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Loss Ratio Distribution—Revisited
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ABSTRACT

When building statistical models to help estimate future results, 

actuaries need to be aware that not only is there uncertainty 

inherent in random events (process risk), there is also uncertainty 

inherent in using a finite sample to parameterize the models 

(parameter risk). This paper revisits Van Kampen (2003) in rep-

licating its bootstrap method and compares it with measures of 

parameter uncertainty developed using maximum likelihood 

estimation and Bayesian MCMC analysis.
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1. Introduction

Actuaries constantly build models. One of the beau-
ties of mathematics is that it allows us to take ran-
dom real-world phenomena, build a representation 
in the language of mathematics, and apply various 
tools allowing reasonable, and often surprisingly accu-
rate, predictions about future phenomena. Of course, 
these models are just that—models, estimates of event  
behavior. If all real phenomena were perfectly pre-
dictable the universe would be a rather dull place.

Actuarially speaking, “risk” has a specific defini-
tion: it is the potential for future events to deviate 
from their expectation (Actuarial Standards Board 
2012). There are many reasons why this could occur. 
The most basic reason is simply that such events are 
random events. The very process which generates 
the event has inherent uncertainty. Even if the model 
were perfectly specified, the stochastic nature of the 
process prevents absolute foreknowledge. In actu-
arial terminology this is called process risk. Another 
reason why events may differ from their expectation 
is that the expectation itself is somehow imperfect. 
The error arising from an incorrect framework speci-
fication, e.g., a lognormal distribution instead of a 
gamma, is called model risk. A third reason for devi-
ation from expectation is that since the data used to 
select parameters for the model is inherently finite, 
the parameter estimators based on this sample may 
not be the perfect point estimates for the true under-
lying parameters. This source of risk is what is usu-
ally referred to as parameter risk. Sometimes, the 
more precise term finite-sample parameter risk is 
used to distinguish it from a separate cause of param-
eter risk: the possibility that parameters may change 
over time. This paper will focus on finite-sample 
parameter risk, and, for convenience, will use the 
term “parameter risk.” An introduction to these and 
other examples of potential bias and distortion can be 
found in Venter and Sahasrabuddhe (2012).

In the remainder of this paper, Section 2 will intro-
duce Van Kampen’s data and bootstrapping method, 
Section 3 will discuss parameter risk estimation using 
maximum likelihood, Section 4 will use Bayesian 

Markov Chain Monte Carlo (MCMC) to estimate 
the parameter risk, and Section 5 will compare the 
methods and results. The appendix will bring much 
of the source code used to fit the models and gen-
erate this paper, which is predominantly performed 
using R (R Core Team 2014).1 Bringing actual code, 
instead of only results, is intended to enhance trans-
parency and reproducibility. While basic knowledge 
of R and MCMC techniques is not required, it would 
help the reader interested in reproducing or extending 
the results.

2. Bootstrapping

Van Kampen discusses estimating both a ground 
up loss ratio and the expected loss for an aggregate 
stop loss reinsurance contract. Table 1 reproduces the 
data, a sequence of historical ground-up loss ratios 

1The paper, formulæ, R output, and images have been generated using 
knitr (Xie 2013).

Table 1. Loss ratio distribution

Year
Loss 
Ratio

LN(Loss 
Ratio)a

Agg 
Stop LR

1 0.5841 -0.5376 0.0000

2 0.6448 -0.4388 0.0000

3 0.6735 -0.3953 0.0000

4 0.5265 -0.6415 0.0000

5 0.5841 -0.5376 0.0000

6 0.6448 -0.4388 0.0000

7 0.7835 -0.2440 0.0250

8 0.7055 -0.3488 0.0000

9 0.6197 -0.4786 0.0000

10 0.6448 -0.4388 0.0000

Empirical Mean 0.6411 -0.4500 (µ) 0.0025

Empirical StDev 0.0712  0.1100 (s) 0.00791

Empirical Skew 0.5003

Fitted LRb 0.6415 0.00235

Empirical Loss on Line 0.1000

Fitted Loss on Line 0.0939
aFor this table, the logged values in Van Kampen’s Exhibit 1 were taken as  
accurate and the loss ratios displayed in that table are assumed to be rounded.
bThe expected loss ratios are based on the empirical µ and s parameters.



Variance Advancing the Science of Risk

116 CASUALTY ACTUARIAL SOCIETY VOLUME 9/ISSUE 1

In 2003, this procedure took around 8 hours; in 2014, 
after some optimization described in Section 7.1.2, it 
took a little under two minutes. Hardware and soft-
ware advances in the intervening years have created an 
over 270 times increase in speed! Taking advantage, a 
more finely-grained grid was investigated. Using the 
results of the original bootstrap to focus a new grid, a 
second procedure was run with µ ranging from -0.8 to 
-0.2 and s from 0.05 to 0.45, each moving in steps of 
0.0025. Bootstrapping these 38,801 pairs took about 
17 minutes on the same machine.

Unsurprisingly, the results shown in Table 2 are 
similar to those in the original paper. While recogniz-
ing parameter risk is always important, it is more so 
when dealing with rare events. Even a small thick-
ening of the tail of a distribution may make a sig-
nificant difference in the expected results excess of a 
threshold. When parameter risk is contemplated with 
this data, there is almost no increase in the ground-
up expected loss but a significant increase to the 
highly tail-sensitive excess layer. Note how the more 
fine-grained algorithm’s ground-up estimate is only 
slightly different from that of the original algorithm, 
but the aggregate stop loss ratio estimate is noticeably 
larger.

Visual inspection of data is always valuable  
(Anscombe 1973). When investigating parameter 
risk for two-parameter distributions, one useful tool 
is the contour plot—a two-dimensional projection of 
the three-dimensional surface of the joint distribu-
tion of the parameters. Contour images in this paper 
will reflect the increase in probability of a given set  
of parameters by a brightening of the color as it shades  
from red to yellow.

and the corresponding experience to an aggregate 
stop loss cover of 2.5% excess of 72.5%.

The approach taken by Van Kampen is to make an 
initial estimate and then create random variates on a 
grid of parameters near that estimate. All parameters 
sets which are deemed “close” are marked and used 
to create a new weighted average expectation. The 
theory is that the observed data leading to the best 
estimate of the parameters may have actually come 
from a different set of parameters. Allowing for the 
use of many sets of parameters and weighting them 
by some measure of probability that they were the 
“true” source will reflect parameter uncertainty. The 
bootstrap algorithm itself is:

1. Generate a possible µ and s for the lognormal.

2. Generate 10,000 observations of 10-year blocks.

3. Compare the simulated mean, standard deviation, 
and skew of each of the simulated blocks with 
those of the original data. If any 10-year block has 
all three check values sufficiently close to the best 
estimate, the parameter set is marked as viable.

4. Assign a weight to each viable parameter set based 
on the number of its blocks found to be close.

5. Calculate a weighted average expected ground 
up and aggregate stop loss ratio using all the  
viable parameter sets to arrive at a final point esti-
mate which now includes the impact of parameter 
uncertainty.

Based on Van Kampen’s description, the search 
grids was set as the intersections of 51 data points for 
µ in the range -1.549–0.226 (50 equispaced points 
and the addition of -0.45) and 79 equispaced data 
points for s in the range 0.0055–0.4345 for a total of 
4,029 parameter sets. For each of these sets, 100,000 
lognormal variates were generated and placed into 
a 10,000 by 10 matrix. A viable parameter set was 
selected based on the same measure of “closeness” 
used in the original paper (pp. 187–188). For each 
viable set, the expected ground-up and expected 
aggregate loss ratios were calculated, and the over-
all estimate is a frequency-weighted average of the 
viable results.

Table 2. Bootstrap parameter risk results

Statistic Original Adjusted Change

Original Algorithm

Ground Up LR 0.6415 0.6436 0.00328

Agg. Stop LR 0.00235 0.00318 0.3554

Fine-grain Algorithm

Ground Up LR 0.6415 0.644 0.00395

Agg. Stop LR 0.00235 0.00336 0.4323
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the Hessian matrix at the point of convergence can 
be calculated and its inverse used to estimate param-
eter variances and covariances. An intuitive explana-
tion for the relationship between the curvature of the 
log-likelihood and parameter uncertainty is as fol-
lows. The estimation process looks for a minimum 
for the negative log-likelihood by following the joint 
log-likelihood’s (hyper)surface. The Hessian matrix 
describes the curvature of a multivariate function, 
in this case, the log-likelihood. In a bivariate case, 
imagine the procedure as a marble rolling around on 
the log-likelihood surface. Compare the two surfaces 
in Figure 2. If the gradient at the found minimum is 
low, that would represent a shallow depression and 
it would be easy to “jostle” the marble to a different 
point nearby. This represents significant parameter 
uncertainty, as the true point could easily have been 
elsewhere. Conversely, if the gradient is high, the 
depression is deep and it would be difficult to move 
the marble. This implies the convergence to the found 
point is strong, and there is less parameter uncertainty.

Contour plots of the joint empirical distribution of 
the close pairs of µ and s for the original and fine-
grained algorithms are plotted in Figure 1.2 The skew 
of the distribution is clear.

3. Maximum likelihood

3.1. Introduction

One of the most used tools in the actuarial toolbox 
is maximum likelihood estimation (MLE). Among 
the properties of MLE is that the estimated parame-
ters have asymptotic normality—under general con-
ditions, as the sample size increases, the distribution 
of the maximum likelihood estimate of the parame-
ters tends to the multivariate normal with covariance 
matrix equal to the inverse of the Fisher information 
matrix (Klugman, Panjer, and Willmot 1998, §2.5.1). 
Assuming this normality, when performing MLE, 

2Contour plots generated using ggplot2 (Wickham 2009).

Figure 1. Contour plots of bootstrap parameters
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Contour plots of the empirical distribution of the Van Kampen bootstrap procedure. The skew can be observed by noting that the area of highest 
probability, the yellow zone, is horizontally offset to the left of the minor axis of the ellipse, thus the right tail is larger than the left tail.
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at times, to trim the mean to prevent edge cases from 
dominating the results. In all the MLE instances 
below, the mean is trimmed by 0.1%. As 1,000,000 
samples are drawn for each of the MLE stochastic 
simulations, this means that the top and bottom 500 
observations are removed and the statistics are calcu-
lated on the remaining 999,000 samples.

Continuing with the lognormal assumption, the 
results of solving for the parameters using MLE on 
the sample data are shown in Table 3.3 A stochastic 
simulation was used to estimate the effects of param-
eter risk. Pairs of correlated µ and s parameters were 
generated, each of which was then used for a sto-
chastic lognormal draw of the observed ground-up 
loss ratio.4 Given the drawn ground-up loss ratio, the 
resulting aggregate stop loss (ASL) ratio was simply 
the loss in a layer 2.5% excess of 72.5%. All means 
are trimmed as described above.

The simulated results, shown in Table 4, indicate 
almost no change from the original. This is more 

3.2. Estimation and simulation

Given the assumption of normality, once a set 
of parameters is estimated by maximum likelihood, 
the Hessian can be used to generate the parameter 
variance-covariance matrix. Using these parameter 
means and covariances, sets of correlated param-
eters can be generated using a multivariate normal 
distribution—the asymptotic limiting distribution of 
maximum likelihood estimators. These correlated 
parameter sets are then used to draw one observation 
each from the distribution of interest. The collected 
observations now represent a sample with explicit 
recognition of parameter uncertainty, as the param-
eters generating the observations themselves were 
treated as random variables. Care needs to be taken, 
however, as the multivariate normal will sometimes 
generate parameters which themselves are illegal for 
the distribution in question. For example, the s of a 
lognormal distribution must be greater than 0, yet a 
multivariate normal may generate a value less than 
0. Similarly, a value very close to 0 may be gener-
ated when its reciprocal is needed, resulting in an 
astronomical value. There are a few ways to address 
this problem, the simplest being to ignore generated 
values which cause illegal results. It is also prudent, 

Figure 2. Representative likelihood surfaces
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3Optimization performed using the nloptr (Ypma 2014) interface to the 
NLOPT library (Johnson 2010).
4Multivariate normal simulation performed using the mvtnorm package 
for R (Genz et al. 2014).
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eter gamma and Weibull distributions and the three 
parameter Burr and inverse Burr distributions.6 Infor-
mation criteria, such as the Akaike Information Crite-
ria (AICc)7 are often used to compare models. When 
using information criteria, two points must be kept in 
mind. First, the criteria can only be compared between 
models based on the exact same data. Second, it is 
not the magnitude of the value, but the difference 
between the lowest value and all the others, which 
is important (Burnham and Anderson 2002, chap. 2). 
When used appropriately, accepted rules of thumb 
are that a difference of 0–2 implies model similar-
ity, a difference of 4–7 shows that the model with 
the higher value has little support with respect to the 
model with the lower value, and larger differences 
imply that the higher-valued model should really not 
be considered at all (Burnham and Anderson 2002, 
pp. 70–71; Spiegelhalter et al. 2002).

The best fits, as shown in Table 5, are the log normal 
and the gamma, with the Weibull being acceptable. 
The Burr and inverse Burr are each more than 4 
away from the minimum, showing little support. 
Nevertheless, it is instructive to see the difference 
between using a better model and a worse one. Don’t 
all the models arise from reasonable analyses and the 
same processes? The goodness-of-fit measures don’t 
really look that bad, do they? The AICc difference 
not even 5, right? What if the AICc’s were 18,204.3 
and 18,208.9, wouldn’t that be “close enough”? These 
are questions the actuary may receive, if not ask 
of him or herself. Often, actuaries are exposed to 
“good” results and do not always have a yardstick for 
“bad” ones. Being able to recognize when processes 

easily understood visually. Figure 3 compares re- 
scaled bootstrap and MLE-based contour plots, and 
also has explicitly plotted density isolines. When the 
plotted ranges are no longer restricted to the ranges 
in the original paper, the plot clearly contrasts the 
symmetrical uncorrelated nature of the MLE-based 
parameters with the skewed bootstrapped parameters. 
The isolines, along which each parameter set is equi-
probable, further demonstrate the circular nature of 
the MLE-based results. This is predominantly due to 
the parameters being uncorrelated with each other.5 
When pairs of multivariate normal variables are uncor-
related (or r = 0 in the bivariate case), that is sufficient 
to imply their independence (Melnick and Tenenbein 
1982). Therefore, under the lognormal assumption, 
since µ and s are independent and uncorrelated, any 
pair of parameters which would result in a loss above 
the overall expectation is balanced by one equally 
probable which would cause an equally lower loss. 
When the parameters exhibit correlation, and possi-
bly even more strongly in a skewed distribution, it 
is possible to obtain an observation which cannot be 
balanced by its equal and opposite “across the circle 
of probability.”

3.3. Other distributions

To investigate how correlation between the param-
eters may affect the results, the MLE fitting was done 
using other distributional families: the two param-

Table 4. Lognormal MLE stochastic results

Statistic Original Adjusted Change

Ground Up LR 0.6415 0.6415 -0.0000404

Agg. Stop LR 0.00235 0.0023 -0.0197

Table 3. Lognormal MLE parameters

Statistic Value SD Correlations µ s

µ -0.4500 0.0330 µ 100.0000% 0.0000000000104%

s  0.1043 0.0233 s 0.0000000000104% 100.0000%

AICc -20.1072

5This is actually a consequence of a known property of the normal dis-
tribution in that its sample mean and sample variance are independent 
(Geary 1936).

6Unless otherwise noted, all distributions follow the parameterization in 
Appendix A of Klugman, Panjer, and Willmot (1998).
7The actual criterion being used is the Akaike Information Criteria with 
small-sample bias correction, thus the second “c” (Burnham and Anderson 
2002, p. 66).
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This figure contrasts the skewed joint empirical distribution of the lognormal parameters found via the bootstrap method with the  symmetrical circular 
joint distribution of the lognormal parameters as estimated using maximum likelihood.

Figure 3. Lognormal contour comparisons

Table 5. Comparison of MLE parameters for various distributions

Lognormal AICc -20.1072

Statistic Value SD Correlations a b

a -0.4500 0.033 a 100.0000% 0.0000000000104%

ba 0.1043 0.0233 b 0.0000000000104% 100.0000%

Gamma AICc -20.0431

Statistic Value SD Correlations a b

a 91.5874 40.8848 a 100.0000% 99.7272%

ba 142.8514 63.9436 b 99.7272% 100.0000%

Weibull AICc -18.2925

Statistic Value SD Correlations t q

t 9.5425 2.1812 t 100.0000% 33.6650%

q 0.6723 0.0237 q 33.6650% 100.0000%

Inverse Burr AICc -15.7649

Statistic Value SD Correlations t g q

t 1.196 1.5902 t 100.0000% -85.3018% -96.7846%

g 16.0524 8.1019 g -85.3018% 100.0000% 83.4756%

q 0.6266 0.0804 q -96.7846% 83.4756% 100.0000%

Burr AICc -15.7579

Statistic Value SD Correlations a g q

a 0.8835 0.9462 a 100.0000% -83.2098% 94.1562%

g 17.8443 8.6235 g -83.2098% 100.0000% -77.489%

q 0.6301 0.0599 q 94.1562% -77.4890% 100.0000%
aAlthough in actuarial science the gamma is usually parameterized using the scale q, in this case, as the data is very close to 0, the analysis was more numerically 
stable using the rate b where b = 1/q.
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est contributions actuaries make is to understand, 
and provide the context for, the statistics which will 
be used. Yes, 10196% may be one observation out of 
one million that can mathematically arise from a ran-
dom draw of underlying inverse Burr parameters, but 
it should it be considered a possible event? Certainly 
not! Therefore, not only were illegal parameters sets 
removed, but a judgment-based reasonability cap for 
the ground-up loss ratios of 300% was implemented 
as well. For the inverse Burr, there were 234,511 
parameter sets which were removed from the analy-
sis due to being invalid or in excess of the cap. For 
the Burr, there were 187,233 such observations.

Table 6 shows the results of the stochastic simula-
tions for these distributions, and the inferences made 
using all, and then the 765,489 and 812,767 remaining 
reasonable, observations respectively. The “small” 
difference in the AICc of the parameters manifests as 
a very significant difference in the modeled results 
including parameter uncertainty. The results for the 

fail and how that can affect analyses is an important 
part of actuarial analysis. Therefore, the stochastic 
parameter uncertainty process was applied to each 
of these models as well to provide a sense of poor 
performance.

Using the fitted parameter means and covariance 
matrix for each distribution, one million correlated 
observations were generated. Since using a multi-
variate normal to generate observations makes it 
possible to obtain negative values, the same filtering 
and trimming used for the lognormal were used for 
these distributions as well. Unfortunately, even with 
the trimming, the multivariate normal generated too 
many unacceptable parameter sets at times. This was 
due not only to “illegal” parameter sets but also to 
parameter sets which generated unreasonable results, 
such as ground-up loss ratios greater than 10196% for 
the inverse Burr. This further highlights the need for 
actuarial judgment, which should always temper raw 
algorithmic output, in any analysis. One of the larg-

Table 6. Comparison of MLE-based parameter uncertainty for various distribution

Statistic Original Adjusted Change

Lognormal

Ground Up Loss Ratio 0.6415 0.6415 -0.0000404

Agg. Stop Loss Ratio 0.00235 0.0023 -0.0197

Gamma

Ground Up Loss Ratio 0.6415 0.6430 0.00225

Agg. Stop Loss Ratio 0.00235 0.0027 0.1499

Weibull

Ground Up Loss Ratio 0.6415 0.6373 -0.00658

Agg. Stop Loss Ratio 0.00235 0.00274 0.1664

Inverse Burr

Ground Up Loss Ratio 0.6415 1068.5269 1664.6440

Agg. Stop Loss Ratio 0.00235 0.00374 0.5946

Inverse Burr—Valid Results

Ground Up Loss Ratio 0.6415 0.6356 -0.00923

Agg. Stop Loss Ratio 0.00235 0.00353 0.5030

Burr

Ground Up Loss Ratio 0.6415 3040903.5501 4740228.7458

Agg. Stop Loss Ratio 0.00235 0.00467 0.9908

Burr—Valid Results

Ground Up Loss Ratio 0.6415 0.6685 0.0421

Agg. Stop Loss Ratio 0.00235 0.00438 0.8651
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three distributions with acceptable goodness-of-fits, 
the lognormal continues to show little effect from 
parameter risk, the gamma now shows almost none 
as well, and the aggregate stop loss under the Weibull 
also demonstrates a smaller effect.

4. Bayesian analysis

4.1. Introduction

A third way to incorporate parameter risk is through 
a Bayesian model using Markov Chain Monte Carlo 
(MCMC) techniques. Roughly speaking, the Bayes-
ian approach is that there exists an a priori estimate 
of the distribution of the parameters, which, when 
convoluted with the data, allows for the calculation 
of an a posteriori distribution of those parameters 
(Gelman et al. 2014, Chap. 1.3). The Bayesian model 
can be made even more sophisticated through explicit 
recognition of parameter dependency through hyper-
parameters. A model in which there exists a hierar-
chical structure of parameter dependency is called, 
understandably, a hierarchical model (Kruschke 2015, 
pp. 221–223). Creating a model with such structure 
allows the joint probability model to reflect potential 
dependencies between the parameters (Gelman et al. 
2014 p. 101). Both simple and hierarchical models 
explicitly recognize parameter risk by generating a 
posterior distribution around the parameters. More-
over, distributions of the statistics of interest, such as 
loss rations, can also be easily generated with explicit 
reflection of parameter risk.

While the Bayesian concept is relatively simple, 
for almost two centuries its application was difficult, 
as the convolution often required the calculation of 
integrals without nice analytic solutions. In the past 
few decades, advances in both algorithms and com-
puter hardware have made these computations much 
simpler. The method used in this paper, MCMC, takes 
advantage of certain properties of Markov chains 
that allow it to converge to the posterior distribution 
without fully calculating some of the more difficult 
integrals. For more explanation, the interested reader 
is directed to Kruschke (2015, chap. 7) and Gelman 
et al. (2014, chap. 11).

three-parameter distributions, even when trimmed, 
are just plain ridiculous. Even among the models 
which only reflect “realistic” observations, the results 
seem extreme when compared to the distributions with 
acceptable AICc measures.

3.4. Estimation and simulation  
on a log scale

Another common way to prevent negative param-
eters in a simulation is to reparameterize the distribu-
tions so that the optimization solves for an extremum 
of the log of the parameters, and this value is then 
exponentiated for use in simulation. This transforma-
tion also affects the shape of the joint distribution of 
the parameters in normal space, as parameters exhib-
iting symmetry on a log scale will not be symmetric 
on a normal scale. Table 7 displays the results of the 
simulations including the effects of parameter uncer-
tainty using parameters fitted on a log scale. For the 

Table 7. Comparison of log scale MLE-based parameter 
uncertainty for various distribution

Statistic Original Adjusted Change

Lognormal

Ground Up Loss Ratio 0.6415 0.6417 0.000296

Agg. Stop Loss Ratio 0.00235 0.00241 0.0245

Gamma

Ground Up Loss Ratio 0.6415 0.6414 -0.000102

Agg. Stop Loss Ratio 0.00235 0.00236 0.00573

Weibull

Ground Up Loss Ratio 0.6415 0.6385 -0.00469

Agg. Stop Loss Ratio 0.00235 0.00267 0.1383

Inverse Burr

Ground Up Loss Ratio 0.6415 0.6625 0.0327

Agg. Stop Loss Ratio 0.00235 0.00428 0.8236

Inverse Burr—Valid Results

Ground Up Loss Ratio 0.6415 0.6630 0.0336

Agg. Stop Loss Ratio 0.00235 0.00429 0.8273

Burr

Ground Up Loss Ratio 0.6415 0.6370 -0.0071

Agg. Stop Loss Ratio 0.00235 0.0026 0.1073

Burr—Valid Results

Ground Up Loss Ratio 0.6415 0.6377 -0.00596

Agg. Stop Loss Ratio 0.00235 0.00261 0.1130
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most surprising result is the gamma model, which 
now shows the counterintuitive result of a reduced 
expected aggregate stop loss ratio! What is also clear 
is that the Burr and inverse Burr no longer result in 
un acceptable results.

4.3. Hierarchical models

Another benefit of the Bayesian procedure is the 
capability to express a hierarchical structure in the 
model. Instead of weakly informative priors directly 
on µ and s, a multivariate normal distribution, itself 
with a weakly informed prior on the mean and the 
covariance matrix, was used to generate correlated 
pairs (µ, s) which were then used to generate the 
lognormal draws. Unfortunately, when adding the 
multivariate normal structure into JAGS, which uses 
Gibbs sampling, the generated parameters were so 
auto-correlated that convergence was not achieved in 
reasonable time—even using thinning rates of over 
1000. This is a property of Gibbs sampling in that it 
does not deal well with highly correlated posteriors 
(Stan Development Team 2014b, p. vi). Therefore, 
the model was rebuilt in Stan (Stan Development 
Team 2014a)—a Bayesian modeling language whose 
sampler is not Gibbs but Hamiltonian Monte Carlo 

4.2. Simple models

Initially, a simple model was used. This model 
placed a weakly informative prior on both µ and s 
and allowed the data to “lead” the posterior. More 
specifically, using JAGS (Plummer 2003), not only 
were samples of µ and s generated, but a stochastic 
ground-up loss observation based on the generated µ 
and s was drawn as well.8 The corresponding aggre-
gate stop loss was calculated as a layer of 2.5% excess 
of 72.5%. For the lognormal distribution, the generated 
µ and s parameters remain effectively uncorrelated—
about -0.6672%. Nevertheless, the effect of param-
eter uncertainty on the aggregate stop loss, as shown 
in the first section of Table 8, is significant. Looking 
at a contour plot, the reason becomes clear. The skew 
that was seen using the bootstrap routine of Section 2 
has returned, as shown in Figure 4.

For completeness, similar Bayesian analyses were 
done for the other distributions brought in Sec-
tion 3.3.9 As in the MLE case, comparing the mod-
els requires a goodness-of-fit measure. It remains an 
open question as to which measure to use to robustly 
compare Bayesian models. One of the more accepted 
measures is the deviance information criterion (DIC), 
a Bayesian analogue to the Akaike information cri-
terion (Spiegelhalter et al. 2002). However, a more 
recently defined measure, the widely applicable 
infor mation criterion (Watanabe 2013), also called 
the Watanabe-Akaike information criteria (sharing the  
acronym WAIC), has been gaining traction as being 
a more fully Bayesian measure than DIC (Gelman 
et al. 2014, pp. 173–174). This paper will use WAIC 
as the goodness-of-fit measure. As shown in the 
remainder of Table 8, when using the simple model 
framework, the spread in both results and goodness-
of-fit statistics for most families is smaller than 
when using maximum likelihood—all models are 
within the acceptable rule of thumb—but the log-
normal distribution remains the model of choice. The 

Table 8. Bayesian analysis results—simple models

Statistic Original Adjusted Change

Lognormal WAIC -21.3219

Ground Up LR 0.6415 0.6444 0.0045

Agg. Stop LR 0.00235 0.00339 0.4440

Gamma WAIC -20.4365

Ground Up LR 0.6415 0.6409 -0.000879

Agg. Stop LR 0.00235 0.00188 -0.1980

Weibull WAIC -19.3850

Ground Up LR 0.6415 0.6415 0.0000451

Agg. Stop LR 0.00235 0.00316 0.3463

Inverse Burr WAIC -20.3855

Ground Up LR 0.6415 0.6476 0.00956

Agg. Stop LR 0.00235 0.00338 0.4402

Burr WAIC -19.5232

Ground Up LR 0.6415 0.6397 -0.00277

Agg. Stop LR 0.00235 0.00305 0.2978

8The runjags package (Denwood, in press) was used to interface between 
R and JAGS.
9These models were run in Stan instead of JAGS, for reasons which will 
be explained in Section 4.3.
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Now, the effect of parameter risk much more in line 
with expectations—close to that of the hierarchical 
lognormal—and the goodness-of-fit measure is greatly 
improved and much closer to that of the lognormal. A 
comparison of the contour plots of the joint distribu-
tions of the parameter pairs between the simple and 
hierarchical models is shown in Figure 5.

5. Comparison and conclusions

5.1. Comparisons

One of the first observations that can be made is 
that the bootstrap results appear very similar to the 

(Gelman et al. 2014, 12.4–12.6).10 The No-U-Turn-
Sampler used by Stan is much more robust to highly 
autocorrelated parameters (Hoffman and Gelman 
2014). To provide reassurance that the model was 
built correctly, the non-hierarchical lognormal model 
was also programmed in Stan to compare the fitted 
results with those of JAGS.

The ability to expressly consider a hierarchical 
structure becomes more valuable when contemplat-
ing the gamma distribution. The simple Bayesian 
gamma model showed the counter-intuitive reduced 
aggregate stop loss ratio. As the gamma parameters 
are extremely correlated with each other—99.7272% 
using maximum likelihood and 99.7251% in the sim-
ple Bayesian model—it makes sense to consider a 
hierarchical Bayesian model to directly generate cor-
related gamma parameters.

Table 9 shows that adding hierarchical hyperpriors 
to expressly model correlation between the log normal 
µ and s reduces the effect of parameter uncertainty in 
the aggregate stop loss for the lognormal distribution 
with almost no change to the goodness-of-fit as mea-
sured by WAIC. Expressly modeling the correlation 
in the gamma distribution had a much larger effect. 
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Three-way comparison of lognormal contours. The bootstrap- and Bayesian-based parameter distributions show very similar behavior and skew, unlike 
the circular results of the MLE-based process.

Figure 4. Lognormal contour comparisons showing presence or absence of skew

10The hierarchical structure of the lognormal model was investigated 
prior to the simple models of the other distributions, which explains why 
the remaining simple models in Section 4.2 were built in Stan instead of 
JAGS. The original lognormal JAGS model remains to demonstrate that 
both types of sampling converge to very similar results.

Table 9. Bayesian analysis results—hierarchical models

Statistic Original Adjusted Change

Lognormal Simple—JAGS WAIC -21.3219

Ground Up LR 0.6415 0.6444 0.0045

Agg. Stop LR 0.00235 0.00339 0.4440

Lognormal Simple—Stan WAIC -21.3237

Ground Up LR 0.6415 0.6443 0.00436

Agg. Stop LR 0.00235 0.00338 0.4379

Lognormal Hierarchical—Stan WAIC -21.4386

Ground Up LR 0.6415 0.6425 0.00156

Agg. Stop LR 0.00235 0.00296 0.2609

Gamma Hierarchical—Stan WAIC -21.3235

Ground Up LR 0.6415 0.6421 0.000882

Agg. Stop LR 0.00235 0.00294 0.2525
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constrained to a symmetric ellipse centered on the 
area of highest density.

This near-identicality is not surprising. Van Kam-
pen’s bootstrap is actually an example of Approxi-
mate Bayesian Computation (ABC). Described in 
theory by Rubin (1984), and named by Beaumont, 
Zhang, and Balding (2002), ABC comprises methods 
where approximations to Bayesian posteriors are cal-

Bayesian results in both magnitude and distribution— 
especially with the simple model. Overlaying the 
contours of the distributed parameters, as shown 
in Figure 6, highlights the relationship between the 
methods. The area of highest density is shared by 
all three methods. However, while the Bayesian con-
tours show the same skew and coverage as the boot-
strap contours, the maximum likelihood contours are 
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A comparison of the contour plots for the joint distribution of the parameter sets for the lognormal and gamma distributions under the simple and 
hierarchical models. The axes across model type for each distribution are the same. The lognormal shows almost no change, but the gamma shows a 
shift of the entire ellipse, and the areas of highest probability, towards the origin. Generating correlated pairs of α and β parameters, as opposed to each 
independently, has made a difference.

Figure 5. Simple vs. hierarchical contour plot comparison
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(Beaumont, Zhang, and Balding 2002; Bornn et al. 
2014); and 2) it allows for easier to expression and 
investigation of hierarchical relationships (Turner 
and Van Zandt 2014, pp. 6–7). Therefore, where an 
analytic expression of the needed likelihood(s) are 
not that difficult to calculate, it makes sense to use 
the fully Bayesian technique.

Figure 7 compares the joint distribution of the gen-
erated parameter sets under MLE, log-space MLE, 
and the Bayesian framework for the two-parameter 
distributions. The joint distribution of the parameters 
generated by maximum likelihood methods are con-
strained to a symmetric elliptical distribution. Even 
when solving for parameters in log-space, the result-
ing normal space parameters are still mainly ellip-
tical with some distortion. The Bayesian models, 
however, are not constrained to symmetric ellipticity.

This is even clearer for the three-parameter distri-
butions. Figure 8 compares the parameter clouds of 
the distributions; each point representing a parameter 
triplet. The colored version of the clouds have fewer 
points than the monochrome versions, as they are 
composed only of the points which led to valid val-
ues. For these plots, the brightness and color of the 
points reflect the magnitude of the resulting value; 
e.g., bright yellow triplets will have a correspond-
ingly larger expected ground-up loss ratio than the 
dull red triplets.

There are two important takeaways from Figure 8.  
The first regards the structure of the clouds. The 
normal space MLE clouds are clearly constrained 
to be ellipsoids. The log-space MLE clouds break 
from that constraint but seem to be more “stretched” 
and “bent” ellipsoids than entirely different shapes. 
The Bayesian process, however, allows the data to 
determine the shape of the posterior distribution and 
results in strangely-shaped surfaces which expand to 
fill the parameter space. The inverse Burr traces a 
sheet that inhabits different sections of q and g space 
than the other two inverse Burr clouds. The Burr 
cloud is more a sheet with a small tail that extends 
down g space. The second takeaway is the relation-
ship between parameter and value. In the normal ellip-
soid it is difficult to see. In the log-space versions 

culated by simulating outcomes based on parameters 
selected from their prior distributions, rejecting param-
eter sets whose outcomes lie outside an accepted toler-
ance, and estimating the posterior distribution based 
on the remaining “accepted” samples.11 This method 
circumvents the need to calculate any likelihood; all 
that is needed is the prior, summary statistics, and 
a tolerance. This is precisely what Van Kampen’s 
bootstrap does: sample from the uniform grid (prior 
on parameters), reject outcomes whose summary sta-
tistics are not close (rejection outside tolerance), and 
calculate results based on weighted averages of the 
remaining samples (posterior estimation).

Nevertheless, the truly Bayesian procedure has at 
least two benefits: 1) studies have shown that given data 
sets allowing for true MCMC, the MCMC results are 
more accurate than those of rejection-based methods 
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This image shows the relationship between the joint distribution of the 
lognormal parameters estimated using the bootstrap method and the 
Bayesian method, as opposed to the MLE-based method. All three sets 
of isolines converge to the same mode. The red (Bayesian) and green 
(bootstrap) isolines, however, trace out the same area in the same way, 
although the red isolines are smoother. The blue (MLE) isolines tell a 
different story. They are constrained to a symmetrical unskewed 
ellipse, which shows more probability to the left of the mode, and less 
to the right.

Figure 6. Superimposed lognormal contour plots

11For a very clear, if informal, explanation and description of basic ABC, 
the interested reader is directed to Bååth (2014).
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Looking at a summary of results, shown in Table 10, 
the Bayesian process allows the fit for each family to 
affect the ground-up loss ratio minimally yet show 
similar leveraged effects on the aggregate stop loss. 
Also, even the families with worse fits were not as 
unreasonable as they were using maximum likelihood. 
Another key difference is in identifying the “best” 

it is somewhat clearer to see a relationship between 
the parameter triplet’s position and resulting mean 
value. However, the relationship between structure 
and value appear clearest in the Bayesian clouds. The 
inverse Burr’s expectation’s relationship with q is 
clearly seen. For the Burr, most of the parameter cloud 
is a thin sheet, yellow on one side and red on the other.
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This figure compares the distribution of parameter sets based on straight MLE, log-space MLE, and the Bayesian procedure. For ease of comparison, 
the axes are consistent across each row. Each of the MLE-based distributions is a symmetric ellipse with the area of highest density at the center 
of the ellipse. Even if the parameters exhibit correlation, they are still constrained to symmetry. The log-space distributions show some distortion, 
but they are still relatively elliptical and relatively symmetric. The Bayesian versions are much less so. The Bayesian lognormal and gamma 
parameter distributions exhibit much more skew than their counterparts, and the Bayesian Weibull parameter distribution is all but triangular!

Figure 7. Contour plots comparison



Variance Advancing the Science of Risk

128 CASUALTY ACTUARIAL SOCIETY VOLUME 9/ISSUE 1

Normal Space Log-space Bayesian

Inverse Burr

Inverse Burr—Color-coded Valid GU

Burr

Burr—Color-coded Valid GU

For ease of comparison, the axes and perspectives are consistent across rows; see the text for more detail.

Figure 8. Parameter cloud comparison
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the data and parameters, makes a strong case for actu-
aries to increase their use of Bayesian techniques when 
analyzing risk. In cases where the likelihood is diffi-
cult to construct, using an approximate Bayesian com-
putation would seem a worthwhile endeavor.

For the specific data in this paper, the results of the 
MLE method are inferior to the Bayesian method. The 
lognormal and gamma models with similar goodness-
of-fit metrics provide different outcomes, and the other 
families do not supply an acceptable fit. The Bayesian 
methods, especially the hierarchical models, provide 
clearer and more consistent indications as to the pres-
ence and magnitude of parameter risk. It seems clear 
that for this data set parameter risk plays a significant 
role, and estimates which do not contemplate it will 
understate the risk in the aggregate stop loss contract.

One area of future research would be in enhanc-
ing the MLE method. As discussed in Venter and  
Sahasrabuddhe (2012, §3.2.3), with few data points, 
the asymptotic properties of maximum likelihood esti-
mation do not manifest. Their suggestion is to gener-
ate the parameters via a gamma distributions with the 
correlation structure of the multivariate normal. Using 
a normal copula with gamma marginals is one way to 
achieve this. Other research opportunities include com-
paring data sets with different properties and explicitly 
modeling a temporal component to reflect parameter 
risk resulting from changes over time.
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family to use. Using maximum likelihood estimation, 
it was difficult to choose between the lognormal and 
the gamma distributions based on the goodness-of-fit. 
This was especially troubling as the effect of param-
eter risk was markedly different between the two. 
Using the Bayesian process the decision is clearer. 
While the WAIC metrics for both the hierarchical 
lognormal and hierarchical gamma are very close, so 
too are their effects on both the ground-up and aggre-
gate losses. In hindsight, for the maximum likeli-
hood method, it is almost as if the distortion caused 
by symmetry of the lognormal was balanced by the 
distortion caused by the extreme correlation of the 
gamma, leading to the similar AICc values. This is 
less of an issue with the Bayesian process, as the area 
of interest could be more fully investigated without 
being subject to the elliptical constraints.

5.2. Conclusions

Reviewing the three methods discussed, the boot-
strap is an example of approximate Bayesian computa-
tion. Comparing the maximum likelihood and Bayesian 
techniques, while basic MLE may be simpler to explain, 
it cannot escape the “prison of ellipticity,” even when 
using log scale transformations of the parameters. With 
the distribution of the parameters being only asymptot-
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prevents it from fully investigating potential parameter 
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Table 10. Goodness-of-fit & effects

Maximum Likelihood Bayesian

Family AICc GU Effect ASL Effect WAIC GU Effect ASL Effect
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Burr -15.76 474,023,000.00% 99.08% -19.52 -0.28% 29.78%
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there is a fundamental difference, such as a different 
kind of graph or a different structure for the negative 
log-likelihood function, the individual code chunks 
will be shown.

tic calculations. These were rewritten in C++ using 
the Rcpp package (Eddelbuettel and François 2011), 
bringing the elapsed time to under two minutes! Rcpp 
does require that the user is able to compile C++ code; 
in the Windows environment, this usually requires 
Rtools. In the following sections, the R code actually 
used will be brought first, followed by the original ‘R’ 
code for the two time-consuming functions, followed 
by the substitute Rcpp-based C++ code used instead.

Appendix A. Code

There are a number of cases where code was reused, 
differing only in the distribution being analyzed. In 
these cases, only one example will be brought. Where 

A.1.2. Bootstrap algorithm and analysis
Originally, the bootstrap code was written com-

pletely in R and took 36 minutes on an Intel i7-3740QM 
at 2.7Ghz running Windows 7 64bit with 8GB RAM. 
This is orders of magnitude faster than the VBA code of 
the original paper, which took about 8 hours. However, 
the R implementation itself was sped up by profiling the  
code and identifying which elements were taking the 
most time—the sample skew and overall row statis-

A.1. Bootstrap-related code

A.1.1. Set-up
set.seed(63854)
library(ggplot2)
library(reshape2)
library(Rcpp)
library(nloptr)
library(mvtnorm)
library(scatterplot3d)

LogLR <- c(-0.5376, -0.4388, -0.3953, -0.6415, -0.5376, -0.4388, -0.244, -0.3488,  
-0.4786, -0.4388)

LR <- exp(LogLR)
ASL <- pmin(pmax(LR - 0.725, 0), 0.025)
BayesData <- list(LR = LR, N = length(LR))

sourceCpp("BootC4.cpp")

AICC <- function(NLL, k, n) {
 k2 <- k * 2
 return(2 * NLL + k2 + k2 * (k + 1)/(n - k - 1))
}

WAIC <- function(pointMatrix) {
 colVars <- function(Matrix) {
  vars <- Matrix[1, ]
  for (n in seq_along(vars)) vars[n] <- var(Matrix[, n])
  return(vars)
 }
 lppd <- sum(log(colMeans(pointMatrix)))
 pWAIC2 <- sum(colVars(log(pointMatrix)))
 return(-2 * (lppd - pWAIC2))
}
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Used R Code
MuRange <- sort(c(seq(-1.549, 0.226, length.out = 50), -0.45))
SigRange <- seq(0.0055, 0.4345, length.out = 79)
CloseCount <- function(X, lower, upper) {
 return(sum(X[, 1] <= upper[[1]] & X[, 1] >= lower[[1]] & X[, 2] <= upper[[2]] &  

 X[, 2] >= lower[[2]] & X[, 3] <= upper[[3]] & X[, 3] >= lower[[3]]))
}
VKBS <- function(muR, sigR, perms = c(length(muR), length(sigR))) {
 numBlocks <- perms[[1]] * perms[[2]]
 Counts <- matrix(nrow = numBlocks, ncol = 3)
 colnames(Counts) <- c("mu", "sigma", "CloseCount")
 idx <- 1
 for (i in seq_len(perms[[1]])) {
  MU <- muR[i]
  for (j in seq_len(perms[[2]])) {
   Counts[idx, 1] <- MU
   SIGM <- Counts[idx, 2] <- sigR[j]
   Variate <- matrix(rlnorm(100000, MU, SIGM), ncol = 10)
   Stats <- RowStats_C2(Variate)
   Counts[idx, 3] <- CloseCount(Stats, lower = c(0.6352, 0.0662, 0.29), upper =  

   c(0.6477, 0.0762, 0.71))
   idx <- idx + 1
  }
 }
 return(Counts)
}

BST <- system.time(BootResult <- VKBS(muR = MuRange, sigR = SigRange))
BootStrapMinutes <- round(BST[3]%/%60, digits = 0)
BootStrapSeconds <- round(BST[3]%%60, digits = 0)
BRDF <- data.frame(BootResult)
BRDFPos <- subset(BRDF, CloseCount > 0)
ValidPairs <- dim(BRDFPos)[1]
MostLikely <- BRDFPos[which.max(BRDFPos$CloseCount), ]
BSResults <- cbind(BRDFPos$mu, BRDFPos$sigma, exp(BRDFPos$mu + BRDFPos$sigma∧2/2),  

(LEV_LN(0.75, BRDFPos$mu, BRDFPos$sigma) - LEV_LN(0.725, BRDFPos$mu, BRDFPos$sigma)))
GU_O <- exp(mean(LogLR) + var(LogLR)/2)
ASL_O <- LEV_LN(0.75, mean(LogLR), sd(LogLR)) - LEV_LN(0.725, mean(LogLR), sd(LogLR))
GU_BS_PR <- drop(crossprod(BSResults[, 3], BRDFPos$CloseCount) / sum(BRDFPos$CloseCount))
ASL_BS_PR <- drop(crossprod(BSResults[, 4], BRDFPos$CloseCount) / sum(BRDFPos$CloseCount))
BRGG <- ggplot(BRDF)

Original R Code
SampSkew <- function(x) {
 n <- length(x)
 mu <- mean(x)
 num <- sum((x - mu)∧3)/n
 den <- (sum((x - mu)∧2)/n)∧1.5
 return(sqrt(n * (n - 1))/(n - 2) * num/den)
}
RowStats <- function(X) {
 Means <- rowMeans(X)
 SDs <- apply(X, 1, sd)
 Skews <- apply(X, 1, SampSkew)
 return(cbind(Means, SDs, Skews))
}
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Replacement C11 Code
# include <Rcpp .h>
# include <math .h>
using namespace Rcpp ;

// [[ Rcpp :: export ]]
double SampSkew_C ( NumericVector X) {
 int n = X. size ();
 double Mu = mean (X);
 NumericVector XM = X - Mu;
 NumericVector D1 = XM * XM;
 NumericVector N1 = D1 * XM;
 double N2 = sum (N1) / n;
 double D1a = sum (D1) / n;
 double D2 = sqrt (D1a * D1a * D1a );
 double P = sqrt (n * (n - 1)) / (n - 2);
 return P * N2 / D2;
}

// [[ Rcpp :: export ]]
NumericMatrix RowStats_C2 ( NumericMatrix X) {
 int nrow = X. nrow ();
 int ncol = X. ncol ();
 double n1 = ncol - 1.0;
 double P = ncol * sqrt (n1) / ( ncol - 2.0);
 NumericMatrix Results (nrow , 3);
 for (int i = 0; i < nrow ; ++i) {
  double M1 = 0.0;
  double M2 = 0.0;
  double M3 = 0.0;
  for (int j = 0; j < ncol ; ++j) {
   double delta = X(i, j) - M1;
   double delta_j = delta / (j + 1);
   double T1 = delta * delta_j * j;
   M1 + = delta_j ;
   M3 + = (T1 * delta_j * (j - 1) - 3 * delta_j * M2 );
   M2 + = T1;
  }
  Results (i, 0) = M1;
  Results (i, 1) = sqrt (M2 / n1 );
  Results (i, 2) = P * M3 / sqrt (M2 * M2 * M2 );
 }
 return Results ;
}

A.1.3. Bootstrap graphs
Contour graph
BRGG + stat_contour(aes(x = sigma, y = mu, z = CloseCount, fill = . . level. .),  

geom = "polygon") + scale_fill_gradient(low = "red", high = "yellow")  
+ coord_cartesian(xlim = c(0.05, 0.25), ylim = c(-0.85, -0.05)) +  
scale_y_continuous(expression(mu)) + scale_x_continuous(expression(sigma))

A.2. Maximum likelihood related formulæ

A.2.1. First example likelihood surface
x <- y <- seq(1, 2, 0.1)
f1 <- function(x, y) {
 4 * (x - 1.5)∧2 + 4 * (y - 1.5)∧2
}



Variance Advancing the Science of Risk

134 CASUALTY ACTUARIAL SOCIETY VOLUME 9/ISSUE 1

f2 <- function(x, y) {
 0.5 * (x - 1.5)∧2 + 0.5 * (y - 1.5)∧2
}
zf1 <- outer(x, y, f1)
zf2 <- outer(x, y, f2)
persp(x, y, zf1, theta = 45, phi = 30, shade = 0.1, col = "orangered", xlim = c(1, 2), 

ylim = c(1, 2), zlim = c(0, 1.5), zlab = "Likelihood")

A.2.2. Maximum likelihood functions
Lognormal 

Two parameter representative example:

NLL_LN <- function(pars, X) {
 m <- pars[[1]]
 s <- pars[[2]]
 return(-sum(-log(X) - log(s) - 0.5 * log(2 * pi) - 0.5 * ((log(X) - m)/s)∧2))
}
GH_LN <- deriv3(~-(-log(X) - log(s) - 0.5 * log(2 * pi) - 0.5 * ((log(X) - m)/s)∧2), 

c("m", "s"), function(m, s, X) NULL)
NLLG_LN <- function(pars, X) {
 m <- pars[[1]]
 s <- pars[[2]]
 colSums(attr(GH_LN(m, s, X), "gradient"))
}
NLLH_LN <- function(pars, X) {
 m <- pars[[1]]
 s <- pars[[2]]
 colSums(attr(GH_LN(m, s, X), "hessian"))
}
ULEV_LN <- function(mu, sigma) {
 return(exp(mu + sigma∧2/2))
}
LEV_LN <- function(x, mu, sigma) {
 Z1 <- (log(x) - mu - sigma∧2)/sigma
 Z2 <- (log(x) - mu)/sigma
 return(ULEV_LN(mu, sigma) * pnorm(Z1) + x * pnorm(Z2, lower.tail = FALSE))
}

Inverse Burr 
Three parameter representative example:

NLL_IB <- function(pars, X) {
 t <- pars[[1]]
 g <- pars[[2]]
 q <- pars[[3]]
 return(-sum(log(t) + log(g) + g * t * log(X/q) - log(X) - (t + 1) * log1p((X/q)∧g)))
}
GH_IB <- deriv3(~-(log(t) + log(g) + g * t * log(X/q) - log(X) - (t + 1) *  

log((1 + (X/q)∧g))), c("t", "g", "q"), function(t, g, q, X) NULL)
NLLG_IB <- function(pars, X) {
 t <- pars[[1]]
 g <- pars[[2]]
 q <- pars[[3]]
 colSums(attr(GH_IB(t, g, q, X), "gradient"))
}
NLLH_IB <- function(pars, X) {
 t <- pars[[1]]
 g <- pars[[2]]
 q <- pars[[3]]
 colSums(attr(GH_IB(t, g, q, X), "hessian"))
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}
ULEV_IB <- function(t, g, q) {
 return(exp(log(q) + lgamma(t + 1/g) + lgamma(1 - 1/g) - lgamma(t)))
}
LEV_IB <- function(X, t, g, q) {
 u <- ((X/q)∧g)/(1 + ((X/q)∧g))
 First <- pbeta(u, t + 1/g, 1 - 1/g)
 Second <- 1 - u∧t
 return(ULEV_IB(t, g, q) * First + X * Second)
}
GenIB <- function(quantile, t, g, q) {
 P1 <- quantile∧(1/t)
 return(((P1/(1 - P1))∧(1/g)) * q)
}

A.2.3. Maximum likelihood evaluation
Lognormal 

Two parameter representative example:
MLEfit_LN <- nloptr(c(1, 1), eval_f = NLL_LN, eval_grad_f = NLLG_LN, X = LR, lb =
 c(-Inf, 0), ub = c(Inf, Inf), opts = list(algorithm = "NLOPT_LD_LBFGS", maxeval = 10000, 

xtol_rel = 1e-12, ftol_rel = 1e-12))
VCoV_LN <- chol2inv(chol(NLLH_LN(MLEfit_LN$solution, LR)))
SDs_LN <- sqrt(diag(VCoV_LN))
ParCor_LN <- cov2cor(VCoV_LN)
AICC_LN <- AICC(MLEfit_LN$objective, 2, length(LR))

Inverse Burr 
Three parameter representative example:

MLEfit_IB <- nloptr(c(1, 5, 2), eval_f = NLL_IB, eval_grad_f = NLLG_IB, X = LR, lb = c(0, 
0, 0), ub = c(Inf, Inf, Inf), opts = list(algorithm = "NLOPT_LD_LBFGS", maxeval = 10000, 
xtol_rel = 1e-12, ftol_rel = 1e-12))

VCoV_IB <- chol2inv(chol(NLLH_IB(MLEfit_IB$solution, LR)))
SDs_IB <- sqrt(diag(VCoV_IB))
ParCor_IB <- cov2cor(VCoV_IB)
AICC_IB <- AICC(MLEfit_IB$objective, 3, length(LR))

A.2.4. Stochastic simulation with MLE-based parameter risk
MLE_PR_Simulate <- function(n, pars, sigma) {
 Simulation <- matrix(nrow = n, ncol = length(pars))
 Simulation <- rmvnorm(n, mean = pars, sigma = sigma)
 return(Simulation)
}

Lognormal simulation 
Two parameter representative example:

MLESimulation_LN <- MLE_PR_Simulate(n = 1000000, pars = MLEfit_LN$solution, sigma = VCoV_LN)
LN_GU_Sim <- rlnorm(length(MLESimulation_LN[, 1]), meanlog = MLESimulation_LN[, 1],  

sdlog = MLESimulation_LN[, 2])
LN_AGG_Sim <- pmin(0.025, pmax(LN_GU_Sim - 0.725, 0))
GU_MLE_PR_LN <- mean(LN_GU_Sim, na.rm = TRUE, trim = 0.001)
ASL_MLE_PR_LN <- mean(LN_AGG_Sim, na.rm = TRUE, trim = 0.001)
MLE_LN_DF <- data.frame(MLESimulation_LN)
names(MLE_LN_DF) <- c("mu", "sigma")
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Inverse Burr simulation 
Three parameter representative example:

MLESimulation_IB <- MLE_PR_Simulate(n = 1000000, pars = MLEfit_IB$solution, sigma = VCoV_IB)
IB_GU_Sim_Raw <- runif(1000000, 0, 1)
IB_GU_Sim <- GenIB(IB_GU_Sim_Raw, MLESimulation_IB[, 1], MLESimulation_IB[, 2], 

MLESimulation_IB[, 3])
IB_AGG_Sim <- pmin(0.025, pmax(IB_GU_Sim - 0.725, 0))
GU_MLE_PR_IB <- mean(IB_GU_Sim, na.rm = TRUE, trim = 0.001)
ASL_MLE_PR_IB <- mean(IB_AGG_Sim, na.rm = TRUE, trim = 0.001)

A.2.5. MLE graphs
MLE Lognormal Contour
MLE_LN_G <- ggplot(MLE_LN_DF)
MLE_LN_G + stat_density2d(aes(x = sigma, y = mu, fill = . .level. .), geom = "polygon")  

+ scale_fill_gradient(low = "red", high = "yellow") + scale_y_continuous(expression(mu)) 
+ scale_x_continuous(expression(sigma)) + stat_density2d(aes(x = sigma, y = mu),  
colour = "black")

A.3. Bayesian Analysis

A.3.1. JAGS
Simple Lognormal Model
var N, LR[N], mu.post, sigma.post, tau.post, LR.post, ASL.post, PointPosteriors [N];
model {
 for (year in 1:N) {
  LR[ year ] ~ dlnorm (mu.post, tau.post)
 }
 mu.post ~ dnorm (0, 0.25)
 sigma.post ~ dunif (0, 1)
 tau.post <- pow( sigma.post, -2)
 LR.post ~ dlnorm (mu.post, tau.post)
 ASL.post <- min (0.025, max(LR. post - .725 , 0))
 for (i in 1:N) {
  PointPosteriors [i] <- dlnorm (LR[i], mu.post, tau.post)
 }
}

Simple Lognormal Analysis
initsLN <- function(chain) {
 list(mu.post = rnorm(1, 0, 2), sigma.post = runif(1, 0, 1), .RNG.seed = chain∧2 + 1, 

 .RNG.name = "base::Mersenne-Twister")
}
LN_Model <- run.jags(model = "Bayes_LN.bug", monitor = c("mu.post", "sigma.post",  

"LR.post", "ASL.post", "PointPosteriors"), data = BayesData, n.chains = 5, plots = 
TRUE, psrf.target = 1.01, check.stochastic = TRUE, modules = c("bugs", "glm"), method 
= "interruptible", adapt = 25000, burnin = 25000, sample = 10000, thin = 25, inits = 
initsLN)

Comb_LN <- combine.mcmc(LN_Model)
BayesGU_LN <- LN_Model$summary$statistics[2, 1]
BayesASL_LN <- LN_Model$summary$statistics[1, 1]
BayesWAIC_LN <- WAIC(Comb_LN[, 4:13])
BayesParCor_LN <- LN_Model$crosscorr[3, 14]
BayesDF_LN <- data.frame(Comb_LN[, 3], Comb_LN[, 14])
names(BayesDF_LN) <- c("mu", "sigma")
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A.3.2. Stan
Simple Lognormal Model
data {
 int < lower = 0> N; // number of years
 vector < lower = 0.0 >[N] LR; // loss ratios
}
parameters {
 real mu; // prior for mu
 real < lower = 0.0 > sigma ; // non - negative prior for sigma
}
model {
 mu ~ normal (0.0 , 2.0);
 sigma ~ uniform (0.0 , 1.0);
 LR ~ lognormal (mu , sigma );
}
generated quantities {
 real LR_post ; // distribution of LR based on posterior parameters
 real ASL_post ; // corresponding ASL
 vector [N] PointPosteriors ; // log pointwise predictive density
 for (i in 1:N) {
  PointPosteriors [i] <- exp( lognormal_log (LR[i], mu , sigma ));
 }
 LR_post <- lognormal_rng (mu , sigma ); // stochastic observation of LR
 ASL_post <- fmin (0.025 , fmax ( LR_post - 0.725 , 0.0));
}

Hierarchical Lognormal Model
data {
 int < lower = 0> N; // number of years
 vector < lower = 0.0 >[N] LR; // loss ratios
}
parameters {
 vector [2] mu; // multivariate normal (MVN ) prior mean : implied (0 ,0)
 corr_matrix [2] Sigma_corr ; // MVN prior correlation ( implied uniform )
 vector < lower = 0.0 >[2] Sigma_scale ; // prior scale for cov: implied (0 ,0)
 vector [2] Pars ; // correlated lognormal parameter vector
}
transformed parameters {
 real mu_post ;
 real < lower = 0.0 > sigma_post ;
 mu_post <- Pars [1];
 sigma_post <- exp( Pars [2]); // ensure non - negativity
}
model {
 matrix [2, 2] Sigma ; // will become MVN prior covariance
 Sigma <- diag_matrix ( Sigma_scale ) * cholesky_decompose ( Sigma_corr );
 Pars ~ multi_normal_cholesky (mu , Sigma ); // faster to use cholesky
 LR ~ lognormal ( mu_post , sigma_post );
}
generated quantities {
 real LR_post ; // distribution of LR based on posterior parameters
 real ASL_post ; // corresponding ASL
 vector [N] PointPosteriors ; // log pointwise predictive density
 for (i in 1:N) {
  PointPosteriors [i] <- exp( lognormal_log (LR[i], mu_post , sigma_post ));
 }
 LR_post <- lognormal_rng ( mu_post , sigma_post ); // stochastic observation of LR
 ASL_post <- fmin (0.025 , fmax ( LR_post - 0.725 , 0.0));
}
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Lognormal Analysis
LNP_S <- stan(file = "Bayes_LN_Plus2.stan", data = BayesData, pars = c("mu_post",  

"sigma_post", "LR_post", "ASL_post", "PointPosteriors"), iter = 20200, warmup = 200, 
thin = 1, chains = 5, seed = 82, refresh = -1, verbose = FALSE)

LNP_S_E <- extract(LNP_S)
StanGU_LNP <- mean(LNP_S_E$LR_post)
38
StanASL_LNP <- mean(LNP_S_E$ASL_post)
StanWAIC_LNP <- WAIC(LNP_S_E$PointPosteriors)
StanDF_LNP <- data.frame(LNP_S_E$mu_post, LNP_S_E$sigma_post)
names(StanDF_LNP) <- c("mu", "sigma")
StanCor_LNP <- cor(StanDF_LNP)["mu", "sigma"]

Inverse Burr Model 
Example of manually creating distribution functions

data {
 int < lower = 0> N; // number of years
 vector < lower = 0.0 >[N] LR; // loss ratio
}
parameters {
 real < lower = 0.0 > tau ;
 real < lower = 0.0 > gamma ;
 real < lower = 0.0 > theta ;
}
transformed parameters {
 vector < lower = 0.0 >[N] U;
 U <- LR / theta ;
}
model {
 tau ~ uniform (0.0 , 100.0);
 gamma ~ uniform (0.0 , 100.0);
 theta ~ uniform (0.0 , 1.0);
 for (i in 1:N) {
   increment_log_prob (log( gamma * tau) + multiply_log (( gamma * tau), U[i]) - fma  

 (( tau + 1), log1p (pow (U[i], gamma )), log (LR[i ])));
 }
}
generated quantities {
 real LR_post ;
 real ASL_post ;
 real < lower = 0.0 , upper = 1.0 > Q; // quantile for inversion
 real < lower = 0.0 > P1; // Reused value
 vector [N] PointPosteriors ;
 for (i in 1:N) {
   PointPosteriors [i] <- exp(log(tau) + log( gamma ) + multiply_log (( gamma * tau ), 

U[i]) - fma (( tau + 1), log1p (pow(U[i], gamma )), log(LR[i ])));
 }
 P1 <- pow( uniform_rng (0.0 , 1.0) , inv (tau )); // using inversion
 LR_post <- pow (( P1 / (1 - P1 )), inv ( gamma )) * theta ;
 ASL_post <- fmin (0.025 , fmax ( LR_post - 0.725 , 0.0));
}

A.4. Conclusion and findings

A.4.1. Superimposed contour plot
BRGG + stat_contour(aes(x = sigma, y = mu, z = CloseCount, colour = "Bootstrap"),  

alpha = 0.4, size = 1) + scale_y_continuous(expression(mu)) + scale_x_continuous 
(expression(sigma)) + stat_density2d(aes(x = sigma, y = mu, colour = "MLE"), alpha = 
0.4, size = 1, data = MLE_LN_DF) + stat_density2d(aes(x = sigma, y = mu, colour =  
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"Bayes (Simple)"), alpha = 0.6, size = 1, data = StanDF_LN) + theme(legend.title = 
element_blank())

A.4.2. Inverse Burr scatter plot (MLE)
scatterplot3d(MLESimulation_IB, pch = ".", xlab = expression(tau), ylab = expression(gamma), 

zlab = expression(theta), highlight.3d = FALSE, cex.lab = 2, xlim = c(-10, 100),  
ylim = c(-20, 100), zlim = c(0, 1))

A.4.3. Color-coded inverse Burr scatter plot (Bayesian)
scatterplot3d(StanDF_IB, pch = ".", xlab = expression(tau), ylab = expression(gamma), 

zlab = expression(theta), highlight.3d = FALSE, cex.lab = 2, xlim = c(-10, 100),  
ylim = c(-20, 100), zlim = c(0, 1), color = GUColorPalette_S_IB, angle = 5)

A.5. Session info
## R version 3.2.3 Patched (2015-12-13 r69768)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
40
##
## other attached packages:
## [1] rstan_2.8.2 inline_0.3.14 runjags_2.0.3-1
## [4] rjags_4-4 coda_0.18-1 lattice_0.20-33
## [7] scatterplot3d_0.3-36 mvtnorm_1.0-3 nloptr_1.0.4
## [10] Rcpp_0.12.2 reshape2_1.4.1 ggplot2_2.0.0
## [13] knitr_1.11
##
## loaded via a namespace (and not attached):
## [1] magrittr_1.5 munsell_0.4.2 colorspace_1.2-6 highr_0.5.1
## [5] stringr_1.0.0 plyr_1.8.3 tools_3.2.3 parallel_3.2.3
## [9] grid_3.2.3 gtable_0.1.2 digest_0.6.8 gridExtra_2.0.0
## [13] formatR_1.2.1 codetools_0.2-14 evaluate_0.8 stringi_1.0-1
## [17] scales_0.3.0 stats4_3.2.3


