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AbSTRACT

In many applied claims reserving problems in P&C insurance, 

the claims settlement process goes beyond the latest devel-

opment period available in the observed claims development 

triangle. This makes it necessary to estimate so-called tail 

development factors which account for the unobserved part of 

the insurance claims. We estimate these tail development fac-

tors in a mathematically consistent way. This paper is a modi-

fication of the paid-incurred chain (PIC) reserving model of 

Merz and Wüthrich (2010). This modification then allows for 

the prediction of the outstanding loss liabilities and the cor-

responding prediction uncertainty under the inclusion of tail 

development factors.

KEYwORdS

Tail factors, claims reserving, paid-incurred chain, outstanding loss liabilities,  
PIC model, claims development triangle, ultimate claim prediction,  

prediction uncertainty, MSEP



Variance Advancing the Science of Risk

62 CASUALTY ACTUARIAL SOCIETY VOLUME 7/ISSUE 1

1. Introduction and  
model assumptions

Often in P&C claims reserving problems, the claims 
settlement process goes beyond the latest development 
period available in the observed claims development 
triangle. This means that there is still an unobserved 
part of the insurance claims for which one needs to 
build claims reserves. In such situations, claims reserv-
ing actuaries apply so-called tail development factors 
to the last column of the claims development triangle 
which account for the settlement that goes beyond this 
latest development period. Typically, one has only 
limited information for the estimation of such tail 
development factors. Therefore, various techniques 
are applied to estimate these tail development factors. 
Most of these estimation methods are ad hoc methods 
that do not fit into any stochastic modeling framework. 
Popular estimation techniques, for example, fit para-
metric curves to the data using the right-hand corner 
of the claims development triangle (Mack 1999; Boor 
2006; Verrall and Wüthrich 2012). In practice, one 
often does a simultaneous study of claims payments 
and claims incurred data, i.e., incurred-paid ratios are 
used to determine tail development factors (see Sec-
tion 3 in Boor 2006).

In this paper we review the paid-incurred chain 
(PIC) reserving method. The log-normal PIC reserv-

ing model introduced in Merz and Wüthrich (2010) 
can easily be extended so that it allows for the inclu-
sion of tail development factors in a natural and 
mathematically consistent way. Similar to common 
practice, the tail development factor estimates will 
then be based on incurred-paid ratios within our PIC 
reserving framework.

In the following, we denote accident years by i ∈ 
{0, . . . , J} and development years by j ∈ {0, . . . , J,  

J + 1}. Development year J refers to the latest observed 
development year of accident year i = 0 and the step 
from J to J + 1 refers to the tail development factors 
(see Figure 1). Cumulative payments in accident year 
i after j development years are denoted by Pi, j and 
the corresponding claims incurred by Ii, j. Moreover,  
for the ultimate claim we assume Pi, J+1 = Ii, J+1 with 
probability 1 (see Figure 1). This means that we 
assume that—after several development periods 
beyond the latest observed development year J—the 
cumulative payments and the claims incurred lead to 
the same ultimate claim amount. That is, ultimately, 
when all claims of accident year i are settled, Ii, J+1 and 
Pi, J+1 must coincide.

Model Assumptions 1.1 Log-normal PIC 
reserving model, Merz and Wüthrich (2010)
•	 Conditionally,	 given	 parameters	 Q = (F0, . . . , 

FJ+1, Y0, . . . , YJ, s0, . . . , sJ+1, t0, . . . , tJ), we have

i / j0jJ1+JJj0j / i
0 0

i claims payments Pi,j PiJ PiJ+1=IiJ+1 IiJ claims incurred Ii,j i

J J

Figure 1. PIC reserving model. Left panel: cumulative payments Pi,j development triangle;  
Right panel: claims incurred Ii,j development triangle; both leading to the same ultimate claim amount 
Pi,J+1 = Ii,J+1 for accident year i
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– the random vector (x0,0, . . . , xJ,J+1, z0,0, . . . , zJ,J) 
has a multivariate Gaussian distribution with 
uncorrelated components given by

 xi, j ~ N(Fj , s2
j)     for i ∈ {0, . . . , J} and  

j ∈ {0, . . . , J + 1}, and

 zi, j ~ N(Yj , t2
j)     for i ∈ {0, . . . , J} and  

j ∈ {0, . . . , J};

– cumulative payments Pi, j are given by the recur-
sion, j = 0, . . . , J + 1, 

 Pi, j = Pi, j-1 exp{xi, j},    with initial value Pi, -1 = 1;

– claims incurred Ii, j are given by the (backwards) 
recursion, j = 0, . . . , J,

 Ii, j = Ii, j+1 exp{-zi, j},

    with initial value Ii, J+1 = Pi, J+1.

•	 The	components	of	Q are independent and sj, tj > 0 
for all j (with probability 1). 

For an extended model discussion we refer to 
Merz and Wüthrich (2010). Basically, the PIC 
Model Assumptions 1.1 are a combination of  
Hertig’s (1985) log-normal model (applied to cumu-
lative payments) and Gogol’s (1993) Bayesian 
claims reserving model (applied to claims incurred). 
In contrast to the PIC reserving model in Merz and 
Wüthrich (2010), we now add an extra development 
period from J to J + 1. This is exactly the crucial 
step that allows for the consideration of tail devel-
opment factors and it leads to the study of incurred-
paid ratios for the inclusion of such tail development 
factors.

The PIC Model Assumptions 1.1 may be criticized 
because of two restrictive assumptions. We briefly 
discuss how these can be relaxed.

•	 Assumption	Pi,-1 = 1 for all i ∈ {0, . . . , J}: If there 
are known (prior) differences between differ-
ent accident years i, this can easily be integrated 
by setting Pi,-1 = vi with constants v0, . . . , vJ > 0 
describing these prior differences.

•	 Independence	between	xi, j and zi, l: This is probably 
the main weakness of the model. However, this  

assumption can easily be relaxed in the spirit of 
Happ and Wüthrich (2013). To keep the analysis 
simple, we refrain from studying this more com-
plex model in the present paper.

2. Estimation of tail  
development factors

At time J one has observed data given by the set

D P I i j J i J j JJ i j i j{ }= + ≤ ≤ ≤ ≤ ≤, : , 0 , 0 ,, ,

and one needs to predict the ultimate claim amounts 
Pi, J+1 = Ii, J+1, conditional on these observations DJ. 
On the one hand, this involves the calculation of 
the conditional expectations E[Pi, J+1|DJ, Q] and,  
on the other hand, it involves Bayesian inference 
on the parameters Q, given DJ (see Theorems 2.4 
and 3.4 in Merz and Wüthrich 2010). In this sec-
tion we discuss how to modify the general out-
line of Model Assumptions 1.1 to incorporate tail 
development estimation.

2.1. Ultimate claims prediction 
conditional on parameters

We apply Model Assumptions 1.1 to the tail devel-
opment factor estimation problem. Therefore, we 
need to specify the prior distribution of the parameter 
vector Q.

Often, there is subjectivity in claims incurred data 
Ii, j because the use of different claims adjusters with 
different estimation methods and changing reserv-
ing guidelines. Therefore, for the present set-up 
we have decided to consider claims incurred data 
Ii, j only for the estimation of tail development fac-
tors, i.e., we work under the assumption of hav-
ing incomplete claims incurred triangles (see also 
Dahms (2008) and Happ and Wüthrich (2013) for 
claims reserving methods on incomplete data). It 
is not difficult to extend the model to incorporate 
all claims incurred information, but in the present 
work this would detract from the tail development 
factor estimation discussion.
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informative as to prior distributions specifying prior 
uncertainty in this expert judgment, similar to Verrall 
and Wüthrich (2012). 

Thus, assumptions (2.1)–(2.2) imply that there is 
no systematic drift in {J* + 1, . . . J + 1}, and under 
these assumptions we consider tail factor estimation 
under the restricted observations given by

D P I i j J k l J l J

D P I l J

J i j k l

J i j k l

{ }
{ }

= + ≤ + ≤ ≥

= ≥

* , : , , *

, : * .

, ,

, ,∩

In this spirit, we consider all cumulative payment 
observations but only claims incurred observations 
from development year J* on. That is, only the claims 
incurred Ii,j from the latest J - J* + 1 development 
periods J*, J* + 1, . . . , J are used to estimate tail 
development factors and the claims reserves. We 
define the following parameters
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The following result shows that bj can be inter-
preted as the credibility weight for the claims incurred 
observations:

Theorem 2.1. Under Model Assumptions 1.1 we have, 

conditional on Q and D*
J ,

E P D P Ii J J i J i i J i

J i l l J i l
l J i

J

l J i

J

J i J i

∑∑{ }
[ ]

( )( )
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− β Φ + σ + β Ψ
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−β
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− −
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1

,
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1
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The prediction based on incomplete claims incurred 
data is done as follows. Assume there exists J* ∈ 
{0, . . . , J} such that with probability 1

J JΨ ≡ τ 2, (2.1)2

and if J* < J

J J J

J J J

τ = τ = = τ ≡ τ
Ψ = Ψ = = Ψ ≡ τ

+ −

+ −

. . . ,
. . . 2. (2.2)

* * 1 1

* * 1 1
2

Note that if J* = J we simply assume YJ ≡ t2
J / 2. 

These assumptions imply that there is no substantial 
claims incurred development after claims develop-
ment period J*, i.e., there is no systematic drift in the 
claims incurred development after J*. This is seen as 
follows, for j ∈ {J*, . . . , J}

E E E

E

i j i j

j j

[ ] [ ][ ]
[ ]

{ } { }
{ }

− ζ = − ζ Θ

= − Ψ + τ =

exp exp

exp 2 1.

, ,

2

This implies that on average the claims incurred 
prediction is correct (and we have only pure random 
fluctuations around this prediction), i.e., for j ∈  
{J* + 1, . . . , J + 1}

E I I I

I I

i j i j i j

i j i j j( )( ) { }
[ ] =

= τ −

−

− −

,

Vco exp 1 ,

, 1 , ,

, 1 , 1
2 1 2

where Vco() denotes the coefficient of variation. 
The fact that we allow tJ to differ from t corresponds 
to the difficulty that the tail development factor may 
cover several development years beyond the last 
observed column in the claims development triangle 
and therefore we may allow for standard deviation 
parameters tJ > t for the development period from 
J to J + 1 (possibly covering more than one period).

Remark. If there is expert judgment about a drift 
term in the claims incurred development Ii,J*, . . . , Ii,J+1 
this can easily be integrated by adjusting assumptions 
(2.1)–(2.2). This also allows one to consider para-
metric curves, as mentioned in Section 1, but in this 
case it is more appropriate to treat this knowledge as 
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payment development, the last line describes the claims 
incurred development, and the middle line describes 
the gap between the diagonal claims incurred and the 
diagonal claims payment observations.

In order to perform a Bayesian inference analysis 
on the parameters we need to specify the prior distri-
bution of Q.

Model Assumptions 2.2 PIC tail development factor 

model

We assume Model Assumptions 1.1 hold true with 
positive constants s0, . . . , sJ+1, tJ* = . . . = tJ-1 = t, 
YJ* = . . . = YJ-1 = t2/2 and YJ = t2

J /2. Moreover, it 
holds

N s m Jm m m( ) { }Φ φ ∈ +, for 0, . . . , 1 ,2∼

with prior parameters fm ∈ R and sm > 0. 

Under Model Assumptions 2.2 the posterior dis-
tribution u(F|D*

J ) of F = (F0, . . . , FJ+1), given D*
J , 

is given by

u D l
s

J D
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This immediately implies the following theorem:

Theorem 2.3. Under Model Assumptions 2.2 the 

posterior u(F|D*
J ) of F is a multivariate Gaussian 

distribution with posterior mean (f0
post, . . . , fJ+1 ) and 

posterior covariance matrix S(D*
J ). Define the pos-

terior standard deviation by

s s J j j Jj

post

j j= + − +( )( ) = +− − −2 2 1 2

1 0 1σ for , . . . , ..

Then, the inverse covariance matrix S(D*
J )-1 = 
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The posterior mean (f0
post, . . . , fJ+1 ) is obtained by

D c cpost
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For i > J - J* there holds bJ-i = 0 and, therefore, 
we obtain a purely claims payment based prediction 
[see also Hertig’s model (1985) presented in Sec-
tion 2.1 of Merz and Wüthrich (2010)]

Pi J i l l
l J i

J
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For i ≤ J - J* there holds bJ-i > 0 and, therefore, 
we obtain a correction term to the purely claims pay-
ment based prediction which is based on the claims 
incurred-paid ratio Ii, J-i /Pi, J-i, i.e., for a large incurred-
paid ratio we get a higher expected ultimate claim as 
can be seen from

P I P I
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2.2. Parameter estimation, 
the general case

The likelihood function of the restricted obser-
vations D*

J is given by [see also (3.5) in Merz and 
Wüthrich (2010)]

l
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where ∝ means that only relevant terms dependent on 
Q are considered. The first line describes the claims 
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(2005), then fj
post given in (2.4) corresponds to the 

linear credibility estimator in more general models. 

2.3. Parameter estimation,  
special case J* = J

We consider the special case J* = J, that is, only 
the claims incurred observation I0,J is considered in 
the tail development factor analysis. This immediately 
provides:

Corollary 2.5. Choose J* = J. Under Model 
Assumptions 2.2, the posterior distribution u(F|D*

J ) 
of F is a multivariate Gaussian distribution with  
F0, . . . , FJ+1 being independent. For m ≤ J* = J the 
posterior distribution of Fm is given by (2.4). The 
posterior of FJ+1 is given by
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This means that in the case J* = J we obtain a 
credibility-weighted average between the prior tail

development factor fJ+1 and the observation log 
I

P
J

J

.0,

0,

Henceforth, in this case only the latest incurred-
paid ratio is considered for the estimation of the tail 
development factor.

3. Posterior claims prediction  
and prediction uncertainty

3.1. General case

In view of Theorems 2.1 and 2.3 we can now predict 
the ultimate claim Pi,J+1, conditional on the restricted 
observations D*

J , under Model Assumptions 2.2.

with vector (c0, . . . , cJ+1) given by

c
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Note that the last term in the definition of an,m and 
in the definition of cj corresponds to the development 
years in D*

J where we have both claims payments and 
claims incurred information. Theorem 2.3 immediately 
implies the following corollary:

Corollary 2.4. Under Model Assumptions 2.2 the 
posterior u(F|D*

J ) of F is a multivariate Gaussian 
distribution with F0, . . . , FJ*, (FJ*+1, . . . , FJ+1) being 
independent with

N sj D j
post

j j j j j
post

J
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2
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Henceforth, Corollary 2.4 shows that for develop-
ment years j ≤ J* we obtain the well-known credibil-
ity weighted average between the prior mean fj and 
the average observation fj. The case j > J* is more 
involved: one basically obtains a weighted average 
between the prior mean fj, the average observation fj, 
and the incurred-paid ratios log Ii, J-i  /Pi, J-i, i ≥ J - j + 1.

Remark. Model Assumptions 2.2 specify a Bayes-
ian model with multivariate Gaussian distributions. 
This setup allows for closed-form solutions. For other 
distributional assumptions the problem can only be 
solved numerically using Markov chain Monte 
Carlo methods. Bayesian statistics, like the Bayes-
ian information criterion BIC, would then allow for 
model testing and model selection. If one restricts to 
linear credibility estimators, see Bühlmann and Gisler 
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We obtain the following theorem:

Theorem 3.2. Under Model Assumptions 2.2 the 
conditional MSEP of the Bayesian predictor E[Si

J
= 0 

Pi,J+1|D*
J ] for the aggregate ultimate claim Si

J
= 0 Pi,J+1 

is given by
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3.2. Special case J* = J with  
non-informative priors

We revisit the special case J* = J and we also assume 
non-informative priors meaning that s2

j → ∞. In that 
case we obtain that the posterior distributions of F0, 
. . . , FJ+1 are independent Gaussian distributions with
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This implies for the ultimate claim prediction for 
i > 0
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Proposition 3.1. Bayesian ultimate claims predictor. 
Under Model Assumptions 2.2 we predict the ulti-
mate claim Pi,J+1, given D*

J , by
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where ej = (0, . . . , 0, 1, . . . , 1)′ ∈ RJ+2 with the first j 

components equal to 0.

Next we determine the prediction uncertainty. 
Model Assumptions 2.2 and Theorem 2.3 consti-
tute a full distributional model which allows for the 
calculation of any risk measure (using Monte Carlo 
simulations) under the posterior distribution, given 
D*

J . Here, we use the most popular measure for the 
prediction uncertainty in claims reserving, the so-
called conditional mean square error of prediction 
(MSEP). The conditional MSEP has the advantage 
that we can calculate it analytically. Analytical solu-
tions have the advantage that they allow for more 
basic sensitivity analysis. The conditional MSEP 
is given by (see also Section 3.1 in Wüthrich and 
Merz (2008))
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i.e., in this Bayesian setup the conditional MSEP is 
equal to the posterior variance. This posterior vari-
ance allows for the usual decoupling into average 
processes error and average parameter estimation 
error; see (A.3). The conditional MSEP satisfies
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the claims incurred data Ii,j for i + j ≤ J are given by 
Tables 1 and 2, respectively.

We first need to determine J* ≤ J. We choose 
the value J* such that there is no substantial claims 
incurred development (no systematic drift) after devel-
opment period J*. This choice is made based on actu-
arial judgment. We therefore look at the individual 
chain-ladder factors Ii,J+1/Ii,j, j ≥ 0 and i + j + 1 ≤ J. 
These are provided in Table 3. In the upper right tri-
angle in Table 3 (with the individual chain ladder 
factors for years 6, 7, 8) we see no further systematic 
development, so we concentrate on possible choices 
J* ∈ {6, . . . , 9}.

The standard deviation parameters sj, sj and tj 
should be determined with prior knowledge only. 
In our example we assume that we have non- 
informative priors, which means that we set sj = ∞. 
For sj and tj we take an empirical Bayesian point of 

f
I

P
J

ult J

J

J J{ }= σ + τ( )
+ +

ˆ exp . (3.3)1

0,

0 ,

1
2 2

That is, the first terms in the product on the right-
hand side of (3.1) are the classical chain-ladder fac-
tors for Hertig’s log-normal model (1985); see also 
(5.11)–(5.12) in Wüthrich and Merz (2008). The last 
term in (3.1), however, describes the tail development 
factor (adjusted for the variance).

For i = 0 we have

E P D P f IJ J J J
ult

J J J[ ] { }= = σ + τ( )
+ + +

ˆ exp .* (3.4)0, 1 0 , 1 0 , 1
2 2

4. Example

In this section we provide an example. We assume 
that J = 9 and that the claims payment data Pi,j and 

Table 1. Observed claims payments data Pi, j, i  j < J.

0 1 2 3 4 5 6 7 8 9

0 1,216,632 1,347,072 1,786,877 2,281,606 2,656,224 2,909,307 3,283,388 3,587,549 3,754,403 3,821,258

1 798,924 1,051,912 1,215,785 1,349,939 1,655,312 1,926,210 2,132,833 2,287,311 2,567,056

2 1,115,636 1,387,387 1,930,867 2,177,002 2,513,171 2,931,930 3,047,368 3,182,511

3 1,052,161 1,321,206 1,700,132 1,971,303 2,298,349 2,645,113 3,003,425

4 808,864 1,029,523 1,229,626 1,590,338 1,842,662 2,150,351

5 1,016,862 1,251,420 1,698,052 2,105,143 2,385,339

6 948,312 1,108,791 1,315,524 1,487,577

7 917,530 1,082,426 1,484,405

8 1,001,238 1,376,124

9 841,930

Table 2. Observed claims incurred data Ii, j, i  j < J.

0 1 2 3 4 5 6 7 8 9

0 3,362,115 5,217,243 4,754,900 4,381,677 4,136,883 4,094,140 4,018,736 4,001,591 4,001,391 4,001,258

1 2,640,443 4,643,860 3,869,954 3,248,558 3,102,002 3,019,980 2,976,064 2,966,941 2,959,955

2 2,879,697 4,785,531 4,045,448 3,467,822 3,377,540 3,341,934 3,283,928 3,287,827

3 2,933,345 5,299,146 4,451,963 3,700,809 3,553,391 3,469,505 3,413,921

4 2,768,181 4,658,933 3,936,455 3,512,735 3,385,129 3,298,998

5 3,228,439 5,271,304 4,484,946 3,798,384 3,702,427

6 2,927,033 5,067,768 4,066,526 3,704,113

7 3,083,429 4,790,944 4,408,097

8 2,761,163 4,132,757

9 3,045,376
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uncertainty in our model according to Proposition 3.1 
and Theorem 3.2. We do this for J* ∈ {6, . . . , 9}. The 
results are provided in Table 5.

Interpretations

•	 The	 analysis shows that in the presence of tail 
development, Hertig’s model (1985) may sub-
stantially underestimate the outstanding loss lia-
bilities compared to the PIC tail development 
factor models for J* = 9, 8, 7. Only the PIC tail 
development factor model for J* = 6 gives simi-
lar reserves. This comes from the fact that the in-
curred development factors still give a downward 
trend to incurred losses in development periods 6 
and 7 (see average in Table 3), which contradicts 
our model assumptions (2.1)–(2.2) and suggests 
to choose J* = 8 or 9. Of course, as mentioned 
above, this expert choice is based on the ration-
ale that there is no systematic drift after J*, and 
statistical methods could justify this hypothesis/
choice.

•	 Including	tail	development	factors	for	J* = 8, 9 
also gives a higher prediction uncertainty msep1/2 
compared to Hertig’s model (1985) without tail  
development factors. This finding is in line with the 

view and estimate them from the data. For j = 0, . . . , 
J - 1 we set

ˆ log .,

,

σ φj

i j

i j

j
i

J j

J j

P

P
2

1

2

0

1=
−

−










−=

−

∑

Unfortunately, sJ and sJ+1 cannot be estimated from 
the data, because we do not have sufficient observa-
tions. Therefore, we make the ad hoc choice

J J J J J J{ }σ = σ = σ σ σ σ+ − − − −ˆ ˆ min ˆ , ˆ , ˆ ˆ .1 1 2 1
2

2

We estimate the parameter t = t*J  = . . . = tJ-1 with 
the empirical standard deviation of log Ii,j+1/Ii,j for  
i + j + 1 ≤ J and j ≥ 6 (because we assume that there 
is no systematic claims incurred development after 
development period 6; see Table 3). Finally, for tJ 
we do the ad hoc (expert) choice t 2

J = 3t2. This sug-
gests that we have (approximately) another three un-
correlated development periods beyond J = 9 until all 
claims are finally settled. Of course, additional infor-
mation about tJ (if available) should be used here. 
These choices provide the standard deviation param-
eters given in Table 4. Now we are ready to calculate 
the claims reserves and the corresponding prediction 

Table 3. Individual chain ladder factors Ii, j1/Ii, j for j > 0 and i  j  1 < J.

0 1 2 3 4 5 6 7 8 9

0 1.5518 0.9114 0.9215 0.9441 0.9897 0.9816 0.9957 1.0000 1.0000

1 1.7587 0.8333 0.8394 0.9549 0.9736 0.9855 0.9969 0.9976

2 1.6618 0.8453 0.8572 0.9740 0.9895 0.9826 1.0012

3 1.8065 0.8401 0.8313 0.9602 0.9764 0.9840

4 1.6830 0.8449 0.8924 0.9637 0.9746

5 1.6328 0.8508 0.8469 0.9747

6 1.7314 0.8024 0.9109

7 1.5538 0.9201

8 1.4967

9

average 1.6529 0.8561 0.8714 0.9619 0.9807 0.9834 0.9980 0.9988 1.0000

Table 4. Estimated ̂j for j  0, . . . , J  1, and ̂j for j  6, . . . , J.

0 1 2 3 4 5 6 7 8 9 10

ŝj 0.1393 0.0650 0.0731 0.0640 0.0264 0.0271 0.0405 0.0227 0.0494 0.0227 0.0227

t̂j 0.0021 0.0021 0.0021 0.0037
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one given by D*
J . In the present work we have 

decided to work with the restricted information D*
J 

only because then we can fully concentrate on tail 
factor estimation. Otherwise tail factor estimation 
would be more hidden in the data and analysis.

5. Conclusion

We have modified the PIC reserving model from 
Merz and Wüthrich (2010) so that it allows for the 
incorporation of tail development factors. These 
tail development factors are estimated considering 
claims incurred-paid ratios in an appropriate way. 
This extends the ad hoc methods used in practice 
and because we perform our analysis in a mathe-
matically consistent way we also obtain formulas 
for the prediction uncertainty. These are obtained 
analytically for the conditional MSEP and these can 
be obtained numerically for other uncertainty mea-
sures using Monte Carlo simulations (because we 
work in a Bayesian setup). The case study highlights 
the need to incorporate tail development factors in 
the presence of tail development, since otherwise 
both the outstanding loss liabilities and the predic-
tion uncertainty are underestimated.

ones in Verrall and Wüthrich (2012) and shows that 
prediction uncertainty needs a careful evaluation in 
the presence of tail development.

•	 Note that for J* = 9 we simultaneously consider 
claims payments and claims incurred information 
for accident year i = 0. For J* = 8 we simultane-
ously consider claims payments and claims in-
curred information for accident years i = 0, 1. This 
results in a much lower prediction uncertainty in 
these accident years (above the horizontal line in 
the corresponding columns of Table 5). The reason 
is that the claims incurred information has only lit-
tle uncertainty (since we assume Yj to be constant 
for j ≥ J*). This substantially reduces the predic-
tion uncertainty.

We may question whether there is so much infor-
mation in these last claims incurred observations. 
If this is not the case, we should either increase 
t and tJ or we should use less informative priors 
in (2.1)–(2.2). The latter would bring us back to 
the model of Merz and Wüthrich (2010) and Happ 
and Wüthrich (2013) with the additional assump-
tion that there is no systematic drift after J*. 
Moreover, this latter model would also allow us to 
consider more information than just the restricted 

Table 5. Estimated claims reserves and corresponding prediction standard deviation in the PIC tail development factor model 
(Model Assumptions 2.2) for J*   {6, . . . , 9}, and the estimated claims reserves according to Hertig’s model (1985)  
[see Section 3.1 in Merz and Wüthrich (2010)] without tail development factor

reserves msep1/2 reserves msep1/2 reserves msep1/2 reserves msep1/2 reserves msep1/2

Hertig’s model [6]

no tail factor

J* = 9

PIC tail factor

J* = 8

PIC tail factor

J* = 7

PIC tail factor

J* = 6

PIC tail factor

0 0 0 180,054 14,652 182,752 14,599 182,024 14,594 181,551 14,590

1 47,060 83,995 171,647 124,884 391,633 12,439 390,918 12,433 390,454 12,428

2 336,189 241,482 503,888 279,793 701,497 276,256 107,490 15,517 106,616 15,505

3 549,682 261,129 719,020 299,020 918,561 297,415 673,923 263,493 411,103 17,629

4 655,906 242,377 789,650 271,269 947,248 273,746 754,032 246,311 613,774 221,380

5 1,190,955 326,696 1,361,399 363,250 1,562,242 368,106 1,316,008 332,649 1,137,263 300,944

6 1,115,656 249,249 1,239,724 275,751 1,385,920 280,339 1,206,683 254,165 1,076,573 231,061

7 1,611,611 365,019 1,759,165 396,734 1,933,036 407,990 1,719,870 374,105 1,565,129 345,667

8 2,310,950 521,674 2,486,673 560,910 2,693,737 580,909 2,439,876 536,249 2,255,594 500,075

9 1,954,075 440,471 2,087,331 471,323 2,244,354 489,676 2,051,844 453,365 1,912,098 424,462

tot 9,772,084 1,519,464 11,298,552 1,747,672 12,960,980 1,624,873 10,842,668 1,292,329 9,650,155 1,022,505
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i ≤ J - J*. We set j = J - i, then using Lemma A.1 
we obtain completely analogous to Theorem 2.4 and 
Corollary 2.5 in Merz and Wüthrich (2010)
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Analogously, Theorem 2.4 from Merz and Wüthrich 
(2010) implies for the variance
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This proves the theorem. 

Proof of Theorem 2.3 and Corollary 2.4. We first 
write all the relevant terms of the likelihood of F, 
given D*

J . They are given by
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From this we easily see that the posterior distribu-
tion of F, given D*

J , is again multivariate Gaussian 
and there only remains to determine the posterior 
mean and covariance matrix. If we square out all 
terms in (A.1) for obtaining the F2

j and the FjFn 
terms, we find the covariance matrix S(D*

J ). First of 
all, we observe that the development periods with  
j ≤ J* are all on the first line of (A.1) which proves 
the independence statement on F0, . . . , FJ*, (FJ*+1, 

A. Appendix: Proofs

In this appendix we prove all the statements. We 
start with a well-known result for multivariate Gauss-
ian distributions, see, e.g., Appendix A in Posthuma 
et al. (2008) and Johnson and Wichern (1988):

Lemma A.1. Assume (X1, . . . , Xn)′ is multivariate 
Gaussian distributed with mean (m1, . . . , mn)′ and 
positive definite covariance matrix S. Then we have 
for the conditional distribution:

X N m X mX Xn ∑∑
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(
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,

,

1 ,..., 1
2 2
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1,2

2,12,2

1
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∼

where X (2) = (X2, . . . , Xn)′ is multivariate Gaussian 
with mean m(2) = (m2, . . . , mn)′ and positive definite 
covariance matrix S2,2, S1,1 is the variance of X1 and 
S1,2 = S2,1′ is the covariance vector between X1 and X(2).

Proof of Theorem 2.1. We first consider the case  
i > J - J*, that is Ii,k ∉ D*

J  for k = 0, . . . , J - i, hence-
forth for accident years i > J - J* we do not consider 
claims incurred information. Using the conditional 
independence of accident years, given the param-
eters Q, we obtain

E P D E P P Pi J J i J i i J[ ] [ ]Θ = Θ+ + −, , . . . , , .*, 1 , 1 ,0 , 1

Furthermore, i > J - J* implies bJ-i = 0. Therefore, 
the claim follows from Model Assumptions 1.1, as 
in (2.2) in Merz and Wüthrich (2010), and because 
bj = 0 for j < J*. Similarly, we obtain for the condi-
tional variance

P D E P Di J J i J J l
l J i

J

∑{ }( )[ ]( )Θ = Θ σ −+ +
= − +

+

**Var , , exp 1 ., 1 , 1

2 2

1

1

The case i ≤ J - J* is more involved. Using again 
the independence of accident years conditional on Q, 
we obtain

E P D E P P P I Ii J J i J i i J i i J i J i[ ] [ ]Θ = Θ+ + − −, , . . . , , , . . . , , ,*, 1 , 1 ,0 , , * ,

henceforth, we now have both claims payments 
and claims incurred observations for accident year  
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From Theorem 2.3 we know that, given D*
I, F = 

(F0, . . . , FJ+1) has a posterior multivariate Gaussian 
distribution with posterior mean (f0

post, . . . , fJ+1 ) and 
posterior covariance matrix S(D*

J ). Henceforth, the 
posterior distribution of S j=J-i+1 Fj is Gaussian with 
mean Sj=J-i+1 fj

post and variance e′J-i+1S(D*
J ) eJ-i+1. This 

proves the proposition. 

Proof of Theorem 3.2. We obtain with the tower 
property of conditional expectations
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This is the usual decomposition into average pro-
cess (co-)variance and average parameter error. The 
first term in (A.3) is equal to 0 for i ≠ k, because 
accident years i are independent, conditionally given 
Q. Henceforth there remains the case i = k. Using 
Theorems 2.1 and 2.3 we obtain
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From Theorem 2.3 we know that, given D*
I F = 

(F0, . . . , FJ+1) has a posterior multivariate Gaussian 
distribution with posterior mean (f0

post, . . . , fJ+1 ) and 
posterior covariance matrix S(D*

J ). Henceforth, the 
posterior distribution of S j=J-i+1 Fj is Gaussian with 
mean Sj=J-i+1 fj

post and variance e′J-i+1S(D*
J )eJ-i+1. This 

implies for the first term (A.3)

post
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. . . , FJ+1). Moreover, we see for j ≤ J* that the pos-
terior variance of Fj, given D*

J , is given by
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Next, we square out all terms for j > J* to get the 
covariance matrix. We obtain
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This provides an,m for n, m = J* + 1, . . . , J + 1. 
The posterior mean is obtained by solving the poste-
rior maximum likelihood functions for Fj, j ≥ J* + 1. 
They are given by
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Henceforth, this implies
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from which the claim follows. 

Proof of Corollary 2.5. The corollary follows from 
Theorem 2.3 and Corollary 2.4. 

Proof of Proposition 3.1. From Theorem 2.1 we obtain
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This completes the proof. 
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Finally, we consider the last term in (A.3). Apply-
ing Theorems 2.1 and 2.3, we obtain
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Henceforth, we need to calculate this last covari-
ance term. Due to Theorem 2.3 the joint distribution of 
the exponents is a multivariate Gaussian distribution 
with covariance (1 - bJ-i)(1 - bJ-k) e′J-i+1S(D*

J ) eJ-k+1. 
This implies
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which is the well-known covariance formula for 
log-normal distributions. Collecting the terms for  
i ≠ k gives the off-diagonal terms. For i = k we obtain 
the terms
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