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A Continuous Version of 
Sherman’s Inverse Power Curve 
Model with Simple Cumulative 
Development Factor Formulas

by Jon Evans

ABSTRACT

A continuous version of Sherman’s discrete inverse power curve 

model for loss development is defined. This continuous version, 

apparently unlike its discrete counterpart, has simple formulas 

for cumulative development factors, including tail factors. The 

continuous version has the same tail convergence conditions and 

basic analytical properties as the discrete version. Parameter 

fitting and numerical comparisons between the discrete and con-

tinuous model versions are explored.
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Definition: For real numbers a, b, and c, where 
a > 0 and c ≥ 0,

(i) If t ≥ 2 is an integer, then 

F a b c a k ct
b

k

t

, , 1 .
1

1

∏( )( ) ( )= + +
=

−

(ii) If t = 1, then F1(a, b, c) = 1.

Ft(a, b, c) obeys the finite difference equation

, , , , , , .1F a b c F a b c a t c F a b ct t
b

t( ) ( ) ( )( )− = ++

If the boundary value of F1(a, b, c) = 1 is included, 
then this equation, along with the previous parameter 
restrictions, is an equivalent definition of Ft(a, b, c).

A corresponding continuous version of the inverse 
power curve model can similarly be defined in terms of 
a cumulative development factor F*

t (a, b, c) from time 
1 to t, but with much simpler closed-form expressions.
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Using an analogous boundary value F*1 (a, b, c) = 1, 
F*

t (a, b, c) is the solution to a differential equation in 
continuous time t,

dF a b c

dt
a t c F a b ct b

t

* , , * , , ,
( ) ( ) ( )= +

that is analogous to the finite difference equation 
satisfied by the discrete model.

2.2. Tail convergence

The tail of F*
t (a, b, c) converges when b < −1 and 

diverges when b ≥ −1, which are exactly the same 
as the conditions for convergence of Ft(a, b, c) as 
shown in Evans (2014).

1. Introduction

The inverse power curve model for loss devel-
opment factors was introduced by Sherman (1984). 
Several papers have commented on the lack of a 
closed form representation and/or tail convergence 
information (Boor 2006; CAS Tail Factor WP 2013; 
Lowe and Mohrman 1985). The conditions for tail 
factor convergence and estimates of the rate of tail 
factor convergence have been determined (Evans 
2014). However, simple or closed-form formulas for 
finite and infinite products of the discrete incremen-
tal development factors still appear elusive.

This paper will demonstrate that a continuous ver-
sion of the inverse power curve model captures the 
relevant properties of the discrete model. At the same 
time, this continuous model leads to simple cumulative 
development factor, including tail factor, formulas. 
These simple formulas facilitate various practical cal-
culations, such as fitting or calculating development 
factors using intermediate time values or fitting the 
model to a preselected tail factor. Basic real analysis 
is used throughout this paper, as described in standard 
textbooks such as Rudin (1976).

Section 2.1 defines the continuous version of the 
model. Convergence conditions are proved in Sec-
tion 2.2. Several basic analytical properties are proven 
in Section 2.3. Empirical fitting, and a comparison 
with the discrete model, is discussed in Section 2.4. 
Further numerical comparisons are shown in Sec-
tions 2.5. Section 3 contains concluding remarks. 
Appendix A contains the proof of two lemmas and 
Theorem 2 from Section 2.3.

2. Analysis and results

In the remainder of this paper t is used for age or 
time, whether discrete or continuous.

2.1. Continuous inverse curve  
model definition

The discrete version of the inverse power curve 
model can be defined in terms of a cumulative devel-
opment factor Ft(a, b, c) from time 1 to t.
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Lowe and Mohrman (1985) list several analytical 
properties for a curve of one-period loss development 
factors to be “well-behaved.”

Definition: A curve of one-period loss development 
factors, f (t) for t ≥ 0, is said to be well-behaved if it 
has all of the following properties:

 (i) f (t) ≥ 1

 (ii) lim 1f t
t

( ) =
→+∞

(iii) f ′(t) < 0

(iv) lim 0f t
t

( )′ =
→+∞

(v) f ″(t) > 0

(vi) lim 0f t
t

( )′′ =
→+∞

Theorem 2
If b < 0 then ft(a, b, c) and f *

t (a, b, c) are both 
well-behaved.

See Appendix A for details of the proof.

2.4. Fitting to empirical data

Table 1 includes an example from Sherman’s origi-
nal paper (1984) of the discrete model fit to empirical 
data. Also shown are one-period development fac-
tors from the continuous model, first using the same 
parameter values as the discrete model and then using 
another set of parameter values refit for the continu-
ous model itself. The continuous model development 
factors using the discrete model parameter values are 
fairly close to the discrete model development fac-
tors. When the parameters values are refit, the result-
ing development factors for the continuous model 
are very close to the discrete model development 
factors.

Definition: f a(t) will denote an empirical observa-
tion of a one-period development factor from time t 
to t + 1.

Theorem 1
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2.3. Some basic analytical properties

For convenience we will first set up notational 
definitions of the one-period development factors, 
ft(a, b, c) for the discrete model and f *

t (a, b, c) for the 
continuous model.
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A simpler squared error function for the continuous 
model would be
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This is still a fairly complicated function, likely not 
having a simple formulaic solution to minimize the 
parameters a, b, and c. One of the few apparent advan-
tages of the discrete model is a somewhat simpler error 
function. It may be advantageous to use a numerical 
optimization program (like Solver in Excel) to first 
optimize a, b, and c for the discrete model. Those val-
ues can then be used as a starting point, or initial val-
ues, for the optimizer to search for values optimal for 
the continuous model.

The fits and goodness-of-fit (R2) numbers in Table 1 
are determined using the squared error function
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for the discrete model.
Correspondingly, for the continuous model,
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Table 1. Comparison of discrete and continuous models fit to general liability data (actual and 
discrete fit are from Exhibit 2 in Sherman’s original paper (1984). Time convention is shifted by 
�1 from the original paper.)

Parameters

Parameter Values

Discrete Fit Discrete Fit Continuous Fit

a 0.88614 0.88614 1.20154

b −1.7338 −1.7338 −1.8306

c 0 0 0

t

One-Period Development Factors From t to t + 1

Actual Discrete Model Continuous Model Continuous Model

1 1.839 1.886 1.618 1.884

2 1.279 1.266 1.205 1.262

3 1.185 1.132 1.108 1.131

4 1.077 1.080 1.068 1.080

5 1.039 1.054 1.048 1.055

6 1.033 1.040 1.035 1.040

7 1.029 1.030 1.027 1.031

8 1.030 1.024 1.022 1.024

9 1.019 1.020 1.018 1.020

10 1.014 1.016 1.015 1.016

11 1.016 1.014 1.013 1.014

12 1.013 1.012 1.011 1.012

13 1.012 1.010 1.010 1.010

14 1.008 1.009 1.009 1.009

Goodness 
of Fit (R2)

98.3% 97.8% 98.2%
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runs through the set of values {−2.0, −1.5, −1.1, 
−1.0, −0.9, −0.6} in these examples. Similar to what 
happened in Table 1, in Table 2 the continuous model 
is fairly close to the discrete model using the same 
parameter values and very close—identical up to  
3 digits past the decimal in some examples—when the 
parameter values continuous model are refit. Note,  

2.5. More numerical comparisons  
with the discrete model

Table 2 follows the basic layout of Table 1, except 
that the fitting targets a one-period development factor 
of 1.01 from time 1 to 2 and a development factor of 
1.30 from time 1 to 101, rather than fitting to a set of 
actual empirical development factors. The b parameter 

Table 2. Some numerical comparisons of discrete and continuous models

Parameter Values

Parameters Discrete Fit Discrete Fit Continuous Fit

a 12.121 12.121 12.1528

b −2.0 −2.0 −2.0

c 33.8152 33.8152 33.4513

Cumulative Development Factors From 1 to t

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.083 1.081 1.083

101 1.300 1.295 1.300

1,001 1.406 1.400 1.406

10,001 1.421 1.415 1.421

100,001 1.423 1.416 1.423

1,000,001 1.423 1.416 1.423

10,000,001 1.423 1.416 1.423

100,000,001 1.423 1.416 1.423

1,000,000,001 1.423 1.416 1.423

Parameter Values

Parameters Discrete Fit Discrete Fit Continuous Fit

a 1.07747 1.07747 1.07894

b −1.5 −1.5 −1.5

c 21.6432 21.6432 21.2437

Cumulative Development Factors From 1 to t

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.081 1.079 1.081

101 1.300 1.295 1.300

1,001 1.477 1.470 1.477

10,001 1.546 1.539 1.546

100,001 1.569 1.562 1.569

1,000,001 1.576 1.569 1.577

10,000,001 1.579 1.572 1.579

100,000,001 1.580 1.572 1.580

1,000,000,001 1.580 1.573 1.580

(continued on next page)
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Table 2. Some numerical comparisons of discrete and continuous models

Parameter Values

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.174452 0.174452 0.174523

b −1.1 −1.1 −1.1

c 12.4523 12.4523 12.0248

Cumulative Development Factors From 1 to t

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.078 1.075 1.078

101 1.300 1.295 1.300

1,001 1.610 1.603 1.611

10,001 1.926 1.917 1.926

100,001 2.221 2.211 2.222

1,000,001 2.488 2.477 2.489

10,000,001 2.723 2.711 2.723

100,000,001 2.925 2.912 2.926

1,000,000,001 3.096 3.082 3.097

Parameter Values

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.112892 0.112892 0.112913

b −1.0 −1.0 −1.0

c 10.2892 10.2892 9.85493

Cumulative Development Factors From 1 to t

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.077 1.074 1.077

101 1.300 1.295 1.300

1,001 1.668 1.661 1.669

10,001 2.161 2.152 2.162

100,001 2.803 2.790 2.803

1,000,001 3.635 3.618 3.635

10,000,001 4.714 4.693 4.715

100,000,001 6.113 6.086 6.115

1,000,000,001 7.928 7.892 7.930

Parameter Values

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.0737384 0.0737384 0.0737367

b −0.9 −0.9 −0.9

c 8.2067 8.2067 7.7661

(continued on next page)

 (continued)
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tends to produce numerical values extremely close to 
the discrete value when fit to the same data. Squared 
error functions for fitting the parameters of the con-
tinuous model tend to be more complex, but fits bor-
rowed from the discrete model can be used as initial 
values to facilitate fitting the continuous model.

Appendix A

Lemma A.1

(i) If p > 0 then lim x
x

p = +∞
→+∞

.

 (ii) If p < 0 then lim 0x
x

p =
→+∞

.

 (continued)

in the table the time values extend upward to very 
large numbers, irrelevant to any realistic actuarial 
application, simply to illustrate asymptotic properties 
of the models.

3. Conclusions

The continuous inverse power curve model pre-
sented in this paper has the same tail convergence 
conditions and “well-behaved” analytical properties 
as the discrete model. Unlike the discrete model, it is 
known to have very simple closed formulas for cumu-
lative development factors, including tail factors. It 

Table 2. Some numerical comparisons of discrete and continuous models

Cumulative Development Factors From 1 to t

t Discrete Model Continuous Model Continuous Model

2 1.010 1.010 1.010

11 1.075 1.073 1.075

101 1.300 1.295 1.300

1,001 1.744 1.737 1.744

10,001 2.550 2.539 2.550

100,001 4.119 4.101 4.119

1,000,001 7.534 7.500 7.534

10,000,001 16.111 16.039 16.110

100,000,001 41.946 41.759 41.944

1,000,000,001 139.919 139.293 139.906

Parameter Values

Parameters Discrete Fit Discrete Fit Continuous Fit

a 0.021923 0.021923 0.021913

b −0.6 −0.6 −0.6

c 2.69971 2.69971 2.24551

Cumulative Development Factors From 1 to t

t Discrete Model Continuous Model Continuous Model

2 1.010 1.009 1.010

11 1.069 1.066 1.068

101 1.300 1.295 1.300

1,001 2.185 2.176 2.185

10,001 8.118 8.083 8.113

100,001 219.782 218.839 219.322

1,000,001 8.72E+05 8.69E+05 8.67E+05

10,000,001 9.55E+14 9.51E+14 9.40E+14

100,000,001 4.86E+37 4.84E+37 4.67E+37

1,000,000,001 5.27E+94 5.24E+94 4.76E+94
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   Clearly (a(c + t + 1)b − a(c + t)b)2 > 0. Since b < 0  

and a(c + t + 1)b−1 < a(c + t)b−1 it follows that 

ba(c + t + 1)b−1 − ba(c + t)b−1 > 0. Since f *
t (a, b, c)  

≥ 1, altogether it follows that (ba(c + t + 1)b−1 

− ba(c + t)b−1) f *
t (a, b, c) + (a(c + t + 1)b −  

a(c + t)b)2 f *
t (a, b, c) > 0.

 (vi) Since b − 1 < b < 0 by Lemma A.2 it follows 

that 
→+∞t
lim (ba(c + t + 1)b−1 − ba(c + t)b−1) = 0 and  

Proof:

 (i) For any ε > 0, choose x > ε1/p to make x > ε.

 (ii) For any ε > 0, choose x > ε−1/p to make x < ε.

Lemma A.2
If p < 1 and q ≥ 0 then lim 0x q x

x

p p( )( )+ − =
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.

Proof:
If p < 0 then by Lemma A.1

→+∞x
lim ((x + q)p − x p) = 

0 − 0 = 0. If p = 0 then trivially 
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Proof of Theorem 2 from Section 2.3:
For ft(a, b, c):

 (i) a(c + t)b > 0 and consequently 1 + a(c + t)b > 1.

 (ii) If b < 0 then by Lemma A.1 
→+∞t
lim a(c + t)b = 0 

and consequently 
→+∞t
lim (1 + a(c + t)b) = 1.

 (iii) 
, ,
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ba c tt b( )

( )= + −  Since b < 0, clearly 

ba(c + t)b−1 < 0.

 (iv) Since b − 1 < b < 0, by Lemma A.1 it follows 
that 
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lim ba(c + t)b−1 = 0.

 (v) 
, ,

1 .
2

2
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b b a c tt b( ) ( ) ( )= − + −  Since b − 1 < 

b < 0, obviously b(b − 1) > 0, and consequently 
b(b − 1)a(c + t)b−2 > 0.

 (vi) Since b − 2 < b < 0, by Lemma A.1 it follows 
that 

→+∞t
lim b(b − 1)a(c + t)b−2 = 0.

For f *
t (a, b, c):

 (i) If b + 1 < 0 then a(c + t + 1)1+b ≤ a(c + t)1+b, or  
if b + 1 > 0 then a(c + t + 1)1+b ≥ a(c + t)1+b.  
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