
VOLUME 5/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 45

Copula Regression
by Rahul A. Parsa and Stuart A. Klugman

AbSTRACT

Regression analysis is one of the most commonly used statisti-

cal methods. But in its basic form, ordinary least squares (OLS) 

is not suitable for actuarial applications because the relation-

ships are often nonlinear and the probability distribution of the 

dependent variable may be non-normal. One approach that has 

been successful in overcoming these challenges is the gener-

alized linear model (GLM), which requires that the dependent 

variable have a distribution from the exponential family. In this 

paper, we present copula regression as an alternative to OLS 

and GLM. The major advantage of a copula regression is that 

there are no restrictions on the probability distributions that can 

be used. In this paper, we will present the formulas and algo-

rithms necessary for conducting a copula regression analysis 

using the normal copula. However, the ideas presented here can 

be used with any copula function that can incorporate multiple 

variables with varying degrees of association.

KEYwORdS
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to the left, while models for casualty losses are usu-
ally skewed to the right. Furthermore, there is no log-
ical argument, other than mathematical simplicity, to 
support a linear relationship between the covariates 
and the mean of the response variable. Embrechts, 
McNeil, and Straumann (2002) show how the Pear-
son correlation coefficient can be misleading when 
the underlying distributions are not normal. They ad-
vise using copulas to model data that are not normal 
because such models capture a greater variety of re-
lationships (essentially being nonparametric). 

A significant advance was provided by the devel-
opment of the generalized linear model (GLM). The 
standard reference is McCullagh and Nelder (1989). 
The generalization comes in two places. First, the 
distribution of Y must be a member of the exponen-
tial family (which includes many commonly used 
distributions such as binomial, Poisson, negative bi-
nomial, normal, gamma, inverse Gaussian, and log-
normal, see pages 26-28 of McCullagh and Nelder). 
Second, the relationship between the mean of Y and 
the covariates is expressed as E(Y | X
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the link function. The conditional variance of Y is no 
longer constant but will depend on the conditional 
mean. The nature of the dependence depends on the 
choice of distribution for Y. Modern statistical soft-
ware includes GLM analysis for specific combina-
tions of distributions and link functions. Estimation 
is done by maximum likelihood. This model has 
been widely used in automobile pricing and there are 
numerous articles providing actuarial applications 
(Aitkin 1989, Mosley 2004).

The next step in generalizing this model is to re-
move the restriction that the distribution of Y be from 
the exponential family. There is nothing inherent in 
the GLM that demands the use of the exponential 
family, although some of the calculations become 
more difficult and there is no convenient expression 
for the conditional variance. This generalization is 
briefly discussed by Klugman, Panjer, and Willmot 
(2008) and is further expanded in Venter (2007).

We are proposing an alternative approach to gen-
eralizing the OLS regression model. We are not 

1. Introduction

Regression analysis is one of the most widely used 
statistical methods, dating back to Francis Galton’s 
1875 discovery of the regression slope (Stanton 
2001). The key concept behind this methodology 
is identifying a relationship between a set of vari-
ables. The premise is that a dependent or response 
variable, labeled Y, is assumed to be related in some 
functional form to several covariates (also referred 
to as explanatory or independent variables), labeled 
X

1
, X

2
, . . . , X

k
. The response variable, Y, measures 

a random quantity of interest. Examples include the 
annual claims on an automobile insurance policy and 
the age at death of an insured life. The covariates, 
X

1
, X

2
, . . . , X

k
, could be a set of characteristics of 

the insured. For example, in automobile insurance 
the variables might be age, gender, accident history, 
credit score, and so on. In life insurance the variables 
might be age, gender, smoking status, blood pres-
sure, height, weight, and so on. If it is possible to 
express how the distribution of the response variable 
is related to the covariates, the result is often a reduc-
tion in the uncertainty of insured events that depend 
on Y.

The basic OLS regression model presents a spe-
cific model for the relationship. The distribution of Y 
given the covariates is assumed to be normal with a 
variance that is constant (that is, not related to the co-
variates) and a mean that is related to the covariates 
as E(Y | X
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The equivalent (in this case) techniques of maximum 
likelihood and least-squares are used to estimate the 
unknown coefficients. The covariates can be con-
sidered as random observations (in which case it is 
assumed the complete set of variables has a multi-
variate normal distribution) or as fixed quantities, 
for example, where the levels are set in a designed 
experiment. A measure of the success of the model 
is the reduction in the variance of Y through the use 
of the covariates. Basic OLS regression is covered in 
most introductory statistics texts.

Insurance losses rarely follow a normal distribu-
tion. Models for the age at death are usually skewed 
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distribution functions, the resulting function is a le-
gitimate multivariate distribution function. The key 
is that the copula creates the dependence structure 
independently of the marginal distributions. This 
concept of defining a multivariate dependence struc-
ture (and hence copula) is based on Sklar’s theorem, 
which states:

Sklar’s Theorem (Sklar 1959): Let F be an n-
dimensional joint cumulative distribution function 
for the random variables X

1
, X

2
, . . . , X

n 
with marginal 

distribution functions F
1
(x
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), F

2
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2
), . . . , F

n
(x

n
). Then 

there exists a Copula function, C, such that 

 F
X1,...,Xn

(x
1
, . . . , x

n
) = C[F

1
(x

1
), . . . , F

n
(x

n
)].

If the marginal distributions are continuous, then 
C is unique. If any distribution is discrete, then C 
is uniquely defined on the support of the joint 
distribution.

In the case of continuous distributions, the mul-
tivariate dependence structure and marginal dis-
tributions can be separated and the copula can be 
considered “independent” of the margins (Joe 1997, 
pp. 12-13). The copula thus allows arbitrary continu-
ous marginal distributions to be combined and de-
scribes their dependence structure. 

There are several bivariate and multivariate copula 
distributions discussed in the literature. Hutchinson 
and Lai (1990), Nelson (1999), Joe (1997) and Klug-
man, Panjer, and Willmot (2008) are excellent texts 
that discuss various properties of bivariate copula 
distributions. Joe (1997) also discusses the proper-
ties of several multivariate copula distributions. Em-
brechts, McNeil, and Straumann (2002) use copulas 
to show how the Pearson correlation coefficient can 
be misleading. Klugman and Parsa (1999), and Frees 
and Valdez (1998) use copulas in modeling insur-
ance data. Others who have contributed to the copula 
literature are Genest and MacKay (1986) and Miller 
and Liu (2002).

While many copula functions have been identi-
fied, we believe only two are useful for building a 
regression model with several covariates. One of the 
features of any useful regression model is that the 

claiming that it is superior to GLM or OLS, but 
rather that it provides an alternative that has the pos-
sibility of providing a better fit to observed data. 
Begin by assuming that all the variables (response 
and covariates) are random observations from some 
joint probability distribution. Because some of the 
variables are dependent (if there are no dependen-
cies, then possessing the covariates provides no use-
ful information about the response variable) a model 
with dependence must be used. A popular method 
for creating a multivariate model with dependence is 
the copula model. There are numerous papers with 
actuarial applications of copulas. A good introduc-
tion is provided by Frees and Valdez (1998). In this 
paper, we will use the normal copula for the reasons 
described in Section 2.

This paper will develop copula regression as fol-
lows. Section 2 introduces copula functions and 
the normal copula. Section 3 covers parameter es-
timation and computation of the conditional mean. 
Section 4 concludes the paper with comprehensive 
examples.

2. Copulas

Copulas are useful for describing multivariate 
non-normal distributions. They describe the depen-
dence structure between the variables. Marginal dis-
tribution functions are used as inputs to the copula 
and these can be any set of disparate distributions. 
Thus, a copula is a realistic way of describing the 
multivariate distributions, as the analyst normally 
has a good idea about each marginal distribution and 
seldom has a good idea about the joint distribution of 
these variables. 

A copula model can be constructed as follows. 
Begin with n random variables with distribution 
functions F

X1
(x

1
), F

X2
(x

2
), . . . , F

Xn
(x

n
). The joint dis-

tribution function is created by applying the copula 
function, C, as

 F
X1,...,Xn

(x
1
, . . . , x

n
) = C[F

X1
(x

1
), . . . , F

Xn
(x

n
)].

Only certain functions can be used as copula func-
tions in order to ensure that regardless of the n input 
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results of maximum likelihood estimation will match 
those from OLS. Thus, like GLM, this method is a 
(different) generalization of the OLS model. 

3. Parameter estimation

The normal (multivariate normal) copula function 
is defined as (Song 2000) 

 C
R
(u

1
, . . . , u

n
) = G[F–1(u

1
), . . . , F–1(u

n
)], (3.1)

where F(u) is the standard normal cumulative dis-
tribution function and G is the multivariate normal 
cumulative distribution with zero means, unit vari-
ances, and correlation matrix R. The matrix R has 
ones on the diagonal and the off diagonal elements 
are correlations. However, it is important to note that 
when the normal copula is used these are not the cor-
relations of the modeled variables.

Thus, for arbitrary marginals, the distribution 
function induced by the normal copula is

F(x
1
, . . . , x

n
)

= G{F–1[F
1
(x

1
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n
(x
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)]}. (3.2)

If the marginal distributions are continuous then 
the density function is given by (Clemen and Reilly 
1999, Nelson 1999)
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where v is a vector with ith element v
i
 = F–1[F

i
(x

i
)]

and I is the identity matrix. Note that if the correla-
tions are all zero, then R is the identity matrix and the 
joint density is the product of the marginal densities 
and all the variables are independent.

This density function can then be used to deter-
mine the likelihood function. 

Since we will be estimating predicted values us-
ing the conditional mean of Y given the independent 
variables, we will need the conditional distribution 
of x

n
 given x

1
, . . . , x

n–1
. It is

degree of association (e.g., Spearman’s Rank Cor-
relation) between the response variable and each co-
variate need not be constant. We are aware of only 
two copula models that allow for this, the normal 
copula and its generalization, the t-copula (which is 
based on the multivariate Student’s t distribution. For 
example, see the list of copulas in Klugman, Panjer, 
and Willmot (2008, Chapter 7), where it can be seen 
that the other copulas do not allow for variations in 
the association measure. In a recent paper by Crane 
and Van Der Hoek (2008) they use arbitrary bivari-
ate copulas for building regression models. Because 
their methods do not extend to multivariate situa-
tions, their approach is not useful for most applica-
tions. Also, they do not address the case of discrete 
variables, which are common in practice.

Computing predicted values of Y using copula re-
gression is a three-step process. 

1.  Assume a model for the joint distribution of all 
the variables (response and covariates),

2.  Estimate the parameters of the model (the param-
eters for the selected marginal distributions and 
the parameters of the copula), and 

3.  Compute the predicted values of Y given a set 
of covariates by using the conditional mean of Y 
given the covariates.

In this paper, we assume a normal copula model for 
the joint distribution of the variables and maximum 
likelihood for parameter estimation. For the normal 
copula explicit formulas for the likelihood function 
and conditional distribution are available. The condi-
tional mean will usually need to be obtained by nu-
merical integration. Because this is a one-dimensional 
integration, there are well-established accurate algo-
rithms for obtaining the answer. Thus, this ease of 
use is one of the reasons we have selected the normal 
copula. The methodology presented in this paper can 
be used with other multivariate copulas (such as t or 
elliptical), but they would require extensive numerical 
analysis.

Note that if all the variables are assigned the nor-
mal distribution and the normal copula is used, the 
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use the estimates from the marginal distributions as 
starting values for the global maximization (which is 
optimal). We used the latter procedure for estimating 
the parameters. This was done numerically. One au-
thor used the solver tool in Excel and the other author 
used SAS IML and the NLPTR optimization proce-
dure (NLPFDD to compute the Hessian matrix). 

When any of the marginal distributions are discrete, 
there is an additional problem. This is illustrated with 
an example. Let X take on the values 0, 1, and 2 with 
probabilities 0.3, 0.4, and 0.3 respectively. Let Y be 
the other marginal with a uniform (0,1) distribution. 
Consider the independence copula. Now consider the 
contribution to the likelihood function for the obser-
vation x = 1 and y = 0.6. It is the product of the prob-
ability function of X at 1 and the density function of Y 
at 0.6, which is 0.4(1) = 0.4. But now suppose the nor-
mal copula is being used. This requires calculation of 
cumulative probabilities from the multivariate normal 
distribution (in order to obtain the discrete probabil-
ity), a non-trivial task. In addition, if there are several 
discrete variables, the probabilities for higher dimen-
sional cubes will be required.

In OLS and GLM regressions, distributions for 
the covariates are usually not specified. In a copula 
model these distributions must be specified. How-
ever, there is an easy way to replicate this situa-
tion—for the marginal models, use the empirical 
distribution. Thus, in many applications all of the 
covariates will be modeled as discrete variables. The 
same problem affects conditional distributions. 

Our recommended solution is to replace each 
discrete distribution with a continuous distribution. 
The simplest choice is to use a kernel density with a 
uniform kernel and a small bandwidth. In particular, 
select the bandwidth so that it is less than half the 
distance separating the two closest discrete probabil-
ity points.

The likelihood function requires the kernel density 
pdf and cdf at each data point. Let b be the band-
width. For any observed value, let p(x) be the prob-
ability function and P(x) be the distribution function 
of the discrete distribution. For writing the likelihood 
function, for an observation at x, the kernel density 
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where r is an n – 1 3 1 vector that is the right-most 
column of R with the last element removed.

In the regression context, X
n
 will be the response 

variable (Y). Thus, this is the density function of the 
response variable given the covariates. The expected 
value is the predicted value (the median could also 
be used) and the standard deviation is equivalent to 
the standard error in OLS regression. However, the 
standard deviation will not be constant as it is in OLS 
regression.

Maximum likelihood estimates are asymptotically 
normal with covariance matrix given by the inverse of 
Fisher’s information matrix (I(u)–1). To use this result, 
we would have to calculate the second derivatives of 
the likelihood function and take their expected values. 
In this problem, it is difficult to calculate second deriv-
atives and their expected values, so we instead use the 
observed information matrix (Klugman, Panjer, and 
Willmot 2008). Once again, this is a well-understood 
problem. Most commercially available numerical 
analysis software provides the Hessian matrix, which 
is used to estimate the asymptotic covariance matrix 
(inverse of the Hessian matrix) for the estimates. We 
present this for Example 1 in Section 4.

When all the marginal distributions are continu-
ous, maximum likelihood estimation is performed 
by using the density function in (3.3). Note that if 
there are, for example, eight marginal distribu-
tions, each with two parameters, there will be 8(2) +  
8(8 – 1)/2 = 44 parameters to estimate. Often it is 
easier to use the marginal data to obtain estimates of 
the parameters of the marginal distributions and use 
the joint data to estimate the correlation parameters 
in the normal copula. These can be used as is, produc-
ing a suboptimal result. On the other hand, one can 
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To simulate the 50 trivariate data points (see the 
Appendix for the simulated data), we used the meth-
odology described in Clemen and Riley (1999). It 
uses the following process: 

Let F
i
(x

i
), i = 1,2,3 be specified along with the cor-

relation matrix. 

1.  First generate a vector (u
1
, u

2
, u

3
) from a multivar-

iate normal distribution with zero means and unit 
variances and the specified correlation matrix. 

2.  Calculate s
i
 = F(u

i
) for each of the three variables.

3.  Calculate F sX ii

−1( ) , i = 1,2,3.

The resulting vector from step (3) will have the 
specified marginals and copula correlation structure 
(see Appendix 1 for one of the data sets).

We measured the error in estimation using 
( ˆ )Y Yi i− 2  and compared the results to OLS and 
GLM (where appropriate). We chose OLS and GLM 
for comparison as they are the procedures commonly 
used in practice. Nowadays, GLM is commonly used 
whenever the distribution of the dependent variable 
is non-normal.

Example 1: The distributions of the three variables1 
are: X

1
 ~ Pareto (a = 3, u = 100), X

2
 ~ Pareto (4, 300), 

X
3
 ~ Gamma (3,100) and X

3
 is the dependent variable. 

The parameters were estimated in two stages, using 
the method of maximum likelihood. In stage 1, only 
the data from the marginal distribution was used to 
estimate the parameters. In the second stage, the joint 
density was maximized using estimates from stage 
1 as starting values. In this example, parameter esti-
mates for X

2
 did not converge, so we approximated 

it using a gamma distribution. The copula regression 
model performed much better than OLS. The MLEs 
and errors are given in Table 1.

pdf is p(x)/(2b) and the cdf is P(x) – p(x)/2. Note that 
the value of b has no impact on the MLE. 

For the conditional distribution, the only case that 
needs further study is when the response variable 
is discrete. The formula for the conditional density 
function (for continuous variables) can be written

f x w f x g F x wn n n n n( ) ( ) [ ( ), ],=

where w represents all the other variables, and g is 
defined by removing f

n
(x

n
) from (3.4). To obtain the 

discrete conditional probability it makes sense to in-
tegrate the continuous conditional probability over 
the bandwidth:

p x w p x bn nx b

x b

n

n

( ) ( )( )= −

−

+

∫ 2 1
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2
2 0 5

The second line follows from the transformation 
z = t – x

n
.

The integral must be evaluated numerically; the 
value of b has no impact on the result.

4. Examples

To illustrate our methodology, we present six ex-
amples using simulated data. In all of the examples, 
we have three variables—one dependent and two in-
dependent and the sample size is 50 in all the cases. 
We use the same correlation matrix in all the exam-
ples as given below.

 R =
















1 0 7 0 7
0 7 1 0 7
0 7 0 7 1

. .
. .
. .

 

1All variables are parameterized as in Klugman, Panjer and Willmot (2008).

Table 1. Parameter estimates and errors for Example 1

Variable X1 X2 X3 Sum of squared errors

Model Pareto Gamma Gamma Copula OLS

MLEs/Errors 3.44, 161.11 1.04, 112.003 3.77, 85.93 590,000.54 637,172.84
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In Table 2 are the asymptotic standard deviations 
of the estimates and correlations among them (diag-
onal terms are standard deviations and off-diagonal 
terms are correlations). The SAS IML procedure 
NLPFDD was used to calculate the Hessian matrix. 
It uses a finite difference approximation procedure 
to calculate the Hessian. We used the Hessian to cal-
culate the observed information matrix (asymptotic 
variance matrix). 

From this it is possible to construct confidence 
intervals. For example, the 95% confidence interval 
for alpha of the Pareto variable (X

1
) is given by 3.44 

± 1.96*0.266606.
The maximum likelihood estimate of the correla-

tion matrix is given below.

ˆ
. .

. .

. .

.R =
















1 0 711 0 699
0 711 1 0 713
0 699 0 713 1

As a reminder, while this is called a correlation 
matrix, it is merely the parameters of the normal cop-
ula. These values do not represent the correlations of 
the marginal variables.

Example 2: Once again, the distributions of the three 
variables were: X

1
 ~ Pareto (a = 3, u = 100), X

2
 ~ 

Pareto (4, 300), X
3
 ~ Gamma (3,100) and X

3
 was the 

dependent variable. This time, instead of assuming a 
distribution for X

1
 and X

2
 and estimating the param-

eters using MLE, we estimate the distributions em-

pirically. This is similar to OLS and GLM wherein 
we make no assumption on the distribution of the 
independent variables. Since the empirical distribu-
tion is discrete, we approximated it by a continuous 
distribution and in particular we used the kernel den-
sity with uniform kernel as previously described. We 
then took the limiting case of the uniform kernel as 
band width goes to zero, resulting in the following 
equations for the distribution and density functions 
(where x is one of the data points).

 F x
obs x

n

obs x

n
( )

# #
=

≤
−

=
2

 

and 

 f x
n

( ) =
1

 

We also analyzed the data using a generalized linear 
model using the gamma distribution and log link. Once 
again, the copula regression model performed bet-
ter than OLS and, much better than GLM which per-
formed very poorly. The results are given in Table 3.

The number of parameters in the various models is 
five for the copula model (two gamma parameters and 
three correlation coefficients, four for OLS (three re-
gression parameters and the standard error), and four 
for GLM (three regression parameters and the gamma 
shape parameter). The large differences in the sums of 
squares are not likely due to the one parameter differ-
ence. A more formal comparison might use the log-
likelihood functions and an information criterion.

Table 2. Asymptotic standard deviations

X1 Pareto X2 Gamma X3 Gamma Correlations

Alpha1 Theta1 Alpha2 Theta2 Alpha3 Theta3 R21 R31 R32

Alpha1 0.266606 0.966067 0.359065 –0.33725 0.349482 –0.33268 –0.42141 –0.33863 –0.29216

Theta1 0.966067 15.50974 0.390428 –0.25236 0.346448 –0.26734 –0.37496 –0.29323 –0.25393

Alpha2 0.359065 0.390428 0.025217 –0.78766 0.438662 –0.35533 –0.45221 –0.30294 –0.42493

Theta2 –0.33725 –0.25236 –0.78766 3.558369 –0.38489 0.464513 0.496853 0.35608 0.470009

Alpha3 0.349482 0.346448 0.438662 –0.38489 0.100156 –0.93602 –0.34454 –0.46358 –0.46292

Theta3 –0.33268 –0.26734 –0.35533 0.464513 –0.93602 2.485305 0.365629 0.482187 0.481122

R21 –0.42141 –0.37496 –0.45221 0.496853 –0.34454 0.365629 0.010085 0.457452 0.465885

R31 –0.33863 –0.29323 –0.30294 0.35608 –0.46358 0.482187 0.457452 0.01008 0.481447

R32 –0.29216 –0.25393 –0.42493 0.470009 –0.46292 0.481122 0.465885 0.481447 0.009706
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Example 3: The three variables are: X
1
 ~ Poisson 

(l = 5), X
2
 ~ Pareto (4, 300), X

3
 ~ Gamma (3,100) 

and X
3
 is the dependent variable. We estimated the 

parameters using the method of maximum likelihood 
in two stages as in Example 1. The distribution of 
X

2
 was approximated by an exponential distribution. 

Here again, the copula regression model did better 
than OLS. The results are given in Table 4.

Example 4: The situation is same as in Example 
3 but the distributions of X

1
 and X

2
 were estimated 

empirically as in Example 2. Since X
1
 is discrete, its 

distribution was approximated by a continuous dis-
tribution. Once again, we used the uniform kernel as 
in Example 2.

We also analyzed the data using GLM using 
gamma distribution and log link. The copula regres-
sion model performed better than OLS and GLM. 

Surprisingly, GLM performed the worst. The results 
are given in Table 5.

Example 5: The distribution of the three variables 
are X

1
 ~ Poisson (l = 5), X

2
 ~ Pareto (4, 300), X

3
 ~ 

Gamma (3,100), and X
1
 is the dependent variable. In 

this example, the dependent variable is discrete. The 
distribution of X

2
 was approximated by an exponen-

tial distribution. In this example, the copula regres-
sion model performed better than OLS. The results 
are given in Table 6.

Example 6: The situation is same as in Example 5 
but the distributions of X

2
 and X

3
 are estimated em-

pirically as in Example 2. The data were also ana-
lyzed using GLM using the Poisson distribution and 
log link. The copula regression model performed the 
best and surprisingly, GLM performed the worst. 
The results are given in Table 7.

Table 3. Parameter estimates and errors for Example 2

Variable X1 X2 X3 Sum of squared errors

Model Empirical Empirical Gamma Copula OLS GLM

MLEs/Errors N/A N/A 4.0245, 81.0415 595,947.47 637,172.84 814,264.754

Table 4. Parameter estimates and errors for Example 3

Variable X1 X2 X3 Sum of squared errors

Model Poisson Exponential Gamma Copula OLS

MLEs/Errors 5.65 119.38907 3.67, 88.98 574968 582459.5

Table 5. Parameter estimates and errors for Example 4

Variable X1 X2 X3 Sum of squared errors

Model Empirical Empirical Gamma Copula OLS GLM

MLEs/Errors N/A N/A 3.96, 82.48 559,888.8 582,459.5 652,708.98

Table 6. Parameter estimates and errors for Example 5

Variable X1 X2 X3 Sum of squared errors

Model Poisson Exponential Gamma Copula OLS

MLEs/Errors 5.65 119.38907 3.67, 88.98 109.072 114.6649
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Summary

In this paper, we have provided an alternative 
approach to generalizing OLS regression using a 
multivariate copula. When compared to GLM, the 
approach seems to be different rather than better or 
worse. Its strength lies in the ability to choose dis-
tributions for dependent variables that are not mem-
bers of the exponential family. Also, it allows the 
researcher to arbitrarily choose distributions for the 
marginals (GLM only requires specification of the 
distribution of the dependent variable). As skewed 
heavy-tailed distributions are common in insurance, 
this method provides a way to incorporate arbitrary 
distributions into regression models. Like GLM, this 
method allows nonlinear dependence to be modeled. 
Because correlation is not a useful measure of depen-
dence in a non-normal world (Embrechts 2002), it is 
vital to describe the relationship between variables 
appropriately. In this regard, copula regression pro-
vides a good alternative to OLS and GLM. 
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Table 7. Parameter estimates and errors for Example 6

Variable X1 X2 X3 Sum of squared errors

Model Empirical Empirical Gamma Copula OLS GLM

MLEs/Errors 5.67 N/A N/A 110.379 114.6649 119.518
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Appendix 1

Data set used in Example 1

X1 - Pareto (3,100) X2 - Pareto (4,300) X3 - Gamma (3,100)

49.19615 168.9541 339.0285

59.79256 52.22341 239.234

69.32701 428.0111 507.1756

21.82025 26.6339 232.2198

80.69061 130.7855 391.3814

66.54305 168.3623 752.3682

75.11587 172.878 433.767

16.98576 52.90305 148.1844

29.07292 48.31109 159.9216

1.974758 9.093995 90.26908

50.54979 122.4136 161.8736

27.88491 258.5495 381.7534

8.246412 18.45999 206.3309

71.70904 82.3842 371.1022

13.82497 13.57812 185.7246

27.61229 16.27457 117.5737

37.53664 51.9417 168.9898

441.9211 265.2885 696.5949

50.09159 150.5714 550.9105

47.06166 171.4217 224.7604

3.752047 2.998249 191.9266

40.14482 69.7926 407.7342

1.809855 46.71836 215.6133

7.254417 42.41679 193.4215

X1 - Pareto (3,100) X2 - Pareto (4,300) X3 - Gamma (3,100)

1.075879 7.642631 150.1132

22.45518 73.72295 334.2683

113.8167 84.35639 483.9228

37.75271 251.8315 319.4582

70.74558 39.54529 450.789

55.58916 154.0807 476.7827

191.8165 198.5934 258.4653

35.7774 29.98192 231.878

21.72335 155.0001 367.1031

43.71393 197.3517 487.4687

18.35105 256.9912 278.2539

85.07306 334.1087 532.6584

262.8237 78.27474 484.2632

12.34403 26.53437 98.95171

7.146642 25.92019 341.1421

32.92591 154.3408 260.0865

12.74421 7.199771 257.0993

179.6528 234.2539 463.4871

351.5504 405.2429 672.6177

53.38737 87.35799 208.709

65.25637 130.8566 608.7428

146.9476 190.0862 321.3671

22.77773 20.92645 122.6571

42.13773 27.02435 209.0603

26.2721 38.75412 278.6517

9.12805 56.23531 227.4984
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