variance of the best-fitting binomial 
distribution to the data from line i, in the absence 
of contagion.

2) Var (Ni) is an increasing function of c.

3) as c → ∞, we have
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A little effort reveals that observation (3) illus-
trates that the variance behaves as required.

Next we investigate the correlation between Ni and 
Nj under the proposed binomial contagion model. It 
can be shown that the formula for the correlation 
between the number of claims in the ith and jth lines 
of business, where 1 ≤ i, j ≤ K, and i ≠ j, is

ˆ ˆ ˆ ˆ
1 ˆ*

1 ˆ*
(2.10),1 2
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where σi
2 is as in equation (2.9).

Figure 2. Correlation vs. c, per level of binomial parameters,  
and p*
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tional model, or (re)insurers who place a large amount 
of significance in their data. As with traditional conta-
gion modeling, the proposed form of severity contagion 
induces correlation; however, the proposed method has 
the benefit of minimizing the distortion of the variance 
of the marginal distributions. We represent the observed 
loss severity of the kth line of business by Xk, and denote 
that Xk follows a distribution with mean µk and, vari-
ance σ2

xk
, by Xk ~ Distk(E[Xk] = µk , Var[Xk] = σ2

xk
). The 

proposed method accomplishes this by supposing 
that the size of each loss can be decomposed into two  
components. The first component is governed solely 
by a theoretical, unadulterated, underlying, loss distri-
bution, and the second component represents the impact 
of the contagious environment on the size of loss. The 
former can be loosely thought of as an idiosyncratic 
component, and the latter a systematic component. 
Consider the losses from the kth line of business. We 
denote the idiosyncratic component by the RV, Zk, and 
the systematic component by the RV, b. Specifically, 
we assume that Xk can be decomposed into the prod-
uct of two RV’s: bZk, where b is the severity contagion  
RV, and Zk, the underlying loss RV. Analogous to fre-
quency contagion, we use b to represent the contagion 
parameter. The motivation for this decomposition of Xk 
arises mainly from the desire to separate the portion 
of the variation of Xk that is solely due to the random 
claims generation process from the portion of the vari-
ance that is due to the contagious environment. Further, 
it should be noted that the proposed decomposition of 
the observed losses requires the elucidation of infor-
mation from the data, over and above that required 
by existing severity contagion models. As is usually 
the case, there is a cost associated with this additional 
precision. In this case, the additional cost comes in the 
form of increased complexity in calibrating the model. 
Specifically, instead of the need to only determine 
the best-fitting contagion parameter, b (to be defined 
shortly), it is also necessary to determine the RV, Zk, 
which best describes the pure loss process. Before pro-
ceeding, the authors wish to point out that they are not 
implying that the variance inflation that is associated 
with traditional contagion modeling is a shortcoming 
of the traditional severity contagion model.

black, red, and blue lines, that for the particular levels 
of p̂j in this example, a higher value of p̂* results in 
lower correlations.

3. Severity contagion

In traditional severity modeling, the assumption that 
all severities are independent is made, largely, to make 
both the mathematics and implementation easier. 
This is the case, despite the fact that patterns in loss 
severities, over time, have been documented by prac-
titioners. One such example is the so-called P&C 
insurance underwriting cycle. Further, some believe 
that loss trends are a significant driver of premium 
rates. Moreover, it is reasonable to assume that loss 
trends are, in turn, driven by a set of endogenous fac-
tors, such as changes in underwriting standards and 
policy terms, and exogenous factors, which include 
the legal and regulatory environment. In the tradi-
tional contagion modeling framework, the goal is to 
partition a company’s portfolio into set of mutually 
exclusive and exhaustive subsets, where the com-
bined effect of these drivers of loss trend is relatively 
constant within each subset, and varies more mark-
edly across subsets. Moreover, traditional contagion 
modeling attempts to capture the combined effect of 
all drivers, within any such subset, with only a small 
set of contagion parameters. Hence, the distinct levels  
of the contagion parameters represent what’s referred 
to as a contagious environment. We remark that some 
may consider the goal of achieving such a parsimoni-
ous model to be quixotic; however, one should keep 
in mind the alternative. It is well known that calibrat-
ing correlation matrices is notoriously difficult, espe-
cially for a large number of variables.

Another well-known characteristic of traditional 
contagion modeling is its ability to represent parameter 
uncertainty within simulation models. A byproduct of 
this inclusion of parameter uncertainty is an inflation in 
the variance of the marginal loss distributions. In this 
section we propose an alternative to traditional con-
tagion modeling that can be viewed as an option for 
more conservative (re)insurers, who may be uneasy 
with the increase in variance associated with the tradi-
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2) Alternatively, in the presence of a strong con-
tagious environment, it should be inferred that  
σ 2

zk
 << σ 2

xk
, which, by the same argument, implies 

that Var [b] >> 0, or in other words that b >> 0.

Conversely, under the same assumption that 
Var (Xk) ≈ Var [bZk], we have that:

1) b ≈ 0 implies that σ 2
zk
 = Var [bZk] ≈ Var (Xk) = σ 2

xk
, 

which implies a weak contagious environment, and

2) b >> 0 implies that σ 2
xk

 = Var (Xk) ≈ Var [bZk] = 
σ 2

zk
 + b(µ2

k + σ 2
zk
) >> σ 2

zk
, which implies a strong 

contagious environment.

To illustrate the difference between the traditional 
and proposed severity contagion models, by fitting Xk 
to the data, and then multiplying by b, as in the tra-
ditional contagion model, we have that Var [bXk] =  
σ 2

xk
 + b(µ2

k + σ 2
xk

) > σ 2
xk

 ≈ Var[data]. As mentioned pre-
viously, this distortion of the variance would likely not 
be of concern to (re)insurers who have limited data, or 
ascribe less credibility to their data, or who may even 
believe that the observed data does not accurately rep-
resent the true, theoretical, variance.

We now investigate the proposed model’s ability 
to induce correlation between two or more loss RV’s. 
Let Distk denote the best-fitting distribution to the data 
from the kth line of business, and Distj denote the best-
fitting distribution to the data from the jth line of busi-
ness. Further, assume that Xk and Xj can be, sufficiently, 
modeled as the product of RV, which we denote by Xk ≈  
bZk and Xj ≈ bZj, where b is independent of Zk and Zj, 
and Zk is independent of Zj. Further, assume that the 
parameters of Zk, Zj, and b are σ 2

zk
, σ 2

zj
, and b. Then, it 

can be seen that the covariance between bZk, and bZj 
is: Cov(bZk, bZj) = µkµjb.

Next, this result can be used to show that the cor-
relation between bZk, and bZj, is:

1 1

(3.2)

,
2 2[ ]( ) ( )
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+ + + + 

β β
b

b b CV b b CV
Z Z

Z Z

k j
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Figure 3 illustrates the correlation induced between 
two lines of business as a function of the contagion 

As with the traditional version of severity conta-
gion, the only requirements on the RV b are that its 
distribution has positive support, and that its mean 
be 1. Aside from this, b can have any distributional 
form, which we denote by b ~ f (E(b), Var (b)). Also, 
since the observed losses are modeled by the product 
of RV’s, i.e., b z Zk, or using slightly simpler nota-
tion; bZk, additional requirements must be imposed, 
namely that:

1) b be independent of Zk, and

2) E (Zk) = E (Xk).

In summary, the proposed severity contagion method 
models the size of observed losses by bZk, where Zk ~ 
Distk(E[Zk] = µk, Var [Zk] = σ2

zk
) and b ~ f (E(b) = 1, 

Var (b) = b), with b ≥ 0, and, further, such that E(Zk) =  
µzk

 = µk = E (Xk) and Var (Zk) = σ 2
zk
 ≤ σ 2

xk
 = Var (Xk). 

Further, since the variance of b represents only a small 
fraction of the overall variance of Xk, the assumption 
that Zk is a member of the same family of distributions 
as Xk should be, at most, venial.

We note that the proceeding model formulation has 
the desired characteristics, namely, that the mean of 
Xk is preserved by the proposed model, since E[bZk] = 
E[b]E[Zk] = µk, and that the variance has the follow-
ing form:

. (3.1)2 2 2( )[ ]β = σ + µ + σVar Z bk z k zk k

We now consider the reasonableness of the proposed 
severity contagion method. If the overall severity 
model accurately represents the impact of a contagious 
environment on the pure loss generation process, and a 
calibration scheme is able to effectively isolate the con-
tribution of b to the variation of the data, then, at least 
theoretically, it should be possible to determine param-
eters, µk, σ2

zk
, and b, such that: Var (Xk) ≈ Var [bZk]. This 

makes sense, since:

1) In the absence of a contagious environment, it 
should be inferred that σ 2

zk
 ≈ σ 2

xk
, and hence σ 2

xk
 = 

Var (Xk) ≈ Var [bZk] = σ 2
zk

 + b(µ2
k + σ 2

zk
), which 

implies that b ≈ 0, or that Var[b] is small.
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remains unchanged, i.e., E[S*] = l z µ. Also, it can be 
shown that the variance of the aggregate loss, under 
both frequency and severity contagion, is

i

* * *

* * . (4.2)

2

2 2{ }( )

[ ] [ ] [ ]

[ ] [ ]

( ) ( )

( )

( )

( )

= +

+ +

Var S Var Z E N E Z Var N

b Var Z E N E Z E N

i i

i i

We remark that this formula works for any fre-
quency and severity distributions. One can simply 
substitute in the formulas for the mean and variance 
of the frequency, under contagion, which we denote  
by E (N*) and Var (N*). E (N*) and Var (N*) will 
depend on the type of frequency distribution used, 
but will not depend on the distributional form of 
the contagion RVs; C, or b. Hence, Equation (4.2) 
is a fully general formula.

We now investigate the correlation between the 
aggregate losses from two lines, S*

k and S*
j , where k ≠ j.  

It can be shown that the correlation between S*
k and 

S*
j , for k ≠ j, is

b

cb b c

b

S S
k k j j

k k k k

j j j j

k j

i

i( )

( )

( )

( )

( )

ρ = λ µ λ µ
∑ + ∑ + µ λ 

× + +
∑ + ∑ + µ λ 

(4.3)

, 2
* *

2

parameter, b, and the CV’s of Zk and Zj: CV 2
zk
 = σ 2

zk
/µ2

k,  
and CV 2

zj
 = σ 2

zj
/µ2

j). Further, it can be seen that when 
the variation in loss size is small, the correlation which 
can be achieved is higher, which is consistent with 
intuition.

4. Aggregate loss contagion model

In this section, we describe how both frequency and 
severity contagion can be combined within the collec-
tive risk model. Let N*

i represent frequency distribu-
tion for line i, under contagion, i.e., N*

i
|C ~ Poisson 

(C z l) with C ~ f (E [C] = 1, Var [C ] = c). Further, 
assume that the best-fitting severity distribution to 
line i is DistXi

(µ, σ2
Xi

), where µ, and σ2
Xi

 represent the 
mean and variance of the distribution of Xi, and that it 
is possible to determine parameters σ2

Zi
 and b, such that  

Xi ≈ bZi, where b is independent of Zi, as in Section 3. 
Then, we can simply replace Ni with N*

i , and Xi with bZi 
within the traditional collective risk model, to arrive at 
the aggregate loss distribution under both frequency 
and severity contagion, which we denote by S*:

* (4.1)
1

*

∑= β
=

S Zi i
k

N

k

i

Despite the addition of contagion, it can be shown 
that the mean of the collective risk model (CRM) 

Figure 3. Correlation vs. b, and per the CV’s of lines j and k
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5. Implementation and calibration

In this section we illustrate one out of many poten-
tial methods for calibrating contagion models to 
empirical data. The motivation for illustrating this 
particular calibration procedure is three-fold: First, 
it is a very simple, and practical, way to calibrate 
contagion models to per-claim empirical data. Fur-
ther, there appears to be a dearth of literature that 
describes, in detail, practical approaches to cali-
brate contagion models to such per-claim empirical 
data. In fact, to the authors’ knowledge, this paper 
represents the first attempt to do so. Second, the 
authors wish to illustrate that the proposed sever-
ity contagion model, specifically, can be calibrated 

Note that Si = Var [Zi]E (N*) + (E [Zi])
2 Var (N*) is 

the aggregate loss variance for contaged frequency 
and un-contaged severity.

Figure 4 illustrates the correlation induced between 
the aggregate losses of two lines of business, as a 
function of the contagion parameter, b. Each of the 
nine graphs uses 5 and 10, for the means of the two 
frequency distributions, i.e., l1 = 5, and l2 = 10, and 
corresponds to one of three levels of the frequency 
contagion parameter, c = 0.1, 0.5, and 0.8. It can be 
seen that higher levels of the frequency and severity 
contagion parameters c and b, result in higher cor-
relation between the lines. Also, higher levels of µj 
result in higher correlation. Conversely, higher levels 
of σj result in lower correlation. Or, stated another 
way, the greater the uncertainty in the loss sizes of 
each line, the more tenuous the relationship between 
the loss sizes, and hence the lower the correlation.

Moreover, in the special case where the claim fre-
quency for both line j and k, are Poisson, it can be 
shown that the correlation between S*

k and S*
j , for  

k ≠ j, is

Figure 4. Correlation of aggregate losses vs. b, per level of c, 
and the mean and SD of the severity distributions
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distribution to Xk. Hence, the determination of the 
distribution of Zk only requires the determination of 
its variance, σ2

z. Again, if sufficient data were avail-
able, it would be preferred to use advanced statistical 
procedures, such as the EM algorithm, GLMs, or 
GLMMs. However, as this is usually not the case, 
we describe a simple, straightforward severity cali-
bration method. To accomplish step 3 we perform 
the following steps:

1) Determine b.

2) Use this b to determine σ2
z.

3) Determine the parameters of the severity distri-
bution (Pareto, in this case), which correspond to 
this σ2

z, and use this severity distribution within 
the simulation.

Using Equations (3.1) and (4.2) if claim frequency is 
assumed to follow a Poisson distribution with param-
eter l, then it can be shown that

i*

1
(5.2)

2 2 2

2 2

[ ][ ]
( )

= − λ β − λµ − λ µ
λ µ +

b
Var S Var Z c

c
z z

z

In Equation (5.2), Var [S*] is the variance of the 
empirical aggregate losses, and µZ(= µX) and Var [bZ] ≈  
Var [X ] can be estimated using the mean and the 
variation, respectively, of the per-claim loss data. 
Recalling that c has already been estimated, at this 
stage, all remaining quantities to the right of the equals 
sign in Equation (5.2) can be estimated from the 
empirical data. Note that Equation (5.2) only applies 
to the specific case of a Poisson frequency. How-
ever, when contagion is introduced within a negative  
binomial frequency the corresponding formula can 
be shown to be

b
Var S Var Z

c cz

z

= [ ] − [ ]
+ + +( )

− +

* λ β
λ µ γ γ

λµ λ µ

i
2 2

2 2

1

zz z

z

c c

c c

2 2 2

2 2

1

1
5 3

+ +( )
+ + +( )

λ µ γ
λ µ γ γ

( . )

with this simple technique. Third, while the authors 
recognize that advanced statistical techniques, such 
as the EM algorithm, GLMs or GLMMs, should ide-
ally be used to calibrate the proposed severity conta-
gion model, where Var [data] ≈ Var [bXk], it is very 
unlikely that the practicing actuary will have suffi-
cient data at their disposal to attain statistically sig-
nificant results from these methods.

We first investigate the calibration for a single line 
of business. The procedure employed will, no doubt, 
depend on the purpose of the analysis as well as the 
expert opinion of the practitioner. There are three 
main steps for calibration of contagion models for 
aggregate losses:

1. Model fitting—determination of the best-fitting 
distributions for the frequency and severity, based 
on the empirical data.

2. Calibration of the frequency contagion model, 
based on the empirical claim count data.

3. Calibration of both the pure, underlying, loss 
process, Zi, and also the contagion RV b.

Step 2 is accomplished by exploiting the corre-
sponding formula for the variance of the claim count 
RV under contagion. For example, when claim counts 
are modeled with a Poisson distribution, with mean 
l, we have that Var (N ) = l (1 + c z l). As Var (N ) can 
be estimated from the observed annual claim count 
data, the only unknown quantity is the frequency 
contagion parameter c. Hence, the above equation 
can be rewritten to solve for c:

1
(5.1)2

( )=
λ

−
λ

c
Var N

Step 3 calibrates the proposed severity calibra-
tion method. As mentioned in section 3, given the 
inevitable uncertainty surrounding the true under-
lying loss process, as well as the presumed rela-
tively small variance of b, in most circumstances, 
there is no harm in assuming that the RV Zk fol-
lows the same distributional form as the best-fitting 
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lated values, that we focus our attention on, is the 
coefficient of variation(CV). The two models under 
consideration are:

1. The traditional collective risk model (CRM), and

2. The CRM under contagion.

Both models 1 and 2 will be calibrated to the actual 
loss data. In particular, the data will be used to deter-
mine both the distributional choices (frequency and 
severity), as well as parameter values of each. In other 
words, we allow the data to dictate the calibration both 
models.

Next we turn our attention to the data used in this 
case study. The data is actual loss data consisting of 
670 property claims from severe convective storms 
between years 2003 and 2012, inclusive. The data is 
on an occurrence basis, and is in units of $1,000. Due 
to the proprietary nature of the data, only approxi-
mate values of the corresponding aggregate annual 
losses are shown in Table 1. The approximate nature 
of these values should be kept in mind, should the 
reader attempt to verify the results presented in this 
section using values from Table 1.

We now proceed to the analysis of the data. Since the 
variance of the annual claim counts Var (N) (@ 600) is 
significantly greater than the mean E(N) (@ 70), we use 
a negative binomial distribution for the frequency dis-
tribution, both within the CRM, and the CRM under 
contagion. Specifically, based on the annual aggregate 
claim data, we use

Once b has been determined, the variance of the 
pure underlying loss RV, Z, can be solved for using 
Equation (3.1):

1 1
(5.4)2

2 2[ ] [ ]σ = β − µ
+

≈ − µ
+

Var Z b

b

Var X b

b
z

z z

Finally, the aggregate annual losses, under both 
frequency and severity contagion, are
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i X i z x i z

i j

As indicated above, this is just one method for cali-
brating contagion models. This particular method is 
informed by the desire to produce aggregate annual 
loss simulations with variation close to the variation of 
the empirical annual aggregate losses. Armed with an 
understanding of the proposed calibration method for  
a single line of business, various calibration procedures 
can be employed to extend the calibration to two or 
more lines of business. We leave the choice of the spe-
cific calibration procedure to the practitioner.

6. Case study: Natural peril data

In this case study, we consider only a single line-
of-business. Further, we compare the ability of two 
models to reproduce key characteristics of a sample 
of historical data. The key characteristic of the simu-

Table 1. Masked version of natural peril property data

Year Count Average Loss S.D. Loss

2003 50 22,000 39,000

2004 45 13,000 13,000

2005 40 11,000 11,500

2006 70 15,000 22,000

2007 85 9,000 13,000

2008 105 14,000 19,000

2009 80 21,000 29,500

2010 85 22,000 36,500

2011 80 32,000 60,500

2012 30 16,000 22,500
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(CRM under contagion). First, we use Equation (5.2) 
to determine the severity contagion parameter.

i*

1
0.13.

2 2 2

2 2

[ ][ ]
( )

= − λ β − λµ − λ µ
λ µ +

≈b
Var S Var Z c

c
z z

z

The inputs that we used for Equation (5.2) are:

• The mean of the Poisson frequency distribution 
(l = 70).

• The modeled mean of the per-claim severity distri-
bution (µz = 17,842).

• The modeled variance of the per-claim severity 
(Var [bZ] = σ2

x = 32,3292).
• The empirical variance of the annual aggregate 

losses (AAL): (Var[S*] = 697,2452).

Note that Equation (5.2) is used, since the negative 
binomial distribution (without contagion) is equiva-
lent to the Poisson distribution, under contagion. As 

0.1,

8.25
2

[ ]
[ ]

[ ]
[ ] [ ]

= = ≅

=
−

=

p prob success
E X

Var X

r
E X

Var X E X

We now turn our attention to calibrating the severity 
component of the contagion model. Using maximum 
likelihood (MLE) methods, the best-fitting distribu-
tion to the observed per-claim severity is a Pareto  
distribution. Further, the MLE-based parameters of the 
best-fitting Pareto are aMLE = 2.982, qMLE = 33,468.

The fit of the Pareto distribution to the observed 
empirical data is illustrated in Figure 5.

From Figure 5, it can readily be seen that the Pareto 
provides a good fit to the data. Although the MLE 
estimates of the parameters can be used within the 
simulation, we opt to use the method-of-moment esti-
mates, (aMoM, qMoM) = (2.876, 33,470) out of a desire 
to eliminate any bias in the final comparison between 
the two models. Also, out of a desire to be transpar-
ent, Table 2 summarizes both the method of moments 
and MLE parameterization of the Pareto distribution.

Again, to be fair, the final calibration of the first 
model (traditional CRM) uses NegBin (p = 0.11,  
r = 8.25), and Pareto(a = 2.87, q = 33,470). We now  
calibrate the severity component of the second model 

Table 2. MLE and MoM estimates of severity 
distribution parameters

Method of 
Estimation

Pareto Parameters

Mean
Standard 
DeviationAlpha Theta

MLE 2.982 33,468 16,881 29,413

MoM 2.876 33,470 17,842 32,329

Figure 5. Comparison of fitted and empirical densities of the severity data
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the traditional CRM, and also under the CRM under 
contagion. Next, box-plots of both sets of CV’s are 
displayed, along with the empirical AALLs (red dots). 
For reference, the final parameterization of both mod-
els is displayed in Table 3. A summary of the simula-
tion procedure is as follows:

1. For each iteration of the simulation, generate  
10 years of Aggregate Annual Losses under both:
• The traditional CRM
• The CRM under contagion

2. For each of the pre-defined layers, calculate the 
annual aggregate layered loss.

3. For each set of 10 AALLs, calculate the CV

4. Repeat 100,000 times.
• At this point, we have 100,000 10-year CV esti-

mates, for each layer.

5. For each layer, create a box-plot using the 
100,000 10-year CVs (10th, 25th, 50th, 75th, and  
90th per centiles).

Note that different severity parameters were used 
for the traditional CRM and the CRM under contagion. 
Again, this is not an accident, for recall that under the 
proposed severity contagion method, the parameter-
ized severity distribution represents the true underlying 
loss process, Z, whereas under the traditional collec-
tive risk model, it is the observed severity, X, that is 
parameterized.

Recall that the empirical CV’s of the aggregate 
annual layered losses are shown in red. Also, the box-
plot of the ground-up losses are shown on the far right 
column of each graph.

Figure 6 illustrates that model 2 (CRM under con-
tagion) produces simulated AALLs for which the 

illustrated in Meyers (2007), c equals the dispersion 
parameter of the negative binomial: c = (Var [X] - 
E [X])/(E [X])∧2 = 0.12.

However, severity calibration for the second model 
is not complete. Recall that under the proposed sever-
ity contagion model, the true, underlying, loss pro-
cess variance is elicited from the observed variation. 
As explained in Section 5, a simple, straightforward, 
approach is to use Equation (5.4), together with the 
value of b:

1
29,634 .2

2
2[ ]σ = β − µ

+
=Var Z b

b
z

Z

If a statistical software package is used that does 
not allow the parameterization of the Pareto using 
the mean and variance, the parameter values can be 
solved for in terms of the mean and variance. For the 
Pareto distribution, the corresponding formulas are

2
,

(6.1)
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The resulting parameters are aZ = 3.137, and qZ = 
38,133. At this point the calibration of the severity 
component of model 2 (CRM under contagion) is com-
plete, and we can begin the simulations that are at the 
core of this study.

First, we define the layers of loss, which will be 
used for all simulations in the case study: 0 - 7.5M, 
7.5M - 20M, 20M - 45M, 45M - 70M, 70M - 100M, 
and 100M - 200M.

The simulation study is accomplished by repeat-
edly simulating 10 years of aggregate annual layered 
losses (AALL), and then calculating the correspond-
ing coefficient-of-variation (CV) of each set of 10 year  
AALLs. We do this using both AALL estimates 
from the traditional CRM and estimates from the 
CRM under contagion. This process is repeated until 
100,000 10 - year CV estimates are obtained under 

Table 3. Final parameters in simulation model

Distribution

Model 1
Traditional 

CRM

Model 2
CRM under 
Contagion

Frequency Neg Binomial r = 8.25,  
p = 0.11

r = 8.25,  
p = 0.11

Severity Pareto aX = 2.87, 
qX = 33,470

aZ = 3.13, 
qZ = 38,133

Contagion Gamma N/A b = 0.13



Variance Advancing the Science of Risk

34 CASUALTY ACTUARIAL SOCIETY VOLUME 9/ISSUE 1

correlation. Further, this has been done for frequency, 
severity, and aggregate contagion models under all  
of the common frequency and severity distributions. 
Second, we have developed a workable version of 
contagion modeling under the binomial distribution 
that produces positive correlation. Third, we have pro-
posed a form of severity contagion for (re)insurers, 
with highly credible data, who wish to avoid the vari-
ance inflation associated with traditional contagion 
modeling. We have also described a procedure to cali-
brate aggregate contagion models, under the proposed 
severity contagion, based on per-claim empirical data. 
Last, we have demonstrated the efficacy and ease of 
use of the proposed calibration procedures using a real-
world data set from the Insurance industry. This case 
study illustrates the well-known limitations of tradi-
tional collective risk modeling and provides evidence 
that contagion modeling provides a systematic way to 
correct for the inherent limitations of traditional col-
lective risk modeling. It is our hope that this work will 
help establish contagion modeling, both among aca-
demics and practitioners, and also motivate additional 
research on contagion modeling, as well as on other 
ways to improve traditional collective risk modeling.

10-year CVs are more consistent with the observed 
CVs of the empirical AALLs. Also, recall that both 
the frequency and severity distributions of both mod-
els were calibrated to the observed data. Moreover, 
note that incorporation of a single contagion param-
eter allowed for the simulation of 10-year CVs that 
are more consistent with the observed CVs for all 
layers as well as for the ground-up losses.

7. Conclusion

Within the insurance industry, the ability to accu-
rately capture variation instead of just the mean has 
grown over the past several decades. In particular, risk 
measures such as Value-at-Risk (VaR) and Conditional 
Tail Expectation (CTE) or Tail-VaR (TVaR) were con-
structed to capture such distributional qualities. The 
use of contagion within the traditional collective risk 
model will allow actuaries, and risk professionals to 
reap the benefits of these modern risk measures.

In this paper we have investigated the contagion 
modeling paradigm, as introduced by Meyers (2007). 
First, we have elucidated, analytically, the impact of 
this modeling paradigm, in particular the induced 

Figure 6. Box plots of the coefficient-of-variation(CVs) of aggregate annual layered losses:  
Both with severity contagion (right), and without contagion (left)
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