
VOLUME 9/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 11

DISCUSSION OF PAPER PUBLISHED IN VOL. 6, NO. 1:

“The Mathematics of Excess Losses”

by Leigh J. Halliwell

Discussion by LIANG HONG

1. Introduction

My congratulations to Mr. Leigh J. Halliwell on
this paper that clearly presents the mathematics of 
excess losses with an interesting example. I agree with 
him that the mathematics of excess losses is beautiful 
and powerful. However, the mathematics of excess 
losses also contains several subtle points that are not 
mentioned in the paper. This discussion note comple-
ments the article by clarifying some of these points. 
To be clear, it is not my intention to be critical of  
Mr. Halliwell. The purpose of this note is two-fold:

1. To clarify some important hidden points in the
mathematics of excess losses;

2. To give references to some uncredited results.

For those ambitious actuaries who want to dig deeper 
for a full understanding of the rigorous mathematics 
of excess losses, this note also provides some direc-
tions for further studies.

For the convenience of readers, we will adopt the 
notations in Halliwell (2013). Throughout this note, 

X will denote a nonnegative random variable. F and G  
will denote the cumulative distribution function (CDF) 
and survival function of X, respectively.

2. The reason why we need
to watch our steps

Halliwell (2013) argues that points of probability 
are allowed due to four properties of the CDF: (1) non-
decreasing; (2) total probability; (3) continuity from 
the right; and (4) non-negative. Indeed, we will also 
need one more important property of the CDF: the 
left-hand limit of a CDF exists at each point (see, for 
example, Shiryaev 1996). This is clear from the second 
equality of the following equation.

P X a P a n X a

F a F a

n
[ ][ ]

( ) ( )

= = − < ≤

= − −

→∞
lim 1 (1)

.

Since a CDF is always non-decreasing, its left-hand 
limit and right-hand limit exist at each point in the 
domain (see, for example, Rudin 1976). This means 
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P[X = a] needs not be zero. Precisely, we should 
define X to be continuous if F is continuous, that is, 
P[X = a] = 0 for each a. In particular, if F admits 
a density, then it is continuous. Unfortunately, some 
elementary probability textbooks do not clarify this 
and simply define a random variable to be continuous 
if its CDF admits a density. It is possible but quite 
difficult to construct a continuous random variable 
which has no density function.1 Equation (1) and the 
definition of Riemann-Stieltjes Integrals2 show that 
Riemann-Stieltjes integrals with respect to a CDF inte-
grator3 will count probability masses at a given point 
(not just at zero!). However, the ordinary Riemann-
integrals do not because in this case we are integrating 
with respect to the continuous function F(x) = x, i.e., 
F(x) - F(x-) = x - (x-) = 0. In words, our experience 
with the ordinary Riemann-integrals could be mis-
leading when we need to deal with Riemann-Stieltjes 
integrals. This is why we need to watch our steps!

3. A subtle point both casualty
and non-casualty actuaries
might want to know

There is a subtle point hidden in the derivation of 
the following formula in Halliwell (2013).

Excess r G x dxx xx r∫( ) ( )= − +
=

∞
0 0 . (2)

The formula r→∞lim rGx(r) = 0 is unjustified in the 
derivation. A close scrutiny reveals that the derivations 
of several other formulas in Halliwell (2013) will need 
the justification of this, too. This important formula has 
been frequently used in both life and nonlife insurance. 
See, for example, Cunningham, Herzog, and London 
(2008); Dickson, Hardy, and Waters (2009); Klugman, 
Panjer, and Willmot (1998). We point out that this for-
mula is not as trivial as it might seem to be, because a 
0 • ∞ form appears here and L’Hôpital’s rule does not 

seem to be helpful. (We challenge readers to give a cor-
rect justification on their own.) To our best knowledge, 
this crucial point has been missed by the actuarial com-
munity for a long time. For example, neither Klugman, 
Panjer, and Willmot (1998) nor Cunningham, Herzog, 
and London (2008) provides a justification of this. 
However, Dickson et al. (2009; p. 20) is aware of the 
subtlety of this; but they impose cumbersome assump-
tions. Indeed, their assumptions 2 and 3 can be simply 
replaced by the one that X has finite second moment. 
Following Hong (2012), we give a correct and simple 
justification. First, note that

rG r rP X r r dG t tdG tx xr xr∫ ∫( ) { } ( ) ( )≤ = > = ≤
∞ ∞

0 .

Then we obtain the result by taking r → ∞.

4. References for some
uncredited results

There are many formulas derived in Halliwell 
(2013). It seems to us that the author might be unaware 
of some part of the existing literature. We respect-
fully point out that quite a few of these formulas are 
special cases of well known equations in probability 
theory but in some new notations. Here we give refer-
ences to these known results. The formula (2) and the 
second moment formula on p. 35 of Halliwell (2013) 
are both given in Cunningham, Herzog, and London  
(2008); Dickson, Hardy, and Waters (2009); and Ross 
(2010); the formula on p. 43 and the formula about 

x∫ =

∞

0
Excess(x)dh(x) on p. 35 of Halliwell (2013) are 

given in Klebaner (2005); the formula of layered 
losses on p. 37 of Halliwell (2013) is given in Wang 
(1996; 2000). The result in the footnote 11 of Halliwell 
(2013) is also a well-known result that is documented 
in Klebaner (2005), Royden (1988), and Rudin (1976). 
We feel that the proof in Rudin (1976) is shorter and 
cleaner.

In addition, the derivation of the first formula on 
p. 36 of Halliwell (2013) is not necessary. The equa-
tion follows trivially from the definition of Riemann-
Stieltjes integral (cf p. 43 of Halliwell 2013) and the
fact adding a constant to a function will not change
its variation, i.e., d(h(x) + c) = dh(x).

1Interested readers can consult Royden (1988) for further details.
2There are two kinds of Stieltjes integrals: Riemann-Stieltjes integrals 
and Lebesgue-Stieltjes integrals. To be precise, the Stieltjes integrals in 
Halliwell (2013) are Riemann-Stieltjes integrals.
3More generally, this is true for a Riemann-Stieltjes integral with respect 
to a function of bounded variation. In particular, this holds for a non-
decreasing function. See Royden (1988).
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6. Conclusion

A well written paper on the mathematics of excess
losses is a needed service for our actuarial community. 
I congratulate Mr. Leigh J. Halliwell again on provid-
ing such an paper. I hope actuaries will find his paper 
and this discussion note useful.
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5. For ambitious actuaries

Finally, we would like to provide ambitious readers
with some big picture. The Riemann-Stieltjes integral 
is a generalization of the ordinary Riemann-integral 
since the integrator is allowed to be a function F 
instead of the variable x. Indeed, Riemann-Stieltjes 
integrals can be defined for a much wider class 
of integrators than the class of CDFs. But the most 
interesting (and arguably the most useful) case is the 
one where the integrator F is a function of bounded 
variation.4 In particular, the Riemann-integral with 
respect to a nondecreasing function integrator (hence 
CDF integrator) can be defined. Halliwell (2013) 
makes heavy use of Riemann-Stieltjes integrals. While 
Riemann-Stieltjes integrals may be a useful tool for 
studying CDFs, in general it is not a favorable choice 
in probability. One of the main reasons is it may 
not preserve limits of increasing sequences of loss 
random variables. For example, suppose X1, X2, . . . is 
an increasing sequence of loss random variables that 
converges to a loss random variable X with probabil-
ity one, a desirable situation for an insurer would be 
E[X] = n→∞lim  E[Xn]. However, this is not true under 
the framework of Riemann-Stieltjes integrals. On the  
other hand, Lebesgue integrals do preserve limits in 
such as case. This explains why most advanced mono-
graphs on probability favor Lebesgue integrals. For 
more details, readers can consult Billingsely (1995), 
Chow and Teicher (1997) and Shiryaev (1996). The 
mathematics of excess losses mainly addresses the 
probabilistic part of excess losses. In practice, an 
actuary will need to use loss data for his/her work. 
Therefore, one important direction of future research 
on this topic could be finding better ways to estimate 
various excess loss formulas. Efforts along this line 
are expected to involve survival analysis. Readers  
can consult Aalen, Borgan, and Gjessing (2008), 
Andersen et al. (1993), Fleming and Harrington (1991) 
and Klein and Moeschberger (2005).

4Readers without background in real analysis can just think it as a dif-
ference of two monotone functions. For more details, see Hewitt and 
Stromberg (1965) or Royden (1988).
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About that time I was also studying for CAS 
Exam 5, which then covered Risk Theory. It was 
from the syllabus reading Risk Theory (Chapman and 
Hall, 1984), by Beard, Pentikäinen, and Pesonen, that 
I first learned about Stieltjes integrals, a subject on 
which Dr. Hong rightfully concentrates. I will take 
this up in Section 3. But for now I will note only that 
I should have proofread my paper more carefully and 
corrected several errors in its Appendix A. The cryptic 
‘[1, p. 12]’ in its third sentence had originally been 
a reference to the page of Risk Theory on Stieltjes 
integrals.

2. Two Subtleties

Dr. Hong deems two points subtle enough to deserve 
clarification. First, in addition to the four properties 
that I attributed in Section 2 to the cumulative distri-
bution function, he adds “one more important prop-
erty of the CDF: the left-hand limit of a CDF exists 
at each point.” But this is not a separate property; 
rather, it is implicit in the nature of the real numbers. 
A fundamental theorem of the real numbers, based as  
they are on “Dedekind cuts” of the rational numbers, 
is that any upper-bounded subset of the real num-
bers has a least upper bound.1 But since FX(x) is non-
decreasing (property 1), 

x a→ −
lim FX(x) ≤ FX(a). And since 

FX(a) is an upper bound to such limits, there must 
be a least upper bound, which may be symbolized as 
FX(a-). Of course, if FX(a-) < FX(a), there is a mass 
of probability at x = a. All this is clear in a quotation 
from Section 2 of my paper:

Two appealing properties of the excess-loss func-
tion are (1) that it is everywhere continuous, 
and (2) that if it is positive, it strictly decreases. 
Moreover, its derivative at r, if it exists, equals 
–GX(r). Even if it does not exist, at least the left 

This discussion is a valuable adjunct to my 2012 
Variance paper, “The Mathematics of Excess Losses.” 
Dr. Hong states that the value of his discussion is 
twofold: (1) to clarify “subtle” or “hidden” points, and 
(2) to provide scholarly references. The latter is espe-
cially welcome, since my formal mathematical educa-
tion left off in the 1970s. Since then, I’ve learned on 
my own and from the actuarial syllabus and litera-
ture. I’ve never believed my work to be original, and 
Dr. Hong has shown where in the academic litera-
ture others have gone before me. Truly, according to 
Ecclesiastes, “There is nothing new under the sun.”

1. My Background

My work at NCCI in the early 1990s on retro-
spective rating and Table M introduced me to the 
excess-loss function. Table M consists of ninety-nine 
columns, 01–99. The value of Table M at entry ratio 
1.00 equals the column number as a percentage. For 
example, eighty percent of a loss whose distribution 
accords with column 80 is in excess of its expected 
value. Higher column numbers indicate greater vari-
ance, or greater variance in relation to expected 
value. Column 00, were it published, would be the 
distribution of a constant random variable, none of 
whose loss is in excess of its expected value. At that 
point I began to imagine what appears as Figure 1 in 
my paper, which then led to the double-integral proof 

of Section 3 that Excess x dx E XX

x
∫ [ ]( ) =
=

∞ 1

2
2

0

.

I’ve been away from Table M for nearly twenty 
years, and don’t know how NCCI currently calcu-
lates it. But in the mid-1990s I programmed as an 
Excel 4 macro the then complicated Table-M func-
tion. By experiment I found that excess-loss functions 
of gamma distributions with appropriate parameters 
fairly approximated the Table-M formulas. Appen-
dix A below shows how to do this.

Response by the authoR, LEIGH J. HALLIWELL

1Likewise, any lower-bounded subset of the real numbers has a greatest 
lower bound.
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A similar argument will prove that if E[X ] = 
ExcessX(0) is finite, then 

r→∞
lim ExcessX(r) = 0.

Nonetheless, I believe the following proof to be 
more elegant and insightful. And because Dr. Hong 
rightly says that “. . . other formulas . . . will need 
the justification of this too,” I will generalize from 
E[X] to E[h(X )] by revisiting (and correcting) the 
formula for E[h(X)] in my Appendix A. The usual 
derivation, using integration by parts, is:

E h X h Prob X h x dF x

h Prob X h x dG x

h Prob X h x G x

G x dh x

h Prob X h x G x

h G G x dh x

h Prob X h x G x

G x dh x

h h x G x G x dh x

X
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But another derivation uses the inversion-of-a-
double-integral technique in my Section 3:

E h X h Prob X h x dF x

h Prob X

h dh y dF x

h Prob X h dF x

dh y dF x

X

x

y

x

x

X

X
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and right derivatives exist, and the difference of 
the left derivative from the right is the probability 
mass at r.

The other subtle point concerns the equation in 
Section 2:

Excess r x r dF x

x r G x G x dx

x r G x G x dx

X X

x r

X

r

X

x r

x
X X

x r

∫

∫

∫

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

= −

= − +

= − − +

=

∞

∞
=

∞

→∞
=

∞

0 lim

In his Section 3 Dr. Hong notes that 
x→∞
lim  xGX(x), 

which equals 
x→∞
lim  (x - r)GX(x), does not necessarily 

equal zero. I had glossed over this, presuming the 
reader to understand that if 

x→∞
lim  (x - r)GX(x) > 0, then 

E[X] is infinite, in which case X has no excess-loss 
function. Dr. Hong’s “justification” that 

x→∞
lim  xGX(x) = 0 

relies on the inference that if E[X ] = xdF x
M

X

x

M

∫ ( )
→∞

=

lim
0  

converges to a real number, then xdF x
a

X

x a
∫ ( ) =

→∞
=

∞

lim 0. 
 

However, the proof of this inference is complicated 
by the need to work with nested limits. The complete 
proof is:

xdF x xdF x
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h x G x
dh x

h x h x

dh x

h x

h x

h M

X

x M x M
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Therefore, 
x→∞
lim h(x)GX(x) = 0 is necessary, but not 

sufficient, for E[h(X)] to be a real number.

3. Stieltjes Integrals and Cardinality

Knowing just enough about Stieltjes integrals to 
be dangerous,2 I used them in the paper only because 
the Stieltjes integral, unlike the classical or Riemann 
integral, allows for discontinuities in its integrand. In 
other words, the formulas using them accommodate 
discrete and mixed distributions. I am intrigued by 
Dr. Hong’s claim that “It is possible but quite difficult 
to construct a continuous random variable which has 
no density function.”3

Although the subtleties of measure theory are 
beyond me, the proof in my Footnote 11 was enough 
to justify the Stieltjes integral as a shorthand for the 
expectation of a mixed distribution:

∑∫[ ] [ ]( ) ( ) ( ) ( )= + =
=

∞

=−∞

∞

E g X g x f x dx g x Prob X xX i i
ix 1

But to use this formula, one must prove that the 
number of points at which a random variable has pos-
itive probability must be countable (hence indexable 
in the sigma operator). Although I knew that this was 
well-known to mathematicians, Dr. Hong’s remark 
surprised me: “We feel that the proof in Rudin (1976) 
is shorter and cleaner.” My response is: What can be 

i
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Comparison of the last lines of both derivations 
leads to the conclusion that if the integral for E[h(X)] 
converges, then 

x→∞
lim h(x)GX(x) must be zero.

But one must not succumb to the fallacy of 
affirming the consequent. Even if 

x→∞
lim h(x)GX(x) = 0,

the integral for E[h(X)] will not converge, unless 
h(x)GX(x) approaches zero quickly enough. Assume 
that 

x→∞
lim h(x) = ∞; so, for large enough M, h(x > M) is 

positive. Restate the integral as:

E h X h G x dh x

h G x dh x

h x G x
dh x

h x
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x M
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If h(x)GX(x) approaches zero on the order of an 

inverse power curve, i.e., h(x)GX(x) ≈ 
h x( )ε>

1
0
:

h x G x
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Then the integral for E[h(X )] converges. But if 
h(x)GX(x) approaches zero on the order of an inverse 

logarithm, i.e., h(x)GX(x) ≈ 
h x( )
1

ln
, the integral will 

not converge:

2To learn what little I know, I recommend the treatment of integration and 
measure theory from an historical viewpoint in Chapter 27 of Kramer, 
Edna E., The Nature and Growth of Modern Mathematics (Princeton 
University Press, 1981).
3I am aware of curves that are continuous everywhere but differentiable 
nowhere, e.g., Brownian motion and the Koch snowflake. But these 
curves require both up and down movements, whereas cumulative dis-
tribution functions must be “up” only, i.e., non-decreasing (property 1). 
Just as intriguing is the claim in his Section 5 that for the limiting sequence 
of random variables X1, X2, . . . → X, Lebesgue integration must preserve 
the expectation, as opposed to Riemann-Stieltjes integration.
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and the scale parameter q must be positive real num-
bers. The first two moments of the gamma random 
variable are E[X] = aq and Var[X] = aq2 = qE[X]. 
The proportionality in q of the variance to the mean 
suggests closure with respect to addition of indepen-
dent random gamma variables with the same scale q. 
Indeed, one can prove, granting independence, that 
Gamma(a1, q) + Gamma(a2, q) = Gamma(a1 + a2, q).  
This property makes the gamma distribution an attrac-
tive candidate for an exposure unit. The loss distri-
butions of risks may then be treated as convolutions 
of the loss distribution of a standard exposure unit.

If X is Gamma(a, q)-distributed, then the excess-
loss function of X is:
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x e
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r e
x

dx

E X
gamma dist

r true

r gamma dist r true

X

x

x r

x

x r

x

x r

x

x r

x

x r

x

x

r

x

x

r

∫

∫

∫

∫

∫

∫

∫

[ ]

( )

( ) ( )
( )

( )

( )

( )
( ) ( )

( )

( )

( )

( )

( )

≥ = −
Γ α θ





 θ

=
Γ α θ





 θ

−
Γ α θ





 θ

= Γ α +
Γ α

θ
Γ α + θ







θ
−

Γ α θ




 θ

= αθ −
Γ α + θ





 θ







− −
Γ α θ





 θ







=
−

α + θ






− − α θ

( )

( )

−
θ

α−

=

∞

−
θ

α−

=

∞

−
θ

α−

=

∞

−
θ

α+ −

=

∞

−
θ

α−

=

∞

−
θ

α+ −

=

−
θ

α−

=

0
1 1

1 1

1 1

1 1

1

1 1 1

1
1

1

1

1
1 1

1 .

, 1, ,

1 . , , ,

1

1

1

1 1

1

1 1

0

1

0

The last line of the equation is how in Excel 2013 
one would calculate the expected excess loss.

Both ExcessX(r) and r in Table M are scaled to 
E[X] = 1. This is most easily accommodated by fix-
ing q = E[X]/a = 1/a. So, if the gamma distribution 

simpler and cleaner than Cantor’s equation 0 × 0 = 
0? In words, a countable union of countable sets is 
countable. In regard to probability distributions this 
means that if the number of the probability masses 
of a random variable were uncountable, there would 
exist a positive value the number of points whose 
probability is greater than which would be uncount-
able. But then the total probability would be infinite, 
rather than the required unity. Hence no random 
variable may have an uncountable number of mass 
points. This argument is so powerful that in Appen-
dix B I will use it to prove the theorem of analytic 
continuation.

In conclusion, I thank Dr. Hong for his discussion, 
and hope that the “ambitious actuaries” to whom 
at the end he appeals will continue to integrate the 
mathematics of excess losses into the broader wealth 
of modern mathematics.
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Appendix A
Gamma-Distribution Approximations  
to Table M

The probability density function of the Gamma 
(a, q)-distributed random variable X is:

f x e
x

X

x

( )
( )

=
Γ α θ





 θ

−
θ

α−
1 1

1

The support of the distribution is the non-negative 
subset of the real numbers; both the shape parameter a 
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if two analytic functions are equal over a domain 
whose Lebesgue measure is greater than zero, they 
must be equal everywhere. Equivalently, if two ana-
lytic functions are equal at an uncountable number of 
points, they must be equal everywhere.4 This theorem 
is the workhorse for extending real-valued functions 
into the complex plane.5 An equivalent form of the 
theorem is that if analytic function f has an uncount-
able number of roots, then f (z) = 0 throughout its 
domain.

So, as to the proof, let f : D → C be analytic in 
complex domain D ⊆ C. D may be C itself, the com-
plex plane, in which case the function is said to be 
“entire.” Let Z = {z ∈ D : f (z) = 0} and assume Z to 
be uncountable. Hence, the cardinality of Z is greater 
than 0, the cardinality of the natural numbers ℑ. In 
words, there is no one-to-one mapping from Z into ℑ.

Complex plane C can be partitioned into a count-
able number of non-empty subsets whose areas are 
bounded. Because the areas are bounded, the number 
of subsets must be countably infinite, or 0. Each zero 
of f, or each element of Z, is in one and only one of the 
subsets Cj. Define Zj = Z ∩ Cj. Then Zj ∩ Zk≠j = φ and

∪ j
j

=
=

∞

Z Z
1

. Now if each Zj were countable (including 

null and finite, as well as countably infinite), then Z,  
being a countable union of countable sets would be 
countable. In Cantorian arithmetic, 0 × 0 = 0. But 
this contradicts the assumption that Z is uncountable. 
Therefore, some bounded subset of uncountable Z 

underlies column k of Table M, one solves the follow-
ing equation for a:

i

i

Excess r

gamma dist true

gamma dist true

gamma dist true

gamma dist true

k

X

( )

( )

( )

( )

( )

( )
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− − α α
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1 1 . 1, 1,1 ,
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. 1, ,1 ,
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100

To refer back to the example of Section 1 above,  
if a = 0.0716, then the expected loss of a Gamma 
(0.0716, q)-distributed random variable in excess of 
its expected value equals eighty percent (0.80) of its 
expected value. By then varying the entry ratio, one 
approximates the whole column 80 of Table M.

It is well known that for 0 < a < 1 the gamma 
distribution is J-shaped; for 1 < a < ∞ it is S-shaped. 
For a = 1 the distribution is exponential, technically 
J-shaped but really borderline. In the exponential case:

Excess r gamma dist true

gamma dist true

e

k

X

[ ]

( ) ( )

( )

= =

−

= ≈

=

1 . 1,1,1,

. 1, 2,1,

1 0.368

100

Therefore, if the gamma-distribution assumption 
fairly reproduces Table M, columns 01–36 corre-
spond to S-shaped distributions and columns 37–99 
to J-shaped.

Appendix B
Countability, Continuity,  
and Analytic Continuation

Analytic continuation is a theorem of complex 
variables. Let f  be a complex function that is analytic 
in domain D, and g be analytic in domain E ⊃ D. If 
g(z) = f(z) for every z ∈ D, then g is the one and only 
continuation of f  beyond domain D. More accurately, 

4The Lebesgue measure of a set is the limit of the smallest area needed to 
envelop it. The Lebesgue measure of a countable set of points {zj : j ∈ ℑ}  
is zero. For one can envelop zj inside an circle of area µ/2j. Since the circles 
may overlap, the total area is less than or equal to µ. But µ can be made 
arbitrarily small; hence, the total area needed to envelop a countable num-
ber of points is arbitrarily small, and zero in the limit.
5The most famous application of analytic continuation is the extension 

of the zeta function s
js

j
∑( )ζ =

=

∞ 1

1

 from {s ∈ ℜ : s > 1} to any complex s. 

Since Bernhard Riemann accomplished this in 1859 (ET, “On the Number 
of Prime Numbers less than a Given Quantity,” www.maths.tcd.ie/pub/
HistMath/People/Riemann/Zeta/EZeta.pdf), the analytically continued 
function has been named the Riemann zeta function. The history and the 
mathematics of this is ably recounted in Havil, Julian, Gamma: Explor-
ing Euler’s Constant (Princeton University Press, 2003), especially in 
its Appendices D and E. Havil’s proof of analytic continuation is in 
Appendix D.12.
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set of roots Z lies an uncountable subset Zc at whose 
points Z is continuous.

Now consider the derivative f z
w z

( )′ =
→

lim  

f w f z

w z

f w

w zw z

( ) ( ) ( )−
−

= −
−→

lim
0

 for any z ∈ Zc. Because 

f is analytic, the limit exists. But in any neighborhood 

of Zc are other zeroes, which make 
f w

w z

( ) −
−

0
 equal to 

zero. So, the limit must be zero. Therefore, if z ∈ Zc, 
f ′(z) = f (z) = 0. The points of continuity persist through 
repeated differentiation; hence, if z ∈ Zc, f

[j](z) = 0. 
Cauchy’s Integral Theorem is the reason why every 
analytic function has a Taylor-series expression 
(valid within its domain D):

f z f
f

z
f

z( ) ( ) ( ) ( ) ( )( ) = ζ + ′ ζ ζ − + ′′ ζ ζ − +
1! 2!

. . .2

Since f and its derivatives are zero at every z ∈ Zc, 
f must be the zero function. A corollary of analytic 
continuation is that the roots of a non-constant ana-
lytic function must be countable (i.e., zero, finite, or 
countably infinite). Even better, since the sum of a 
constant and an analytic function is itself analytic, 
the number of times a non-constant analytic function 
attains to any given value is countable.

must itself be uncountable. And that bounded subset 
can be halved, and at least one of the halves must be 
uncountable. One can halve indefinitely and arrive 
at one element of Z arbitrarily close to which are 
uncountably many points of Z.

The following definition of continuity will appear 
strange; but reflection will prove it apt. Subset Z of 
the complex plane is continuous at z ∈ Z if and only 
if every neighborhood around z contains an uncount-
able number of elements of Z. Obviously, only an 
uncountable set can have such points of continuity. 
But the previous paragraph has shown that every 
uncountable set of complex numbers is continuous at 
one or more of its points.

Next, partition Z into two subsets. One subset con-
tains the points at which Z is continuous and the other 
contains the points at which it is not. If the latter sub-
set were uncountable, the argument two paragraphs 
above would lead to its having at least one point of 
continuity. Since this contradicts the nature of this 
set, it must be the case that the points at which Z is 
not continuous are countable. Hence, the former sub-
set must be uncountable. The result so important for 
analytic continuation is that an uncountable subset of 
the complex plane must be continuous at an uncount-
able number of its points. So within the uncountable 


