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ABSTRACT

This paper demonstrates a Bayesian method for estimating
the distribution of future loss payments of individual insur-
ers. The main features of this method are (1) the stochastic
loss reserving model is based on the collective risk model;
(2) predicted loss payments are derived from a Bayesian
methodology that uses the results of large, and presumably
stable, insurers as its prior information; and (3) this paper
tests its model on a large number of insurers and finds that
its predictions are well within the statistical bounds ex-
pected for a sample of this size. The paper concludes with
an analysis of reported reserves and their subsequent de-
velopment in terms of the predictive distribution calculated
by this Bayesian methodology.
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1. Introduction

Over the years, there have been a number of
stochastic loss reserving models that provide the
means to statistically estimate confidence inter-
vals for loss reserves. In discussing these mod-
els with other actuaries, I find that many feel
that the confidence intervals estimated by these
methods are too wide. The reason most give for
this opinion is that experienced actuaries have
access to information that is not captured by the
particular formulas they use. These sources of
information can include intimate knowledge of
claims at hand. A second source of information
that many actuarial consultants have is the expe-
rience gained by setting loss reserves for other
insurers.
As one digs into the technical details of the

stochastic loss reserving models, one finds many
assumptions that are debatable. For example,
Mack [9], Barnett and Zehnwirth [1], and Clark
[2] all make a number of simplifying assump-
tions on the distribution of an observed loss about
its expected value. Now it is the essence of pre-
dictive modeling to make simplifying assump-
tions. Which set of simplifying assumptions
should we use? Arguments based on the “rea-
sonability” of the assumptions can (at least in my
experience) only go so far. One should also test
the validity of these assumptions by comparing
the predictions of such a model with observations
that were not used in fitting the model.
Given the inherent volatility of loss reserve es-

timates, testing a single estimate is unlikely to
be conclusive. How conclusive is the following
statement?

Yes, the prediction falls somewhere

within a wide range.

A more comprehensive test of a loss reserve
model would involve testing its predictions on
many insurers.
The purpose of this paper is to address at least

some of the issues raised above.

² The methodologies developed in this paper
will be applied to the Schedule P data sub-
mitted on the 1995 NAIC Annual Statement
for each of 250 insurers.

² The stochastic loss model underlying the meth-
ods of this paper will be the collective risk
model. This model combines the underlying
frequency and severity distributions to get the
distribution of aggregate losses. This approach
to stochastic loss reserving is not entirely new.
Hayne [5] uses the collective risk model to de-
velop confidence regions for the loss reserve,
but the regions assume that the expected value
of the loss reserve is known. This paper makes
explicit use of the collective risk model to first
derive the expected value of the loss reserve.

² Next, this paper will illustrate how to use
Bayes’ Theorem to estimate the predictive dis-
tribution of future paid losses for an individ-
ual insurer. The prior distributions used in this
method will be “derived” by an analysis of
loss triangles for other insurers. This method
will provide some of the “experience gained
by setting loss reserves for other insurers” that
is missing from existing statistical models for
calculating loss reserves. An advantage of such
an approach is that all assumptions (i.e., prior
distributions) and data will be clearly speci-
fied.

² Next, this paper will test the predictions of the
Bayesian methodology on data from the corre-
sponding Schedule P data in the corresponding
2001 NAIC Annual Statements. The essence
of the test is to use the predictive distribu-
tion derived from the 1995 data to estimate
the predicted percentile of losses posted in the
2001 Annual Statement for each insurer. While
the circumstances of each individual insurer
may be different, the predicted percentiles of
the observed losses should be uniformly dis-
tributed. This will be tested by standard statis-
tical methods.

² Finally, this paper will analyze the reported
reserves and their subsequent development in
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Figure 1. Distribution of insurer size

terms of the predictive distributions calculated
by this Bayesian methodology.

The main body of the paper is written to ad-
dress a general actuarial audience. My intention
is to make it clear what I am doing in the main
body. In the Appendix, I will discuss additional
details needed to implement the methods describ-
ed in some of the sections.

2. Exploratory data analysis

The basic data used in this analysis was the
earned premium and the incremental paid losses
for accident years 1986 to 1995. The incremental
paid losses were those reported as paid in each
calendar year through 1995.
The data used in this analysis was taken from

Schedule P of the 1995 NAIC Annual Statement,
as compiled by the A. M. Best Company. I chose
the Commercial Auto line of business because
the payout period was long enough to be inter-
esting but short enough so that ignoring the tail
did not present a significant problem. The es-
timation of the tail is beyond the scope of this
paper.

I selected 250 individual insurance groups
from the hundreds that were reported by A. M.
Best. Criteria for selection included: (1) at least
some exposure in each of the years 1986 to 1995;
(2) no abrupt changes in the exposure from year
to year; and (3) no sharp decreases in the cu-
mulative payment pattern. There were occasions
when the incremental paid losses were negative,
but small in comparison with the total loss. In
this case, I treated the incremental losses as if
they were zero. I believe this had minimal effect
on the total loss reserve.
Let’s look at some graphic summaries of the

data. Figure 1 shows the distribution of insurer
sizes, ranked by 10-year total earned premium. It
is worth noting that 16 of the insurers accounted
for more than half of the total premium of the
250 insurers.
Figure 2 shows the variability of payment

paths (i.e., proportion of total reported paid loss
segregated by settlement lag) for the accident
year 1986. This figure makes it clear that pay-
ment paths do vary by insurer. How much these
differences can be attributed to systematic differ-
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Figure 2. Empirical payment paths for accident year 1986: Incremental paid losses as a proportion of 10-year
total

ences between insurers, versus how much can be
attributed to random processes, is unclear at this
point.
Figure 3 shows the aggregate payment patterns

for four groups, each accounting for approxi-
mately one quarter of the total premium volume.

² Insurers ranked 1—6, 7—16, 17—40, and 41—250
each accounted for about one quarter of the
total premium.

² Each plot represents approximately one quar-
ter of the total premium volume.

² The variability of the incremental paid loss
factors increases as the size of the insurer de-
creases.

² Segment 1–Insurers ranked 1—6, Segment 2–
Insurers ranked 7—16, Segment 3–Insurers
ranked 17—40, Segment 4–Insurers ranked
41—250.

² There is no indication of any systematic dif-
ferences in payout patterns by size of insurer.

3. A stochastic loss reserve model
The goal of this paper is to develop a loss

reserving model that makes testable predictions,

and to then actually perform the tests. Let’s start

with a more detailed outline of how I intend to

reach this goal.

1. The model for the expected payouts will be

fairly conventional. It will be similar to the

“Cape Cod” approach first published by Sta-

nard [12]. This approach assumes a constant

expected loss ratio across the 10-year span of

the data.

2. Given the expected loss, the distribution of

actual losses around the expected will be mod-

eled by the collective risk model–a com-

pound frequency and severity model. As men-

tioned above, this approach has precedents

with Hayne [5]. This will conclude Section 3.
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Figure 3. Empirical payment paths for the four industry segments

3. In Section 4, I will turn to estimating the pa-
rameters for the above models. The initial esti-
mation method will be that of maximum like-
lihood.

4. I will then discuss testing the predictions of
the model in Section 5. Initially, the tests will
be on the same data that was used for fitting
the models. (The tests on data in the 2001
Annual Statements will come later.) As men-
tioned above, the test will consist of calcu-
lating the percentiles of each of the observed
loss payments and testing to see that those
predictions are uniformly distributed.

As we proceed, I will focus on the 40 largest
insurers. I do this because, in my judgment, the
models are responding mainly to random losses
for the smaller insurers. As we shall see, the re-
sults of the fitted models for the 40 largest insur-
ers will form the basis for the Bayesian analy-
sis that will be applied to each insurer, large and
small. Implicit in this approach is the assumption
that main systematic differences in the loss pay-

ment paths are somehow captured by the largest
40 insurers.
Let’s proceed.
Assume that the expected losses are given by

the following model.

E[Paid LossAY,Lag]

= PremiumAY £ELR£DevLag, (1)

where

² AY(1986 = 1,1987 = 2, : : :) is an index for ac-
cident year.

² Lag = 1,2, : : : ,10 is the settlement lag reported
after the beginning of the accident year.

² Paid Loss is the incremental paid loss for the
given accident year and settlement lag.

² Premium is the earned premium for the acci-
dent year.

² ELR is an unknown parameter that represents
the expected loss ratio.

² DevLag is an unknown parameter that depends
on the settlement lag.

As with Stanard’s “Cape Cod” method, the ELR
parameter will be estimated from the data.
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The “Cape Cod” formula that I used to esti-
mate the expected loss is by no means a neces-
sary feature of this method. Other formulas, like
the chain ladder model, can be used.
A common adjustment that one might make to

Equation 1 is to multiply the ELR by a premium
index to adjust for the “underwriting cycle.” I
tried this, but it did not appreciably increase the
accuracy of the predictions for this data and time
period. Thus I chose to use the simpler model
in this paper. But one should consider using a
premium index in other circumstances.
Let XAY,Lag be a random variable for an in-

surer’s incremental paid loss in the specified
accident year and settlement lag. Assume that
XAY,Lag has a compound negative binomial
(CNB) distribution, which I will now describe.

² Let ZLag be a random variable representing the
claim severity. Allow each claim severity dis-
tribution to differ by settlement lag.

² Given E[Paid Loss]AY,Lag, define the expected
claim count ¸AY,Lag by

¸AY,Lag ´ E[Paid lossAY,Lag]=E[ZLag]: (2)

This definition of the expected claim count
may not correspond to the way an insurer actu-
ally counts claims. What is important is that it is
consistent with the way the claim severity distri-
bution is constructed. Our purpose is to describe
the distribution of XAY,Lag .

² Let NAY,Lag be a random variable representing
the claim count. Assume that the distribution
of NAY,Lag is given by the negative binomial
distribution with mean ¸AY,Lag and variance
¸AY,Lag + c ¢¸2AY,Lag.

² Then the random variable XAY,Lag is defined
by

XAY,Lag = ZLag,1 +ZLag,2 + ¢ ¢ ¢+ZLag,NAY,Lag :

While the above defines how to express the ran-
dom variable XAY,Lag in terms of other random
variables NAY,Lag and ZLag, later on we will need

to calculate the likelihood of observing xAY,Lag
for various accident years and settlement lags.
The details of how to do this are in the technical
appendix. Here is a high-level overview of what
will be done below.

1. The distributions of ZLag were derived from
data reported to ISO as part of its regular in-
creased limits ratemaking activities. Like the
substantial majority of insurers that report
their data to ISO, the policy limit will be set
to $1,000,000. The distributions varied by set-
tlement lag with lags 5—10 having the highest
severity. See Figure 4 below. For this applica-
tion I discretized the distributions at intervals
h, which depended on the size of the insurer.
I chose h so the 214 (16,384) values spanned
the probable range of losses for the insurer.

2. I selected the value of 0.01 for the negative
binomial distribution parameter, c. The paper
by Meyers [10] analyzes Schedule P data for
Commercial Auto and provides justification
for this selection.

3. Using the Fast Fourier Transform (FFT), I
then calculated the entire distribution of a dis-
cretized XAY,Lag, rounded to the nearest mul-
tiple of h. The use of Fourier Transforms for
such calculations is not new. References for
this in CAS literature include the papers by
Heckman and Meyers [6] and Wang [13].

4. Whenever the probability density of a given
observation xAY,Lag given E[Paid LossAY,Lag]
was needed, I rounded the xAY,Lag to the near-
est multiple of h and did the above calculation.

The resulting distribution function is denoted
by:

CNB(xAY,Lag j E[Paid lossAY,Lag]): (3)

This specifies the stochastic loss reserving model
used in this paper. The parameters that depend
on the particular insurer are the ELR and the
10 DevLag parameters. I will now turn to show-
ing how to estimate these parameters, given the
earned premiums and the Schedule P loss triangle.
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Figure 4. Limited average severity by settlement lag

Clark [2] has taken a similar approach to loss
reserve estimation. Indeed, I credit Clark for the
inspiration that led to the approach taken in this
section and the next. Clark used the Weibull and
loglogistic parametric models where I used Equa-
tion 1 above. In place of the CNB distribution
described above, Clark used what he calls the
“overdispersed Poisson” (ODP) distribution.1 He
then estimated the parameters of his model by
maximum likelihood. This is where I am going
next.

4. Maximum likelihood estimation
of model parameters
The data for a given insurer consists of earned

premium by accident year, indexed by AY =
1,2, : : : ,10, and a Schedule P loss triangle with
losses fxAY,Lagg and Lag = 1, : : : , (11¡AY). With
this data, one can calculate the probability, con-
ditional on the parameters ELR and DevAY,Lag,

1A random variable has an overdispersed Poisson distribution if
it is an ordinary Poisson random variable times a constant scaling
factor.

of obtaining the data by the following equa-
tion.

L(fxAY,Lagg)

=
10Y

AY=1

11¡AYY
Lag=1

CNB(xAY,Lag j E[Paid LossAY,Lag]):

(4)

Generally one calls L(¢) the likelihood function
of the data.
For this model, maximum likelihood estima-

tion refers to finding the parameters ELR and
DevLag that maximize Equation 4 (indirectly
through Equation 1). There are a number of
mathematical tools that one can use to do this
maximization. The particular method I used is
described in the Appendix.
After examining the empirical paths plotted in

Figures 2 and 3, I decided to put the following
constraints in the DevLag parameters.

1. Dev1 ·Dev2.
2. Devj ¸Devj+1 for j = 2,3, : : : ,9.
3. Dev7=Dev8 =Dev8=Dev9 =Dev9=Dev10.

4.
P10
i=1Devi = 1.
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Figure 5. Maximum likelihood estimates of incremental paid development factors

The third set of constraints was included to add

stability to the tail estimates. They also reduce

the number of free parameters that need to be

estimated from eleven to nine. The last constraint

eliminated an overlap with the ELR parameter

and maintained a conventional interpretation of

that parameter.

Figure 5 plots the fitted payment paths for each

of the 250 insurers. You might want to compare

these payment paths with the empirical payment

paths in Figure 2.

Figure 6 gives histograms of the 250 ELR es-

timates.

² The samples are the same insurers as in Fig-
ure 2.

² Note the wide variability of the fitted payment
paths for the smallest insurers.

² Note the high variability of the ELR estimates
for the smallest insurers.

5. Testing the model

Given parameter estimates ELR and DevAY,Lag ,
one can use the model specified by Equations
1—3 above to calculate the percentile of any ob-
servation xAY,Lag by first calculating the expected
loss, then the expected claim count, and finally
the distribution of losses about the expected loss
by the CNB distribution. Whatever the expected
losses, accident year or settlement lag, the per-
centiles should be uniformly distributed. One can
also include the calculated percentiles of several
insurers to give a more conclusive test of the
model.
The hypothesis that any given set of numbers

has a uniform distribution can be tested by the
Kolmogorov-Smirnov test. See, for example,
Klugman, Panjer, and Willmot (KPW) ([8], p.
428) for a reference on this test. The test is ap-
plied in our case as follows. Suppose you have a
sample of numbers, F1,F2, : : : ,Fn, between 0 and
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Figure 6. Maximum likelihood estimates of the ELR parameters

1, sorted in increasing order. One then calculates
the test statistic:

D =max
i

¯̄̄̄
Fi¡

i

n+1

¯̄̄̄
: (5)

If D is greater than the critical value for a se-
lected level ®, we reject the hypothesis that the
Fis are uniformly distributed. The critical values
depend upon the sample size. Commonly used
critical values are 1:22=

p
n for ®= 0:10,1:36=

p
n

for ®= 0:05, and 1:63=
p
n for ®= 0:01.

Note that the Kolmogorov-Smirnov test should
not be applied when testing the model with data
that was used to fit the model.
A graphical way to test for uniformity is a

p-p plot, which is sometimes called a probability
plot. A good reference for this is KPW ([8], p.
424). The plot is created by arranging the obser-
vations F1,F2, : : : ,Fn in increasing order and plot-
ting the points (i=(n+1),Fi) on a graph. If the
model is “plausible” for the data, the points will
be near the 45± line running from (0,0) to (1,1).

Let d® be a critical value for a Kolmogorov-
Smirnov test. Then the p-p plot for a plausible
model should lie within §d® of the 45± line.
A nice feature of p-p plots is that they pro-

vide, to the trained eye, a diagnosis of problems
that may arise from an ill-fitting model. Let’s
look at some examples. Let x be a random sam-
ple of 1,000 numbers from a lognormal distribu-
tion with parameters ¹= 0 and ¾ = 2. Let’s look
at some p-p plots when we mistakenly choose
a lognormal distribution with different ¹s and
¾s. On Figure 7(a), sort(plnorm(x,¹,¾)) on the
vertical axis will denote the sorted Fis predicted
by a lognormal distribution with parameters ¹
and ¾.

² On the first graph, ¹ and ¾ are the correct pa-
rameters, and the p-p plot lies on a 45± line as
expected.

² On the second graph, with ¾ = 1, the low pre-
dicted percentiles are lower than expected,
while the high predicted percentiles are higher
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Figure 7. Sample p-p plots

than expected. This indicates that the tails are
too light.

² On the third graph, with ¾ = 4, the low pre-

dicted percentiles are higher than expected,

while the high predicted percentiles are lower

than expected. This indicates that the tails are

too heavy.

² On the fourth graph, with ¹= 1, almost all the
predicted percentiles are lower than expected.

This indicates that the predicted mean is too

high.

If a random variable X has a continuous cumu-

lative distribution function F(x), the Fis associ-

ated with a sample fxig will have a uniform dis-

tribution. There are times when we want to use a

p-p plot with a random variable X, which we ex-

pect to have a positive probability at x= 0. The

left side of Figure 7(b) shows a p-p plot for a distri-
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Figure 8. P-P plot for the top 40 insurers

bution with Pr(X = 0) = 0:25. The Kolmogorov-
Smirnov test is not applicable in this case. How-
ever, we can “transform” the Fis into a uniform
distribution by multiplying Fi = F(xi) by a ran-
dom number that is uniformly distributed when-
ever xi = 0. We can then use the Kolmogorov-
Smirnov test of uniformity. The right side of Fig-
ure 7(b) illustrates the effect of such an adjust-
ment. All of the p-p plots below will have this
adjustment.
Now let’s try this for real.
Figure 8 gives a p-p plot for the percentiles

predicted for the data that was used to fit each
model for the top 40 insurers. Overall there were
2,200 (= 40£ 55) calculated percentiles. By ex-
amining Figure 8, we see that the fitted model
has tails that are a bit too heavy.
Let me make a personal remark here. In my

many years of fitting models to data, it is a rare
occasion when a model passes such a test with
data consisting of thousands of observations. I
was delighted with the goodness of fit. Never-
theless, I investigated further to see what “went

wrong.” Figure 9 shows p-p plots for the same
data segregated by settlement lag. These plots ap-
pear to indicate that the main source of the prob-
lem is in the distributions predicted for the lower
settlement lags.
Figure 10 shows p-p plots for the percentiles

predicted for the data used in fitting the smallest
210 insurers. Suffice it to say that these plots re-
veal serious problems with using this estimation
procedure with the smaller insurers. I think the
problem lies in fitting a model with nine param-
eters to noisy data consisting of 55 observations.
On the other hand, the procedure appears to work
fairly well for large insurers with relatively stable
loss payment patterns. See Figures 2, 3, 5 and 6.
I suspect the same problem with small insurers
occurs with other many-parameter models, such
as the chain ladder method.

6. Predicting future loss payments
using Bayes’ Theorem
The failure of the model to predict the dis-

tribution of losses for the smaller insurers and
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Figure 9. P-P plots for the top 40 insurers by settlement lag

the comparatively successful predictions of the
model on larger insurers leads to the question:
Is there any information that can be gained from
the larger insurers that would be helpful in pre-
dicting the loss payments of the smaller insurers?
That is the topic of this section.
Let !=fELR(!),DevLag(!),Lag=1,2, : : : ,10g

be a set of vectors that determine the expected
losses in accordance with Equation 1. Let − be
the set of all !s. These models are distinguished
only by the values of their parameters, and not
by the assumptions or methods that were
used to generate the parameters. Using Equation
4, one can combine each expected loss model
with the parameters as assumptions underlying
Equations 2 and 3 to calculate the likelihood of

the given loss triangle fxAY,Lagg. Each likelihood
can be interpreted as:

L= Probabilityfdata jmodelg
´ PrffxAY,Lagg j !g: (6)

Then using Bayes’ Theorem one can then calcu-

late:

Probabilityfmodel j datag
/ Probabilityfdata jmodelg£Priorfmodelg:

Stated more mathematically:

Prf! j fxAY,Laggg / PrffxAY,Lagg j !g£Prf!g:
(7)

Each ! 2 − will consist of forty fDevLagg com-
binations taken from maximum likelihood esti-
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Figure 10. P-P plots by settlement lag for insurers ranked 41–250

mates of the top 40 insurers above. I judgmen-
tally selected equal probabilities for each ! 2 −.
Each of the forty fDevLagg combinations will be
independently crossed with nine potential ELRs
starting with 0.600 and increasing by steps of
0.025 to a maximum of 0.800. Thus − has 360
parameter sets. I judgmentally selected the prior
probability of the ELRs after an inspection of the
distribution of maximum likelihood estimates.
See Figure 11 and Table 1 below.
So we are given a loss triangle fxAY,Lagg, and

we want to find a stochastic loss model for our
data. Here are the steps we would take to do
this.

1. Using Equation 4, calculate PrffxAY,Lagg j !g
for each ! 2 −.

2. The posterior probability of each ! 2 − is
given by

Prf! j fxAY,Laggg

=
PrffxAY,Lagg j !g£Prf!gP
!2− PrffxAY,Lagg j !g£Prf!g

:

(8)

In words, the final stochastic model for a loss tri-
angle is a mixture of all the models ! 2 −, where
the mixing weights are proportional to the pos-
terior probabilities.
Here are some technical notes.

² In doing these calculations for the 250 insur-
ers, it happens that almost all the weight is
concentrated on, at most, a few dozen models
out of the original 360. So, instead of includ-

260 CASUALTY  ACTUAR IAL  SOC IETY  V O L U M E  0 1 / I S S U E  0 2



Estimating Predictive Distributions for Loss Reserve Models

Figure 11. Comparing the selected prior distribution of ELR with the maximum likelihood estimates of ELR for the
top 40 insurers

Table 1. Prior probabilities for ELR

ELR Prior ELR Prior ELR Prior

0.600 3/24 0.675 4/24 0.750 1/24
0.625 4/24 0.700 3/24 0.775 1/24
0.650 5/24 0.725 2/24 0.800 1/24

ing all models in the original −, I sorted the
models in decreasing order of posterior prob-
ability and dropped those after the cumulative
posterior probability summed to 99.9%.

² When calculating the final model for any of
the top 40 insurers, I excluded that insurer’s
parameters fDevLagg from − and added the
parameters for the 41st largest insurer in its
place. I did this to reduce the chance of over-
fitting.

The stochastic model of Equation 8 is not the
end product. Quite often, insurers are interested
in statistics such as the mean, variance, or a given

percentile of the total reserve. I will now show
how to use the stochastic model to calculate these
“statistics of interest.”
At a high level, the steps for calculating the

“statistics of interest” are as follows.

1. Calculate the statistic conditional on ! for
each accident year and settlement lag of in-
terest, i.e., the complement of the triangle
AY = 2, : : : ,10, Dev = 12¡AY, : : : ,10.

2. Aggregate the statistic over the desired acci-
dent years and settlement lags for each !.

3. Calculate the unconditional statistic by mix-
ing (or weighting) the conditional statistics of
Step 2, above, with the posterior probabilities
of each model in −.

These steps should become clearer as we look
at specific statistics. Let’s start with the expected
value.
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1. For each accident year and settlement lag, cal-
culate the expected value for each ! using
Equation 1.

E[Paid LossAY,Lag j !]
= PremiumAY£ELR(!)£DevLag(!):

2. To get the total expected loss for each !, sum
the expected values over the desired accident
years and settlement lags.

E[Paid loss j !] =
X
AY,Lag

E[Paid lossAY,Lag j !]:

3. The unconditional total expected loss is the
posterior probability weighted average of the
conditional total expected losses, with the pos-
terior probabilities given by Equation 8.

E[Paid loss] =
X
!2−

E[Paid loss j !]

£Prf! j fxAY,Laggg:
Note that for each !, the conditional expected
loss will differ. Our next “statistic of interest”
will be the standard deviation of these expected
loss estimates. This should be of interest to those
who want a “range of reasonable estimates.”
The first two steps are the same as those for

finding the expected loss above. In the third step
we calculate E[Paid Loss] as above but, in addi-
tion, we calculate the second moment:

4.

SM[Ê[Paid loss]]´
X
!2−

E[Paid loss j !]2

£Prf! j fxAY,Laggg:
Then:

Standard Deviation[Ê[Paid loss]]

=
q
SM[Ê[Paid loss]]¡E[Paid loss]2:

As the second example begins to illustrate, the
three steps to calculating the “statistic of interest”
can get complex.
Our third “statistic of interest” is the standard

deviation of the actual loss. Before we begin, it

will help to go over the formulas involved in
finding the standard deviation of sums of losses.
First, recall from Equation 2 that our model

imputes an expected claim count, ¸AY,Lag, by di-
viding the expected loss by the expected claim
severity for the settlement lag.
Next recall the following bullet from the de-

scription of the CNB distribution above.

² Let NAY,Lag be a random variable representing
the claim count. Assume that the distribution
of NAY,Lag is given by the negative binomial
distribution with mean ¸AY,Lag and variance
¸AY,Lag + c ¢¸2AY,Lag.
The negative binomial distribution can be

thought of as the following process.

1. Select the random number Â from a gamma
distribution with mean 1 and variance c.

2. SelectNAY,Lag from a Poisson distribution with
mean Â ¢¸AY,Lag.

Consider two alternatives for applying this to the
claim count for each settlement lag in a given
accident year.

1. Select Â independently for each settlement
lag.

2. Select a single Â and apply it to each settle-
ment lag.

If one selects the second alternative, the mul-
tivariate distribution of fNAY,Lagg is called the
negative multinomial distribution. This does not
change the distribution of losses of an individual
settlement lag. It does generate the correlation
between the claim counts by settlement lag.
I will assume that the multivariate claim count

for settlement lags within a given accident year
has a negative multinomial distribution. The
thinking behind this is that the Â is the result
of an economic process that affects how many
claims occur in a given year.
Clark [3] provides an alternative method for

dealing with correlation between settlement
lags.
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Let FZLag be the cumulative distribution for
ZLag. Mildenhall [11] shows that (stated in
the notation of this paper) the distribution ofP10
Lag=12¡AY XAY,Lag has a CNB distribution with

expected claim count ¸AY,Tot=
P10
Lag=12¡AY ¸AY,Lag

and claim severity distribution

FZAY,Tot =
10X

Lag=12¡AY
¸AY,Lag ¢FZLag

,
10X

Lag=12¡AY
¸AY,Lag:

Now let’s describe the three steps to calculate
the standard deviation of the actual loss.

1. For each accident year and settlement lag, cal-
culate the expected claim count ¸AY,Lag(!) us-
ing Equation 2.

2. The aggregation for each ! takes place in two
steps.
a. Calculate the mean and variance of each
accident year’s actual loss.

E[Paid LossAY j !] = ¸AY,Tot(!) ¢E[ZAY,Tot]:
Var[Paid LossAY j !] = ¸AY,Tot(!) ¢ SM[ZAY,Tot]

+ c ¢¸AY,Tot(!)2

¢E[ZAY,Tot]2:

b. Sum the first and second moments over the
accident years.

E[Paid Loss j !] =
X
AY

E[Paid LossAY j !]:

SM[Paid Loss j !] =
X
AY

SM[Paid LossAY j !]:
3.

E[Paid Loss]

=
X
!2−

E[Paid Loss j !]£Prf! j fxAY,Laggg:

SM[Paid Loss]

=
X
!2−

SM[Paid Loss j !]£Prf! j fxAY,Laggg:

Standard Deviation[Paid Loss]

=
p
SM[Paid Loss]¡E[Paid Loss]2:

The final “statistic of interest” is the distribu-
tion of actual losses. We are fortunate that the

CNB distribution of each individual XAY,Lag is
already defined in terms of its Fast Fourier Trans-
form (FFT). To get the FFT of the sum of losses,
we can simply multiply the FFTs of the sum-
mands. Other than that, the three steps are simi-
lar to those of calculating the standard deviation
of the actual losses. To shorten the notation, let
X denote Paid Loss.

1. For each accident year and settlement lag, cal-
culate the expected claim count ¸AY,Lag(!) us-
ing Equation 2.

2. The aggregation for each ! takes place in
three steps.
a. Calculate the severity FFT

©(~pAY,Totj!)

=
10X

Lag=12¡AY
¸AY,Lag(!) ¢©(~pLagj!)

,
10X

Lag=12¡AY
¸AY,Lag(!)

for each accident year, and then
b. calculate the accident year FFT

©(~qAY,Totj!)

=

Ã
1¡ c ¢

Ã
10X

Lag=12¡AY
¸AY,Lag(!)

!
¢ (©(~pAY,Totj!)¡ 1)

!¡1=c

for each accident year.
c. The FFT for the sum of all accident years is
given by:

©(~q!) =
Y
AY

©(~qAY,Totj!)

3. The distribution of actual losses is obtained
by inverting the FFT:

©(~q) =
X
!2−

©(~q!)£Prf! j fxAY,Laggg:

See the Appendix for additional mathematical
details of working with FFTs.
Figures 12 and 13 below show each of the

three statistics for two insurers for the outstand-
ing losses for accident years 2, : : : ,10 up to set-
tlement lag 10. The insurer in Figure 12 has ten
times the predictive mean reserve as the insurer
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Figure 12. Predictive distribution of actual losses for total reserve, insurer rank 7

Figure 13. Predictive distribution of actual losses of total reserve, insurer rank 97

in Figure 13. Figure 14 plots the predictive co-
efficient of variation against the predictive mean
reserve. The decreased variability that comes

with size should not come as a surprise. The ab-
solute levels of variability will be interesting only
if I can demonstrate that this methodology can
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Figure 14. Predictive coefficient of variation plotted with the predictive mean for 250 insurers

predict the distribution of future results. That is
where I am going next.

7. Testing the predictions

The ultimate test of a stochastic loss reserving
model is its ability to correctly predict the distri-
bution of future payments. While the distribution
of future payments will differ by insurer, when
one calculates the predicted percentile of the ac-
tual payment, the distribution of these predicted
percentiles should be uniform.
To test the model, we examined Schedule P

from the 2001 NAIC Annual Statement. The
losses reported in these statements contain six
subsequent diagonals on the four overlapping
years from 1992 through 1995. Earned premi-
ums and losses in the overlapping diagonals for
the 1995 and 2001 Annual Statements agreed in
109 of the 250 insurers, so I used these 109 in-
surers for the test.
Using the predictive distribution described in

the last section, I calculated the predicted per-
centile of the total amount paid for the four acci-

dent years in the subsequent six settlement lags.
These 109 percentiles should be uniformly dis-
tributed. Figure 15 shows the corresponding p-p
plot and the confidence bands at the 5% level
as determined by the Kolmogorov-Smirnov test.
The plot lies well within that band. While we can
never “prove” a model is correct with statistics,
we gain confidence in a model as we fail to re-
ject the model with such statistical tests. I believe
this test shows that the Bayesian CNB model de-
serves serious consideration as a tool for setting
loss reserves.

8. Comparing the predictive
reserves with reported reserves

This section provides an illustration of the kind
of analysis that can be done externally with the
Bayesian methodology described in this paper.
Readers should exercise caution in generalizing
the conclusions of this section beyond this par-
ticular line of business in this particular time pe-
riod.
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Figure 15. P-P plot of predicted percentiles for paid losses from 1996 to 2001

This paper makes no attempt to pin down the
methods used in setting the reported reserves.
However, there are many actuaries that expect
reported reserves to be more accurate than a for-
mula derived purely from the paid data reported
on Schedule P. As stated in the introduction to
this paper, those who set those reserves have ac-
cess to more information that is relevant to esti-
mating future loss payments.
The comparisons below will be performed to

two sets of insurers–the entire set of 250 in-
surers and the subset of 109 insurers for which
the overlapping accident years 1992—1995 agree.
Testing the latter will enable us to compare
the predictions based on information available
in 1995 with the incurred losses reported in
2001.
The first test looks at aggregates summed over

all insurers in each set. Table 2 compares the pre-
dictions of this model with the actual reserves
reported on the 1995 annual statement. The “ac-
tual reserve” is the difference between the total
reported incurred loss, as of 1995 for the “initial”

reserve, and 2001 for the “retrospective” reserve,
minus the total reported paid loss, as of 1995.
For the 250 insurers, the reported initial re-

serve was 9.1% higher than the predictive mean.
For the 109 insurers the corresponding percent-
age was 9.9%. The lowering of the percentage
reserves from 1995 to 2001 to 2.4% suggests
that for the industry, reserves were redundant for
Commercial Auto in 1995.2

For the remainder of this section, let’s suppose
that the expected value of the Bayesian CNB
model described above is the “best estimate” of
future loss payments. From the above, there are
two arguments supporting that proposition.

1. Figure 15 in Section 7 above shows that the
Bayesian CNB model successfully predicted
the distribution of payments for the six years
after 1995 well within the usually accepted
statistical bounds of error.

2There are some potential biases in these figures. First, the predic-
tive means may be somewhat understated since they ignore devel-
opment after ten years. Second, the downward development from
1995 to 2001 may continue in future years.
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Table 2. Predicted and reported loss reserves

Reported 1995 Reserve (000)

Predictive Mean (000) Initial @ 1995 Retrospective @ 2001

250 Insurers AY 1986–1995 14,873,303 16,221,998—9.1% —
109 Insurers AY 1992–1995 1,798,794 1,976,299—9.9% 1,842,104—2.4%

2. The final row of Table 2 shows that the ex-
pected value predicted by the Bayesian CNB
model, in aggregate, comes closer to the 2001
reserve than did the reported reserves for
1995.

Now let’s examine some of the implications of
this proposition for reported reserves.
There are many actuaries who argue that re-

ported reserves should be somewhat higher than
the mean. See, for example, Paragraph 2.17 on
page 5 of Report of the Insurer Solvency Work-
ing Party of the International Actuarial Associa-
tion [7]. Related to this, I recently saw a working
paper by Grace and Leverty [4] that tests various
hypotheses on insurer incentives.
If insurers were deliberately setting their re-

serves at some conservative level, we would ex-
pect to see that the reported reserves are at some
moderately high percentile of the predictive dis-
tribution. Figure 16 shows that some insurers ap-
pear to be reserving conservatively. But there are
also many insurers for which the predictive per-
centile of the reported reserve is below 50%. But
by 2001, the percentiles of the retrospective re-
serve for 1995 were close to being uniformly dis-
tributed.

² The greater number of insurers reserved above
the 50th percentile indicates that some insur-
ers have conservative estimates of their loss
reserves posted in 1995.

² The right side of this figure shows that the
spread of the reserve percentiles spans all in-
surer sizes.

If there is a bias in the posted reserves, we
would see corrections in subsequent years. The
109 insurers for which we have subsequent de-

velopment provide data to test potential bias. To
perform such a test, I divided the 109 insurers
into two groups. The first group consisted of all
insurers that posted reserves in 1995 that were
lower than their predictive mean. The second
group consisted of all insurers that posted re-
serves higher than their predictive mean.
As Figure 17 and Table 3 show, the first group

shows an upward adjustment and the second
group shows a more pronounced downward ad-
justment. The plots show that we cannot attribute
these adjustments to only a few insurers. How-
ever, there are some insurers in the first group
that show a downward adjustment, and other in-
surers in the second group that show an upward
adjustment.
The fact that the total adjustments only go part

way to the predictive mean suggests that some
insurers may be able to make more accurate esti-
mates with access to information that is not pro-
vided on Schedule P.

9. Summary and conclusions

This paper demonstrates a method, which I call
the Bayesian CNB model, for estimating the dis-
tribution of future loss payments of individual
insurers. The main features of this method are as
follows.

² The stochastic loss reserving model is based
on the collective risk model. While other sto-
chastic loss reserving approaches make use of
the collective risk model, this approach uses it
as an integral part of estimating the parameters
of the model.

² Predicted loss payments are derived from a
Bayesian methodology that uses the results of
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Figure 16. Predictive percentiles of reported reserves

large, and presumably stable, insurers as its
“prior information.” While insurers do indeed
differ in their claim payment practices, the un-
derlying assumption of this methodology is
that these differences are reflected in this col-
lection of large insurers. This paper demon-
strates that using prior information derived
from large insurers, together with the CNB
model for the stochastic losses, makes this
method applicable to all insurers, both large
and small.

² Loss reserving models should be subject to
testing their predictions on future payments.

Tests on a single insurer are often inconclu-

sive because of the volatile nature of the loss

reserving process. But it is possible to test a

stochastic loss reserving method on several in-

surers simultaneously by comparing its pre-

dicted percentiles of subsequent losses to a

uniform distribution. This paper tests its model

on 109 insurers and finds that its predictions

are well within the statistical bounds expected

for a sample of this size.

² By making the assumption that the Bayesian
CNB model provides the “best estimate” of fu-

ture loss payments, the analysis in this paper

suggested that there are some insurers that post
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Figure 17. Analysis of subsequent reserve changes for 109 insurers

reserves conservatively, while others post re-

serves with a downward bias. Readers should

exercise caution in generalizing these conclu-

sions beyond this particular line of business in

this time period.

While this paper did not address the tail when

a significant amount of losses are to be paid after

10 years, I do have some suggestions on how to

use this approach when the tail extends beyond

10 years. First, the DevLag parameters in each !

could be extended further based on either analy-

sis or the judgment of the insurer. The parameters

for the later lags may differ even if the parame-

ters for the earlier lags are identical. The data in

Schedule P contains the sum of losses paid for all

prior years. If the insurer has premium informa-

tion from the prior years, the methods described

in this paper could be used to calculate the dis-

tribution of that sum conditional on each model

Table 3. Summary statistics for the plots above

Reported Reserve @ 1995

< Predictive Mean
(000)

> Predictive Mean
(000)

Number of Insurers 66 43
Total Predictive Mean 926,134 872,660
1995 Reserve @ 1995 803,175 1,173,124
1995 Reserve @ 2001 856,393 985,711

!, and hence contribute to the estimation of the

posterior probability of each model !.

I view this paper as an initial attempt at a

new method for stochastic loss reserving. To gain

general acceptance, this approach should be

tested on other lines of insurance and by other

researchers. The data required to do such studies

consist of Schedule Ps that American insurers

are required to report to regulators, and claim

severity distributions. This information can be

obtained from vendors. AM Best compiles the

269V O L U M E  0 1 / I S S U E  0 2  CASUALTY  ACTUAR IAL  SOC IETY  



Variance Advancing the Science of Risk

Schedule P information. ISO fits claim severity
distributions for many lines of insurance.
This method requires considerable statistical

and actuarial expertise to implement. It also takes
a lot of work. In this paper, I have tried to make
the case that we should expect that such efforts
could yield fruitful results.
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Appendix

This appendix gives the mathematical details
that implement the methodologies described in
Sections 3 and 4.

A.3.1. Discretizing the claim severity
distributions

The first step is to determine the discretiza-
tion interval length h. I chose h so that the 214

(16,384) values spanned the probable range of
annual losses for the insurer. Specifically, let h1
be the sum of the insurer’s ten-year premium di-
vided by 214. The h was set equal to 1,000 times
the smallest number from the set f5,10,20,25,
40, 50, 100, 125, 200, 250, 500, 1000g that was
greater than h1=1000. This last step guarantees
that a multiple, m, of h would be equal to the
policy limit of 1,000,000.
The next step is to use the mean-preserving

method (described in [8], p. 656) to discretize
the claim severity distribution for each settle-
ment lag. Let pi,Lag represent the probability of
a claim with severity h ¢ i for each settlement lag.
Using the limited average severity (LASLag) func-
tion determined from claim severity distributions
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provided by ISO, the method proceeds in the fol-
lowing steps.

1. p0,Lag = 1¡LASLag(h)=h.
2. pi,Lag = (2 ¢LASLag(h ¢ i)¡LASLag(h ¢ (i¡ 1))
¡LASLag(h ¢ (i+1)))=h for i= 1,2, : : : ,m¡ 1.

3. pm,Lag = 1¡
Pm¡1
i=0 pi,Lag.

4. pik = 0 for i=m+1, : : : ,2
14¡ 1.

A.3.2. Calculating the conditional
density of the CNB distribution

The purpose of this section is to show how to
calculate CNB(xAY,Lag j E[Paid lossAY,Lag]). The
calculation proceeds in the following steps.

1. Set ~pLag = fp0,Lag, : : : ,p214¡1,Lagg.
2. Calculate the Fast Fourier Transform (FFT) of
~pLag ,©(~pLag).

3. Calculate the expected claim count ¸AY,Lag
for each accident year and settlement lag us-
ing Equation 2, ¸AY,Lag ´ E[Paid LossAY,Lag]=
E[ZLag].

4. Calculate the FFT of each aggregate loss ran-
dom variable XAY,Lag using the formula

©(~qAY,Lag)

= (1¡ c ¢¸AY,Lag ¢ (©(~pLag)¡ 1))¡1=c:
This formula is derived in KPW [8, Equa-
tion 6.28]. Note the different but equivalent
parameterization. The probability generating
function for the negative binomial distribution
is given in Appendix B of KPW [8]. It is writ-
ten as PN(z) = (1¡¯(z¡ 1))¡r. In this paper’s
notation ¸= ¯ ¢ r and c= 1=r.

5. Calculate ~qAY,Lag = ©
¡1(©(~qAY,Lag)), the in-

verse FFT of the expression in Step 4 above.

6. Set i equal to the multiple of h that is nearest
to xAY,Lag. Then

CNB(xAY,Lag j E[Paid lossAY,Lag])
= the ith component of ~qAY,Lag:

Note that calculating this probability requires
one to first calculate a vector of length 16,384 by

inverting an FFT and reading off a single compo-
nent. (To increase efficiency, one should calcu-
late ©(~pLag) for each settlement lag in advance.)
Using the R computing language (www.r-project.
org) on my 3 GHz personal computer with 1 GB
RAM, I estimate it takes about 1/20th of a sec-
ond to evaluate a single CNB probability. Eval-
uating a likelihood for a loss triangle with 55
xAY,Lags 1,000 times (typical for what follows be-
low) takes about 45 minutes. Implementing this
methodology requires the patience that I was for-
tunate to develop in the early days of actuarial
computing.

A.4. Maximizing the likelihood for the
CNB model

The purpose of this section is to show how to
find the ELR and fDevig parameters that maxi-
mize the likelihood

L(fxAY,Lagg)

=
10Y

AY=1

11¡AYY
Lag=1

CNB(xAY,Lag j E[Paid LossAY,Lag]),

(4)

subject to the following constraints in the DevLag
parameters.

1. Dev1 ·Dev2.
2. Devj ¸Devj+1 for j = 2,3, : : : ,7.
3. Dev7=Dev8 =Dev8=Dev9 =Dev9=Dev10.

4.
P10
i=1Devi = 1.

The maximization was done using the R pro-
gramming language optim function using the
Nelder-Mead parameter search method. This
method is described in KPW [8, p. 664] and is
considered to be robust but slow. At this stage of
the research, I value “robust” over “fast.”
Primarily because of habits I developed using

Excel Solver, I elected not to use standard con-
straints provided by the function. Instead I coded
a “tdev to Dev” function that mapped all of R9
(nine dimensional unit hypercube) into a subset
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of R11 that satisfied those constraints. Here is a
description of tdev to Dev.

1. Dev01 = e
¡tdev21=2.

2. Dev02 =Dev
0
1 ¢ (1+ e¡tdev

2
2 ).

3. Dev0i=Min
h³
1¡Pi¡1

j=1Dev
0
j

´
,Dev0i¡1

i
¢ e¡tdev2i

for i = 3, : : : ,7.

4. Dev0i=Min
h³
1¡Pi¡1

j=1Dev
0
j

´
,Dev0i¡1

i
¢ e¡tdev28

for i = 8,9,10.

5. Devi =Dev
0
i=
P10
j=1Dev

0
j .

6. ELR = tdev29 ¢
P10
j=1Dev

0
j .

As noted in the previous section, the CNB
model requires a lot of time to calculate. This
time can be significantly reduced if one has a
good set of starting values for the optim func-
tion. To get these starting values, I replaced the
CNB distribution with the “overdispersed Pois-
son” (ODP) distribution given in Clark [2] to find
the ELR and fDevig parameters that maximize
the logarithm of following expression.

L(fxAY,Lagg) =
10Y

AY=1

11¡AYY
Lag=1

E[Paid LossAY,Lag]

¢ exAY,Lag ¢E[AY,Lag]¡E[AY,Lag]:
The maximization proceeds in the following

steps.

1. Pick a starting vector in ~s 2R9, e.g., (1,1,1,
1,1,1,1,1,1).

2. Set ~t= tdev to Dev(~s) and use it to calculate
E[Paid LossAY,Lag].

3. Use E[Paid LossAY,Lag] to calculate the ODP
likelihood above.

4. Use the Nelder-Mead algorithm to calculate
an updated vector ~s.

5. Return to Step 2 and repeat until conver-
gence.

6. After convergence is obtained with the ODP
likelihood, use the current ~s as a starting
value for the CNB likelihood in Equation 4.

7. Set ~t= tdev to Dev(~s) and use it to calculate
E[Paid LossAY,Lag].

8. Use E[Paid LossAY,Lag] to calculate the CNB
likelihood above.

9. Use the Nelder-Mead algorithm to calculate
an updated vector ~s.

10. Return to Step 7 and repeat until conver-
gence.

11. Set ~t= tdev to Dev(~s) to obtain the maxi-
mum likelihood estimate of ELR and fDevig.

Run time was short for the ODP. For the CNB,
I found that it generally took, on average, 1,000
iterations of Steps 7—10 to achieve R’s optim
function default convergence criteria. With the
warning that individual results may vary, I felt
comfortable in limiting the number of iterations
to 300.
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