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The Credibility of the Overall Rate 
Indication: Making the Theory Work

by Joseph Boor

ABSTRACT

Actuaries have used the so-called “square root rule” for the cred-

ibility for many years, even though the “F” value can take any 

value, and its assumption that the data receiving the complement 

of credibility is stable is often violated. Best estimate credibility 

requires fewer or no assumptions, but often requires certain key 

constants. This paper provides a variety of methods for estimat-

ing the key constants needed to implement best estimate cred-

ibility formulas, especially those arising from the Gerber-Jones 

formula. As such, this paper provides the tools needed to imple-

ment key theoretical formulas in practical actuarial work.
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indication deserves as much attention as the credibil-
ity of the class data within it.

A solid theoretical background has been laid for 
the credibility of this overall rate indication. Credibil-
ity is by nature a process that is designed to update an 
estimate of loss costs. A paper by Jones and Gerber 
(1975) provides formulas for the weights in updating 
formulas (to be discussed later) in terms of the covari-
ances of the historical data points.6 This formula, in 
fact, provides the optimum linear estimate of future 
costs given all the prior data, not just the data used in 
the current rate update.

Nevertheless, knowing the mathematical form of 
the credibility is not the same thing as being able to 
compute the credibility. As will be shown, standard 
credibility formulas derived from the Gerber-Jones 
approach use values for the Brownian motion vari-
ance in year-to-year trend, plus values for the “obser-
vation error” variances between observed data points 
and the true expected costs that underlie them.7 To 
compute the credibility, it is necessary to estimate 
those variance parameters. This paper provides tech-
niques designed to do just that.

2. The theory—Key credibility
formulas for the overall rate
indication

In this section the key theoretical results from the 
Jones and Gerber (1975) paper are presented. This 
should provide the practitioner a summary of the key 
formulas that create best-estimate credibility. Likely 
none of the material is new.

2.1. The general Gerber-Jones formulas

The goal is to apply the Gerber-Jones formulas 
to a realistic model (ultimately, geometric Brown-
ian motion for trend, and observation error with a 
constant coefficient of variation) of the relationship 
between historical data and the unknown future loss 

1. Introduction

It is well established that the limited fluctuation
or “square root” credibility has limitations. Since it 
is designed to produce stable estimates, not best esti-
mates, it does not provide the most accurate rates. 
Further, since any conceivable combination of the 
fluctuation that may be acceptable and probability 
of a chance violation of the accepted fluctuation is 
a priori no different than any other, it is challenging1

to show that any particular full credibility standard 
is better than any other. Lastly, the square root rule 
relies on an assumption that the statistic receiving 
the complement of credibility is stable. When the 
complement of credibility is, say, three years of 15% 
trend, that assumption is clearly violated. So there is 
a strong need2 for best-estimate credibility.

Some time ago (1967) Hans Bühlmann developed 
a formula3 for the best estimate credibility of a single 
risk or a single class when the complement of credibil-
ity is assigned to the large group that the risk or class is 
part of. His P/(P + K) formula4 is well known and rep-
resents a truly optimal (in the sense of making the best 
predictions) credibility formula. But a formula is also 
needed for the credibility of the overall rate change 
for a product or line of business. It is quite common 
in actuarial work to develop a rate indication for such 
a group, realize that supplemental data is needed, and 
credibility weight the overall indicated change with 
something such as the inflationary trend since the last 
rate change.5 Considering that the overall rate change 
affects every rate for every class and every risk, this 
author believes that the credibility of the overall rate 

1A logical resolution of this would be to invoke best estimate principles.
2While the approach of this paper is that of best estimate credibility, 
it is important to note that this approach involves much more analysis 
than limited fluctuation credibility. So, there may certain cases where 
cost limitations support the use of limited fluctuation credibility. If the 
complement of credibility involves small rate changes, limited fluctua-
tion credibility may serve the goal of rate stability. If the best estimate 
credibility does not serve that goal effectively, there may be some cir-
cumstances where limited fluctuation credibility is preferable.
3See Bühlmann (1967).
4To avoid confusion between the variable names used in various formu-
las, this will generally be referenced with “U” used in lieu of “P” within 
this article. The reader is advised to be aware of the alternate notation.
5See Boor (1996).

6Other relevant papers include those by Mahler (1998) and Ledolter, 
Klugman, and Lee (1991).
7In this context, both variances are intended to have meaning in a broad 
sense rather than the mathematically narrow definition of variance.
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2.2. The linear updating-type formulas

As a first step towards understanding the notation, 
it is helpful to introduce the credibility under a stan-
dard linear Brownian motion with a drift (T), vari-
ance parameter “d 2” for the Brownian motion, and a 
constant error variance “s 2” between each trended 
data point Si = S*i  + (n + 1 − i)T and the trended under-
lying expected cost at period i, or Li = L*i  + (n + 1 − i)T.  
Logically, the actual deviations from the expected 
loss (Si − Li = Ei per this linear model) could be 
expected to be independent from both each other 
and the Li’s. Of note, this treatment is not new, but 
is presented so that the reader may understand the 
process.

Then, if we take “m” to be the true mean expected 
loss12 at time13 n + 1, m = Ln+1 = E[Pn+1] then the under-
lying prior expected loss follows a Brownian motion. 
Further, since Cov[A + aB, C + bB] = abVar[B] when 
A, B, and C are mutually independent,
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(noting that Lj is further along in the Brownian 
motion than Li, the random motion between Li and 
Lj is independent of Li). Further,

[ ] = +d sCov S S ii i, (2.7)2 2

So, in the Gerber-Jones formula
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cost. So, to facilitate the reader’s understanding, the 
key Gerber-Jones formulas are shown below.

The first statement that must be made is that the 
Gerber-Jones formula, and, unless stated otherwise, 
all other formulas, assume that any necessary trend 
and current level adjustments have already been 
made to the data. For example, although the prior 
data used in a credibility formula involves trending 
and current level adjustments, those adjustments are 
assumed to have been done8 in the background, so 
all that is involved is determining the optimum cred-
ibility weights for the previous years.

With that background, a credibility formula9 and 
data pattern is of the updating type10 through the n + 1st

projection (e.g., the optimum11 estimate of future 
loss costs Pn+1 is a credibility weighted average  
Pn+1 = ZnSn + (1 − Zn)Pn of the previous estimate of loss
costs Pn and the new data Sn) if there is a constant m and 
sequences V1, V2, . . . , Vn and W1, W2, . . . , Wn such that

[ ] = mE Si ifor each of the S , (2.1)
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Further, when the credibility formula and data pat-
tern are of that updating type, then the optimum cred-
ibilities are
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8A discussion of the rationale for separating the trend estimation from the 
variance parameter estimation will be presented later.
9This presentation of the Gerber-Jones formulas is slightly weakened 
to simplify the presentation for a more general audience. The interested 
reader is encouraged to review the original article for the broader result.
10Any credibility process on any set of data points can be designed so 
that the rate indication is the optimum combination of the new data point 
and the current rate. Credibility formulas of the updating type note that 
the current rate is merely a prior credibility-weighted combination (in 
practice, usually with trending) of the prior data points. For a credibility 
formula to be of the updating type, the credibility-weighted combination 
of the new point and the current rate is also the optimum combination of 
all the prior data points if they were considered individually.
11Least squared error, considering all possible linear combinations of the 
adjusted prior year data.

12Here m is not used in the same sense as in the Jones and Gerber (1975) 
paper, where it is L0.
13The resulting credibility is identical if some Ln+D t is desired instead of 
Ln+i, as one may affirm by plugging in the alternate covariance structure. 
Wn − Wn−1 is unaffected.



Variance Advancing the Science of Risk

170 CASUALTY ACTUARIAL SOCIETY VOLUME 9/ISSUE 2

variance of s 2. These distributions are also expected 
to be independent from those of the year-to-year 
drifts (Li /Li−1’s). The common observation variance  
of the trended values assumption is consistent with 
roughly equal numbers of claims from year to year 
with severity inflation affecting the loss sizes. It 
would be less proper for an increasing book of busi-
ness that encompasses more and more expected 
claims from year to year with consequent reductions 
in the coefficient of variation of the process variance.

In any event, the covariance structure, using the 
identity14 Cov[AB, CB] = E[A] × E[C] × Var[B], is15
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Further, by the identity Var[AB] − Var[A]Var[B] +
E[A]2Var[B] + E[B]2Var[A],

( ) ( )[ ] = + + + −s d dCov S Si i
i i

, 1 1 1. (2.13)2 2 2

So, the key values for the Gerber-Jones formula in 
this case are
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A comparison to equation (2.10) shows that this 
is identical to the formula for the linear case, except 
for the additional d 2s 2 term in the denominator. 

Hence, per formula (2.4),
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where each Zi is the optimum credibility to use when 
combining the new data (Si) with the prior estimate 
(Pi) to produce the optimum estimate Pi+1 of Li+1. Fur-
ther, the resulting combination of all the prior data 
points Sj<i+1 that Pi+1 represents is the optimum esti-
mate of Li+1 given the available data.

Jones and Gerber (1975) also show that the  
successive Zi’s converge to a limit (which could 
conceivably be used as a proxy for the credibility Zi

when i is large). In this scenario, setting Zi = Zi−1 in 
formula (2.10) and solving for Zi gives

=
+ −
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2.3. The geometric Brownian  
motion formulas

The linear model has a key weakness—it assumes 
that the growth in losses is linear. In fact, it is well-
established that most insurance lines of business suffer 
inflation that causes loss costs to grow exponentially 
rather than linearly. That reality requires an adjustment 
to the Brownian motion model. Instead of having 
E[Li − Li−1] = 0 for each i, we should expect zero growth 
(E[Li/Li−1] = 1). Instead of expecting the Li − Li−1’s to 
have identical and independent normal distributions, 
one would expect the Li/Li−1’s to have independent 
identical lognormal distributions, with the aforemen-
tioned mean of unity and some common variance of 
d 2. So if one begins with unadjusted data points, each 
denoted as S*i , the points used to estimate Ln+1 = E[Pn+1] 
are the inflated values S*i (1 + T )n+1−i = Si’s.

Lastly, a model for the differences between the 
observed Si’s and the true expected costs, the Li’s, 
must be included. In this model, the ratios Si /Li are 
assumed to have independent, identical lognormal 
distributions with a mean of unity and a constant 

14This holds when A, B, and C are independent.
15The last step in this calculation, computing the final variance, involves 
properties of the lognormal distribution. Details of the mathematics are 
not presented, as there is an opportunity for confusion between the s used  
in this paper to denote observation variance and the “sigma” parameter 
used in specifying lognormal distributions.
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of some specified size. It does not purport to create 
a best estimate of the future costs. It has been stated, 
though, by the well-respected Howard Mahler in 
1986 that this method often produces future loss esti-
mates that are comparable to those of best estimate 
credibility.

To state it simply, re-using prior years in a Gerber-
Jones formula unduly complicates the computations. 
For example, assume an estimate has been continu-
ally updated over 14 years from P1 and S1 to P15 with 
rolling five-year averages17 Q1, . . . , Q14 of the data 
points S1, . . . , S14. Logically, the step is to produce 
the estimate P16 using Q15. Note, though, that the 
covariance between Q15 and Q14 is fairly high, since 
they have the points S11, S12, S13, and S14 in com-
mon. However, Q15 and Q1 have no common com-
ponents.18 Generally,19 Cov[Q15, Q14] ≠ Cov[Q15, Q1]. 
Therefore, the Gerber-Jones formula cannot be used 
when multiple years are combined.20 Therefore, the 
practice of combining multiple years of data in this 
context is suboptimal.

That conclusion has a very relevant corollary. If 
the exposures most useful for limited fluctuation 
credibility stem from five or even ten years, but best 
estimate credibility is only based on the most recent 
year, the resulting credibilities should by nature be 
different. Therefore, there are circumstances where 
limited fluctuation credibility is not a good substitute 
for best estimate credibility.

3.2. Correcting the prior estimate for 
changes in ultimate loss estimates

There is, however, one respect in which the use 
of multiple years could improve the estimate. The 
existing rate is based on the data available earlier, 
when the various years’ losses were less mature than 
they are at the time of the updated rate indication. 

But, one should consider that when at least one of 
the values d 2 and s 2 is very small, the combination 
term d 2s 2 should be a small part of the denominator. 
Thus, one might say that, for the case of geometric 
Brownian motion,

≅ +
+ +

−

−

d s
d s s

Z
Z

Z
i

i

i

. (2.17)
2

1
2

2
1

2 2

Further, the steady-state credibility may be approxi-
mated as
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As a relevant side note, the summands involved in 
equations (2.13) and (2.14) would inflate uniformly 
as the losses are projected ahead more than one year, 
to some n + ∆t instead of to time n + 1, and the cred-
ibility equation would remain unchanged.16

3. Multi-year formulas and best 
estimate credibility for the  
overall rate indication

The approach outlined earlier involves updating a 
rate with a single new year of data. But it is very 
common to see rate indications that update a rate 
with, say, the weighted average of the data from the 
last five years. The role of this multi-year data in a 
best estimate credibility formula merits discussion.

3.1. Reasons not to reuse older years

Updating formulas that use multiple years reuse 
data from prior estimates. So, the reuse of data should 
be evaluated. The first point to be made is that using 
multiple years is perfectly appropriate when limited 
fluctuation credibility is involved. Limited fluctua-
tion credibility deals solely with the extent to which 
the body of data receiving credibility can be relied 
on to not create unwarranted increases or decreases 

16For reference, this is also true for the linear case.

17Or an average of the available years, where fewer than five are available.
18Likely they do have some indirect common components stemming 
from the dependence of the backwards drift per a Brownian motion of 
some type as per sections 2.2 and 2.3.
19A more detailed analysis of this may be found in Appendix B.
20It may, alternately, work when rates are made biannually and two years 
of updating data are combined.
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Table 1 shows how the calculations needed to update 
a loss ratio at present rates for loss development 
might flow.

The references to “Prior” and “Last Prior” refer 
to the data used in computing the loss ratio estimate 
that was used in the last rate change. The “First 
Assigned” values refer to what was used the first 
time the specific year of data was used. Also, note 
that although the loss ratios of many years are likely 
embedded in the prior loss ratio, only the last five 
were revised. That is because more mature years see 
fewer year-to-year revisions in ultimate losses, and 
contribute a diminishing portion after credibility 
(see column 7).

So, it makes sense to update the existing rate for the 
additional development before using it in the cred-
ibility formula. Of course, the existing rate is a mul-
tiple credibility weighted average of many years. 
Further, it is not just an average of many years of 
loss ratios or pure premiums, it is rather either an 
average of trended loss ratios brought to the cur-
rent rate level or trended pure premiums. So, some 
calculations must be done to include this additional 
loss development in the prior rate that is used as 
the complement of credibility. Due to the require-
ment to use current level data, the correction process 
for loss ratio ratemaking is slightly more complex 
than that of pure premium ratemaking. Therefore,  

Table 1. Sample update of prior rate review loss ratio information for ultimate loss changes

Year

(1)
(Data)

Loss Ratio at Charged 
Rates @12/31/10

(2)
(Data)

Loss Ratio at Charged 
Rates @12/31/11

(3)
(2)−(1)

Absolute Loss 
Ratio Change

(4)
(Data)

Last Prior Current 
Level Factor

2006 75% 74% −1% 1.390

2007 98% 90% −8% 1.300

2008 32% 40% 8% 1.210

2009 75% 70% −5% 1.150

2010 64% 52% −12% 1.100

Year

(5)
(Data)

Credibility First 
Assigned

(6)
1.0−(5)

Complement of 
Credibility

(7)
(6)∗[Next (7)]

Complement of 
Credibility

(8)
(5)∗[Next (7)]

Credibility in Last 
Prior

2006 45% 55% 9%  7%

2007 32% 68% 16%  8%

2008 38% 62% 24% 15%

2009 35% 65% 39% 21%

2010 40% 60% 60% 40%

Year

(9)
(Data)

Trend Rate First 
Assigned

(10)
[1.0+(5)]∗[Next (10)]
Total Trend Factor in 

Last Prior

(11)
(3)∗(7)∗(10)/(4)

Change to 
Prior Estimate

(12)
(Selected)

Change to be 
Reflected

2006  6% 1.469 −0.08% −0.08%

2007  7% 1.386 −0.66% −0.66%

2008  8% 1.295 1.27% 1.27%

2009 9% 1.199 −1.09% −1.09%

2010 10% 1.100 −4.80% −4.80%

A. Total Change to Prior
B. Prior Loss Ratio for Ratemaking
C. Last Rate Change Taken
D. Trend Factor for this Filing
E. = (B.+A.)8D./(1.0+C.) New “Prior” Value to which Complement of Credibility is Applied

−5.36%
65.72%
−5.00%
1.12

71.16%
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type variance parameter.21 It is not difficult to see 
that, under the linear model (possibly the geometric 
as well), an updating formula can be derived for the 
assignment of weights to the various years. It should 
be clear that the resulting credibility weights may dif-
fer greatly between years. However, it does not involve 
the sort of updating of the prior rate that is part of the 
typical actuarial application. Rather it involves simply 
computing a rate from scratch.22 Since the focus of this 
paper is on updating an existing rate with new data, 
this situation will not be analyzed further in this paper.

4. Estimating the parameters:  
Z, K, B, � 2 and � 2

The section will give the reader some tools for cre-
ating estimates of the key variances, and thus help cre-
ate better loss cost projections. It is not intended to be a 
survey on the subject. Rather it is intended to give the 
practitioner the tools needed to implement best esti-
mate ratemaking. The interested reader may review 
some of the ideas in De Vlyder 1981 and Hayne 1985, 
to get two other perspectives on this subject.

First, a few quick notes are in order:

Note 1. In many situations, it is not necessary to es-
timate both d 2 and s 2. Key formulas can be con-
verted to a function of K = d 2/s 2, so K is all one 
needs to estimate.

Note 2. When estimating d 2 and s 2 for geometric 
Brownian motion, note that they are functions 
of d ′2 and s ′2 from the logarithmic transform to 
a linear Brownian motion, exp(d ′2) − 1 = d 2, and 
exp(s ′2) − 1 = s 2. So, once one determines how 
to estimate the constants of variance (or even just 
their ratio) in a linear Brownian motion, one may 
estimate the credibility for the geometric Brownian 
motion.

Note 3. The observation errors (with variance s 2) 
consist logically of a combination of the sample 
variance (i.e., the limitations of the law of large 

It is also worth mentioning that in this example 
the current level factors could be updated for the 
next rate review by simply multiplying column (4) 
by unity plus item “C”. Similar adjustments could be 
made for the “Credibility in Last Prior” and “Total 
Trend Factor in Last Prior” columns.

Of course, this example mirrors the calculations 
in the theoretical literature—the data is assumed to 
be collected at midnight of December 31, 2011, then 
used to make rates that are effective at 12:01 a.m. of 
January 1, 2012. However, the corrections needed 
to reflect practical realities would appear to be 
straightforward.

3.3. Updated ultimate losses  
and updating-type credibility

It could be expected that the process of updating 
prior year ultimate losses could distort the optimum 
credibility. In lines such as excess casualty reinsur-
ance, the ultimate loss estimates Sn, Sn−1, etc., for the 
most recent years could have a very high observation 
error, and those five or so years back could be much 
closer estimates of the true expected loss Li’s within 
their respective years. So, on that basis the true opti-
mum credibility could be expected to be larger for 
some of the “older” years than the most recent year. 
However, that would clearly not create an “update.”

Some perspective can be provided about this situ-
ation. First, when prior year estimates are not cor-
rected, the formulas of section 2 do provide the 
optimum credibility. Further, updating the prior year 
ultimate losses can only be expected to improve the 
accuracy of the resulting loss prediction. So, this 
approach can be expected to produce a high quality 
estimate of future costs, up to any distortion due to 
lengthy loss development.

If loss development uncertainty is expected to sig-
nificantly distort the credibility, it may well be prefer-
able to simply start from scratch each year with the 
ultimate loss estimates for, say, the last twenty years. 
One may then compute estimates of the process vari-
ance in each year, estimates of the loss development 
error variance in each year, and the Brownian motion-

21A further description is beyond the scope of this paper, but once the 
concept of an updating formula is abandoned, it may be preferable to 
use a model such as integrated Brownian motion to better mirror reality.
22See Appendix B for a deeper discussion of the initial credibility Z1.
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estimate credibility for the overall rate indication, it 
merits discussion (even though it does not involve d 2 
and s 2). The basic methodology involves assuming 
some credibility value Z, then using all the data but 
the last year to estimate the last year given. Assume 
that one has, say, ten years of on-level, appropriately 
trended23 loss ratios. Then, one could note that the 
fifth year’s value could be estimating by first apply-
ing some unknown credibility factor Z to the fourth24 
year’s data, Z(1 − Z) to the third year’s data, Z(1 − Z)2 
to the second year’s data, etc., then dividing by the 
sum of the credibilities, 1 − (1 − Z )4, to correct for 
the off-balance. In effect, a single credibility value 
is assumed to have been proper for all four updates.

Once that equation is established, one could vary 
Z in order to find which Z minimizes the squared 
difference between the fifth year’s data and the  
credibility-weighted average. Most modern spread-
sheet programs contain solution-generating capa-
bilities that make it straightforward to find such a 
solution. Then, one may also construct similar equa-
tions to solve for a common credibility of Z that 
use the first five values to predict the sixth, the first 
six values to predict the seventh, etc. The last step 
involves replacing the individual solutions of Z that 
each minimize the squared error of a single predic-
tive step with a solution of a single Z that minimizes 
the sum of all the squared errors of all the predictive 
steps simultaneously.

The resulting Z is arguably the best estimator of 
the credibility in the data, at least as long as a single 
credibility is appropriate for all the years.

Table 2 illustrates how this process would work 
with ten years of essentially random sample data. 
The shaded boxes show the inputs and outputs to 
the solution process (note that the “Target” box pulls 

numbers due to the high skew in insurance sta-
tistics and inability of “small” claim samples to 
fully estimate the true expected losses each year) 
and the loss development uncertainty between the 
early data we base our projections on and the fi-
nal actual claims costs in each year. Further, the 
sample variance and development variance are  
independent and so may be added to determine s 2.

Note 4. (Subtraction of Two Estimated Quantities) If 
we subtract one highly uncertain “large” number 
from another “large” number, and the difference 
is “small,” the result has a “large” variance most 
of the time. When estimating a small number, that 
“large” variance typically overwhelms the true 
“small” value one seeks to estimate.

Note 5. (Common Additive Error in all the Data) If 
all the historical data points are affected equally 
and simultaneously by a common error that is  
independent of all the other error terms (for exam-
ple, all the data is biased by addition of a single, 
uniform, unknown, amount “e ” from some distri-
bution with a zero mean), then the optimal solu-
tion may be estimated by disregarding this error. 
Logically, this may be converted algebraically to 
a situation where one is estimating a future value 
that contains e , with e  removed from all the his-
torical data. Since the variance of e  is independent 
of all aspects of variance in the historical data, the 
e  component of the costs being predicted is not 
susceptible to estimation using the historical data. 
Hence, it may be disregarded in optimizing the  
estimate of future costs. A similar result holds when 
e  is a constant error multiplier with a mean of one 
within the data, except that one must consider that 
the mean of the inverse of e  may not be unity.

With those concerns in mind, a few methods for 
estimating the key parameters follow.

4.1. Method 1: The credibility that  
would have worked in the past.

This approach actually involves no estimation of d 2 
or s 2; rather, it estimates Z directly. Since estimating 
Z directly removes the barriers to implementing best 

23This may involve, since the time period is so long, using different 
trends for different prior periods.
24This seemingly contemplates the same “stroke of midnight” ratemak-
ing issue discussed earlier. However, note that since the random variation 
between say, the fifth year and the sixth year affects all the historical 
year estimate errors identically; note 5 indicates that the Z best suited to 
estimate the sixth year from the first four years is the same Z that is best 
suited to estimate the fifth year from the first four years.
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Table 2. Sample calculation of Z from initial reported data and final cost of ten years of data—when data has zero trend

Input/Output for Solution Function

Value to minimize  
= Value to vary to minimize
Target is

Target � 0.046

Z � 0.366

Part 1. Data and Estimation of Older Years

Accident 
Year

(1)
Data

Initial Data 
Values

(2)
Data

Final Ultimate 
Value

(3)
Z((1−Z)∧k)

All Estimating 
Weights

(4)
[5 Later (3)]
Weights for 

Estimating 1995

(5)
(1)∗(4)

1995 Estimate

(6)
[4 Later (3)]
Weights for 

Estimating 1996

(7)
(1)∗(5)

1996 Estimate

1991 1.023 1.070 0.010 0.093 0.095 0.059 0.061

1992 0.991 1.107 0.015 0.147 0.146 0.093 0.092

1993 1.209 1.022 0.024 0.232 0.280 0.147 0.178

1994 0.576 0.923 0.038 0.366 0.211 0.232 0.134

1995 0.886 0.769 0.059 0.000 0.366 0.324

1996 0.858 0.907 0.093 0.000 0.000

1997 0.810 0.880 0.147 0.000 0.000

1998 1.061 0.871 0.232 0.000 0.000

1999 0.891 0.767 0.366 0.000 0.000

2000 0.967 0.826 0.000 0.000 0.000

A. Column Sums 0.838 0.732 0.897 0.788

B. (A./[A. in Prev. col.] Loss Ratio Est. 0.874 0.879

C. (from (1)) Actual Loss Ratio Values 0.769 0.907

D. (B-C.)∧2 Squared Error in Estimate 0.011 0.001

Part 2. Estimation of Remaining Years and Total Prediction Error (Target)

Accident 
Year

(8)
[3 Later(3)]∗(1)
1997 Estimate

(9)
[2 Later (3)]∗(1)
1998 Weights

(10)
[Next Row(3)]∗(1)
1999 Estimate

(11)
(3)∗(1)

2000 Estimate

1991 0.038 0.024 0.015 0.010

1992 0.059 0.037 0.024 0.015

1993 0.113 0.072 0.045 0.029

1994 0.085 0.054 0.034 0.022

1995 0.206 0.130 0.083 0.052

1996 0.314 0.199 0.126 0.080

1997 0.000 0.296 0.188 0.119

1998 0.000 0.000 0.388 0.246

1999 0.000 0.000 0.000 0.326

2000 0.000 0.000 0.000 0.000

A. (as above) 0.814 0.812 0.903 0.899
Sum of Est. Errors 
� TargetB. (as above) 0.871 0.847 0.928 0.914

C. (as above) 0.880 0.871 0.767 0.826

D. (as above) 0.000 0.001 0.026 0.008 0.046
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Just like the estimation of Z in the previous sub-
section, K and B may be estimated from the data by 
solving for the values that would produce the best 
estimates of the most recent costs in the various seg-
ments. In the previous subsection the total squared 
differences between the credibility-weighted average 
of various sets of years and the future years they proj-
ect were minimized. In this case, for each segment 
“s,” one must construct the credibility-weighted 
average Pn,s of the last n (= 10, or 5, or whatever is 
most feasible) years of data (the Si,s’s) in order to esti-
mate each Ln+1,s. In doing so, the credibilities should 
be computed using formula (A.7)

1
. (4.1),

, 1, ,

, 1, ,

Z
U Z K BU

U Z K BU
i s

i s i s i s

i s i s i s

( )
( )( )≅ + +

+ + +
−

−

Per the solution routine, K and B should then be 
modified so that the squared errors the resulting 
Pn+1,s’s make in estimating the Ln+1,s’s are minimized. 
Crucially, K and B are not to vary from segment to 
segment. Rather, a single pair of K and B that mini-
mize the sum of all the squared prediction errors is to 
be found via the solution algorithm.

So the weight assigned to the year n − i data for the 
line s data, Sn−i,s, is

( )( ) ( )= − − −− − − + −M Z Z Z Zn i s n s n s n i s n i s1 1 . . . 1 .

(4.2)

, , 1, 1, ,

The resulting predictions26 of the Ln+1,s’s are then 
the various values of

∏∑ ( )= + −+
==

P M S Z Sn s i s i s i s
i

n

i

n

s1 (4.3)1, , , ,
11

0.

(where each S0.s represents the rate or rating informa-
tion in effect just before the experience period).

As before, the sum across all the s’s of the squared 
estimating errors Σs(Pn,s − Ln,s)

2, or perhaps a premium  

up the “Target” value computed at the bottom of the 
spreadsheet).

This method has good utility as long as d 2 and s 2 
are stable over time and the data is not prone to very 
rare large losses.25 It is reasonable to expect d 2 to be 
stable as long as the average trend factor is stable, but 
often that does not occur. Further, it would be reason-
able to expect s 2 to be fairly stable as long as the pre-
mium volume in the line, adjusted for trend, is stable.

What must be said. This approach has nothing to 
do with the formulas stated earlier. However, it does 
address the key question in this paper, determining the 
optimum credibility. Further, since Z has a formula 
in d 2 and s 2, it may also used to determine a second 
variance constant once a first variance constant is 
known. Then, one might possibly revise the estimate 
of s 2 (derived from Z and d 2) to better account for 
process variance due to large losses, and consequen-
tially revise the estimate of Z.

4.2. Method 2: Fitting K and B across a 
large number of similar datasets

In this case, one might assume that the ratemaker 
is computing rates for a single line of business in  
50 U.S. states, or some other situation where there is a 
fairly large number of segments, and all the segments 
have approximately the same trend and observation-  
error-variance-per-unit-of-exposure characteristics. 
One would also have to assume that the complement 
of credibility is still supposed to be assigned to the 
existing rate plus trend, not some amalgam of all 
the segments. One must also assume that the old 
premium/exposure and loss data using in pricing 
the last, say, twelve years of rates are available for 
each of the segments. And lastly, it would help if the 
second-to-last data point for each segment, possibly  
the last data point, is developed enough that each 
value Ln+1,s, for each class (s) is as close an estimate 
of the expected costs En+1,s as is reasonably possible.

25On the other hand, if one converts to basic limits ratemaking with (nec-
essarily) reliable increased limits factors, then that problem may be sig-
nificantly mitigated.

26The first credibility formula (2.5) from Jones and Gerber (1975) of 

1,

1

1 1

1,

1 , 1 ,

Z
W

W V

U

U K BU
s

s

s s

≅
+

=
+ +

 was used for the first step. For con-

venience, the remaining credibility after considering all five years was 
assigned to the first year of data. In practice, that would be assigned to 
the rate in effect when the period began, adjusted for trend and to the 
present rate level.
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A sample spreadsheet illustrating this approach 
with 12 data segments and common trend, process, 
and parameter variance constants, but different sam-
ples from those constants among the segments, is 
shown in Table 3. The expected loss ratios for each 
segment were simulated using a geometric Brownian 

or exposure weighted average Σs Wn,s(Pn,s − Ln,s)
2 

could be computed in the spreadsheet. The result-
ing value could be called the “Target” and the  
solution routine or feature could be used to vary 
K and B until the lowest value of the “Target” is 
found.

Table 3. Sample calculation of K and B from data for twelve separate segments subject to a common K and B
(alternate annotation style for matrix data)

Part 1: Distribution Properties

Trend Variance 0.0016 (d 2) Values to Vary in Solver True Values

Process Variance 0.048 (t 2—to be divided by premium) K = 9.2477 (solver) 30.0 (K = t 2/d 2)

Parameter Variance .0009 (l2) B = 1.4732 (solver) .5625 (B = l2/d 2)

Part 2: Premiums {Uyear,class = Ui,s(Data)}

Year Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12

1 20.00 24.00 28.80 34.56 41.47 49.77 59.72 71.66 86.00 103.20 123.83 148.60

2 22.00 26.40 31.68 38.02 45.62 54.74 65.69 78.83 94.60 113.52 136.22 163.46

3 18.00 21.60 25.92 31.10 37.32 44.79 53.75 64.50 77.40 92.88 111.45 133.74

4 19.00 22.80 27.36 32.83 39.40 47.28 56.73 68.08 81.70 98.04 117.64 141.17

5 21.00 25.20 30.24 36.29 43.55 52.25 62.71 75.25 90.30 108.36 130.03 156.03

Target 6 22.00 26.40 31.68 38.02 45.62 54.74 65.69 78.83 94.60 113.52 136.22 163.46

Part 3: Loss Ratios {Li,s (Data); in this example, generated using original means (.6,.65,.55 for each group of three) and unity mean/lognormal drift 

and observation error with drift variance d 2, observation variance 
Ui s

2

,

2+
t

l }

1 65.9% 65.2% 48.2% 60.2% 62.3% 55.0% 60.1% 66.1% 53.9% 61.8% 67.2% 50.1%

2 62.3% 61.0% 58.3% 57.5% 66.0% 56.1% 57.7% 67.9% 54.3% 63.6% 66.7% 51.0%

3 59.0% 64.8% 53.8% 59.1% 61.8% 59.6% 55.1% 65.8% 52.3% 61.5% 63.6% 49.4%

4 64.3% 74.3% 54.6% 56.3% 64.8% 55.3% 54.9% 61.0% 55.0% 61.3% 66.1% 50.7%

5 68.0% 80.8% 58.3% 50.3% 61.7% 52.7% 51.7% 59.0% 55.9% 60.2% 68.9% 45.3%

Target 6 68.3% 73.6% 61.3% 53.2% 67.1% 51.0% 54.1% 65.8% 58.8% 65.4% 63.5% 43.6%

Part 4: Credibilities
 

( )
( ) ( )

[ ]
[ ]

= + +
+ + +

=
+ +









−

−1
; except,

, 1, ,

, 1, ,
1,

1,

1, 1,

Z
U Z K BU

U Z K BU
Z

U
U K BU

i s
i s i s i s

i s i s i s
s

s

s s

1 0.34 0.35 0.36 0.36 0.37 0.38 0.38 0.38 0.39 0.39 0.39 0.39

2 0.46 0.47 0.48 0.49 0.49 0.50 0.50 0.50 0.51 0.51 0.51 0.51

3 0.49 0.50 0.51 0.51 0.52 0.52 0.53 0.53 0.53 0.53 0.54 0.54

4 0.50 0.51 0.51 0.52 0.52 0.53 0.53 0.53 0.54 0.54 0.54 0.54

5 0.51 0.51 0.52 0.52 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.54

Part 5: Weights Computed Using Credibilities {W5,s = Z5,s; Wi,s = Zi,s(1 − Zi+1,s) × . . . × (1 − Z5,s); Wprior,s = 100% − (Z1,s + Z2,s + Z3,s + Z4,s + Z5,s)}

Prior 0.044 0.041 0.039 0.036 0.035 0.033 0.032 0.031 0.030 0.030 0.029 0.029

1 0.023 0.022 0.021 0.021 0.020 0.020 0.020 0.019 0.019 0.019 0.019 0.019

2 0.058 0.057 0.055 0.054 0.053 0.052 0.052 0.051 0.050 0.050 0.050 0.049

3 0.121 0.120 0.119 0.117 0.116 0.115 0.114 0.114 0.113 0.113 0.112 0.112

4 0.247 0.248 0.248 0.248 0.248 0.248 0.248 0.247 0.247 0.247 0.247 0.247

5 0.506 0.513 0.518 0.523 0.528 0.532 0.535 0.537 0.540 0.542 0.543 0.544

(continued on next page)
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Table 3. Sample calculation of K and B from data for twelve separate segments subject to a common K and B
(alternate annotation style for matrix data) (continued)

Part 6: Projections {Ps = [Sum of Wi,s × Li,s) for all years “i ”] + Wprior,s × L1,s}; and Squared Estimation Errors per Year 6 Observed Data  
{Rs = (Ps − Target L6,s)2}

Projection to 
year 6 {Ps}

65.5% 75.2% 56.3% 53.8% 62.8% 54.4% 53.6% 61.1% 55.1% 60.8% 67.4% 47.6%

Squared Error 
vs. Target 6 {Rs}

7.6E-04 2.4E-04 2.5E-03 3.1E-05 1.9E-03 1.2E-03 2.1E-05 2.2E-03 1.4E-03 2.1E-03 1.5E-03 1.6E-03

Straight Sum of Squared Errors  
{R1 + ⋅ ⋅ ⋅ + R12}

1.54E-02

Weighted (with U5,s for each Rs) Sum of Squared Errors

—Solution routine varied K and B in previous gray area to minimize this value 1.46E-03

Part 7: Validation with Actual Year 6 Underlying Expected Loss Ratios {Es (Data)}

Expected Loss 
Ratio at Year 6

66.5% 73.8% 57.0% 49.6% 66.4% 50.5% 53.7% 66.4% 57.4% 62.5% 64.9% 43.8%

Sum of Errors Projecting Expected Loss with K, B in Gray {S � sum of (Ps � Es)2} 1.06E-02

Sum of Error w/True K,B {T; same as “S” only true K, B used throughout process} 1.07E-02

Ratio Error w/Est. K, B to True K, B {S/T} 100%

motions with the variance specified in Part 1. The 
actual loss ratios are also affected by the parameter 
variance and the process variance (a common factor, 
divided by the premium per the Law of Large Num-
bers) listed there. The actual values of K and B are 
on the very left of Part 1. Lastly, the K and B values 
that minimize the sum of premium-weighted sum of 
squared errors in projecting the sixth year’s simu-
lated value (using the credibility weights27 defined 
by K, B, and the premium data) are highlighted in 
gray.

Note that the loss ratios for year 1 were deemed to 
have projection errors similar to the rate prior to the 
experience period, so they were used for the S0.s’s.

What must be said. In testing this method, it appears 
that it may require a substantial number of data points 
to reliably estimate of K and B using this process. In 
particular, twelve classes do not appear to be suffi-
cient for the test case above. However, the fact that K 
and B are combined as K + BU in the equation means 
that they act together to impact the credibility. The 
only difference is that the “B” term reacts to exposure 

or premium volume, whereas “K” does not. In this 
case, at a premium of about 20 the estimated value of 
K + BU is about equal to the true underlying value.

Next, the actual quality of the estimation, the 
errors in estimating the true (unaffected by process 
or parameter variance) expected loss ratios for year 
6 (as shown at the top of Part 7) were computed. As 
one may see, the difference between the prediction 
error using the estimated K and B and the actual K 
and B is negligible. This suggests that, as long as the 
sample size (number of “s” values) is small and the 
difference in premiums, exposures, etc., is small, it 
may be more helpful to simply replace “K + BU” 
with “K” in the credibility formula.

4.3. Method 3: Estimating � 2 and � 2 
from the historical data

This method involves using different linear com-
binations of squared differences between values. As 
such, it is oriented towards standard, linear, Brownian 
motion. However, note that the logs of values from 
a geometric Brownian motion form a linear Brown-
ian motion. So, one may convert geometric Brown-
ian motion data to linear data, estimate the values of 
d 2 and s 2 that work in the linear context, then con-
vert those to comparable drift variance and process/

27For example, the most recent year has credibility Zn, the former year 
has (1 − Zn)Zn−1, and then (1 − Zn)(1 − Zn−1)Zn−2, etc., as credibility has 
been applied at successive updates.
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Similarly,
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Knowing those values, it is possible to construct 
estimators for d 2 and s 2. One may readily see that, 
by the linearity of expectations,
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So, by creatively using the differences between 
the first and last point, and the differences between 
adjacent points, one may estimate the values of d 2

and s 2.
An example of the use of equations (4.7) and (4.8) 

is shown in Table 4. The actual observable data over 
15 years in column 2 was generated randomly over  
15 years, using the actual values d  = 3% and s  = 7%.  
The values of d 2 and s 2 were then estimated from the 
data. As one may see, the estimates are fairly close. 
But they nonetheless significantly overestimate the 
credibility.

parameter variance values. For example, the geomet-
ric Brownian motion variance parameter would be 
ed 2 − 1 when d 2 is the variance in the corresponding 
linear Brownian motion and the mean of the geomet-
ric Brownian motion steps is specified to be unity (no 
change in the multiplicative context).

So, the goal is to find functions of the Si’s that pro-
vide insight into the values of d 2 and s 2. For exam-
ple, the squared difference between the beginning 
and ending values (Sn − S1)

2 reflects two samples of 
parameter/process error at the two endpoints and  
n − 1 samples from the Brownian motion variance. 
So, if the two types of variance are similarly sized, the 
squared difference between the two endpoints should 
be dominated by a multiple of the Brownian motion 
variance d 2. Similarly, if one adds the squared dif-
ferences between adjacent points Σ n−1 

i=1 (Si+1 − Si)
2 one 

would expect the result to be dominated by a multiple 
of the process28 variance s 2. Further, one might expect 
that more precise approximations might be made by 
using linear combinations of those two values.

So, one might begin by computing the expected 
values of (Sn − S1)

2 and Σ n−1 
i=1 (Si+1 − Si)

2. First, note 
that, since the mean expected change in values from 
the Brownian motion (after trend correction) is zero, 
and the expected process risk is zero.

(4.4)1
2

1E S S Var S Sn n[ ]( )−  = −

However, Sn − S1 may be expressed as a sum of inde-
pendent variables, each with mean zero, as (Sn − Ln) + 
(Ln − L1) + (L1 − S1). So, it is composed of a process 
error, a Brownian motion of length n − 1, and the nega-
tive of a process error. Therefore,

[ ] [ ] [ ]
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28To avoid the cumbersome phrase “parameter/process variance,” the 
simpler phrase “process variance” should be understood to have the 
same meaning throughout this subsection.
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of d 2 is high, the analysis of trend may incorrectly infer 
that it is high trend rather than a high Brownian motion 
variance. Of course, if the trend is clearly much larger 
than d 2, it may well be less of an issue.

Further, as noted later, the problem of estimating 
d 2 and s 2 is relatively ill-conditioned.29 So reducing 

A note about trend—The theory underlying this 
paper assumes that the expected loss, a priori, is the 
same for all years. That generally requires that histori-
cal losses have been trended (and premiums adjusted 
to the current rate and exposure level) before the calcu-
lations commence. Of course, if the trend is computed 
using the same data as the calculations, the calculated 
value of d 2 may be suppressed. For example, if the ran-
dom movement began with a large upward jump early 
in the period, and another jump later, because the value 

Table 4. Sample estimation of � 2 and � 2 from historical data

Part 1: Data

Brownian S.D. 3%

process S.D. 7%

Implied K 5.444

Part 2: Data and Analysis

(1)
Year

(2)
Brownian 
Expected 

Loss

(3)
Process 

Error

(4)
(2)+(3)

Including 
Process Error 

(Observed Data)

(5)
(4)−Previous (4)

Annual  
Change

(6)
(5)∗(5)

Squared 
Annual 

Changes

(7)
(4)(end)−(4)(begin)

Total Change 
from Beginning 

to End

(8)
(7)∗(7)

Squared 
Total 

Change

1 0.650 0.032 0.682

2 0.617 −0.051 0.566 −0.116 0.013

3 0.621 0.116 0.738 0.172 0.029

4 0.578 0.012 0.590 −0.148 0.022

5 0.590 −0.033 0.557 −0.032 0.001

6 0.593 −0.016 0.577 0.020 0.000

7 0.603 0.082 0.685 0.108 0.012

8 0.581 −0.032 0.549 −0.136 0.018

9 0.613 −0.033 0.580 0.031 0.001

10 0.585 0.004 0.589 0.008 0.000

11 0.586 0.098 0.684 0.095 0.009

12 0.618 −0.057 0.561 −0.123 0.015

13 0.566 0.019 0.585 0.024 0.001

14 0.557 −0.018 0.539 −0.046 0.002

15 0.484 0.026 0.510 −0.029 0.001

Total 0.1251
A.

−0.172 0.0297
B.

C.  Estimate of process variance: [A.−B.]/[2(15−2)] 
  Associated standard deviation

0.0037
6%

D.  Estimate of variance parameter for Brownian motion: [(n−1)B.−A.]/[(15−1)(15−2)]  
  Associated standard deviation

0.0016
4%

E. Value of K = C./D. 2.293

F. Estimated Steady-State Credibility (equation (2.11) formula using C. and D.) 48%

G. True Steady-State Credibility (equation (2.11) formula using values at top) 35%

29For example, a big outlier could have arisen from either process vari-
ance or drift variance. Thus it would be difficult to infer which type of 
variance is “large” from the observed data points.
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tions are not more precise. First, it may be difficult to 
distinguish say, whether a very high last point is due 
to a very high uptick in the Brownian motion because 
d 2 is large, or a large process error because s 2 is high. 
So, the basic problem of approximating d 2 and s 2 
may often be ill-conditioned. Second, it is important 
to review Note 4 at the beginning of this section. At 
its core, Note 4 says that the error variance in comput-
ing the quantities above could be as much as the sum 
of the variances of the two items you are subtracting. 
While the error does not quite reach the sum of the 
variances (due to inter-correlation of the two quan-
tities), one should still be extremely cautious if the 
difference (the estimate of d 2 or s 2) is much smaller 
than each of the values involved in the subtraction.

Nevertheless, even though the credibility deter-
mined using this method sometimes only has moderate 
precision, it is moderately close to the “best estimate” 
credibility. Therefore, it still has the potential to cre-
ate more accurate estimates than the stability-centered 
classical credibility.

4.4. Method 4: Estimating � 2 structurally 
from loss data and � 2 by subtraction

Given the formulas in equations (4.5) and (4.6), it 
is clear that, once one of d 2 and s 2 is reliably esti-
mated, the other may be estimated. It should also be 
clear that equation (4.5) has relatively more content 
in d 2 than equation (4.6). So, if one has a quality esti-
mate of s 2, the formula

( )≅ − −
−

d sS S

n
n 2

1
(4.9)2 1

2 2

may be used to estimate d 2.
Some estimate of s 2 is required to use that formula, 

though. One method for estimating s 2 involves what 
may be described as a structural analysis. Such a pro-
cess involves decomposing the process/parameter  
risk into its components and then estimating each 
component separately.

The process risk is some ways better represented in 
historical credibility formulas (such as the P/(P + K),  
or U/(U + K) in the notation of this paper), so it will be 

the degrees of freedom of the approximation by esti-
mating trend simultaneously, given a small number of 
data points, may not be reliable. However, one might 
be advised to use some related data, such as calendar 
year reported loss frequency and calendar year closed 
claim severity, to estimate the trend. On the other 
hand, if there are a large number of data points rela-
tive30 to the volatility in the data, then the impact of 
the random observation error in the initial and ending 
points on the trend estimate should be minimal.

A third aspect of trend deserves mention as well. 
Without a correction, the random lognormal aspect 
of geometric Brownian would produce a mean above 
one at all points after it begins. In effect, the random-
ness of the distribution combined with the skew of 
the lognormal tends to generate its own trend. So, the 
transformed (into a linear version) version of the data 
points, rather than having a normal-type31 distribution 
with mean zero, must have a lognormal distribution 

with mean − d
2

2

. That means that external trend must

often be corrected, especially trend computed by aver-
aging several year-to-year growth rates. To compli-
cate matters, d 2 is then unknown, so the value needed 
for the correction is unknown. However, some crude 
initial estimate of the value of d 2 may be used when 
estimating trend, and then, once the trend is estimated, 
the d 2 estimate may be refined, etc. The process may 
be continued iteratively until a consistent trend and d 2 
are computed. Consider that if the estimate is produced 
by loglinear regression of data with similar geometric 

Brownian motion variance, − d
2

2

 should already be

subsumed into the trend. Further, if quality surrogate 
data is available for trending, that option deserves seri-
ous consideration.

What must be said. There are some special consid-
erations that should help explain why the approxima-

30The author is not aware of any specific measure that would readily 
define this, so it would likely need to be assessed judgmentally.
31The author recognizes that use of the normal distribution is an implicit 
assumption, but Boor (2012) shows it is generally a reasonable approxi-
mation in the insurance line of business context.
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ate volume in the triangle, can be done using some 
fairly well established procedures. For example, a 
paper by Hayne (1985) details one approach. The 
result of this approach would be a multiplicative 
distribution with a mean of unity and a variance of 
some b 2.

Of course, it is then necessary to combine a 2 and b 2. 
First, a 2 should be converted to a multiplicative dis-
tribution to use with the multiplicative loss develop-
ment distribution. Such a distribution would represent 

the ratio 
expected loss + process error

expected loss
, which has a 

mean of one and variance 
( )

a
expected loss

2

2
. The multi-

plicative combination of these two clearly independent 
distributions gives

( ) ( )

















= + +b a a b

Variance of process

parameter variance in geometric
Brownian motion space

expected loss expected loss
.

(4.12)
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2

2
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2

So, when that is converted to a parameter in the 
linear model34, one may show that

( )

( )

=
+

+ +



















a
b a

a b

expected loss

expected loss

log

1

. (4.13)2
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2

2
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Then, that estimate may be combined with equa-
tion (4.9) to obtain an estimate of d 2.

4.5. Method 5: Estimating � 2 using a 
larger dataset and � 2 by subtraction

Just as s 2 may be estimated using alternate 
approaches, d 2 may often be estimated in isolation 
as well. If a larger proxy dataset (for example, the 

analyzed first. Thankfully, as long as there are enough 
claims in the data to reliably estimate the upper end of 
the severity distribution, one may use the collective 
risk equation to calculate the process variance (which 
may be labeled “a 2”). Then,

[ ] [ ]

[ ] [ ]

= ×

+ ×

a E claims Var severity

Var claims E severity

#

# , (4.10)

2

or in the loss ratio or pure premium context,

( )

[ ] [ ]
[ ] [ ]=

× +
×a

E claims Var severity

Var claims E severity

premium or exposures

#

#
. (4.11)2

2

So, as long as the proper data is available,32 the 
process variance is readily estimable.

The other portion that must be estimated is the 
parameter variance, which will similarly be denoted 
“b 2”. Note that any year-to-year variations in the 
trend are subsumed into d 2. So, in most cases the 
only parameter-type variance that need be consid-
ered is the uncertainty in loss development to ulti-
mate. That variance has two parts: uncertainty about 
what the correct expected loss development factor 
is; and variance of the ultimate loss in each year, as 
estimated using loss development, around the actual 
ultimate loss.

It is not hard to see that the uncertainty about the 
expected loss development factor can be essentially 
ignored per Note 5 at the beginning of this sec-
tion. The variance in future loss emergence33 on the 
various years requires some analysis, though. Esti-
mating the remaining random b 2, given appropri-

32The formulas are beyond the scope of this paper, but corrections for 
incomplete large loss samples and corrections to provide measures of 
the differing severities of developed losses may be done when they are 
needed.
33This approach assumes the key volatility in loss emerge lies in what has 
emerged to date, rather than that the future development may be heavily 
random due to fortuitous late, larger losses. If the latter is the key issue, 
it would be more accurate to view the process, given losses of maturity 
“m,” as credibility-driven process of estimating the future reported losses 
at maturity m, then apply the loss development factor to the result. In such 
a case, the claim counts and severity distribution used in equations (4.10)  
and (4.12) should just use the loss data through m months.

34Consider the value of the variance of a lognormal distribution of mean 
one, compared to its normal mean, distribution variance parameter.
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countrywide private passenger auto experience of 
a major carrier when rates are being made a low 
volume state) is available, and that dataset has very 
minimal process/parameter risk, then the formula (4.8) 
from subsection 4.3 should produce a very high qual-
ity estimate of d 2. Then, using equation (4.6), s 2 may  
be estimated via

∑ ( )
( )

−
−

− ≅+=
−

d s
S S

n
i ii

n

2 1 2
(4.14)

1
2

1

1 2
2

4.6. All or many of the above

Several methods were presented above. They all 
have different strengths and weaknesses. Whenever 
possible, it may be helpful to review the results of more 
than one method. Note that that the credibility for-
mula is not a formula in s 2 and d 2 per se, it is actually 

a formula in either the ratio = d
a

K
2

2  or in K and B. So, 

when different values for s 2 and d 2 result from dif-
ferent approaches, but the ratio K is similar, the meth-
ods fundamentally agree. Also, note that what may 
look like large changes in K may have a very minor 
effect on the credibility when K is very large. Lastly, 
should the methods disagree it creates an opportunity 
to evaluate the strengths and weaknesses of each one.

Summary

The “square root” or classical credibility process 
has been in use for many years. Nevertheless, that 
method has significant a flaw in that the statistical 
assumptions (confidence level and failure threshold) 
may be chosen arbitrarily. Further, it assumes that 
whatever data receives the complement of credibil-
ity is stable and reliable, even when that data is, say, 
four years of a 20% trend rate. It is hoped that this 
advancement, by providing a reliable credibility pro-
cess that uses minimal assumptions, will restructure 
the credibility processes used by casualty actuaries. 
Then, the profession can be comfortable that rate 
indications that use the resulting credibility values 
are as accurate as possible.
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Appendix A
B, K and Updating Credibility Under 
Bühlmann-Type Assumptions and 
Modified Bühlmann-Type Assumptions

The assumptions used above are fairly broad. d 2 is 
a fairly general trend volatility. More important, all the 
errors that come between each raw data point Si and 
the true mean for that year Li are assumed to have (log)
normal distributions with mean 0 (or 1 for the log-
normal case) and variance s 2. So, each s 2 would logi-
cally contain some process variance, PrV 2, and some 
parameter-type variance due to issues such as uncer-
tainty of how the remaining losses will develop “g 2”.  
Bühlmann (1967) analyzed the class credibility,  
noting that the process variance decreased as the  
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l2 when all the data is at a single maturity). So, we 
would say that s 2 = l2 + (t 2/U). That would mean
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Substituting in K = t 2/s 2, and adding in a new con- 
stant B= l2/s 2, we get
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Carrying the algebra a step further gives

4

2
. (A.5)
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( )( )
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+ + −

+

That appears to be the most refined formula rea-
sonably possible for this scenario.

Similar calculations may be employed on the 
recursive/transitional credibility formula (equations 
(2.10) and (2.17)) as follows. First, under the process 
variance only assumptions of Bühlmann
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(with equality holding in the linear case). Then, 
under the combined process and loss development 
variance assumptions, the comparable formula in B, 
K, and U is

amount of exposures (in the case using premium as 
a proxy) increased. In effect, his formula arose from 
the Law of Large Numbers assertion that PrV 2 = 
t 2/U, where U represents units35 of exposure (such 
as premium, payroll, house-years, expected losses, 
etc.), t 2 is innate to the line of business, combined 
with an assumption that no parameter-type variance  
is present.

When one inserts the Bühlmann assumptions into 
the steady-state credibility formula from equations 
(2.11) and (2.18), the results are
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Or, if one uses Bühlmann’s assumption and the 
notation K = t 2/d 2, the result is
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where the two formulas for K appear to be about 
equally useful.

Alternately, whereas Bühlmann assumed that all the 
observation error was due purely to inadequacy of the 
sample size, in practice, only part of the observation 
is usually due to sample size.36 In most applications37

part of the error in observing true expected losses in 
prior years is due to uncertainty about the ultimate 
losses that will emerge (which is more like a constant 

35In the classic Bühlmann paper, “P” is used rather than “U”. The Jones 
and Gerber (1975) paper already reserved “P” to represent “projections” 
of expected loss costs, so an alternate variable name was required. Fur-
ther, in this context the rate or rate level targeted is assumed to involve a 
division by something representing units of exposure.
36It is not difficult to show that, under a similar modification, Bühlmann’s 

class credibility formula revises from 
( )

=
+

=
+ +

to
1

.Z
U

U K
Z

U

U B K
37Very short tail lines would be an exception to this.
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So, the preconditions of the Gerber-Jones formula 
do not hold when experience periods that overlap 
from rate calculation to rate calculation are used. 
That does, of course, not imply that there is no opti-
mal credibility to use in such a case. It merely means 
that a different process for determining the credibil-
ity must be followed.

Another approach that might be posited involves 
recognizing that if one may choose “n” weights Uj for 
n years, and one may choose either a single “credibil-
ity” “S” or a formula generating a set of credibility 
values “Sj”, perhaps one might reproduce the target 
credibility formula generated using equation (2.16). 
Unfortunately, testing of this using a spreadsheet 
solution routine and a target steady-state credibility 
suggests that the solution is always Un = 100%, Uj≠n

= 0%, and Sj = Zj. Hence, each step just updates with 
the single year of data Si and the single year’s cred-
ibility Zj. This suggests that, since the Gerber-Jones 
is the optimum combination of the years, the practice 
of using sets of years that overlap from rate calcula-
tion to rate calculation is suboptimal.

As a counterpoint to the difficulties with the over-
lapping experience periods, the case when multiple 
years of experience are used, but not updated, should 
be discussed. Say, for example, that an actuary mak-
ing rates for some line “M”, which has 30 classes, 
makes rates for the 30 classes using the last ten years 
of exposure and loss data for each class. Rather than 
use the present rate for the complement of credibil-
ity, the actuary uses the total population mean and 
some appropriately generated test correction pro-
cess. Essentially, the problem for each class is that 
of how to weight the ten (or “n”) years of data in 
each class to produce the optimum estimate of the 
costs in that class. This is not on its face an issue of 
an updating credibility formula. But, by viewing it 
as updating the oldest year with the second oldest 
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Appendix B
Experience Period Weights?

Two questions that might be asked are “What if 
I use, say, the last five years of data in each update, 
with some specified set of weights applied to the 
years? How can I apply the Gerber-Jones formula 
to that problem?” and “If I have some five years of 
data, what is the best set of weights to use?”

Consider first the scenario where a number of 
years of data are weighted together for each update. 
The data Sj for year “j” has some weight “Uj” in the 
combination of the most recent “n” years that is 
used to update the rate. Unfortunately, as briefly 
discussed in the body of this paper, such a scheme 
will not fulfill the assumptions of the Gerber-Jones 
formula. Equation (2.3) states that the scheme’s 
weighted average for iteration “i” must have a 
constant covariance with all successive terms. It 
is hopefully clear that, up to differences in loss 
development estimation of ultimate losses, the 
covariance between the new data in the “(i + 1)th” 
credibility iteration using the weighted average and 
the “ith” would be
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But the covariance between the “(i + n)th” weighted 
average and the “ith”, due to a lack of common terms, 
would be zero. Further, just to emphasize the point, 
the covariance between the “(i + 2)th” weighted 
average and the “ith”, given no loss development 
un certainty at any stage, would be
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in predicting the value underlying S1 to simply be a 
matter of drift variance. That shows that the Gerber-
Jones formula implicitly assumes that one begins 
with a “perfect” estimate of the initial costs. That 
is unrealistic in this scenario, so one must replace 
equation (2.5) with

, (B.4)1
1 0

1 1 0

Z
W V

W V V
= +

+ +

where V0 is the observation error inherent in S0.
Whether the remaining credibilities Zi can be per-

fected beyond those of equation (2.4) is beyond the 
scope of this short analysis, but consider the general 
utility of Gerber-Jones formula (2.4) when begin-
ning with equation (2.5)/(B.3). The recursive nature 
of the credibilities and the utility of the Gerber-Jones 
formula suggest that if subsequent credibilities using 
(2.4), are determined for S2, S3, . . . , S9 the resulting 
credibility weighted sum

1 1 . . . 1 noting 1

(B.5)

9 8 1 00

9
Z Z Z Z S Zi i ii∑ ( )( ) ( ) ( )− − − =+=

should have properties similar to those of the Gerber- 
Jones method. Therefore, it should be at least a nearly 
optimal projection of the costs for the subject class at 
time n + 1 or n + 2.

year, and so on, it may be viewed as such a problem. 
Since the Gerber-Jones formula is designed to pro-
duce the optimum estimate of all combinations of the 
data points via an updating formula, it should also 
produce the optimum combination of the data points.

One may begin by postulating that the initial rate 

is simply the first data point 
∑

=
#

0
0

0

S
losses

exposures
year

year

. 

In other words, in the language of the Gerber-Jones 
method, P1 = S0. Then, to update with the second year 
of data, one might compute Z1 using formula (2.5), 
yielding P2 = Z1X1 + (1 − Z1)P1. However, consider that 
formula (2.5) is

. (B.3)1
1

1 1

Z
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W V
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+

One may assume that W1 represents the drift vari-
ance between time 0 and time 1 (hence a Markov 
property would assure it fulfills the Gerber-Jones 
criteria), and V1 the observation error at time 1 
(completing the variance structure at time 1). Under 
the formula from Boor (1992), the credibility with 
such a variance structure is the average squared 
prediction of the complement of credibility, divided 
by the sum of the prediction errors of the new data 
and the complement. That is a roundabout way of 
showing that formula (B.3) expects the error of S0




