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ABSTRACT

In this paper, linear mixed models are employed for estima-

tion of structural parameters in credibility context. In par-

ticular, Hachemeister’s model and Dannenburg’s crossed

classification model are considered. Maximum likelihood

(ML) and restricted maximum likelihood (REML) methods

are developed to estimate the variance and covariance pa-

rameters. These estimators are compared with the classical

Hachemeister’s and the Dannenburg’s estimators by sim-

ulation. The robustness properties of the ML and REML

methods are also investigated. In the simulation studies,

we have tested the performance of ML, REML, and the

classical estimation approaches when the error terms are

normally distributed and lognormally distributed. It is no-

ticed that the proposed ML and REML approaches have

clear advantages over the classical estimation approaches.

The mean-squared errors of the proposed estimators can

be a few hundred times smaller than those of classical es-

timators.
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1. Introduction
Credibility theory is a method to predict

the future exposures of a risk entity based on

past information. In statistics, the credibility data

can be treated as longitudinal data, and the de-

velopment of credibility theory has been closely

linked to the longitudinal data model. Frees

et al. (1999) has demonstrated the implementa-

tion of the linear mixed model under the clas-

sical credibility framework. The implementation

of the generalized linear mixed model, which

is an extension of the linear mixed model, has

been proposed by Antonio and Beirlant (2006).

Although only independent error structure has

been considered in both literatures, the longitu-

dinal data interpretation suggests additional tech-

niques that actuaries can use in credibility rate

making.

Later developments of credibility theory have

considered the correlation between error terms.

For instance, Cossette and Luong (2003) em-

ployed the regression credibility model, which

can be regarded as a special form of the lin-

ear mixed model, to catch the random effects

and within-panel correlation structure, and used

weighted least squares method to estimate the

variance covariance parameters. Lo, Fung, and

Zhu (2006) and Lo, Fung, and Zhu (2007) pro-

posed the generalized estimating equations

(GEE) to handle the correlated error structure

and estimate the variance of the random com-

ponents under the regression credibility model.

The methods in those papers have been justified

by empirical studies.

In this paper, our attention is given to the lin-

ear mixed modeling in credibility context under

Hachemeister’s model and Dannenburg’s model

while taking into account both independent and

correlated error structures. Maximum likelihood

(ML) and restricted maximum likelihood

(REML) methods are used to estimate the vari-

ance covariance parameters, where the random

components are regarded as normally distributed.

The performance of the ML and REML estima-

tors are compared with the classical Hachemeis-

ter’s and Dannenburg’s estimators in simulation

studies, when the error terms are normally dis-

tributed and non-normally distributed. In both

situations, it can be shown that the ML that an

REML approaches has clear advantages over its

alternatives.

The structure of this paper is as follows. In

Section 2, the regression credibility model is

specified. Several commonly used error struc-

tures for modeling the observations of a risk

entity are introduced. Section 3 gives a brief in-

troduction on ML and REML methods, and

their applications to the linear mixed model.

The estimation of the structural parameters in

Hachemeister’s and Dannenburg’s two-way

crossed classification models are studied in

Sections 4 and 5. In both sections, a brief in-

troduction of the credibility model and classi-

cal estimation method is given, then two sim-

ulation studies are presented to examine the per-

formance of the proposed ML and REML ap-

proaches. The first study tests the perfor-

mance of ML and REML approaches when the

observations are normally distributed. The sec-

ond study tests the performance of ML and

REML approaches when the observations are

lognormally distributed, i.e., the normality as-

sumption is violated. A few concluding remarks

are given in the last section. It can be shown that

enormous discrepancies of the performance of

the credibility estimator for the credibility factors

and future exposure between the classical esti-

mation approach and the ML, REML approaches

occur in both Dannenburg’s model and Hache-

meister’s model. For instance, when the error

terms follow multivariate normal distribution, the

mean squared errors of the classical estimators

for future exposure are a few hundred times

higher than the counterpart in the proposed ML

approach.
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2. Model specification

2.1. Regression credibility model

In this paper, we employ the regression credi-

bility model which is proposed by Hachemeister

(1975). It is a specific form of a linear mixed

model that can help us capture within-panel cor-

relation. The regression model has the following

form:

yi =Xi¯i+ "i, i= 1,2, : : : ,n: (1)

Each element yij in the ri£ 1 vector yi corre-
sponds to the observed value with regard to risk

entity i in the jth observation period. The design

matrix Xi, of dimension ri£m, enters the model
as a known constant matrix. The dimension of

the vector of regression coefficients ¯i is m. ¯is

are assumed to be independent and normally dis-

tributed, with common mean ¯ and variance co-

variance matrix F for all i. The error vectors "is
are taken to be independently distributed from a

normal distribution with mean 0 and variance co-
variance matrix ¾2Vi = ¾

2W¡1=2
i ¡iW

¡1=2
i , where

W¡1=2
i is a diagonal weight matrix of known con-

stants and ¡i is a correlation matrix. Here we

assume ¡i, which describes the correlation be-

tween the error terms "ijs for entity i, to be posi-

tive definite and depends on some fixed unknown

parameters which are to be estimated. Aided by

the specifications stated above, readers may eas-

ily derive the following about yi:

(a) yi and yj are statistically independent for
i 6= j;

(b) ¹i = E(yi) =Xi¯;

(c) V(yi) =XiFX
0
i+¾

2W¡1=2
i ¡iW

¡1=2
i .

Hachemeister (1975) and Rao (1975) give the

linear Bayes estimator for ¯i, which minimizes

the mean-squared error losses. This estimator

takes the following form:

ˆ̄ (B)
i = Zi

ˆ̄ (GLS)
i +(I¡Zi)¯, (2)

where Zi is the credibility matrix, ˆ̄
(GLS)
i is the

generalized least squares estimator for ¯i, and we

have

Zi = F[F+¾
2(X0iV

¡1
i Xi)

¡1]¡1, (3)

ˆ̄ (GLS)
i = (X0iV

¡1
i Xi)

¡1X0iV
¡1
i yi: (4)

As we can see from the above, in order to get

the estimation of ¯i, we have to estimate the pa-

rameters ¾2, ½, ¯ and Vi. The accuracy of the
estimation of these parameters can largely affect

the estimation efficiency for ¯i.

2.2. Several commonly used error
structures

The moving average (MA), autoregressive

(AR), and exchangeable types of error are com-

monly used to model the correlation structure of

observations within a risk entity. Those structures

have certain simplicity, and by using relatively

few unknown parameters they can capture the

correlation structure well. Therefore, under cred-

ibility frameworks, we could use all these corre-

lation structures to model the correlation between

error terms. However, in our empirical studies we

would like to only incorporate the MA(1) and the

exchangeable error correlation structures under

each credibility framework for brevity.

2.2.1. Moving average correlation structure
For an MA(q) process, the correlation between

the errors "j and "k can be written as

¡jk =

8>><>>:
1, for j = k,

½jj¡kj, for 0< jj¡ kj · q,
0, otherwise.

For instance, the correlation matrix (¡jk)n£n of
the MA(1) takes the explicit form of

¡ =

266666666664

1 ½ 0 ¢ ¢ ¢ 0

½ 1 ½
. . .

0 ½ 1
. . .

. . .
. . .

. . .

0 ¢ ¢ ¢ 0 ½ 1

377777777775
:
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2.2.2. Autoregressive correlation structure
AR(q) is given by the equation

"t =
qX
i=1

'i"t¡i+ et:

As we can see there is no simple form for the

correlation matrix when q gets large. Therefore

AR(1) is the most commonly used model. For

the AR(1) model, the correlation matrix (¡jk)n£n
for the random errors "ts can be written in the

following form:

¡ =

266666666664

1 ½ ½2 ¢ ¢ ¢ ½n¡1

½ 1 ½
. . .

½2 ½ 1
. . .

. . .
. . .

. . .

½n¡1 ¢ ¢ ¢ ½2 ½ 1

377777777775
:

2.2.3. Exchangeable correlation structure
The exchangeable type of correlation is also

known as the uniform correlation. The correla-

tion matrix (¡jk)n£n of the exchangeable type of
error can be written as:

¡jk =

(
1, for j = k,

½, otherwise.

Therefore the exchangeable correlation matrix

takes the explicit form of

¡ =

266666666664

1 ½ ½ ¢ ¢ ¢ ½

½ 1 ½
. . .

½ ½ 1
. . .

. . .
. . .

. . .

½ ¢ ¢ ¢ ½ ½ 1

377777777775
:

3. The ML and REML methods

In the regression credibility model, the vari-

ance and covariance parameters can be estimated

using the well-known maximum likelihood (ML)

and the restricted maximum likelihood (REML)

estimation methods. As we all know that maxi-

mum likelihood estimators are obtained by maxi-

mizing the likelihood function, the restricted

maximum likelihood has been proposed by mod-

ifying the maximum likelihood by partitioning

the likelihood under normality into two parts,

one of which is free of fixed effects. The re-

stricted maximum likelihood estimators can be

obtained by maximizing that part. While preserv-

ing the good properties of the ML estimators, the

REML estimators have an additional property,

which is to reduce the analysis variance for many,

if not all, balanced data. Because both ML and

REML methods are common statistical methods,

detailed introduction is omitted in this paper.

From our assumption, the error vectors, "i, and

regression coefficient vectors, ¯i, are normally

distributed. This implies yi follows a multivari-
ate normal distribution with derivable mean and

variance covariance matrix

yi »N(Xi¯, XiFX0i+¾2W¡1=2
i ¡iW

¡1=2
i ),

where Xi¯ is the fixed effect component of the
linear mixed model. Hence we can derive the log

likelihood and the restricted log likelihood func-

tion of yi. They have been shown as

LML = c1¡
1

2

nX
i=1

log jV(yi)j ¡
1

2

nX
i=1

r0iV(yi)ri, (5)

LREML = c2¡
1

2

nX
i=1

log jV(yi)j

¡ 1
2
log

Ã
nX
i=1

jX0iV¡1i Xij
!
¡ 1
2

nX
i=1

r0iV(yi)ri,

(6)
where

ri = yi¡Xi
Ã

nX
i=1

X0i ¢V¡1(yi) ¢Xi
!¡1

£
Ã

nX
i=1

X0i ¢V¡1(yi) ¢ yi
!
,

and c1, c2 are appropriate constants.
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We define the vector ® which contains all

of the parameters of interest. For example ® =

(μ11,μ12, : : : ,μmm,¾
2,½)0, where μ11,μ12, : : : ,μmm in-

dicate the entries that specify the covariance ma-

trix F. We could solve ® by maximizing the log
likelihood function with regard to ® or by solv-

ing the score function

@LML
@®

= 0

for the ML approach, and

@LREML
@®

= 0

for the REML approach. More details about the

derivation of the likelihood and restricted like-

lihood functions, fixed and random effects, esti-

mates of the variance and covariance components

can be found in Laird and Ware (1982), Mc-

Culloch (1997) and Verbeke and Molenberghs

(2000).

Computationally there are various ways to ob-

tain the ML and the REML estimators, such as

the Newton-Raphson method and the simplex al-

gorithm. Details of those methods can be found

in Lindstrom and Bates (1988) and Nelder and

Mead (1965). There are also many statistical

packages available that can be used to perform

such estimation, such as Matlab, R, S+ and

SAS.

4. Parameter estimation in
Hachemeister’s model
4.1. Hachemeister’s model and method

Hachemeister’s model also known as the re-

gression credibility model was proposed by

Hachemeister (1975). It has the form

E[yi(£)] =X
0
i¯i, i = 1,2, : : : ,n, (7)

where £ denotes the unobservable risk charac-

teristic associated with each risk entity, and the

dimension of ¯i is m. We have

Var(yi j£) = s2(£)W¡1
i :

The credibility factor matrix stated in Hache-

meister (1975) is

Zi = (FX
0
iWiXi+¾

2I)¡1FX0iWiXi: (8)

A weighted least squares estimate of ¯ can be

obtained by:

ˆ̄ = (X0WX)¡1X0Wy: (9)

where

X=

2666664
X1
X2
...

Xn

3777775 and y=

2666664
y1
y2
...

yn

3777775 (10)

are two large single unites, formed by the design

matrices and the vectors of observations respec-

tively, and

W=

2666664
W1 0

W2

. . .

0 Wn

3777775 , (11)

is constructed with individual exposure ma-

trices as building blocks along the principal diag-

onal.

An unbiased estimator of ¾2 takes the form

¾̂2 = n¡1
nX
i=1

¾̂2i

= n¡1(n¡m)¡1
nX
i=1

(yi¡X0i ˆ̄ i)0Wi(yi¡X0i ˆ̄ i),

(12)

where ˆ̄ i is the weighted least square estimator

for b(μi). The estimator for the covariance matrix
F is somewhat more complex. Define

G= (X0WX)¡1
nX
i=1

(X0iWiXi)(
ˆ̄
i¡ ˆ̄ )( ˆ̄ i¡ ˆ̄ )0,

(13)

¦ = I¡
nX
i=1

(X0WX)¡1(X0iWiXi)(X
0WX)¡1

£ (X0iWiXi): (14)

70 CASUALTY ACTUARIAL SOCIETY VOLUME 2/ISSUE 1



Estimation and Robustness of Linear Mixed Models in Credibility Context

The unbiased estimator for F is

C=¦¡1[G¡ (n¡ 1)(X0WX)¡1¾̂2]: (15)

Since F is symmetric, we can take our estimator
as

F̂= (C+C0)=2: (16)

4.2. Empirical studies

To estimate the structural parameters in Hache-

meister’s model, we can use R, which is handy,

user-friendly, and freely available from the In-

ternet. The simulation results we show in this

section are obtained by using the subroutine lme

in R.

In this section, we use two approaches to esti-

mate the structural parameters.

1. Hachemeister: The classical Hachemeister

estimators are computed.

2. ML: The maximum likelihood estimation is

used to compute the structural parameters.

Two ML estimators are used in this paper.

They are linked with the independent and ex-

changeable error structures and are denoted

by ML-I and ML-EX respectively.

From the simulation results, the performance of

the ML approach and the REML approach is

quite close. None of them performs universally

better than the other. Therefore, for the sake of

brevity, we only show the results of the ML ap-

proach.

In this part, two studies have been considered.

Study 1 allows us to compare the performances

of the ML estimator and Hachemeister’s esti-

mator when the joint distribution of the obser-

vations in each contract is multivariate normal.

The ML estimators are associated with differ-

ent error structures, namely, independent and ex-

changeable error structure. Study 2 assesses the

estimation efficiency of the ML estimator and

Hachemeister’s estimator when the joint distri-

bution of the observations in each contract is

not multivariate normal, but multivariate log-

normal. The number of replicates in each study

is 500.

4.2.1. Study 1
In the simulation studies under Hachemeister’s

framework, the number of entities n is set to be

25, and the number of observations in contract

i is set to be 5 for each entity. The parameter

values are taken as follows:

¯ = (20,10)0, ¾2 = 42, μ11 = 3
2,

μ12 = 4, μ22 = 3
2:

Here μ11, μ22 are the diagonal elements of F,
while μ12 is the off-diagonal element of F. Each
weighting element wij is generated from a Pois-

son distribution with its mean ¸i following a

uniform distribution defined in the interval

(5,100). The explanatory variable xij1 is set to be

1, while xij2 is simulated from the normal dis-

tribution with variance 5 and around the mean

level which is uniformly selected from the inter-

val (¡5,5).
As for the simulation results, we show the bias

and mean square error (MSE) of Hachemeister’s

and ML for ¯i1, ¯i2, Zi11, Zi12, Zi21, Zi22, μ11, μ12,

μ22 and ¾
2.

Table 1 is associated with an independent er-

ror structure, while Table 2 is associated with

an MA(1) error structure. As we can see, while

the unbiased property of Hachemeister’s estima-

tor for the variance and covariance parameters

is reasonably well exhibited, the huge discrepan-

cies of the performance of the credibility estima-

tors for ¯i and Zi between the ML method and
Hachemeister’s method occur.

Notice that the mean squared error in estimat-

ing ¯i is impressively low for the ML method

under both the independent and the MA(1) error

structures. Judging from the credibility formula

for computing ¯i, the accuracy of the estima-

tion for ¯i largely depends on the accuracy in

estimating the credibility factor Zi. The estima-
tion of Zi relies on the estimation of the vari-
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Table 1. Estimation results for Study 1 in the Hachemeister model associated with an independent error structure and the
observation are simulated from normal distribution

Parameter Method

ML-I ML-MA1 Hachemeister

¯i1 Bias ¡3:51£10¡3 ¡3:57£10¡3 1:73
MSE 4:70£10¡1 (> 50000†) 4:82£10¡1 (> 50000) 4:26£104

¯i2 Bias ¡2:16£10¡3 ¡1:87£10¡3 ¡1:83£10¡1

MSE 5:34£10¡2 (> 10000) 5:46£10¡2 (> 10000) 6:05£102

Zi11 Bias ¡1:12£10¡2 ¡9:16£10¡3 ¡5:32£10¡1

MSE 1:16£10¡3 (> 1000000) 1:17£10¡3 (> 1000000) 3:93£103

Zi12 Bias 4:52£10¡3 3:63£10¡3 3:41£10¡1

MSE 6:85£10¡4 (> 1000000) 6:70£10¡4 (> 1000000) 1:72£103

Zi21 Bias 6:75£10¡4 5:53£10¡4 5:79£10¡2

MSE 9:75£10¡5 (> 500000) 1:00£10¡4 (> 500000) 5:49£101

Zi22 Bias ¡1:22£10¡3 ¡9:88£10¡4 ¡3:62£10¡2

MSE 7:57£10¡5 (> 100000) 7:35£10¡5 (> 100000) 2:42£101

μ11 Bias ¡4:37£10¡1 ¡4:37£10¡1 3:04£10¡1

MSE 7:85 (11:3) 7:84 (11:3) 8:84£101

μ12 Bias ¡2:50£10¡1 ¡2:51£10¡1 2:59£10¡1

MSE 3:84 (9:77) 3:83 (9:79) 3:75£101

μ22 Bias ¡4:89£10¡1 ¡4:91£10¡1 ¡2:04£10¡1

MSE 6:44 (2:02) 6:43 (2:02) 1:30£101

¾2 Bias 6:19£10¡2 2:85£10¡2 5:98£10¡2

MSE 6:37 (1:00) 8:37 (0:76) 6:40

† Relative efficiency of the estimator. Hachemeister’s estimator serves as the base line.

ance and covariance parameters. Thus, the mean

squared error (MSE) for each of the parameters

specifying F in Hachemeister’s approach is two
to eleven times higher than its counterpart in the

ML estimation approach. From our simulation

results, around 15% of the estimates of the co-

variance matrix F are found not to be positive. In
contrast, the ML approach gives reasonable esti-

mates for all structural parameters. The poor es-

timation of Zi in Hachemeister’s method is likely
to be incurred by the low accuracy level in esti-

mating the variance and covariance parameters.

As a result, the huge squared error loss for ¯i
occurs.

From Table 1, we can see that the ML-I method

has slight advantages to ML-MA1 method due

to its correct assumption about the error struc-

ture, and the reverse is true for Table 2. Com-

paring to the classical method, the MSE of μ11,

μ12 and μ22 are reduced by 50% to 90% in the

ML approach. This impressive improvement re-

sults in enormous reductions of MSE in estimat-

ing the credibility factors (relative efficiency be-

yond 500,000 in Table 1, relative efficiency be-

yond 5,000 in Table 2). Hence the estimation ac-

curacy of ¯i has been largely improved (relative

efficiency beyond 10,000 in Table 1, relative ef-

ficiency beyond 450 in Table 2).

4.2.2. Study 2
In this study, while taking the same setting

used in Study 1, the vectors of error terms are

simulated from multivariate lognormal distribu-

tion. This distribution has skewness of 0.33 and

kurtosis of 6.64. Therefore the simulation results

in this study show us the performance of the pro-

posed ML and Hachemeister’s estimators when

the observations are no longer normally distri-

buted.
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Table 2. Estimation results for Study 1 in the Hachemeister model associated with a MA(1) error structure (½ = 0:4) and the
observation are simulated from normal distribution

Parameter Method

ML-I ML-MA1 Hachemeister

¯i1 Bias ¡7:81£10¡3 ¡9:48£10¡3 ¡0:159
MSE 4:72£10¡1 (463) 4:25£10¡1 (514) 2:18£102

¯i2 Bias ¡6:30£10¡4 4:93£10¡4 2:04£10¡2

MSE 4:45£10¡2 (948) 3:55£10¡2 (> 1000) 42:2

Zi11 Bias ¡8:19£10¡3 ¡8:31£10¡3 ¡1:25£10¡2

MSE 1:40£10¡3 (> 5000) 1:00£10¡3 (> 5000) 7:35

Zi12 Bias 5:95£10¡3 3:44£10¡3 1:22£10¡2

MSE 8:04£10¡4 (> 5000) 5:39£10¡4 (> 10000) 5:87

Zi21 Bias 3:83£10¡3 5:67£10¡5 7:30£10¡3

MSE 1:72£10¡4 (> 5000) 5:51£10¡5 (> 10000) 1:01

Zi22 Bias ¡3:64£10¡3 ¡4:93£10¡4 ¡1:66£10¡2

MSE 1:32£10¡4 (> 5000) 3:82£10¡5 (> 10000) 1:17

μ11 Bias ¡3:56£10¡1 ¡4:01£10¡1 3:51£10¡1

MSE 7:66 (11:0) 7:55 (11:2) 8:43£101

μ12 Bias ¡2:06£10¡1 ¡2:12£10¡1 2:51£10¡1

MSE 3:93 (9:41) 3:94 (9:39) 3:70£101

μ22 Bias ¡5:09£10¡1 ¡5:09£10¡1 ¡2:10£10¡1

MSE 6:39 (2:02) 6:38 (2:02) 1:29£101

¾2 Bias ¡2:46 5:47£10¡2 ¡2:46
MSE 11:9 (1:00) 9:71 (1:23) 1:19£101

From Table 3, we can see the MSE of the

structural parameters μ11, μ12, and μ22 in the ML

approach have been reduced by 50% to 80%

relative to Hachemeister’s approach. There are

enormous discrepancies in the performance of

the estimation of the credibility factors between

the ML approach and Hachemeister’s approach.

The relative efficiency is more than 100,000 for

Zi11, Zi12, Zi21, Zi22. Hence the estimation of ¯i
has been largely improved in the ML approach.

With reference to Table 4, the ML-MA1 method

performs the best in estimating ¯i and the credi-

bility factors due to its correct assumption about

the error structure. The relative efficiency for the

credibility factors reaches the level beyond 1000,

while the MSE of ¯i1 and ¯i2 in Hachemeister’s

approach is 26—60 times higher than the counter-

parts in the ML approach. Hence, we can see that

though distribution of the error terms violate the

assumptions made in the ML approach, they still

perform very well compared to Hachemeister’s

approach.

5. Parameter estimation in the
crossed classification model
5.1. Dannenburg’s credibility model and
method
Dannenburg et al. (1996) proposed the two-way

crossed classification model. In Dannenburg’s

model, the risk factors are treated in a symmetri-

cal way. The two-way crossed classification

model takes the following form:

yijt = ¯+®
(1)
i +®(2)j +®(12)ij + ²ijt,

t = 1, : : : ,Tij: (17)

In this model, there are two risk factors.

The number of categories of the first factor is

I and of the second risk factor is J . An insur-

ance portfolio which is subdivided by these two

risk factors can be viewed as a two-way table.
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Table 3. Estimation results for Study 2 in the Hachemeister model associated with an independent error structure and the
observation are simulated from lognormal distribution

Parameter Method

ML-I ML-MA1 Hachemeister

¯i1 Bias 1:25£10¡3 1:51£10¡3 3:88£10¡1

MSE 3:12£10¡1 (> 5000) 3:19£10¡1 (> 5000) 1:96£103

¯i2 Bias 9:90£10¡4 1:26£10¡3 ¡7:49£10¡2

MSE 3:01£10¡2 (> 1000) 3:07£10¡2 (> 1000) 5:11£101

Zi11 Bias ¡7:54£10¡3 ¡6:87£10¡3 ¡6:27£10¡2

MSE 6:30£10¡4 (> 100000) 7:04£10¡4 (> 100000) 2:60£102

Zi12 Bias 2:85£10¡3 2:66£10¡3 9:49£10¡2

MSE 3:09£10¡4 (> 1000000) 3:18£10¡4 (> 1000000) 3:32£102

Zi21 Bias 2:26£10¡4 2:29£10¡4 2:56£10¡2

MSE 3:29£10¡5 (> 100000) 3:34£10¡5 (> 100000) 7:01

Zi22 Bias ¡6:93£10¡4 ¡6:13£10¡4 ¡3:30£10¡2

MSE 1:88£10¡5 (> 100000) 1:86£10¡5 (> 100000) 8:61

μ11 Bias ¡4:20£10¡1 ¡4:28£10¡1 ¡5:81£10¡3

MSE 7:29 (5:60) 7:29 (5:60) 4:08£101

μ12 Bias ¡2:22£10¡1 ¡2:23£10¡1 3:52£10¡2

MSE 3:75 (5:79) 3:74 (5:80) 2:17£101

μ22 Bias ¡0:46£10¡1 ¡4:61£10¡1 ¡4:21£10¡2

MSE 6:27 (2:19) 6:26 (2:19) 1:37£101

¾2 Bias 5:89£10¡3 6:72£10¡2 2:11£10¡3

MSE 7:11 (0:99) 8:74 (0:81) 7:06

Suppose I is 2, J is 3. We have

®(1)1 +! +®(12)11 +®(12)12 +®(12)13

®(1)2 +! +®(12)21 +®(12)22 +®(12)23

" " "
+®(2)1 +®(2)2 +®(2)3

The first risk factor ®(1)i can be called the row

factor. The second risk factor ®(2)j can be called

the column factor. The structural parameters are

defined as follows:

Var(®(1)i ) = b
(1), Var(®(2)j ) = b

(2),

Var(®(12)ij ) = a, Var(²ijt) = s
2=wijt:

The credibility estimator of yij,Tij+1 is equal to

(Dannenburg et al., 1996):

yij,Tij+1 = ¯+ zij(yijw ¡¯)+ (1¡ zij)z
(1)
i (xizw¡¯)

+ (1¡ zij)z(2)j (xzjw¡¯), (18)

where the credibility factors are

zij =
a

a+¾2=wij§
, with wij§ =

X
t

wijt,

(19)

z(1)i =
b(1)

b(1) + a=zi§
, with zi§ =

X
j

zij ,

(20)

z(2)j =
b(2)

b(2) + a=z§j
, with z§j =

X
i

zij :

(21)

xizw, xzjw are the adjusted weighted averages,

which can give us a much clearer view on the

risk experience with regard to different risk fac-

tors,

xizw =
X
j

zij
zi§
(yijw¡¥(2)¤j ), (22)

xzjw =
X
i

zij
z§j
(yijw¡¥(1)¤i ), (23)
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Table 4. Estimation results for Study 2 in the Hachemeister model associated with a MA(1) error structure (½ = 0:4) and the
observation are simulated from lognormal distribution

Parameter Method

ML-I ML-MA1 Hachemeister

¯i1 Bias 3:57£10¡4 ¡1:92£10¡3 1:01£10¡3

MSE 3:47£10¡1 (54:2) 3:12£10¡1 (60:3) 1:88£101

¯i2 Bias ¡4:75£10¡4 ¡1:31£10¡3 2:31£10¡3

MSE 2:90£10¡2 (26:6) 2:51£10¡2 (30:7) 7:70£10¡1

Zi11 Bias ¡5:43£10¡4 ¡6:57£10¡3 ¡6:86£10¡3

MSE 6:64£10¡4 (> 1000) 6:12£10¡4 (> 1000) 2:00

Zi12 Bias 3:26£10¡4 2:35£10¡3 6:42£10¡3

MSE 3:03£10¡4 (> 1000) 2:87£10¡4 (> 1000) 6:15£10¡1

Zi21 Bias 9:17£10¡4 1:53£10¡4 1:49£10¡3

MSE 4:26£10¡5 (> 1000) 2:11£10¡5 (> 1000) 6:84£10¡2

Zi22 Bias ¡1:07£10¡3 ¡4:62£10¡4 ¡3:74£10¡4

MSE 1:95£10¡5 (> 1000) 1:24£10¡5 (> 1000) 2:40£10¡2

μ11 Bias ¡3:20£10¡1 ¡3:95£10¡1 1:10£10¡1

MSE 7:57 (5:18) 7:60 (5:16) 3:92£101

μ12 Bias ¡1:98£10¡1 ¡2:20£10¡1 2:89£10¡2

MSE 3:95 (5:57) 4:04 (5:45) 2:20£101

μ22 Bias ¡4:55£10¡1 ¡4:62£10¡2 ¡2:10£10¡1

MSE 6:27 (2:19) 6:37 (2:15) 1:37£101

¾2 Bias ¡2:70 ¡1:17£10¡1 ¡2:70
MSE 1:25£101 (0:99) 8:89 (1:39) 1:24£101

where

yijw =
X
t

wijt
wij§

yijt:

And ¥(1)¤i , ¥(2)¤j are the row effect and the col-

umn effect respectively. They can be found as

the solution of the following I+ J linear equa-

tions using iterative approach.

¥ (1)¤i = z(1)i

24X
j

zij
zi§
(yijw ¡¥(2)¤j )¡¯

35 ,
(24)

¥(2)¤j = z(2)j

"X
i

zij
z§j
(yijw ¡¥(1)¤i )¡¯

#
:

(25)

In Dannenburg’s approach, the structural

parameters ¯ and s2 can be estimated by

the following equations (Dannenburg et al.,

1996):

¯ = xwww =
X
i

X
j

wij§
w§§§

yijw, (26)

s2² =
P
i

P
j

P
t wijt(yijt¡ yijw)2P

i

P
j(Tij ¡ 1)+

: (27)

To obtain the estimators a, b(1) and b(2), Dan-

nenburg et al. (1996) suggested to solve the fol-

lowing linear equations on moments:

E

"
1

I

X
i

ÃX
j

wij§
wi§§

(yijw ¡ yiww)2¡ s2²(J ¡ 1)=wi§§
!#

= (b(2) + a)

Ã
1¡ 1

I

X
i

X
j

μ
wij§
wi§§

¶2!
, (28)

E

"
1

J

X
j

ÃX
i

wij§
w§j§

(yijw ¡ ywjw)2¡ s2²(I¡ 1)=w§j§
!#

= (b(1) + a)

Ã
1¡ 1

J

X
j

X
i

μ
wij§
w§j§

¶2!
, (29)
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E

24X
i

X
j

wij§
w§§§

(yijw¡ ywww)2¡ s2²(IJ ¡ 1)=w§§§

35
= b(1)

Ã
1¡

X
i

μ
wi§§
w§§§

¶2!

+ b(2)

0@1¡X
j

μ
w§j§
w§§§

¶21A
+ a

0@1¡X
i

X
j

μ
wij§
w§§§

¶1A , (30)

where yiww =
P
j(wij§=wi§§)yijw and ywjw =P

i(wij§=w§j§)yijw. To find the “unbiased esti-

mator” of a, b(1) and b(2), we can drop the ex-

pectation operation of the above linear equations.

As we can see, Dannenburg’s estimates are based

on the method of moments.

5.2. Empirical studies
Since Dannenburg’s crossed classification

model is of the form of linear mixed models, we

could make use of the statistical packages that are

designed especially for the parameter estimation

in linear mixed models. One possibility is SAS.

In our simulation studies, the results are obtained

from the SAS procedure PROC MIXED. Since

the simulation results for the ML and REML es-

timators are very similar, we only present the re-

sults for ML in this paper.

The estimation approaches we consider here

are about the same as in Hachemeister’s model,

except that the first approach is Dannenburg’s

estimation approach. We would also provide two

studies which is similar to Section 4. In Study 1,

the error terms are simulated from multivariate

normal distribution. In Study 2, the error terms

are simulated from multivariate lognormal distri-

bution.

5.2.1. Study 1
The simulation study is based on the following

choice of parameters:

I = 12, J = 8, Tij = n= 10,

b(1) = 100, b(2) = 64, a= 4, s2 = 196:

In this study, the observations are divided into

I£ J cells (96 cells). We randomly select 32 cells
first, and these 32 cells have weight wijt = 150;

then we select another 32 cells from the rest cells,

these 32 cells have weight wijt = 10; the cells

left have weight wijt = 1:5. Each sector retains its

weight which has been assigned during the first

replicate. The error terms ²ijts are simulated from

multivariate normal distribution. The error struc-

ture is independent for Table 5, and exchangeable

with ½= 0:4 for Table 6.

As for the simulation results, we show the bias

and mean square error (MSE) of the Dannenburg

and ML approaches for ¯, yij,Tij+1, zij , z
(1)
i , z

(2)
j ,

b(1), b(2), a and s2.

We can see from Tables 5 and 6 that a sig-

nificant advantage has been recorded for the ML

approach over Dannenburg’s approach. With re-

gards to the structural parameters, the ML esti-

mators have largely improved the estimation effi-

ciency, especially for the parameters a and b(2).

As a result, the performance of estimating the

credibility factors and yij,Tij+1 of the ML approach

are very impressive. The reason for the poor per-

formance of the Dannenburg estimator is that the

level of precision in estimating a and b(2) is not

enough to produce satisfactory estimates for the

credibility factors. From our simulation results,

for 500 repetitions, around 40% of the estimates

of a are found to be negative, and around 6% of

the estimates of b(2) are found to be negative. In

contrast, all structural parameters estimated us-

ing ML approach fall in an admissible range.

From Table 5, we can see that MSE for a

in Dannenburg’s approach is about 500 times

higher than the counterpart in the ML approach.

As expected, the ML approach outperforms Dan-

nenburg’s estimation approach in estimating the

future exposure y (relative efficiency around

1000) and the credibility factors (relative effi-

ciency beyond 5000 for zij and z
(2)
j , relative effi-

ciency beyond 40 for z(1)i ). From Table 6, due to

the correct assumption made on the error struc-
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Table 5. Estimation results for Study 1 in the Dannenburg’s model associated with an independent error structure and the
observations are simulated from normal distribution

Parameter Method

ML-I ML-EX Dannenburg

¯ Bias ¡1:42£10¡1 ¡1:54£10¡1 ¡2:23£10¡1

MSE 1:55£101 (1:48) 1:55£101 (1:48) 2:30£101

y Bias ¡1:16£10¡2 ¡8:91£10¡3 ¡3:89
MSE 3:96£101 (960) 4:38£101 (868) 3:80£104

zij Bias ¡1:80£10¡3 ¡2:08£10¡3 9:19£10¡2

MSE 1:13£10¡3 (> 5000) 1:30£10¡3 (> 5000) 7:51£101

z(1)
i Bias ¡2:34£10¡3 ¡2:35£10¡3 ¡5:54£10¡3

MSE 3:54£10¡5 (44:6) 3:68£10¡5 (42:9) 1:58£10¡3

z(2)
j

Bias ¡4:32£10¡3 ¡4:37£10¡3 4:32£10¡2

MSE 1:38£10¡4 (> 5000) 1:42£10¡4 (> 5000) 1:12

b(1) Bias ¡5:88 ¡5:69 ¡1:23
MSE 1:83£103 (1:15) 1:82£103 (1:15) 2:10£103

b(2) Bias ¡4:42 ¡4:51 ¡1:26
MSE 1:07£103 (2:53) 1:07£103 (2:53) 2:71£103

a Bias 4:67£10¡2 5:56£10¡2 4:72£10¡1

MSE 8:25£10¡1 (506:67) 9:79£10¡1 (426:97) 4:18£102

s2 Bias ¡1:62£10¡1 1:08£10¡1 1:65£10¡1

MSE 8:80£101 (1:03) 8:97£101 (1:01) 9:03£101

Table 6. Estimation results for Study 1 in the Dannenburg’s model associated with a MA(1) error structure (½ = 0:4) and the
observations are simulated from normal distribution

Parameter Method

ML-I ML-EX Dannenburg

¯ Bias 5:53£10¡1 5:43£10¡1 2:71£10¡1

MSE 1:75£101 (1:34) 1:76£101 (1:33) 2:34£101

y Bias ¡2:48£10¡1 ¡2:44£10¡1 2:45£101

MSE 3:52£101 (> 10000) 3:78£101 (> 10000) 1:21£106

zij Bias 1:13£10¡1 4:29£10¡2 3:08£10¡1

MSE 2:25£10¡2 (203) 4:49£10¡3 (> 1000) 4:57

z(1)
i

Bias ¡7:23£10¡3 ¡1:04£10¡3 ¡1:55£10¡2

MSE 1:12£10¡4 (286) 2:29£10¡5 (> 1000) 3:20£10¡2

z(2)
j Bias ¡8:76£10¡3 ¡1:78£10¡3 ¡5:65£10¡2

MSE 1:89£10¡4 (> 1000) 4:52£10¡5 (> 10000) 8:37

b(1) Bias ¡5:81 ¡5:96 ¡2:28
MSE 1:75£103 (1:14) 1:74£103 (1:15) 2:00£103

b(2) Bias ¡6:02 ¡6:18 ¡7:09
MSE 9:16£102 (2:70) 9:21£102 (2:68) 2:47£103

a Bias 3:36 ¡2:18£10¡1 4:20
MSE 1:32£101 (35:8) 1:05 (450) 4:72£102

s2 Bias ¡7:16£101 ¡7:41£101 ¡7:41£101

MSE 5:13£103 (1:07) 5:48£103 (1:00) 5:48£103
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ture, as we can expect that the ML-EX estimator

performs the best. The ML-EX estimator main-

tains the high accuracy level in estimating the

structural parameters, especially in estimating a.

As a result, the MSE of the credibility factors in

the ML-EX method is impressively low.

5.2.2. Study 2
In this study, the setting is similar to Study 1,

except the error terms ²ijts are simulated from

multivariate lognormal distribution. The vector

of the error terms has mean shifted to 0, and
s2 = 196. The error structure is independent in

Table 3 and exchangeable with ½= 0:4 in Ta-

ble 4. The lognormal distribution has skewness

of 2.97 and kurtosis of 25.3, which substantially

departs from normal distribution. The estimators

used in this study are the same as in Study 1.

As we explained in Study 1, Dannenburg’s ap-

proach fails in providing credible estimates of

a and b(2). From Table 7, we can observe the

large discrepancies in the performance of the

estimators for y and the credibility factors be-

tween the ML approach and Dannenburg’s ap-

proach. The simulation shows even better results

than we have observed in Table 5 in estimating

the credibility factors (relative efficiency beyond

10,000 for zij and z
(2)
j , relative efficiency beyond

100 for z(1)i ). From Table 8, the ML-EX outper-

forms the other methods especially in estimat-

ing a and z(1)i . Therefore, the simulation results

reaffirm that the proposed ML approach can pro-

vide us credible estimates even when the distri-

bution of the observation substantially deviates

from normality.

6. Concluding remarks

In this paper, we implement the linear mixed

model in credibility context, and use ML and

REML approach to estimate the structural pa-

rameters. There are other approaches in estimat-

ing the structural parameters in the credibility

models. By comparing our approaches with the

generalized least square estimation approach pro-

posed by Cossette and Luong (2003) and the

GEE approach proposed by Lo, Fung, and Zhu

(2006) and Lo, Fung, and Zhu (2007), we dem-

onstrate the merits of our approaches. The former

can hardly be extended beyond the Bühlmann

model, in which the heteroscedasticity is as-

sumed in the error terms. The latter is hard to

apply to classical credibility models when the

number of observations with regard to the same

contract gets bigger. For instance, if the num-

ber of observations for the same contract exceeds

10, the working covariance matrix would be ex-

tremely complicated, and the dimension would

be very large in the GEE approach. Also the ro-

bustness of these two approaches has not been

investigated.

Furthermore, from the empirical studies, the

time our approach takes is much shorter than the

GEE approach. For instance, it takes less than

15 minutes to get the ML and REML estima-

tion results for 500 repetitions in the Hachemeis-

ter model using a Pentium 4 3.00 GHz desk-

top computer with 2.00 GB of RAM; however

it takes more than one and a half hours to get the

GEE estimates for 500 repetitions. Furthermore,

with the aid of software, there are no additional

complications when we want to exercise the pro-

posed ML and REML approaches with different

assumptions on the error structure.

Moreover, we have investigated the perfor-

mance of ML and REML methods when the as-

sumptions regarding the error structure and dis-

tribution are violated. We can see from the sim-

ulation studies, for the situations that the error

terms follow normal and non-normal distribu-

tions, ML and REML methods maintain satisfac-

tory results. This serves an empirical justification

of using the ML and REML approaches when

distribution of the observations is unknown.

In this paper, we have only showed the re-

sults of the ML approach for brevity. Verbeke

and Molenberghs (2000) made the comparison
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Table 7. Estimation results for Study 2 in the Dannenburg’s model associated with an independent error structure and the
observations are simulated from lognormal distribution

Parameter Method

ML-I ML-EX Dannenburg

¯ Bias ¡2:19£10¡1 ¡2:20£10¡1 ¡2:67£10¡1

MSE 1:57£101 (1:54) 1:57£101 (1:54) 2:41£101

y Bias 2:31£10¡2 2:37£10¡2 ¡7:55
MSE 4:07£101 (946) 4:07£101 (946) 3:85£104

zij Bias ¡2:44£10¡3 ¡3:40£10¡3 2:12£10¡1

MSE 9:93£10¡4 (> 10000) 1:24£10¡3 (> 10000) 1:74£101

z(1)
i Bias ¡2:16£10¡3 ¡2:13£10¡3 ¡3:13£10¡3

MSE 4:28£10¡5 (107) 4:24£10¡5 (108) 4:57£10¡3

z(2)
j

Bias ¡3:80£10¡3 ¡3:76£10¡3 ¡7:04£10¡2

MSE 1:22£10¡4 (> 10000) 1:22£10¡4 (> 10000) 4:47

b(1) Bias ¡4:81 ¡4:84 ¡6:67£10¡2

MSE 1:85£103 (1:12) 1:85£103 (1:12) 2:07£103

b(2) Bias ¡3:56 ¡3:54 2:69
MSE 9:96£102 (2:90) 9:96£102 (2:90) 2:89£103

a Bias ¡7:10£10¡3 ¡2:07£10¡2 1:96£10¡1

MSE 6:61£10¡1 (539) 7:95£10¡1 (493) 3:92£102

s2 Bias ¡3:41£10¡1 ¡4:33£10¡1 ¡4:34£10¡1

MSE 1:73£102 (0:97) 1:67£102 (1:00) 1:67£102

Table 8. Estimation results for Study 2 in the Dannenburg’s model associated with a MA(1) error structure (½ = 0:4) and the
observations are simulated from lognormal distribution

Parameter Method

ML-I ML-EX Dannenburg

¯ Bias 2:64£10¡1 2:48£10¡1 3:29£10¡1

MSE 1:70£101 (1:44) 1:70£101 (1:44) 2:45£101

y Bias 7:04£10¡3 ¡2:13£10¡3 2:69
MSE 2:57£101 (> 1000) 2:91£101 (> 1000) 9:15£104

zij Bias 1:68£10¡1 5:31£10¡2 ¡7:71£10¡1

MSE 5:26£10¡2 (> 10000) 6:78£10¡3 (> 100000) 1:96£103

z(1)
i

Bias ¡1:69£10¡2 ¡1:27£10¡3 ¡1:81£10¡2

MSE 4:93£10¡4 (3:23) 2:19£10¡5 (72:60) 1:59£10¡3

z(2)
j Bias ¡2:02£10¡2 ¡2:41£10¡3 3:33£10¡2

MSE 9:48£10¡4 (> 1000) 1:06£10¡4 (> 10000) 4:37

b(1) Bias ¡4:53 ¡5:05 ¡2:22
MSE 1:69£103 (1:12) 1:66£103 (1:14) 1:90£103

b(2) Bias ¡3:06 ¡3:54 ¡8:13
MSE 1:01£103 (2:96) 1:01£103 (2:96) 2:99£103

a Bias 9:74 7:10£10¡2 9:19
MSE 1:22£102 (4:43) 1:51 (358) 5:40£102

s2 Bias ¡7:59£101 ¡7:75£101 ¡7:75£101

MSE 5:84£103 (1:04) 6:09£103 (1:00) 6:09£103
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between ML and REML estimation. With regard

to the mean squared error of estimating the vari-

ance and covariance parameters, neither of the

two estimation procedures are universally bet-

ter than the other. The performance of ML and

REML depends on the specification of the un-

derlying model, and possibly on the true value

of the variance and covariance parameters. How-

ever, when the rank of design matrix Xi is less
than 4, the ML estimator of the residual ¾2 gen-

erally outperforms the REML estimator, but the

opposite is true when the rank of Xi gets larger.
Generally speaking, we can expect the differ-

ence between ML and REML estimator increases

when the rank of Xi increases. In our simulation
studies, since the rank of Xi is not large, neither
the ML approach or the REML approach per-

forms universally better than the other in both

Dannenburg’s model and Hachemeister model.
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