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Empirical Method-Based 
Aggregate Loss Distributions

AbSTRACT

This paper presents a methodology for constructing a determin-

istic approximation to the distribution of the outputs produced by  

the loss development method (also known as the chain-ladder 

method). The approximation distribution produced by this meth-

odology is designed to meet a preset error tolerance condition. 

More specifically, each output of the loss development method, 

when compared to its corresponding approximation, meets the 

preset error tolerance. Ways to extend this methodology to the 

Bornhuetter-Ferguson and the Berquist-Sherman families of meth-

ods are described. The methodology is illustrated for a sample 

loss development history.
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laic distributions are that they (a) are easy to work 
with once the two categories of assumptions have 
been made and (b) can deal with variability from all 
sources, at least in theory. However, the disadvan-
tage of using such distributions is that the potential 
error arising from selecting a particular family of dis-
tributions and from estimating parameters based on 
limited data can be great.

Non-formulaic distributions, on the other hand, also 
are easy to use but are difficult to contemplate directly 
because of the immense computing power needed to 
execute the necessary calculations. With the advent 
of powerful computers, the possibility of developing 
empirical method-based aggregate loss distributions 
keyed to specific methods can be considered and in 
this paper, a methodology for producing them is pre-
sented. A key argument in favor of method-based dis-
tributions is that once a particular method has been 
selected, the rest of the process of creating the con-
ditional distribution of outputs can proceed without 
making any additional assumptions.3 The principal 
drawback to using conditional loss distributions is 
that, when considered singly, they do not account for 
either (a) the “model risk” associated with the very 
choice of a particular method to calculate ultimate 
aggregate losses or (b) the effects of limited histori-
cal data (which can be thought of as a sample drawn 
out of some unknown distribution).

1.2. Objective

The objective of this paper is to describe and dem-
onstrate a methodology for producing a determinis-
tic approximation of the aggregate loss distribution 
of outputs, within a specified error tolerance, that 
can be generated by the application of the LDM4 to  

1. Introduction

The loss development method (LDM) as described 
in the literature (Skurnick 1973; Friedland 2009), also 
known as the chain-ladder method, is easily the most 
commonly applied actuarial method for estimating 
the ultimate value of unpaid claims (Friedland 2009, 
Chapter 7). The customary way in which the LDM 
is applied produces a single ultimate value for all ac-
cident years, for each individual year separately and 
then for all years combined. The underlying historical 
loss development usually exhibits a degree of variabil-
ity. The variability implicitly and inherently expressed 
in the loss development history, and therefore in the 
resulting outputs derived by the application of the 
LDM, can be quantified using the actual loss develop-
ment history—and need not be based on a closed form 
of any particular mathematical function. In the course 
of quantifying this variability, one can derive a purely 
historically based1 distribution of the potential outputs 
of the LDM. This paper presents such a method.

1.1. Literature

To date the actuarial literature has considered ag-
gregate loss distributions predominantly in terms of 
distributions that can be expressed in closed form. 
That approach generally requires two categories of 
assumptions: the selection of a family of distributions 
thought to be applicable to the situation at hand, and 
the selection of the parameters that define the spe-
cific distribution based on the data associated with 
individual applications.2 A limited amount of work 
has been done in producing non-formulaic, method-
based, aggregate loss distributions that are not (or 
could not be) expressed in a closed form (Mack 1994; 
McClenahan 2003). The advantages of using formu-

1One also can think of the empirical distribution of the particular method 
as a type of “conditional” loss distribution, with the condition being ‘the 
method that is selected to produce the various ultimate loss outputs.’
2The following sources illustrate the wide variety of ways in which closed 
form distributions can be constructed: Klugman, Panjer, and Willmot 
(1998), Heckman and Meyers (1983), Homer and Clark (2003), Keatinge 
(1999), Robertson (1992), and Venter (1983).

3The set of assumptions is thus limited to the assumptions implicit in the 
operation of the selected method.
4The classic LDM applies a single selected loss development factor (with 
respect to each loss development period) to all open years. The gener-
alized version of LDM also applies a selected loss development factor 
(with respect to each development period) but allows this selection to be 
different for different open accident years. This type of LDM is a Gener-
alized LDM and in this paper this is the version of the LDM that is used 
to develop the approximation methodology.
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2.1. The loss development  
method generally

The basic idea of the LDM is that the observed his-
torical loss development experience provides a priori 
guidance with respect to the manner in which future 
loss development can be expected to emerge. In actual 
use, an actuary selects a loss development pattern 
based on observation and analysis of the historical 
patterns.6 Once a future loss development pattern is 
selected, it is applied to the loss values that are not 
yet fully developed to their ultimate level. An impor-
tant feature of this process is that the actuary makes 
a selection of a single loss development pattern that 
ultimately produces a single output for the entire body 
of claims, for all cohorts represented in the loss devel-
opment history, as of the valuation date.

2.2. The theoretical problem

It is trivial to state that any single application of 
the LDM produces just one of many possible out-
puts. The challenge, and the objective of this paper, 
is that of identifying all possible outputs that can be 
produced by the LDM. If it were possible to do this, 
then the set of all outputs would provide a direct 
path to identifying measures of central tendency as 
well as of dispersion of the outputs produced by the 
LDM. In this regard, the reader should note that the 
language “all possible outputs” as used in this pa-
per is intended to include all projections that can be 
produced using all possible combinations of the ob-

served historical loss development factors for each 
period of development for every cohort of claims in 
the data set.7 This convention will be used through-
out the paper. Also, it is obvious that there are other 

a particular array of loss development data. More 
specifically, the approximation algorithm ensures that 
each point of the exact conditional distribution, if 
it were possible to construct, does not differ from 
its approximated value by more than the specified 
error tolerance. Extensions of this process to other 
commonly used development methods are briefly 
described but not developed.5

1.3. Organization

Section 2 presents the theoretical problem and the 
theoretical solution. Section 3 illustrates the practi-
cal impossibility of calculating the exact theoreti-
cal solution (i.e., producing an exact distribution of 
outputs) and establishes the usefulness of a meth-
odology that can yield an approximation of the ex-
act distribution of loss outputs. Section 4 describes 
the construction of the approximation distribution 
for a single accident year, including the process  
of meeting the error tolerance. Section 5 describes 
the construction of the convolution distribution that 
combines the various outputs for the individual ac-
cident years, thus producing a single distribution of 
outputs for all accident years combined. Section 6  
demonstrates the methodology (with key exhibits pro-
vided in an appendix). Section 7 discusses a num-
ber of variations. Section 8 describes extensions to 
other commonly used loss projection methods. Fi-
nally, Section 9 discusses the scope of possibilities 
for this methodology as well as potential limitations.

2. The theoretical problem and the 
theoretical solution

This section describes the theoretical problem 
associated with using the LDM to develop a distri-
bution of outputs. It also describes the theoretical so-
lution to the problem.

5From this point forward, unless otherwise indicated, all distributions 
will refer to “method-based” distributions.

6Often the selected value is a selected historical value (e.g., the latest 
observed value), some average of the observed loss development factors 
(e.g., the arithmetic average of the last three values), or some other aver-
age (e.g., the arithmetic average of the last five observations excluding 
the highest and lowest values). Moreover, any of these selections may be 
weighted by premiums, losses, or some other metric.
7The issue of including outcomes that can be produced by using various 
averages or adjusted loss development factors is temporarily deferred 
and will be addressed later in this paper.
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3. The impossible task and the 
possible task

The size of the task of performing the calculations 
required to generate all possible outputs that can be 
produced using all different combinations of observed 
historical loss development factors can be gauged 
rather easily. Consider a typical loss development 
array of n accident years developed over a period of 
n years. For purposes of this illustration, let us as-
sume that the array is in the shape of a parallelo-
gram with each side consisting of n observations.10 
For this example, the number of possible outputs that 
can be produced using all different combinations 
of loss development factors is given by (n – 1)n(n – 1)/2. 
The values grow very rapidly as n increases. For 
example, when n is 10, the number of outputs is 
8.7  1042 and when n is 15 the number of outputs 
is 2.2  10120. To put these values in perspective, if 
one had access to a computer that is able to produce 
one billion outputs per second, the time needed to 
execute the calculations is 2.8  1026 years when n = 10 
and 7.0  10103 years when n = 15. There just is not 
enough time to calculate the results. This is the  
impossible task.

Given this practical impediment, it makes sense 
to consider approximating the exact distribution of 
outputs. This paper describes such an approximation 
algorithm. In other words, the target is to construct 
an approximation distribution of the outputs produced 
by the LDM such that every point in the true his-
torical distribution, if it were possible to produce 
every single value, does not differ by more than a 
pre-established tolerance ε from the corresponding 
approximated value (which, in reality serves as a sur-
rogate for the true value) in the approximation distri-
bution. This is the possible task.

possible outputs, both from the application of the  
LDM (using non-historical loss development patterns) 
and from the application of non-LDM methods, each 
requiring the use of judgment8 and, as such, repre-
sents an alteration to the distribution of outputs that 
is produced purely on the basis of the observed his-
tory. Note: Although cohorts of claims can be defined 
in many different ways,9 the working cohort used 
in this paper is the body of claims occurring during  
a single calendar year, normally referred to as an “ac-
cident year.”

2.3. The theoretical solution

The theoretical solution is rather straightforward 
and uncomplicated: calculate every possible com-
bination of loss development patterns that can be 
formed using the set of observed loss development 
factors. In other words, the observed history contains 
within it an implied distribution of outputs that is 
waiting to be recognized. One of the key impediments 
to producing this set of outcomes is the vast number 
of calculations involved. What is described in this 
paper is the identification of an approximation of the 
implied universe of base line outputs that are pres-
ent once the actuary has decided to use the LDM. Of 
course the actuary can continue to do what he always 
has done; select a specific loss development pattern 
and apply it to the undeveloped loss values. But now 
the actuary will also know the placement of this par-
ticular loss output along the continuum of all pos-
sible outputs (and their associated probabilities) that 
can be produced by using just the observed historical 
loss development factors.

8The reference to the use of “judgment” in connection with the appli-
cation of the LDM speaks to introducing non-historical values into the 
process of calculating LDM outcomes (such as the use of averages for 
loss development factors). As such whatever is chosen, it is necessarily 
a reflection of the judgment of the user and is not a true observation of 
historical development. Therefore, any such outcomes technically are 
outside the scope of the methodology described in this paper.
9Claims can be aggregated by accident year, report year, policy year, and 
by other types of time periods. The methodology presented in this paper 
applies equally to all such aggregations.

10Data arrays come in many different shapes: triangles, trapezoids, paral-
lelograms. And some arrays are irregular as some parts of some accident 
years histories may be missing. The methodology presented in this paper 
has equal application to virtually all possible shapes.
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tion of all possible outputs for all accident years 
combined.

(8)  Create the convolution distribution over the N 
final intervals to create the final distribution of 
outputs for all accident years combined.

4.1. Notation

The primary input that drives the LDM is the his-
torical cumulative value of the claims that occurred 
during an accident year i, and valued at regular inter-
vals. The jth observation of this cumulative value of 
the claims occurring during accident year i is denoted 
by V

i,j
. For purposes of this presentation i ranges from 

accident year 1 to accident year I while j ranges from 
a valuation at the end of year 1 to a valuation at the 
end of year J, with I ≥ J.12 J is the point beyond which 
loss development either ceases or reasonably can be 
expected to be immaterial.13 It is also useful to set 
the indexing scheme such that the most recent (and 
least developed) accident year is designated as ac-
cident year 1, the second most recent accident year 
is designated as accident year 2, and continuing thus 
until the oldest (and most developed) accident year is 
designated as accident year I. The most recent valu-
ation for each of the open accident years is then rep-
resented by V

i,i
.

Also, the loss development factor (LDF) that pro-
vides a comparison of V

i,j+1
 to V

i,j
 is represented by L

i,j
 

= V
i,j+1

/V
i,j
.

4.2. The error tolerance 

Any approximation process necessarily generates 
estimation error. Whenever a true value is replaced by 
an approximated value, there will be a difference under  
all but the rarest of conditions. Different applications 

4. The construction of the 
approximation distribution

This presentation assumes the existence of a loss 
development history that captures the values, as of 
consecutive valuation dates, for a number of differ-
ent accident years. This is commonly referred to as a 
loss development triangle or, more generally, a loss 
development array.

Given an error tolerance, ε, the idea is to construct 
a set of N contiguous intervals such that any given 
value produced by the LDM does not differ by more 
than ε from the midpoint of the interval which con-
tains that value. The key steps in this construction are:

(1)  Specify an error tolerance, ε.

(2)  Identify the range of outputs: the overall maxi-
mum and minimum values produced by the LDM 
for all accident years combined using only the 
observed historical loss development factors.

(3)  Construct a set of intervals, the midpoints of which 
serve as the discrete values of the approxima-
tion distribution, and thus serve as the values to 
which frequencies can be attached. Perform this 
process separately for each accident year.11

(4)  Identify the optimal number N that can assure 
that the error tolerance ε is met for every output 
that can be produced by the LDM

(5)  Produce all outputs generated by the LDM, sepa-
rately for each accident year.

(6)  Substitute the midpoint of the appropriate re-
spective interval for each output generated by 
the LDM. Perform this process separately for 
each accident year. This step produces a series of 
distributions of all possible outputs, one for each 
accident year.

(7)  Identify the midpoints of the intervals which 
will serve as the discrete values for the final dis-
tribution of outputs; the convolution distribu-

12When I = J the array is a triangle and when I>J, the array is a trapezoid.
13In actual practice a tail factor (or a set of tail factors) would be ap-
pended to the history. The issue of tail factors is addressed later in the 
paper. At this point, we only need to concern ourselves with the general 
condition of using the given historical values as the selection of a tail fac-
tor clearly invokes a judgment, which is beyond the immediate purposes 
of this paper.

11This step is necessary for purposes of this paper to demonstrate the 
theoretical foundation of the process. In actual practice this step is con-
solidated with step (4), into a single step for deriving N.
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designated by Max {L
i,1

} and Min {L
i,1

} with i rang-
ing from 2 to I; the second loss development pe-
riod would possess the maximum and minimum 
LDFs designated by Max {L

i,2
} and Min {L

i,2
}, with 

i ranging from 3 to I; the third loss development 
period would possess the maximum and minimum 
LDFs designated by Max {L

i,3
} and Min {L

i,3
}, with 

i ranging from 4 to I, and so on.15

Having identified the maximum and minimum 
LDFs for each loss development period, it is now pos-
sible to identify the maximum (minimum) cumula-
tive LDFs for a single accident year by multiplying 
together all maximum (minimum) LDFs for all the de-
velopment periods yet to emerge. This process yields:

The maximum cumulative LDF for any given ac-
cident year is described by Π(Max {L

i,j
}), with 

the “Max function” ranging over i for every j and 
the “Π function” ranging over j for all the loss 
development periods which the subject accident 
year has yet to develop through in the future.

The minimum cumulative LDF for any given 
accident year is described by Π(Min {L

i,j
}), with 

the “Min function” ranging over i for every j and 
the “Π function” ranging over j for all the loss 
development periods which the subject accident 
year has yet to develop through in the future.

The maximum value of all outputs produced by 
the LDM for accident year i is given by the product 
V

i,i
  Π(Max {L

i,j
}). Similarly, the minimum value of 

all outputs produced by the LDM for accident year 
i is given by the product V

i,i
  Π(Min {L

i,j
}). There-

fore, every ultimate output produced by the LDM for 
accident year i, after i – 1 development periods have 
elapsed, has to be in the interval [V

i,i
   Π(Min {L

i,j
}), 

V
i,i
  Π (Max {L

i,j
})].

As i ranges from 1 to J – 1, the respective max-
ima and minima for each accident year are gener-
ated and thus the overall range of the distribution 
of outputs produced by the LDM is generated, by 

may require different levels of tolerance when con-
sidering the errors that can arise solely due to the 
approximation operation. For purposes of this pre-
sentation, the user is assumed to have identified a 
tolerance level that meets the needs of a specific ap-
plication, denoted by ε, such that the true value of 
an output of the LDM, for each open year and for 
all open years combined, never differs from its ap-
proximated value by more than ε.14 If, for example,  
ε is set at 0.01 (i.e., 1%) then the process would seek 
to produce a distribution of approximated outputs 
such that no individual output of the LDM can 
be more than 1% away from its surrogate value on  
the approximation distribution.

4.3. The range of outputs

This section focuses first on the construction of the 
range of outputs that can be produced by the LDM 
for a single accident year. Once a range is established 
for each accident year, the overall range, for all ac-
cident years combined, is constructed by (a) adding 
the maximum values for the various accident years to 
arrive at the maximum value for the overall distribu-
tion and (b) adding the minimum values for the vari-
ous accident years to arrive at the minimum value of 
the overall distribution.

Therefore the problem of calculating the overall 
range of the distribution is reduced to the determina-
tion of the range of outputs for each individual ac-
cident year. For any single development period j, let 
{L

i,j
} denote the set of all observed historical LDFs 

that could apply to V
i,i
 in order to develop it through 

the particular development period j. When this nota-
tion is extended to all development periods, ranging 
from 1 to J – 1, a set of maxima and a set of minima 
of the form Max {L

i,j
} and Min {L

i,j
}, respectively, 

with i and j ranging over their respective domains, is 
generated.

Accordingly, the first loss development period 
would possess the maximum and minimum LDFs 

14For purposes of this paper ε is taken as a percentage value.

15This construction assigns equal weight to each observed LDF. Weighted 
LDFs are addressed later in the paper.
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Finally, the remaining N
i
 − 2 intervals are constructed 

by spacing them equally and consecutively beginning 
with the rightmost point of the leftmost interval, previ-
ously constructed, and setting the width of each inter-
val equal to: [V

i,i
  Π(Max{L

i,j
}) − V

i,i
  Π(Min{L

i,j
})]/

[(N
i
 − 1)].

The goal is that the set of midpoints of the intervals 
thus constructed, if used as the surrogates for the out-
puts that can be produced by the LDM, meet the error 
tolerance ε specified at the outset. What remains to be 
done is to identify the conditions that N

i
 must meet in 

order to satisfy the specified error tolerance.
Note that with this particular construction, the inter-

val, which was subtracted from N
i
 to arrive at the width 

of the optimal interval, is now restored in the interval 
construction proper, by means of adding the necessary 
half interval at each of the two boundaries of the range.

4.5. Meeting the  tolerance standard 
for a single accident year

The overarching requirement the approximation dis-
tribution must meet is that the ratio of any output gen-
erated by an application of the LDM to the midpoint 
of the interval which contains such output is within the 
interval [1 − ε, 1 + ε]. More generally, based on the 
construction thus far, if the number of intervals N

i
 is 

appropriately chosen to meet the error tolerance, and 
given an output of the LDM designated by X, then 
there exists an interval within the range of outputs, 
having a midpoint Y such that 1 − ε ≤ X/Y ≤ 1 + ε. To 
continue this development, three cases are considered.

4.5.1. when X > Y
This case corresponds to the X/Y < 1 + ε portion 

of the error tolerance that the approximation distribu-
tion must meet. This is equivalent to requiring that 

adding the respective maxima and minima for all 
accident years.

4.4. Constructing the intervals

With the range of outputs for accident year i, after 
i – 1 periods of development have elapsed, already 
identified, the effort shifts to identifying the appropri-
ate intervals, which midpoints will constitute the dis-
crete values of the approximation distribution of all 
possible outputs for the subject accident year. The idea 
is that an output that can be produced by the LDM, 
using only the observed historical loss development 
factors, when slotted in the appropriate interval, can 
meet the overall error tolerance when compared to the 
midpoint of that interval. It is also obvious that the 
respective midpoints of the optimal intervals can be 
identified completely between the endpoints of the 
range of outputs if the optimal number of intervals, 
that would assure that the error tolerance is met, can 
be determined. First the focus will be on accident year 
i, to derive the number N

i
, the optimal (i.e., minimum) 

number of intervals that would assure that no output 
of the LDM for this accident year differs by more than 
ε from the midpoint of one of the optimal intervals.

The method used in this paper to construct the N
i
 in-

tervals starts with designating the leftmost (rightmost) 
boundary of the range of outputs for accident year i 
(after i – 1 periods of development have elapsed) as 
the midpoint of the first (last) interval. Thus the span 
of the midpoints, denoted by [V

i,i
  Π(Max {L

i,j
}) − 

V
i,i
  Π(Min {L

i,j
})] is equal to the sum of the widths of 

the remaining (N
i
 − 1) intervals. Therefore, the radius 

of each interval is set equal to the quantity [V
i,i
  Π(Max 

{L
i,j
}) − V

i,i
  Π(Min {L

i,j
})]/[2  (N

i
 − 1)]. The leftmost 

and rightmost intervals are then represented by the 
following expressions, respectively:
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4.5.3. when X = Y
Under this condition, the error constraint trivially 

is met.

4.6. The number of intervals for all 
accident years

Extending the result from Section 4.5 to all val-
ues of i produces a series of N

i
 values, one for each 

open accident year: {N
1
, N

2
, N

3
, . . . , N

J – 1
}. This is a 

finite set of real numbers and thus possesses a maxi-
mum. For the purpose of the approximation that is 
the object of this paper, Max {N

i
} would serve as 

the universal number of intervals that can be used for 
any accident year such that the approximation distri-
bution associated with each accident year meets the 
original error tolerance ε. And for future reference, 
the value Max {N

i
} is labeled N.

4.7. The output of the approximation 
distribution

The steps described thus far—(a) deriving the max-
imum and minimum outputs of the LDM for a single 
accident year; (b) deriving the optimal number of in-
tervals, N, needed to make sure that the process of re-
placing an output of the LDM with the midpoint of the 
interval that contains the output meets the error toler-
ance ε; (c) creating the intervals that would serve as 
receptacles for holding the various outputs produced 
by the LDM, and (d) substituting the midpoints of 
the various intervals for the individual outputs of the 
LDM—combine to produce a frequency distribution 
for every open accident year. That frequency distribu-
tion could be represented by the contents of Table 1. 

Deriving the distribution of outputs produced by the 
LDM for a single accident year, while involving con-
siderable calculations, is quite manageable by today’s 
computers. For example, the largest number of outputs 
associated with a single year with a history array in 
the shape of an n × n parallelogram is (n – 1)(n – 1). Thus 
a ten-year history would generate about 387.4 million 
outputs. For an error tolerance that could be satisfied 
with one thousand intervals, a typical desktop com-
puter can manage this number of calculations in a few 
minutes and certainly well within an hour.

(X – Y)/Y < ε. Also, since (X – Y) is not greater than the 
radius of the interval as constructed above, then the 
constraint denoted by (Radius of the Interval)/Y < ε 
would be a more stringent constraint and that would 
ensure that the error tolerance (X – Y)/Y < ε is met. 
Accordingly, the original error tolerance, for pur-
poses of this construction, is replaced by the new, 
more stringent error tolerance represented by (Radius 
of the Interval)/Y < ε.

Noting that Y can never be less than the lower bound 
of the overall range, as constructed above, the condi-
tion (Radius of the Interval)/Y < ε can be replaced by 
an even more stringent condition if Y is replaced by 
the lower bound of the range for the subject accident 
year. Thus, for the remainder of this construction, the 
stronger error constraint, represented by (Radius of the 
Interval)/(Lower Bound of the Range) < ε is used.

Using the notation from above, the new, more strin-
gent error constraint, applicable to accident year i, 
can be stated as follows:
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Therefore, as long as N
i
 meets this condition, one can 

be certain that the approximation distribution meets 
the overall accuracy requirement for accident year i 
after i-1 periods of development have elapsed.

4.5.2. when X < Y
Using parallel logic, the same result is produced 

yielding the same result as for the case when X > Y:
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5.1. The range

The range of the convolution distribution was cre-
ated in Section 4.3 above.

5.2. The midpoints of the intervals

Given two approximation distributions associated 
with two open accident years, with each distribution 
consisting of N midpoints, they can be arrayed as shown 
in Table 2, with D

i
 serving as the label for the distribu-

tion associated with accident year i; with X
i,j
 denoting 

the midpoint of interval j.
The number of intervals, N, that was derived 

above in Section 4.6, was used in the construction 
of the distribution of outputs for each open accident 
year. For purposes of constructing the convolution 
distribution, it will be demonstrated that the same 
number N can be used to create the intervals (and the 
associated midpoints) used to describe the convolu-
tion distribution.

The midpoints of the intervals constituting the 
convolution distribution are set as the sum of the 
midpoints of the two component distributions. 
Those values are shown in the rightmost column of 
Table 2. Thus the width of each interval in the con-
volution distribution will be equal to the sum of the 
widths of the respective intervals in the component 
distributions.

5.3. The values of the convolution 
distribution and their frequencies

Each component distribution has N discrete mid-
points of N intervals spanning the range of the 

5. The convolution distribution

The typical application of the LDM projects a sin-
gle ultimate value for every open accident year and 
then combines the resulting values to produce the ul-
timate value for all open accident years combined. 
The typical application of the LDM employs a single 
loss development factor for each development period 
and applies that single factor to all the open accident 
years for which it is relevant.

On the other hand, as noted in the construction de-
scribed above, the various historical LDFs are per-
muted and used in all possible combinations for every 
development period for every open accident year. The 
convolution distribution, in order to preserve the ran-
domness required by the underlying idea of this con-
struction, needs to combine all the different outputs, 
in all permutations, for all the open accident years. 
To that end, the process of combining the component 
distributions is best carried out iteratively: (a) create 
every combination of values that can be produced 
from the two distributions of all outputs associated 
with any two accident years to produce an interim 
convolution distribution, (b) combine the interim con-
volution distribution with the distribution of a third 
open accident year to create a new interim convolu-
tion distribution, and (c) continue this process until 
all component distributions have been combined into 
a single convolution distribution. Various elements of 
the convolution distribution and its compliance with 
the error tolerance are described in Section 5.4.

Table 1. Frequency distribution for a single accident year

Output intervals16

Frequency

Cell Cumulative

A1 B1 f1 F1

A2 B2 f2 F2

: : : :

AN – 1 BN – 1 fN – 1 FN – 1

AN BN fN FN

16These intervals, as a practical matter, are closed on the leftmost boundary 
and open on the rightmost boundary, sometimes referred to as “clopen” in-
tervals. This is necessary to accommodate those rare circumstances when 
an LDM outcome is exactly equal to one of the boundaries of an interval.

Table 2. Construction of the midpoints of the  
convolution distribution

Interval D1 D2 Convolution

1 X1,1 X2,1 X1,1 + X2,1

2 X1,2 X2,2 X1,2 + X2,2

. . . . . . . . . . . .

J X1,j X2,j X1,j + X2,j

. . . . . . . . . . . .

N – 1 X1,N – 1 X2,N – 1 X1,N – 1 + X2,N – 1

N X1,N X2,N X1,N + X2,N



Empirical Method-Based Aggregate Loss Distributions

VOLUME 6/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 87

above does not violate the overarching requirement 
of meeting the error tolerance ε. Once again, the fo-
cus will be on demonstrating that the error tolerance 
is met when the convolution distribution combines 
just two component distributions. This is equivalent 
to demonstrating that the final convolution distri-
bution also meets the error tolerance because it is 
created iteratively, by combining two component 
distributions to create an interim convolution distri-
bution, then adding a third component distribution to 
the interim convolution distribution, and continuing 
in this manner until all component distributions are 
accounted for.

It was already established that, for every distri-
bution of outputs for any given open accident year, 
any given individual output for that open accident 
year, x, produced by the LDM method does not differ 
from the midpoint, x′, of some interval such that the 
original error constraint is met, or, using inequalities:  
1 + ε ≥ x/x′ ≥ 1 − ε or, equivalently, |x − x′|/x′ ≤ ε. 
Moreover, the number of intervals N was selected 
such that this condition was met. In the process of 
demonstrating that the error tolerance is met when 
N intervals are utilized, two substitutions were made 
such that a more stringent condition is met: (a) the 
amount equal to the radius of the interval was substi-
tuted for the amount |x − x′| and (b) the lower bound 
of the range was substituted for the amount x′. Thus 
the condition |x − x′|/x′ ≤ ε became the more stringent 
condition, which can be denoted by r/LB ≤ ε, where 
r is the radius of each of the N intervals and LB is the 
lower bound of the range of the distribution.

The problem now can be defined as follows, “Given 
two LDM outputs, x1

 and x
2
, each drawn from a dis-

tinct component distributions of LDM outputs (i.e., 
distributions of outputs for two different accident 
years), with each distribution meeting the error toler-
ance ε, does the sum of the two outputs, (x

1 
+ x

2
), also 

meet the error tolerance with respect to the convolu-
tion distribution that combines the two component 
distributions?”

Noting the convention of using the more stringent 
error tolerance discussed earlier, the question can be 
restated as: “Given that r

1
/LB

1
 ≤ ε and r

2
/LB

2
 ≤ ε, where 

component distribution. Each midpoint will have an 
associated frequency, f, as noted in Table 1. Thus the 
values of the convolution distribution, derived by add-
ing various combinations of midpoints of the compo-
nent distributions, will consist of N2 discrete values, 
with each such discrete value having a frequency 
equal to the product of the two component frequencies 
for the respective combination of values. More spe-
cifically, given two distributions, one for accident year 
p and one for accident year q, each of the form {X, f},  
then the raw convolution distribution is given by 
{X

p,i
, f

p,i
 }  {X

q,i
, f

q,i
}, with i ranging from 1 to N. For 

example, midpoints and corresponding frequencies 
represented by (X

6,4
, f

6,4
) and (X

22,17
, f

22,17
) will produce 

a new discrete value equal to (X
6,4 

+ X
22,17

, f
6,4 

   f
22,17

). 
Each of the N2 values in turn can be replaced by a 
surrogate equal to the midpoint of the interval in the 
convolution distribution which contains the newly 
produced combined value. In the case of the example 
above, the value (X

6,4 
+ X

22,17
) will be replaced by the 

midpoint of one of the N newly constructed intervals 
(as shown in Table 2) which contains (X

6,4 
+ X

22,17
). 

Also, the frequency associated with this (X
6,4 

+ X
22,17

), 
denoted by (f

6,4 
   f

22,17
), will be added to the frequen-

cies of all the other elements of the N2 discrete values 
in the convolution distribution that fall in the same in-
terval as (X

6,4 
+ X

22,17
). When every possible combina-

tion of the values in the two component distributions 
has been created, its respective frequency calculated, 
and it has been replaced by a surrogate midpoint of 
the convolution distribution, the construction of the 
interim convolution distribution of the two compo-
nent distributions will have been completed.

Repeating the process, by combining this interim 
convolution distribution with another component 
distribution creates an updated interim convolution 
distribution made up of N intervals and their corre-
sponding midpoints. Continuing this process until 
all component distributions have been utilized ulti-
mately yields the final convolution distribution.

5.4. The error tolerance

It remains to be demonstrated that the particular 
construction of the convolution distribution described 
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paid.17 The data array is in the shape of a trapezoid. 
The user seeks to find the approximation distribution 
of outputs produced by the LDM with a maximum 
error tolerance of 1%. Table 4 shows a small segment 
of the full tabular distribution of outputs. The num-
ber of intervals necessary to meet the error tolerance 
for this array of data is 948.

Figure 1 shows the result as a bar graph showing 
the frequency distributions at the respective mid-
points of the intervals. The number of intervals is 
sufficiently numerous to allow the various bars to ap-
pear to be adjacent and thus give the appearance of 
an actual distribution function. The key steps along 
with the key numerical markers that lead from the 
loss development history shown in Table 3 to the fin-
ished distribution are detailed in Appendix A.

7. Variations and other 
considerations

Given a particular loss development history and 
an error tolerance ε, the methodology described in 
this paper produces a unique distribution of outputs  

r
1
 and r

2
 denote the radii of the intervals of the compo-

nent distributions and LB
1
 and LB

2
 denote the lower 

bounds of the two component distributions, can one 
reach the conclusion that (r

1
 + r

2
)/(LB

1
 + LB

2
) ≤ ε?”

The answer is in the affirmative following the logic 
outlined below:

1.  Given: r
1
/LB

1
 ≤ ε and r

2
/LB

2
 ≤ ε.

2.  Rewrite the inequalities: r
1
 ≤ ε * LB

1
 and r

2
 ≤ ε 

* LB
2
.

3.  Add the inequalities: (r
1
 + r

2
) ≤ ε * LB

1
 + ε * LB

2
.

4.  Factor ε: (r
1
 + r

2
) ≤ ε * (LB

1
 + LB

2
).

5.  Divide by (LB
1
 + LB

2
): (r

1
 + r

2
)/(LB

1
 + LB

2
) ≤ ε.

Thus the convolution distribution meets the overall 
error tolerance ε.

6. demonstration

In this section a brief demonstration of the pro-
cess described above is outlined. The demonstration 
is applied to the loss development history shown in 
Table 3, providing annual valuations for each of 13 
accident years.

In this example up to 10 valuations are available 
for each accident year. Assume that 10 years is the 
length of time required for all claims to be closed and 

Table 3. Sample loss development history ($ millions)

Acc. 
Year.

Number of Years of Development

1 2 3 4 5 6 7 8 9 10

1996 2.08 3.65 4.88 5.35 6.38 6.88 7.09 7.16 7.19 7.20

1997 2.35 3.81 4.79 6.23 7.44 7.43 7.62 7.82 8.16 8.16

1998 2.70 5.14 6.44 8.88 9.35 9.65 10.17 11.06 11.03 11.30

1999 3.24 7.52 10.92 11.59 14.65 15.67 17.30 16.68 16.88 16.88

2000 2.84 6.36 10.62 11.89 13.56 16.90 17.40 17.96 18.02

2001 2.40 7.01 7.82 10.58 13.04 13.86 14.36 15.03

2002 4.26 3.96 7.71 10.70 13.27 14.06 15.02

2003 1.78 6.07 10.03 12.06 14.02 15.06

2004 3.25 6.09 11.03 13.56 16.32

2005 2.59 3.89 8.05 11.13

2006 2.76 4.03 9.58

2007 3.15 3.88

2008 3.25

17In other words, the tail factor is taken to be 1.000. This is not a neces-
sary assumption, merely a convenience for purposes of this particular 
demonstration. Tail factors other than 1.000 may be incorporated into this 
process. That discussion occurs in Section 7.3.
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produced by the LDM. However, a number of varia-
tions on the manner of application of this methodology 
are possible that may be useful in certain circum-
stances. Out of the many possible variations, three 
basic types are presented in this section. It should 
be noted that each of these variations uses the same 
methodological scheme, with some slight adjustments 
to recognize the type of variation that is being used. 
No substantive changes in methodology are required 
to use these variations. Also, these variations can be 
used singly or in combination.

7.1. weighting loss development factors

The basic methodology presented in this paper gives 
the observed loss development factors equal weight. 
In other words, the observed loss development factors 
for any one loss development period are considered to 
be equally likely. Absent any specific information to 
the contrary this is a reasonable way to approach the  
construction of the approximation loss distribution. 
In some cases the actuary may have sufficient rea-
son to give some of the loss development factors 
more or less weight than others. There is virtually  

Table 4. distribution of LdM outputs for the 2000–2008 
accident years combined

2000–2008 Accident Years Combined

Interval
No.

Output ($ millions) Frequency

≥ < Cell Cumulative

: : : : :

101 123.5 123.7 0.001% 0.006%

102 123.7 123.8 0.001% 0.007%

103 123.8 124.0 0.001% 0.008%

104 124.0 124.1 0.001% 0.009%

105 124.1 124.2 0.002% 0.011%

: : : : :

201 138.0 138.2 0.550% 17.052%

202 138.2 138.3 0.552% 17.604%

203 138.3 138.5 0.555% 18.159%

204 138.5 138.6 0.569% 18.729%

205 138.6 138.8 0.570% 19.299%

: : : : :

301 152.6 152.7 0.414% 77.652%

302 152.7 152.9 0.388% 78.041%

303 152.9 153.0 0.416% 78.456%

304 153.0 153.1 0.387% 78.844%

305 153.1 153.3 0.373% 79.216%

: : : : :

0.00%
0.05%
0.10%
0.15%
0.20%
0.25%
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Figure 1. Approximation distribution of outputs produced by the LdM: 
Graphic representation of cell frequencies for the 2000–2008 accident years combined
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this manner the effect of the outlier on extending the 
overall range is mitigated. This variation should be 
used sparingly as it tends to negate the purpose of 
the exercise: quantifying the variability inherent in the 
source data. Once again, it is a good idea to also pro-
duce the uncapped, unadjusted distribution so as to 
be aware of the amount of variability that has been 
suppressed due to the use of this variation.

7.3. Tail factors

The methodology presented in this paper can be 
applied with or without a tail factor. The determina-
tion of the most appropriate tail factor(s) is beyond 
the scope of this paper. However, to the extent the 
actuary can identify suitable tail factors, those can be 
appended to the actual loss development history and 
the methodology can be applied as if the tail factors 
were the loss development factors associated with 
the last development period. Moreover, if the actu-
ary is not certain which specific tail factor to use, a 
collection of tail factors can be appended to the loss 
development history (with or without weights) and thus 
the tail factor is allowed to vary as if it were just another 
loss development factor. Once again, it is a good idea to 
also produce the unadjusted distribution so as to assess 
the impact of introducing the tail factor distribution.

8. Applying the methodology to 
other loss development method

The basic methodology presented in this paper may  
be extended to related families of methods that are 
commonly used to project ultimate values. In this sec-
tion two extensions are discussed: the Bornhuetter- 
Ferguson (B-F) family of methods and the Berquist-
Sherman family of methods.

8.1. bornhuetter-Ferguson family  
of methods

The original B-F method (Bornhuetter and Fergu-
son 1972), in its most basic form, starts with an as-
sumed provisional ultimate value of an accident year 
(an Initial Expected Loss, or IEL), then combines two 

an unlimited number of ways in which one can as-
sign weights: (a) weights equal to the associated val-
ues contained in the array of loss development data 
(i.e., use losses as weights), (b) an arithmetical pro-
gression that assigns the smallest weight to the oldest 
loss development factor and gradually increases the 
weight for the more recent development factors us-
ing a fixed additive increment, and (c) another type 
of progression (power, geometric) that assigns the 
smallest weight to the oldest loss development fac-
tor and gradually increases the weight for the more 
recent development factors using the increment dic-
tated by the choice of the type of progression. Any of 
these types of weights can be used but it is the task 
of the actuary to rationalize the specific weighting 
procedure. When weights are used, each LDF pro-
duced by the historical data set would become a pair 
of values of the form (LDF, Weight). And every sin-
gle output of the LDM that goes into the creation of 
the distribution is another pair of the form (specific 
output, product of the weights). In all other respects, 
the approximation process is identical.

In using this alternative, it is a good idea also to 
derive the unadjusted distribution of outputs for all 
years combined. In this manner the effect of the judg-
ment the actuary chose to make in assigning the par-
ticular weights is quantified.

7.2. Outliers

Occasionally loss development histories include 
outliers. These are extreme values that stand out indi-
cating something unusual had taken place. The meth-
odology presented in this paper is not impeded in any 
way in such circumstances. The methodology, by its 
very construction, mainly confines the effect of such 
values to extending the overall range (and perhaps 
increasing the number of intervals needed to meet the 
error tolerance) but its actual effect on the “meat” of 
the distribution diminishes considerably as it is over-
whelmed by the other, more “ordinary” values within 
the loss development history. All the same, the actu-
ary may, in practice, choose to occasionally smooth 
such values using various smoothing techniques. In 
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of the IEL that is expected to have emerged (i.e., the 
assumed V

i,i
); (2) for each point of this distribution, 

subtract the assumed V
i,i
 and add the actual V

i,i
. This is 

the distribution of all outputs that can be produced by 
the B-F method when a single IEL is used.

8.1.2. A distribution of IELs
In this case the variability associated with the se-

lection of the IEL is incorporated in the distribution 
of final outputs of the B-F method.

The process of creating the distribution of all  
outputs produced by the B-F method when the IEL 
is drawn from a distribution of IELs consists of the 
following steps: (1) Reconstitute the distribution of 
IELs into a discrete distribution consisting of ten19 
points, each representing one of the deciles of the 
distribution. (2) For each of the deciles, construct 
a distribution of all outputs as described in Sec-
tion 8.1.1, thus producing 10 distinct distributions of 
outputs of the application of the B-F method, with 
one distribution associated with each of the deciles. 
Moreover, the distribution of all outputs associated 
with any one of the 10 values would have a probabil-
ity of 10% of being the target distribution. (3) Take 
the union of all outputs that constitute the totality of 
the 10 different distributions thus producing the dis-
tribution of all outputs that can be produced by the 
application of the B-F method when the IEL is drawn 
from a distribution.

8.2. The berquist-Sherman family  
of methods

The Berquist-Sherman (Berquist and Sherman 
1977) family of methods, in the main, allows the actu-
ary to review the historical data and, when appropriate, 
modify it to recognize information about operational 
changes that affected the emergence of loss experi-
ence. Various methods, such as the LDM or B-F, are 
then applied to the modified history. The distribution  

amounts: (a) the most recent valuation18 and (b) the 
amount of expected additional development. In other 
words, the original expected additional development 
is gradually displaced by the emerging experience. 
The amount of expected remaining development is 
calculated by using factors derived from an assumed 
loss emergence pattern (usually based on some form 
of a prior loss development pattern or patterns) ap-
plied to an a priori expected loss. There are many 
variations on this theme that are well documented in 
the literature.

The remainder of this discussion will focus on de-
veloping the distribution of all outputs produced by 
the B-F method for a single accident year. From that 
point the convolution distribution will combine the 
various accident years’ distributions of outputs to pro-
duce the final distribution of outputs for all accident 
years combined, much as was already discussed and 
illustrated.

The extension of the methodology presented in 
this paper to the B-F family of methods will be dis-
cussed in two parts: one part that deals with a single 
selected IEL and one part that deals with an assumed 
distribution of IELs.

8.1.1. The IEL is a single value
This category consists of all those cases where the 

actuary makes use of an IEL that is a single value. 
Also, with respect to the loss development pattern 
that is used in the application of the B-F method, the 
pattern may be a prior pattern or a newly derived pat-
tern based on the most current historical data. In all 
of these combinations, the application of the method-
ology is the same.

The construction of the distribution of outputs pro-
duced by the B-F method consists of the following 
two steps: (1) Construct the distribution of all outputs 
produced by the LDM, but instead of applying the 
various permutations of LDFs to the latest valuation 
of the accident year (previously denoted by Vi,i

), ap-
ply the various permutations of LDFs to the portion 

18These valuations can be of either the paid or incurred variety.

19Actually, any number of points can be used. Ten is used here as ex-
perience has shown that this is sufficient to capture the distribution of 
outcomes in all of its essential elements.
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reserve . . . is . . . based on estimates derived from 
reasonable assumptions and appropriate actuarial 
methods . . .” and “. . . a range of reserves can be 
actuarially sound.”, (b) the Statement of Actuarial 
Opinion also calls for the actuary to identify a range of 
reasonableness for the reserve estimate, and (c) Actu-
arial Standard of Practice No. 43 speaks of “central 
estimate”.21 The output produced by the methodol-
ogy described in this paper, particularly measures of 
central tendency as well as measures of dispersion, 
can serve a useful purpose to the reserving actuary 
by providing important perspective in dealing with 
each of the three elements of guidance listed above: 
on arriving at the final reserve estimate, on the size 
and placement of a range of reasonableness, as well 
as assist with the derivation of a central estimate.22 
Note that there is no claim that the output produced 
by the methodology described in this paper is the 
main input to any of these items. Of course, the role 
of judgment remains a very important input to the fi-
nal reserve decision and all associated requirements 
noted above. This paper describes just one item of 
input to guide the process of selecting the final esti-
mate as well as the associated range.

9.3. benchmarking

Although there are many potential uses of the 
type of output described in this paper, one particu-
lar use deserves specific mention: the use of the 
output in benchmarking reserves. Two particular 
methods of benchmarking will be discussed. One 
is the idea of “flash benchmarking.” This is sim-
ply the use of the output produced by the meth-
odology described in this paper to perform quick 
benchmarking of the loss reserves of one or more 
entities; either in an absolute sense of in compari-

of all outputs produced by the LDM is applied to the 
modified historical loss experience. In this case, the 
distribution of all outputs produced by the LDM is 
exactly as described in this paper. Once again, it is 
essential that both the original distribution of out-
puts (using the original historical data) as well as the 
distribution of outputs using the modified historical 
data be produced so as to quantify the effect of mak-
ing the changes to the historical data.

9. Closing remarks

This paper has dealt with a way to capture an ap-
proximation of the conditional distribution of outputs 
(empirical method-based distributions) that arise 
naturally in connection with the use of the LDM to 
make ultimate loss projections. As such the results 
produced by this methodology provide perspective, 
or a landscape, against which individual selections 
may be viewed. This is both useful as an end unto 
itself as well as an input to many other actuarial ap-
plications. The following notes deal with a number 
of related issues.

9.1. Statistics of the distribution

Given the approximation distribution of all outputs 
produced by the LDM (and all its extensions), the 
various statistics of the distribution can be produced 
using basic arithmetical functions that define each sta-
tistic of the distribution. Moreover, it is not difficult to 
demonstrate that the mean of the approximation distri-
bution is approximately (within ε) equal to the single 
result produced by the LDM when the (arithmetic) 
average LDFs are used for every development period.

9.2. The reserve decision

Practice guidelines contains many references to 
the reserve decision in various ways, among them 
the following are noted: (a) The actuarial statement 
of principles20 provides “An actuarially sound loss 

20Statement of Principles Regarding Property and Casualty Loss and 
Loss Adjustment Expense Reserves, 1988.

21Property/Casualty Unpaid Claim Estimates, ASOP No. 43.
22It should be kept in mind that in using the distribution produced by the 
methodology described in this paper, this distribution accounts mainly 
for the variability associated with the randomness of the loss develop-
ment process and does not account for the increment of variability that is 
attributed to the fact that the original data set to which the methodology 
is applied is itself a sample that generates its own variability.
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9.5. bootstrapping

The results produced by the methodology described 
in this paper are generally consistent with the results 
produced when using bootstrapping techniques in con-
junction with applying the traditional LDM method. 
Several advantages over bootstrapping however, make 
it worthwhile to expend the additional effort required 
to produce the approximation distributions described 
in this paper. The general advantage of this method-
ology is that it makes it possible to extend and build  
on the raw results, namely the ability to: (a) extend 
the methodology to the B-F method (with a single IEL 
or a distribution of IELs) and the Berquist-Sherman 
families of methods, (b) apply a variety of weights 
to the historical LDFs, thus enabling the introduction 
of judgment directly into the process, (c) explain the 
approximation distribution to lay users of actuarial 
outputs without having to explain sampling, sampling 
error, and related issues required by bootstrapping 
techniques, and (d) make use of the outputs from 
the distributions of a variety of actuarial methods in 
order to aggregate various measures of central ten-
dency and variability so as to define a single com-
posite distribution.

9.6. Limitations

While the outputs that can be produced by the pro-
cess described in this paper can be helpful, it is im-
portant to recognize a number of implicit limitations. 
The following list covers the main limitations associ-
ated with this methodology.

This methodology is not a reserving methodology 
per se. It can be used for that purpose (such as using 
the mean value of the distribution or the mean value 
+ 10% of the standard deviation of the distribution) 
but that is a decision for the actuary to make and it 
is not the main purpose of deriving the conditional 
distribution of outputs.

The variability that can be derived from the use 
of the loss distribution produced by the methodology 
described in this paper reflects mainly the variability 
associated with the randomness that is inherent to the 

son to other similarly situated entities. The results, 
while obviously not dispositive, immediately can 
identify some situations, for example, where re-
serve estimates represent outlier values within the 
distributions derived in this paper that should be fur-
ther studied and/or questioned. This type of bench-
marking can be helpful to regulators and financial 
analysts. Another type of benchmarking is that per-
formed over time: “longitudinal benchmarking.” In 
this type of benchmarking the results of a series of 
“flash benchmarking” results are viewed for any 
patterns that may be present. Persistent tendencies  
on either side of the mean can be fairly easy to spot, 
and in turn can be used to motivate further and more 
detailed study of the condition of reserves for the 
entity under review. This is a much more potent 
use of the benchmarking application for the outputs  
described in this paper.

9.4. The Impact on the Role  
of the Actuary

One of the potential implications of using the 
technology advanced in this paper is the concern 
that it can diminish the role of the actuary because a 
deterministic methodology is capable of producing 
ultimate loss estimates equal to the mean of the ag-
gregate loss distribution associated with the histori-
cal data. This potential fails to materialize on at least 
two counts.

The role of judgment in arriving at ultimate loss 
estimates is not diminished in any way by the results 
of the processes described in this paper. The role 
of judgment remains a very important input into the 
final selection of the ultimate loss values. This fact 
alone can dispose of the potential diminution of the 
role of the actuary.

Moreover, having access to the outputs produced 
by the methodologies described in this paper creates 
an opportunity for the actuary to reconcile and ratio-
nalize the final reserve selection to the default values 
that are produced by this methodology. This process 
can only enhance the role of the actuary in the pro-
cess of estimating ultimate loss costs.
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loss development process. It does not account for the 
increment of variability that is associated with the 
fact that the original data set containing the historical 
development is itself a sample out of numerous pos-
sible manifestations of historical loss development.

This methodology produces the conditional distri-
bution of outputs that reflect actual historical experi-
ence. As such it does not recognize future changes in 
loss development patterns or in any other areas that 
may have an impact on the final output.

This methodology does not recognize or account 
for the model risk inherent in the very selection of 
the LDM (or any of the other methods used in this 
paper) as the proper method(s) for estimating ulti-
mate loss values.

Applying the LDM to different samples of loss 
history (associated with the same cohort) necessarily 
produces different conditional aggregate loss distri-
butions. No claim is made that the conditional aggre-
gate loss distribution associated with a single sample 
history pertains to anything other than the specific 
sample used in the production of the approximation 
conditional aggregate distribution of outputs.

Typical application of the LDM generally relies 
on the use of various averages of LDFs. The outputs 
thus produced, while not exactly present in the loss 
distribution that is generated by the methodology 
outlined in this paper, can be expected to be close 
to actual values in the distribution. Thus any loss 
in the details of the description of the approxima-
tion distribution resulting from omitting the use of 
averages in the construction of the distribution is de 
minimus.
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Appendix A
APPENdIX A, PAGE 1

Sample Loss development History ($ Millions)

Acc. 
Year

Number of Years of Development

1 2 3 4 5 6 7 8 9 10

1996 2.08 3.65 4.88 5.35 6.38 6.88 7.09 7.16 7.19 7.20

1997 2.35 3.81 4.79 6.23 7.44 7.43 7.62 7.82 8.16 8.16

1998 2.70 5.14 6.44 8.88 9.35 9.65 10.17 11.06 11.03 11.30

1999 3.24 7.52 10.92 11.59 14.65 15.67 17.30 16.68 16.88 16.88

2000 2.84 6.36 10.62 11.89 13.56 16.90 17.40 17.96 18.02

2001 2.40 7.01 7.82 10.58 13.04 13.86 14.36 15.03

2002 4.26 3.96 7.71 10.70 13.27 14.06 15.02

2003 1.78 6.07 10.03 12.06 14.02 15.06

2004 3.25 6.09 11.03 13.56 16.32

2005 2.59 3.89 8.05 11.13

2006 2.76 4.03 9.58

2007 3.15 3.88

2008 3.25
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APPENdIX A, PAGE 2

Loss development Factors & Preparatory Calculations

Acc. 
Year

Age-to-Age Spans (In Years)

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

1996 1.755 1.337 1.096 1.193 1.078 1.031 1.010 1.004 1.001

1997 1.621 1.257 1.301 1.194 0.999 1.026 1.026 1.043 1.000

1998 1.904 1.253 1.379 1.053 1.032 1.054 1.088 0.997 1.024

1999 2.321 1.452 1.061 1.264 1.070 1.104 0.964 1.012 1.000

2000 2.239 1.670 1.120 1.140 1.246 1.030 1.032 1.003

2001 2.921 1.116 1.353 1.233 1.063 1.036 1.047

2002 0.930 1.947 1.388 1.240 1.060 1.068

2003 3.410 1.652 1.202 1.163 1.074

2004 1.874 1.811 1.229 1.204

2005 1.502 2.068 1.383

2006 1.460 2.377

2007 1.232

Maximum & Minimum LDFs by Development Period

Max 3.410 2.377 1.388 1.264 1.246 1.104 1.088 1.043 1.024

Min 0.930 1.116 1.061 1.053 0.999 1.026 0.964 0.997 1.000

Maximum & Minimum Cumulative LDFs by Development Period

Max 22.748 6.671 2.806 2.022 1.600 1.284 1.163 1.069 1.024

Min 1.141 1.228 1.101 1.037 0.985 0.986 0.962 0.997 1.000

Upper and Lower Bounds of LDM Outputs

2008 2007 2006 2005 2004 2003 2002 2001 2000 All

Max 73.9 25.9 26.9 22.5 26.1 19.3 17.5 16.1 18.5 246.6

Min 3.7 4.8 10.5 11.5 16.1 14.9 14.4 15.0 18.0 108.9

Number of Intervals Needed to Meet Error Condition ε = 0.01

2008 2007 2006 2005 2004 2003 2002 2001 2000 All

N 948 223 78 48 32 16 11 5 2 948 
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APPENdIX A, PAGE 3

distribution of LdM Outputs for Accident Year 2008

Interval  
No.

Output ($ Millions) Frequency

≥ < Cell Cumulative

1 3.67 3.75 0.000% 0.000%

: : : : :

101 11.09 11.16 0.419% 19.104%

102 11.16 11.24 0.432% 19.536%

103 11.24 11.31 0.435% 19.972%

104 11.31 11.38 0.438% 20.410%

: : : : :

201 18.50 18.58 0.360% 61.356%

202 18.58 18.65 0.376% 61.732%

203 18.65 18.72 0.329% 62.060%

204 18.72 18.80 0.316% 62.377%

: : : : :

301 25.92 25.99 0.121% 85.119%

302 25.99 26.07 0.170% 85.290%

303 26.07 26.14 0.132% 85.422%

304 26.14 26.21 0.146% 85.568%

: : : : :

401 33.33 33.41 0.042% 94.501%

402 33.41 33.48 0.065% 94.566%

403 33.48 33.55 0.068% 94.634%

404 33.55 33.63 0.053% 94.687%

: : : : :

501 40.75 40.82 0.016% 98.246%

502 40.82 40.90 0.019% 98.265%

503 40.90 40.97 0.024% 98.289%

504 40.97 41.04 0.015% 98.304%

: : : : :

948 73.89 73.97 0.000% 100.000%
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APPENdIX A, PAGE 4

distribution of LdM Outputs for Accident Year 2007

Interval  
No.

Output ($ Millions) Frequency

≥ < Cell Cumulative

1 4.75 4.77 0.000% 0.000%

: : : : :

101 6.98 7.00 0.153% 4.551%

102 7.00 7.03 0.161% 4.712%

103 7.03 7.05 0.180% 4.892%

104 7.05 7.07 0.149% 5.041%

: : : : :

201 9.21 9.23 0.320% 31.095%

202 9.23 9.26 0.320% 31.415%

203 9.26 9.28 0.330% 31.744%

204 9.28 9.30 0.288% 32.032%

: : : : :

301 11.44 11.46 0.228% 58.741%

302 11.46 11.49 0.257% 58.997%

303 11.49 11.51 0.228% 59.226%

304 11.51 11.53 0.273% 59.499%

: : : : :

401 13.67 13.69 0.149% 80.016%

402 13.69 13.72 0.184% 80.200%

403 13.72 13.74 0.177% 80.377%

404 13.74 13.76 0.159% 80.536%

: : : : :

501 15.90 15.92 0.090% 92.626%

502 15.92 15.95 0.060% 92.686%

503 15.95 15.97 0.103% 92.789%

504 15.97 15.99 0.063% 92.852%

: : : : :

948 25.87 25.89 0.000% 100.000%
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APPENdIX A, PAGE 5

distribution of LdM Outputs for the 2000–2008 Accident Years Combined

Interval 
No.

Output ($ Millions) Frequency

≥ < Cell Cumulative

1 109.0 109.1 0.000% 0.000%

: : : : :

101 123.5 123.7 0.001% 0.006%

102 123.7 123.8 0.001% 0.007%

103 123.8 124.0 0.001% 0.008%

104 124.0 124.1 0.001% 0.009%

: : : : :

201 138.0 138.2 0.550% 17.052%

202 138.2 138.3 0.552% 17.604%

203 138.3 138.5 0.555% 18.159%

204 138.5 138.6 0.569% 18.729%

: : : : :

301 152.6 152.7 0.414% 77.652%

302 152.7 152.9 0.388% 78.041%

303 152.9 153.0 0.416% 78.456%

304 153.0 153.1 0.387% 78.844%

: : : : :

401 167.1 167.2 0.068% 96.865%

402 167.2 167.4 0.067% 96.932%

403 167.4 167.5 0.068% 97.000%

404 167.5 167.7 0.065% 97.065%

: : : : :

501 181.6 181.8 0.007% 99.779%

502 181.8 181.9 0.007% 99.787%

503 181.9 182.1 0.007% 99.794%

504 182.1 182.2 0.007% 99.800%

: : : : :

948 246.6 246.7 0.000% 100.000%

Note: The actual maximum difference between observed values 
and approximated values is about $73,000.
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APPENdIX A, PAGE 6

Approximation distribution of Outputs Produced by the LdM  
Graphic Representation of Cell Frequencies  

2000 - 2008 Accident Years Combined
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APPENdIX A, PAGE 7

Approximation distribution of Outputs Produced by the LdM 
Graphic Representation of Cumulative Frequencies 

2000 - 2008 Accident Years Combined
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