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ABSTRACT

The heavy-tailed nature of insurance claims requires that
special attention be put into the analysis of the tail behav-
ior of a loss distribution. It has been demonstrated that
the distribution of large claims of several lines of insur-
ance have Pareto-type tails. As a result, estimating the tail
index, which is a measure of the heavy-tailedness of a dis-
tribution, has received a great deal of attention. Although
numerous tail index estimators have been proposed in the
literature, many of them require detailed knowledge of in-
dividual losses and are thus inappropriate for insurance
data in partitioned form. In this study we bridge this gap
by developing a tail index estimator suitable for partitioned
loss data. This estimator is robust in the sense that no par-
ticular global density is assumed for the loss distribution.
Instead we focus only on fitting the model in the tail of the
distribution where it is believed that the Pareto-type form
holds. Strengths and weaknesses of the proposed estimator
are explored through simulation and an application of the
estimator to real world partitioned insurance data is given.

KEYWORDS

Heavy-tailed distribution; slowly varying function; partitioned (grouped)
data; (re)insurance losses; tail index estimation
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1. Introduction
The heavy-tailed nature of insurance claims

requires that special attention be put into the anal-
ysis of the tail of a loss distribution. Since a few
large claims can significantly impact an insur-
ance portfolio, statistical methods that deal with
extreme losses have become necessary for ac-
tuaries. For example, in order to price certain
reinsurance treaties, it is often necessary for ac-
tuaries to model losses in excess of some high
threshold value, i.e., to model the largest k upper
order statistics. Beirlant and Teugels (1992), Mc-
Neil (1997), Embrechts, Resnick, and Samorod-
nitsky (1999), Beirlant, Matthys, and Dierckx
(2001), Cebrián, Denuit, and Lambert (2003),
and Matthys et al. (2004) provide additional ex-
amples where statistical methods were developed
to deal with extreme insurance losses.
Extreme value theory has become one of the

main theories in developing statistical models for
extreme insurance losses. The theory states that
the tail of a typical loss distribution FX(x) can
be approximated by a Pareto-type function. That
is, 1¡FX(x) = `(x)x¡®, x > D where ` : R+! R+

is a Lebesgue measurable function slowly vary-
ing at infinity, i.e., limx!1 `(tx)=`(x) = 1 for all
t > 0. The parameter ® is known in the literature
as the Pareto tail index that measures the heavy-
tailedness of the loss distribution. See, for exam-
ple, Finkelstein, Tucker, and Veeh (2006). Many
distributions commonly seen in modeling insur-
ance losses have Pareto-type tails. They include
the Pareto, generalized Pareto, Burr, Fréchet, half
T, F, inverse gamma, and log gamma distribu-
tions. Following the theory, an actuary may as-
sume that the tail of the loss distribution, where
extreme losses occur, can be approximated by a
Pareto-type function without making specific as-
sumption on the global density. With an estimate
of the Pareto index parameter, the actuary can
then estimate quantities of interest that are re-
lated to extreme losses, e.g., expected loss above
a high retention limit. The approximation of a

Pareto-type function has been demonstrated to be
reasonable for many lines of insurance. Numer-
ous tail index estimators have also been proposed
in the literature, including earlier contributions
by Hill (1975) and Pickands (1975) in which the
Hill estimator has become somewhat of a bench-
mark to which later proposed estimators are com-
pared. A survey of existing estimators, including
their advantages and disadvantages, can be found
in Brazauskas and Serfling (2000), Hsieh (2002),
and Beirlant et al. (2004).
Insurance loss data reported in partitioned

form are common in practice. The frequencies
of losses occurred in certain loss intervals for
numerous lines of insurance can often be found
in companies’ reports or in government publi-
cations. Individual loss data are typically pro-
prietary to the company and may not be avail-
able to its competitors in the industry. Despite
the number of tail-index estimators proposed in
the literature, many, if not all, of them require
the use of individual loss data, and thus are in-
appropriate for tail-index estimation under the
constraint of partitioned data. This paper intends
to expand the horizon of tail-index estimation
by applying extreme value theory to partitioned
loss data. The main objective is to propose a
robust tail-index estimator for partitioned loss
data. The estimator is robust in the sense that no
global density is assumed and the Pareto func-
tion is used to approximate the tail of a large
class of distributions commonly used in model-
ing insurance loss data. This approach is advan-
tageous because fitting a global density to losses
can lead to errors when making tail inference in
the event that the true loss distribution does not
have the assumed density. Instead, we rely on
the extreme value theory and focus only on fit-
ting the tail of the distribution without assum-
ing a specific global density. In addition, we will
demonstrate the loss of efficiency by using the
partitioned data versus individual data through
simulation.
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The remainder of the paper is arranged as fol-
lows. Several tail-index estimators are reviewed
in Section 2. Except for the Hill and Pickands
estimators, both of which have historical values,
and the former serving as a benchmark in our
simulation, the rest of the review is intended to be
a supplement to the excellent reviews of Brazau-
skas and Serfling (2000), Hsieh (2002), and Beir-
lant et al. (2004). The derivation of the proposed
estimator and an examination of its theoretical
properties are worked out in Section 3. In Sec-
tion 4, a simulation study is conducted to as-
sess the performance of the proposed estimator.
Two questions guide the design of the simula-
tion: first, what is the efficiency lost by using
data in partitioned form, and, second, what is the
penalty of model misspecification? The simula-
tion results are discussed in Section 5. Insurance
applications are given in Section 6 using actual
grouped insurance losses, followed by conclud-
ing remarks in Section 7.

2. Literature review

In this section we consider tail-index estima-
tors for a loss random variable (r.v.) X taking val-
ues on the positive real line R+ with nondegener-
ate distribution function FX . We assume that the
loss distribution has a Pareto-like tail in the sense
that

P(X > x) = `(x)x¡®, as x!1, (2.1)

where ® > 0. In this case the probability that a
loss exceeds a level x can be closely approxi-
mated by Cx¡® when x is larger than some
threshold D. We will denote the tail probabil-
ity function by F̄X(x) := 1¡FX(x). Let fXk : 1·
k · ng be a sequence of independent copies of
X and denote the descending order statistics by
X(1) ¸ X(2) ¸ ¢¢ ¢ ¸ X(n).
In the following subsections, we discuss sev-

eral estimators for the tail index ®. Some note-
worthy estimators that are not discussed below
are the method of moments, probability-weighted

moments, elemental percentile, Bayes estimator
with conjugate priors, and hybrid estimators. A
description of these can be found, for example,
in Hsieh (2002) and the references therein.

2.1. The Hill and Pickands estimators

Hill (1975) proposed the tail-index estimator

®̂H =
k+1Pk

i=1 i log

Ã
X(i)

X(i+1)

! (2.2)

based on a maximum likelihood argument where
k 2 f1,2, : : : ,n¡ 1g. The Hill estimator is closely
related to the mean excess function e(u) = EfX ¡
u j X > ug. In particular, the empirical mean ex-
cess function is given by en(u) = [card¤n(u)]

¡1P
j2¤n(u)(Xj ¡ u), where card¤n(u) denotes the

number of elements in the set fj : Xj ¡ u > 0,j =
1, : : : ,ng. Then, letting e¤n(u) denote the empiri-
cal mean excess function of the log transformed
variables, we have e¤n(logX(k+1)) = (1=k)

Pk
i=1

(logX(i)¡ logX(k+1)). As a result, we see that
®̂H = ((k+1)=k)e

¤
n(logX

(k+1))¡1. That is, the Hill
estimator is asymptotically equal to the recip-
rocal of the empirical mean excess function of
logX evaluated at the threshold logX(k+1).
An important feature of the Hill estimator to

keep in mind is the variance-bias tradeoff that
occurs when choosing the number of upper or-
der statistics to use. Choosing too many of the
largest order statistics can lead to a biased esti-
mator, while too few increases the variability of
the estimator. See Embrechts, Klüppelberg, and
Mikosch (1997) for a further variance-bias trade-
off discussion and Hall (1990), Dekkers and de
Haan (1993), Dupuis (1999), and Hsieh (1999)
for methods for determining the number of upper-
order statistics or threshold to use. Properties of
the Hill estimator can be found in Embrechts,
Klüppelberg, and Mikosch (1997) and the refer-
ences therein.
Pickands (1975) proposed an estimator that

matches the 0.5 and 0.75 quantiles of the gen-
eralized Pareto distribution (GPD) with quantile
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estimates. More specifically, for a GPD r.v. X
with distribution function

G(x;»,¾) = 1¡
μ
1+

»x

¾

¶¡1=»
1(0,1)(x),

it is easy to show that

G¡1(0:75)¡G¡1(0:5)
G¡1(0:5)

= 2»:

Then denoting 0.5 and 0.75 quantile estimates by
q̂1 and q̂2, respectively, we have

»̂ =

log

Ã
q̂2¡ q̂1
q̂1

!
log2

:

Pickands proposed, for n independent copies of
X, using q̂1 =X

(m)¡X(4m) and q̂2 =X(2m)¡X(4m)
where nÀm¸ 1. Then noting that the tail index
for a GPD r.v. is given by ®= 1=», the resulting
tail index estimate is, for X(k) ¸D,

®̂P =
log2

log

Ã
X(m)¡X(2m)
X(2m)¡X(4m)

! , (2.3)

where k ¸ 4m¸ 4.
For consistency and asymptotic results, see

Dekkers and de Haan (1989). While the sim-
plicity of the Pickands estimator is an attrac-
tive feature, it makes use of only three upper-
order statistics and can have a large asymptotic
variance. Generalized versions of the Pickands
estimator can be found, for example, in Segers
(2005). See Section 2.2.2.

2.2. Some recent tail-index estimators

2.2.1. Censored data estimator
In the case of moderate right censoring, Beir-

lant and Guillou (2001) proposed an estimator
based on the slope of the Pareto quantile plot,
excluding the censored data. This can be useful
in situations when there has been a policy limit
or when a reinsurer has covered losses in the
portfolio exceeding some well-defined retention

level. Letting Nc denote the number of censored
losses, the estimator is

®̂Nc(k) =
k¡NcPk

i=Nc+1 log
X(i)

X(k+1)
+Nc log

X(Nc+1)

X(k+1)

,

(2.4)

where k 2 fNc+1, : : : ,n¡ 1g. This estimator is
equivalent to the Hill estimator (except for the
change from k+1 to k, which is asymptotically
negligible) in the case of no censoring (i.e., Nc =
0). It is argued by Beirlant and Guillou (2001)
that typically no more than 5% of observations
should be censored for an effective use of this
method.

2.2.2. Location invariant estimators
It is pointed out by Fraga Alves (2001) that, for

modeling large claims in an insurance portfolio,
it is desirable for an estimator of ® to have the
same distribution for the excesses taken over any
possible fixed deductible. For this reason, loca-
tion invariance is clearly a desirable property for
an estimator of ®. Fraga Alves (2001) introduced
a Hill-type estimator that is made location in-
variant by a random shift. The location-invariant
estimator is

®̂k0,k =
k0Pk0

i=1 log
X(i)¡X(k+1)
X(k0+1)¡X(k+1)

, (2.5)

where k0 is a secondary value chosen with k0 < k.
An algorithm is included in Fraga Alves (2001)
to estimate the optimal k0, and to make a bias
correction adjustment to ®̂k0,k.
Generalized Pickands estimators described in

Segers (2005) are also location invariant and are
linear combinations of log-spacings of order
statistics. In particular, let ¤ denote the collec-
tion of all signed Borel measures ¸ on (0,1] such
that

¸((0,1]) = 0,
Z
log(1=t)j¸j(dt)<1,

and
Z
log(1=t)¸(dt) = 1:
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Then for ¸ 2 ¤ and 0< c < 1, the generalized
Pickands estimators are given by

®̂k(c,¸) =

0@ kX
i=1

·
¸

μ
i

k

¶
¡¸

μ
i¡ 1
k

¶¸

£ log(X(1+bcjc)¡X(i+1))
1A¡1 :

(2.6)

See Segers (2005) for examples using differ-
ent measures ¸ and theoretical properties of the
generalized Pickands estimators. See also Drees
(1998) for a general theory of location and scale
invariant tail-index estimators that can be written
as Hadamard differentiable continuous function-
als of the empirical tail quantile function.

2.2.3. Generalized median estimator
Brazauskas and Serfling (2000) proposed a

class of generalized median (GM) estimators
with the goal of retaining a relatively high de-
gree of efficiency while also being adequately
robust. The GM estimator is found by consider-
ing, for X(k) ¸D and r 2 f2, : : : ,kg, the median
of a kernel h evaluated over all

¡k
r

¢
subsets of

X(1), : : : ,X(k). The GM estimator is then given by

®̂r =medfh(X(i1)), : : : ,h(X(ir))g, (2.7)

where fi1, : : : , irg corresponds to a set of distinct
indices from f1, : : : ,kg. Examples of kernels h,
properties of the GM estimators, and comparison
between the GM estimators and several other es-
timators can be found in Brazauskas and Serfling
(2000).

2.2.4. Probability integral transform
statistic estimator
Finkelstein, Tucker, and Veeh (2006) describe

a probability integral transform statistic (PITS)
estimator for the tail-index parameter of a Pareto
distribution. They develop the PITS estimator
through an easily understandable and sound
probabilistic argument. The PITS estimator is

shown to be comparable to the best robust esti-
mators. Consider first a random sample of Pareto
random variables X1, : : : ,Xn, each with common
distribution function F(x) = 1¡ (D=x)® for x¸
D where D > 0 is known and ® > 0. Then defin-
ing

Gn,t(¯) =
1
n

nX
i=1

μ
D

Xi

¶¯t
,

where t > 0, observe that

Gn,t(®) =
1
n

nX
i=1

F̄(Xi)
t d= =

1
n

nX
i=1

Uti ,

where U1, : : : ,Un are i.i.d Uniform (0,1) random
variables. Applying the Strong Law of Large
Numbers yields

Gn,t(®)
p¡!E(Ut1) = (t+1)¡1:

Using the idea of method of moment estimation,
the PITS estimator is the solution of the equation
Gn,t(¯) = (t+1)

¡1. The tuning parameter t > 0 is
used to adjust between robustness and efficiency.
See Finkelstein, Tucker, and Veeh (2006) for de-
tails. In the case D is unknown, one can consider

Gn,t,k(¯) :=
1
n

kX
i=1

Ã
X(k+1)

X(i)

!¯t
,

for k 2 f1,2, : : : ,n¡ 1g and use the same ap-
proach to arrive at a PITS estimator for the tail-
index ®.

3. Tail-index estimator for
partitioned data
Let fXk : 1· k · ng be a sequence of indepen-

dent copies of a loss random variable X satisfy-
ing (2.1). Suppose that losses are grouped into
classes fIi = (ai,ai¡1]gi=1,:::,g, where 1= a0 >
a1 > ¢ ¢ ¢> ag > 0. Assuming the loss distribution
has the Pareto-type form above a threshold D,
we take 0<D · ak without loss of generality
for some k 2 f2,3, : : : ,gg. We letN1, : : : ,Ng denote
the frequencies with which (X1, : : : ,Xn) take
values in fIi = (ai,ai¡1]gi=1,:::,g. That is, Ni =
cardfj : ai+1 <Xj · ai, 1· j · ng, i = 1, : : : ,g.
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The likelihood function is then defined as

L1 =
n!Qr
i=1 ni!

gY
i=1

μZ ai¡1

ai

fX(x)d¹(x)
¶ni
,

where fX is the density of X with respect to
Lebesgue measure ¹. Hence

L1 /
gY
i=1

(F̄X(ai)¡ F̄X(ai¡1))ni :

Then setting F̄X(x) equal to `(x)x
¡® for x¸ ak ¸

D, we consider the conditional likelihood func-
tion L(® j n1, : : : ,nk) proportional to

Lk(®) =
kY
i=1

Ã
F̄X(ai)¡ F̄X(ai¡1)

F̄X(ak)

!ni

¼
kY
i=1

Ã
a¡®i ¡ a¡®i¡1
a¡®k

!ni
, (3.1)

where a¡®0 is set to 0. The proposed tail-index
estimator is given by

Gk := argmaxLk(®) (3.2)

where k 2 f2,3, : : : ,gg. That is, Gk equals the
value of ® that maximizes the likelihood func-
tion Lk defined in Eq. (3.1). The lemma below
shows that Gk exists and is a unique maximum
likelihood estimator for ®. As a result, one is able
to obtain maximum likelihood estimates for tail
probabilities and mean excess loss by using the
invariance property of maximum likelihood esti-
mators. These formulas are given in Section 6.

LEMMA Existence and uniqueness of the pro-
posed estimator
Gk in Eq. (3.2) exists and is unique.

PROOF Define bi := log(ai=ak) for i = 1, : : : ,k
and ui := ai=ai¡1 for i = 2, : : : ,k. Using Eq. (3.1),
consider the log-likelihood function

logLk(®) = ®n1 log(ak=a1)+
kX
i=2

ni log
μ
a¡®i ¡ a¡®i¡1
a¡®k

¶
:

Then it is easy to show using calculus that

@ logLk(®)
@®

=¡n1b1¡
kX
i=2

ni

μ
bi

1¡ u®i
+

bi¡1
1¡ u¡®i

¶
:

Noting that ui < 1 for each i and bi > 0 for i ¸ 2,
we have

@ logLk(®)
@®

¡!
(¡Pk

i=1nibi < 0, ® " +1,
+1, ® # 0:

The result follows by noting that bi > bi¡1 im-
plies

@2 logLk(®)
@®2

=
(bi¡ bi¡1) logui

(2sinh(® log(ui)=2))2
< 0:

¥

4. Performance assessment

In this section, we conduct a simulation to
study the performance of the proposed tail es-
timator Gk. The two key questions guiding the
design of the simulation are, first, what is the ef-
ficiency lost due to the use of partitioned data,
and, second, how robust is the proposed estima-
tor with respect to model misspecification?
Specifically, m samples of size n are generated

from a distribution F(x) with the mean ¹ <1,
standard deviation ¾ and x¸ 0. The domain of
F(x), R+, is partitioned into g nonoverlapping
intervals, I1, : : : ,Ig. That is, Ii \ Ij =Ø for 1· i 6=
j · g and R+ = [gi=1Ii. The individual observa-
tions in each sample are then grouped with re-
spect to the partition, and frequencies ni in each
interval, i = 1, : : : ,g, are recorded. In this paper,
we report the simulation results obtained from
using m= 1000 (samples), n= 1000 (observa-
tions), g = 15 (intervals), and the partition Ii =
(F¡1(pi),F¡1(pi¡1)), where fpjg150 = f1:00,
0.995, 0.99, 0.98, 0.975, 0.95, 0.90, (0.80, 0.70,
: : :)0:00g for i = 1,2, : : : ,g, and F¡1(p) = inffx :
F(x)¸ pg. We consider four distributions com-
monly used in modeling insurance losses.
They include the Pareto with a parameter ®, gen-
eralized Pareto with parameters ° and ¾, Burr
with parameters ¸, μ, and ¿ , and the half T dis-
tribution with degrees of freedom Á. The param-
eterizations of these distributions are given in
Table 1.
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Table 1. Tail index parameters and mean excess functions for selected distributions

Distribution F̄X (x) = 1¡FX (x) Parameters e(u)a Tail Index

Pareto
³
D

x

´®
1(D,1)(x) D,® > 0

u

®¡ 1 , for ® > 1 ®

GPD
³
1+

°

¾
x

´¡1=°
1(0,1)(x)

°,¾ > 0
¾+ °u
1¡ ° , for °¡1 > 1 °¡1

Burr
³

¸

¸+x¿

´®
1(0,1)(x) ¸,¿ ,® > 0

u

®¿ ¡ 1 (1+ o(1)), for ®¿ > 1 ®¿

Half-T 2¡
³
Á+1
2

´
p
Á¼(Á=2)

R 1
x

μ
1+

y2

Á

¶¡(Á+1)=2
dy1(0,1)(x)

Á > 0
u

Á¡ 1 (1+ o(1)), for Á > 1 Á

aThe asymptotic relations are to be understood for u!1.

Figure 1. Performance of Hill (top) and Gk (bottom) estimators for underlying Pareto model with true tail index
®= 1:5 (D = 1, ®= 1:5). Hill estimates use all order statistics above F¡1(p) where F is the distribution function of
the underlying distribution. Tail index estimates using grouped data are found using Eq. (3.2) for the given number
of upper interval counts k. Sample size = number of replications = 1000.

With simulated data in two different formats,
the exact values as well as values in partitioned
form, we compare the performance of the pro-
posed estimator Gk using frequencies in the in-
tervals Ii where inf Ii ¸D to that of the Hill es-
timator using all xi ¸D, as well as to that of

the maximum likelihood estimator using all fre-
quencies ni or all xi. In Figures 1—4, we report
the loss in efficiency due to the use of parti-
tioned data. The Hill estimates for ® in the jth
box-plot, from left to right, are calculated using
the largest n1 + ¢ ¢ ¢+ nj order statistics. The es-
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Figure 2. Performance of Hill (top) and Gk (bottom) estimators for underlying generalized Pareto model with true
tail index ®= 1:5 (° = 1=1:5, ¾ = 1). Hill estimates use all order statistics above F¡1(p) where F is the distribution
function of the underlying distribution. Tail index estimates using grouped data are found using Eq. (3.2) for the
given number of upper interval counts k. Sample size = number of replications = 1000.

timates from the proposed estimator in the jth
box-plot, from left to right, are calculated using
Eq. (3.2) with k = j+1, for j = 1,2, : : : ,14. We
notice that in Figures 1—4 the proposed estima-
tor behaves similar to the Hill estimator. In addi-
tion, we take the tail estimates that comprise each
box-plot to calculate the root mean squared error
(RMSE). That is, for the jth box-plot, RMSEj =
m¡1

Pm
i=1(®̂ji¡®)2, wherem= 1000, the true tail

index ®= 1:50, and ®̂ji represents the ith tail-
index estimate in the jth box-plot. The dashed
line in each panel represents the true tail-index
parameter value. To quantify the loss of effi-
ciency, we further define efficiency (EFF) as the
ratio of RMSEj obtained from the proposed esti-
mator to RMSEj obtained from the Hill estima-
tor. The results are reported in Table 2.

To examine the robustness of the proposed es-
timator against model misspecification, we com-
pare the proposed estimator using frequencies
in the top 6 and 7 intervals, which correspond
to the 90th and 80th percentiles of the true un-
derlying distribution, to four maximum likeli-
hood (ML) estimators using all 15 frequencies
N1, : : : ,N15. These four ML estimators differ in
the assumed underlying distributions. They in-
clude Pareto (ML Pareto), generalized Pareto
(ML GPD), Burr (ML Burr), and half T (ML T).
Following our simulation design, it allows one
of the four ML estimates to be the target esti-
mate since this particular estimate is obtained by
assuming the correct underlying distribution and
by using the entire sample (all 15 frequencies) in
estimation. The performance of the Hill estimator
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Figure 3. Performance of Hill (top) and Gk (bottom) estimators for underlying Burr model with true tail index
®= 1:5 (¸= 1:2, μ = 4=2, ¿ = 3=4). Hill estimates use all order statistics above F¡1(p) where F is the distribution
function of the underlying distribution. Tail index estimates using grouped data are found using Eq. (3.2) for the
given number of upper interval counts k. Sample size = number of replications = 1000.

using observations above the 90th and 80th per-
centiles of the true distribution is also compared
to those of the four similarly defined ML esti-
mators that use the entire sample in estimation.
With the tail estimates, we then calculate the ex-
pected loss exceeding the 95th percentile of the
true distribution, e(q:95) = EfX ¡ q:95 j X > q:95g.
The resulting expected losses are reported in Fig-
ures 5—8. In addition, we quantify these figures
by calculating RMSE and EFF (see Table 3).
Note that EFF in this table is defined as the ratio
of RMSE of an estimator to that of the ML esti-
mator that assumes the correct underlying distri-
bution. Hence, if the true underlying distribution
is Pareto, then EFF = 1 for ML Pareto.
The simulation results for sample sizes 100,

250, and 500 are reported in the Appendix.

5. Discussion of simulation results
The simulation conducted in the previous sec-

tion illustrates the loss of efficiency in using par-
titioned data. There is no doubt that efficiency
is lost with the use of partitioned data simply
because fewer data points are used in maximiz-
ing the likelihood function. This is evident from
those box-plots in the far left in Figures 1—4 and
from the EFF measures in the first few columns
in Table 2 when only observations exceeding the
95th percentile are used in estimation. For ex-
ample, as shown in Table 2, when the underly-
ing distribution is Pareto, the RMSE for the Hill
estimator using observations exceeding the 99th
percentile and the RMSE for the proposed es-
timator using the frequencies from the top two
intervals are 0.75 and 4.47, respectively, giving
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Figure 4. Performance of Hill (top) and Gk (bottom) estimators for underlying half T model with true tail index
®= 1:5 (Á= 1:5). Hill estimates use all order statistics above F¡1(p) where F is the distribution function of the
underlying distribution. Tail index estimates using grouped data are found using Eq. (3.2) for the given number of
upper interval counts k. Sample size = number of replications = 1000.

EFF = 5:99. This implies that parameter estima-
tion error, measured in RMSE, can be 5.99 times
higher with the use of partitioned data than with
the use of individual data. However, the amount
of error quickly diminishes. With only the top
three frequencies (N1, N2, and N3) in use, the EFF
is below 1.20 for all four distributions. Using
the top five frequencies or more, the EFF never
exceeds 1.10 and quickly approaches 1.01. The
parameter estimation error between the use of
partitioned data and of individual data becomes
negligible.
The tables in Appendix A show results where

sample sizes 500, 250, and 100 were used in the
simulation. For n= 500, the EFF never exceeds
1.10 and quickly approaches 1.01 for all four
distributions when the top five frequencies (i.e.,

upper 5%) are in use. This is similar to the find-
ings with n= 1000. For n= 250, the top 6 (i.e.,
upper 10%), and for n= 100, the top seven fre-
quencies (i.e., upper 20%) must be included for
the EFF to go below 1.10. Our simulation seems
to suggest that, for sample size between 100 and
1000, the loss of efficiency due to grouped data
is minimal if 20% or more of the observations
are included in estimating the tail index.
Figures 1—4 also reveal a typical problem in

tail-index estimation. When taking only few data
points in estimation, the resulting estimates ex-
hibit large variance, whereas if taking more data
points than necessary, the bias of the estimates
seems evident. This variance-bias tradeoff sug-
gests the development of a threshold selection
process to determine a threshold above which
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Table 2. Loss of efficiency with the use of partitioned data, n = 1000

Threshold D used in q:99 q:98 q:975 q:95 q:90 q:80 q:70 q:60 q:50 q:40 q:30 q:20 q:10 q:00
the Hill estimator
No. of top
intervals k used 2 3 4 5 6 7 8 9 10 11 12 13 14 15
in Gk

True distribution: Pareto
Cutoff D 21.54 13.57 11.7 7.37 4.64 2.92 2.23 1.84 1.59 1.41 1.27 1.16 1.07 1
Hill 0.75 0.41 0.34 0.23 0.15 0.11 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.05
Gk 4.47 0.48 0.39 0.24 0.16 0.11 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.05
Efficiency 5.99 1.19 1.14 1.07 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.01

True distribution: generalized Pareto
Cutoff D 31.82 19.86 17.04 10.55 6.46 3.89 2.85 2.26 1.88 1.61 1.4 1.24 1.11 1
Hill 0.66 0.38 0.33 0.21 0.15 0.14 0.15 0.18 0.20 0.23 0.25 0.27 0.29 0.32
Gk 3.25 0.44 0.35 0.23 0.16 0.14 0.15 0.18 0.20 0.23 0.25 0.27 0.30 0.32
Efficiency 4.95 1.15 1.08 1.07 1.05 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

True distribution: Burr
Cutoff D 24.87 15.12 12.86 7.7 4.57 2.69 1.99 1.62 1.39 1.25 1.14 1.07 1.03 1
Hill 0.79 0.44 0.39 0.30 0.27 0.27 0.27 0.26 0.22 0.17 0.11 0.05 0.09 0.20
Gk 4.43 0.52 0.44 0.32 0.28 0.27 0.28 0.26 0.22 0.17 0.11 0.05 0.09 0.20
Efficiency 5.61 1.17 1.12 1.06 1.03 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.02 1.01

True distribution: Half T
Cutoff D 18.82 12.2 10.64 7.02 4.71 3.2 2.55 2.15 1.87 1.65 1.47 1.3 1.15 1
Hill 0.66 0.38 0.32 0.22 0.19 0.19 0.18 0.16 0.13 0.10 0.07 0.06 0.11 0.21
Gk 3.42 0.45 0.37 0.24 0.20 0.19 0.18 0.16 0.14 0.10 0.07 0.06 0.11 0.21
Efficiency 5.19 1.18 1.13 1.08 1.03 1.02 1.01 1.01 1.01 1.01 1.00 1.02 1.02 1.02

the assumed Pareto-type functional form holds.
In other words, we should not include any data
points that are below the threshold in estima-

tion to avoid bias because the assumed functional
form is no longer valid. In addition to the diag-
nostic plot approach described in the next sec-
tion, we may also consider an analytic approach
to selecting the threshold for a given sample.

We may start with the frequencies N1 and N2
in the first two intervals I1 and I2, and sequen-
tially include frequencies in the adjacent inter-
vals by testing whether the assumed functional

form holds. We could perhaps make use of the
fact that, conditional on

Pk
i=1Ni =

Pk
i=1ni, Nj »

Binomial(
Pk
i=1 ni,pjk(®)), where pjk(®) = (a

¡®
j ¡

a¡®j¡1)=a
¡®
k . See, for example, Hsieh (1999) and

Dupuis (1999).
If the underlying distribution is known, then

the ML estimator is a common choice for param-
eter estimation. The ML estimate and the quanti-

ties derived from the estimate, e.g., the mean ex-
cess value e(u), possess desirable statistical prop-
erties. However, the true underlying distribution
is typically unknown in practice, and the penalty
of model misspecification and possibly subse-
quent misinformed decisions may not be negligi-
ble. Our simulation results shown in Figures 5—
8 and in Table 3 illustrate the robustness of our
proposed estimator and the penalty of model mis-
specification. It is clear from Table 1 that a reli-
able estimate of the tail index is crucial for es-
timating the mean excess function e(u). The es-
timation error of e(u) can be substantial with-
out a reliable tail index estimator. For example,
as reported in Table 3, when the true distribu-
tion is Pareto, the estimation error of e(u), mea-
sured as RMSE, for the four ML estimators us-
ing individual data and partitioned data ranges
from 1.15 to 12.08, and from 1.16 to 12.09, re-
spectively. ML Pareto, not surprisingly, has the
lowest RMSE because it assumes the correct un-
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Figure 5. Estimation of mean excess value e(q:95). ML estimates are calculated under the assumption of the
specified distributions. The true distribution F is Pareto with tail index ®= 1:5. The top plot uses all data,
and the bottom plot uses grouped data. The Hill q:90 and Hill q:80 use all order statistics larger than q:90 =
F¡1(:90) and q:80 = F

¡1(:80). The G6 and G7 use the counts from top 6 and 7 intervals. Sample size = number of
replications = 1000.

derlying distribution and utilizes the entire sam-
ple. However, if the distribution is mistakenly as-
sumed, then the RMSE can be 2, 6, or even 10
times higher than that of ML Pareto. In contrast,
the RMSEs of the proposed estimator and the
Hill estimator, despite using only a fraction of
the data, stay relatively close to the best RMSE
across all four assumed distributions, providing
the robustness against model misspecification.
The same conclusion can be drawn even with
a sample size n= 100; see the tables in Appen-
dix B.
Table 3 also highlights a problem often en-

countered in practice: the ML algorithm may not
converge properly, leading to abnormal estimates.
This is evident from the ML Burr column where
the ML algorithm did not converge in several

iterations, resulting in insensible estimates, and
thus, large RMSE.
Finally, the Hill and Gk estimators largely un-

derestimate e(q:95) when the true underlying dis-
tribution is half T (Figure 8). This is the result of
the variance-bias tradeoff previously discussed.
By using frequencies in the top 6 or 7 intervals,
we have taken data from the area of distribu-
tion that the Pareto tail approximation does not
hold. Once again, a threshold selection method
is necessary to identify the optimal number k of
frequencies to be used in Gk.

6. Applications to insurance
In this section we apply the proposed tail in-

dex estimator to actual insurance data available
only in a partitioned form. The observed losses,
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Figure 6. Estimation of mean excess value e(q:95). ML estimates are calculated under the assumption of the
specified distributions. The true distribution F is generalized Pareto with tail index ®= 1:5 (° = 1=1:5, ¾ = 1). The
top plot uses all data, and the bottom plot uses grouped data. The Hill q:90 and Hill q:80 use all order statistics
larger than q:90 = F

¡1(:90) and q:80 = F
¡1(:80). The G6 and G7 use the counts from top 6 and 7 intervals. Sample

size = number of replications = 1000.

summarized in Table 4, are taken from Hogg and
Klugman (1984) and consist of Homeowners 02
policies in California during accident year 1977
supplied by the Insurance Services Office (ISO).
Losses were developed to 27 months and include
only policies with a $100 deductible.
To determine the threshold above which to fit

the Pareto tail and estimate the tail index, we look
for a range in which the ® estimates are stable.
We use a plot similar to the Hill plot (see, for
example, Embrechts, Klüppelberg, and Mikosch
(1997) and Drees, DeHaan, and Resnick (2000)),
but modify it to be applicable for partitioned
losses. Under our general framework, we con-
sider the plot

f(k,Gk) : k = 2, : : : ,gg, (6.1)

where k is the number of top groups used to find
Gk, and look for a range of k values where the
plot is approximately level. This plot is given in
Figure 9 for the above insurance example. Notice
that the plot is roughly linear for thresholds be-
tween 500 and 1100 (see also Table 4, 5·
j · 8). We use ak := 500 (k = 8) as the thresh-
old and obtain Gk = 0:7905. This tail index
suggests no finite mean for the loss distribu-
tion.
Next, we consider some important quantities in

modeling large insurance claims, such as extreme
tail probabilities, extreme quantiles, and mean
excess loss, given that losses are available only
in partitioned form. Under the setup described in
Section 3, F̄(x) = P(X > x) can be approximated
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Figure 7. Estimation of mean excess value e(q:95). ML estimates are calculated under the assumption of the
specified distributions. The true distribution F is Burr with tail index ®= 1:5 (¸= 1:2, μ = 4=2, ¿ = 3=4). The top plot
uses all data, and the bottom plot uses grouped data. The Hill q:90 and Hill q:80 use all order statistics larger than
q:90 = F

¡1(:9) and q:80 = F
¡1(:8). The G6 and G7 use the counts from top 6 and 7 intervals. Sample size = number of

replications = 1000.

by
ˆ̄
F(x) =

(
F̄n(ak)(x=ak)

¡Gk if x > ak

F̄n(x) if x· ak,

(6.2)

where Fn is the empirical d.f. for the losses X1, : : : ,
Xn. In Figure 10 this approximation is illustrated
for the above Fire loss data with x > ak = 500.
Notice how closely the fitted tail probabilities are
to the empirical tail probabilities.
Similarly, one can also approximate the con-

ditional tail probability P(X > x j X > ak) by
(x=ak)

¡Gk . An extreme quantile of the loss distri-
bution, qp, is defined by the relationship F̄(qp) =
1¡p where p is close to 1 (say, Fn(ak)< p < 1).
Setting

ˆ̄
F(x) equal to 1¡p and solving for qp

in Eq. (6.2) yields the following estimate for the
extreme quantile qp:

q̂p = ak

Ã
1¡p
F̄n(ak)

!¡1=Gk
: (6.3)

As an example, we estimate the .99 quantile to
be q̂:99 = $57,315 using the above Fire loss data.
The mean excess loss above a high threshold is
important in premium determination and is given
by e(u) = EfX ¡ u j X > ug. For u > ak, the mean
excess loss can be approximated by

ê(u) =
u

Gk ¡ 1
, (6.4)

for Gk > 1. In this example, however, ê(u) is not
available because Gk · 1.
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Figure 8. Estimation of mean excess value e(q:95). ML estimates are calculated under the assumption of the
specified distributions. The true distribution F is half T with tail index ®= 1:5 (Á= 1:5). The top plot uses all
data, and the bottom plot uses grouped data. The Hill q:90 and Hill q:80 use all order statistics larger than q:90 =
F¡1(:9) and q:80 = F

¡1(:8). The G6 and G7 use the counts from top 6 and 7 intervals. Sample size = number of
replications = 1000.

7. Summary and conclusion

It has been shown that losses for many lines
of insurance possess Pareto-type tails. For this
reason, tail index estimation, which is a mea-
sure of the heavy-tailedness of a distribution, is
an important problem for actuaries. Most esti-
mators, however, cannot be used when loss data
are available only in a partitioned form. The pro-
posed estimator possesses the attractive features
of (1) being applicable when loss data are avail-
able only in a partitioned form, and (2) being ro-
bust with respect to a large class of distributions
commonly used in modeling insurance losses.
We also showed that tail index estimates can be
misleading if one misspecifies the distribution
when trying to fit a global density. We have dem-

onstrated that the proposed estimator compares
favorably to the Hill estimator that uses individ-
ual data, and provided an example showing its
effectiveness using actual insurance loss data.
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Appendix A

Table 5. Loss of efficiency with the use of partitioned data, n = 500

Threshold D used in q:99 q:98 q:975 q:95 q:90 q:80 q:70 q:60 q:50 q:40 q:30 q:20 q:10 q:00
the Hill estimator
No. of top
intervals k used 2 3 4 5 6 7 8 9 10 11 12 13 14 15
in Gk

True distribution: Pareto
Cutoff D 21.54 13.57 11.7 7.37 4.64 2.92 2.23 1.84 1.59 1.41 1.27 1.16 1.07 1
Hill 8.50 0.81 0.62 0.35 0.23 0.15 0.12 0.11 0.09 0.09 0.08 0.07 0.07 0.07
Gk 11.97 3.74 0.66 0.37 0.24 0.16 0.13 0.11 0.10 0.09 0.08 0.08 0.07 0.07
Efficiency 1.41 4.62 1.07 1.05 1.04 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.01 1.01

True distribution: generalized Pareto
Cutoff D 31.82 19.86 17.04 10.55 6.46 3.89 2.85 2.26 1.88 1.61 1.4 1.24 1.11 1
Hill 1.87 0.87 0.56 0.33 0.22 0.17 0.17 0.18 0.21 0.23 0.25 0.27 0.29 0.31
Gk 11.02 2.85 0.60 0.36 0.23 0.18 0.17 0.19 0.21 0.23 0.25 0.27 0.30 0.32
Efficiency 5.90 3.27 1.07 1.10 1.07 1.03 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

True distribution: Burr
Cutoff D 24.87 15.12 12.86 7.7 4.57 2.69 1.99 1.62 1.39 1.25 1.14 1.07 1.03 1
Hill 3.51 0.61 0.49 0.31 0.24 0.21 0.19 0.17 0.15 0.12 0.09 0.09 0.13 0.22
Gk 11.36 2.42 0.57 0.33 0.25 0.22 0.20 0.18 0.15 0.12 0.09 0.09 0.13 0.22
Efficiency 3.24 3.99 1.17 1.08 1.05 1.03 1.02 1.01 1.01 1.01 1.01 1.02 1.03 1.02

True distribution: Half T
Cutoff D 18.82 12.2 10.64 7.02 4.71 3.2 2.55 2.15 1.87 1.65 1.47 1.3 1.15 1
Hill 1.76 1.02 0.68 0.42 0.34 0.32 0.31 0.28 0.24 0.19 0.13 0.07 0.10 0.20
Gk 10.18 4.25 0.73 0.44 0.35 0.32 0.31 0.29 0.24 0.19 0.12 0.07 0.10 0.20
Efficiency 5.78 4.17 1.07 1.05 1.03 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.01 1.01
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Table 6. Loss of efficiency with the use of partitioned data, n = 250

Threshold D used in q:99 q:98 q:975 q:95 q:90 q:80 q:70 q:60 q:50 q:40 q:30 q:20 q:10 q:00
the Hill estimator
No. of top
intervals k used 2 3 4 5 6 7 8 9 10 11 12 13 14 15
in Gk

True distribution: Pareto
Cutoff D 21.54 13.57 11.7 7.37 4.64 2.92 2.23 1.84 1.59 1.41 1.27 1.16 1.07 1
Hill 13.75 2.87 1.53 0.63 0.35 0.23 0.18 0.15 0.14 0.13 0.12 0.11 0.10 0.10
Gk 18.42 11.82 8.83 1.50 0.37 0.23 0.19 0.16 0.14 0.13 0.12 0.11 0.10 0.10
Efficiency 1.34 4.13 5.78 2.38 1.05 1.03 1.02 1.02 1.01 1.02 1.01 1.01 1.01 1.01

True distribution: generalized Pareto
Cutoff D 31.82 19.86 17.04 10.55 6.46 3.89 2.85 2.26 1.88 1.61 1.4 1.24 1.11 1
Hill 259.25 3.04 1.41 0.71 0.32 0.21 0.19 0.20 0.21 0.23 0.25 0.27 0.30 0.32
Gk 17.83 10.84 9.03 2.16 0.34 0.22 0.19 0.20 0.22 0.24 0.25 0.27 0.30 0.32
Efficiency 0.07 3.57 6.40 3.03 1.08 1.04 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00

True distribution: Burr
Cutoff D 24.87 15.12 12.86 7.7 4.57 2.69 1.99 1.62 1.39 1.25 1.14 1.07 1.03 1
Hill 20.05 10.45 1.17 0.47 0.30 0.23 0.21 0.19 0.17 0.14 0.12 0.12 0.16 0.24
Gk 17.48 10.80 6.88 1.59 0.32 0.24 0.22 0.19 0.17 0.15 0.12 0.12 0.16 0.25
Efficiency 0.87 1.03 5.86 3.38 1.07 1.04 1.02 1.02 1.02 1.01 1.01 1.01 1.02 1.02

True distribution: Half T
Cutoff D 18.82 12.2 10.64 7.02 4.71 3.2 2.55 2.15 1.87 1.65 1.47 1.3 1.15 1
Hill 15.17 29.00 1.40 0.63 0.46 0.37 0.33 0.30 0.26 0.21 0.15 0.10 0.12 0.21
Gk 18.07 11.26 8.05 1.54 0.48 0.37 0.34 0.30 0.26 0.21 0.15 0.10 0.12 0.21
Efficiency 1.19 0.39 5.77 2.44 1.05 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
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Table 7. Loss of efficiency with the use of partitioned data, n = 100

Threshold D used in q:99 q:98 q:975 q:95 q:90 q:80 q:70 q:60 q:50 q:40 q:30 q:20 q:10 q:00
the Hill estimator
No. of top
intervals k used 2 3 4 5 6 7 8 9 10 11 12 13 14 15
in Gk

True distribution: Pareto
Cutoff D 21.54 13.57 11.7 7.37 4.64 2.92 2.23 1.84 1.59 1.41 1.27 1.16 1.07 1
Hill 23.57 12.26 316.23 5.30 0.72 0.38 0.30 0.25 0.22 0.20 0.18 0.17 0.16 0.15
Gk 23.72 19.80 26.88 9.91 3.33 0.40 0.30 0.26 0.23 0.20 0.18 0.17 0.16 0.15
Efficiency 1.01 1.61 0.08 1.87 4.63 1.03 1.02 1.02 1.02 1.02 1.01 1.01 1.01 1.01

True distribution: generalized Pareto
Cutoff D 31.82 19.86 17.04 10.55 6.46 3.89 2.85 2.26 1.88 1.61 1.4 1.24 1.11 1
Hill 290.38 15.53 10.81 3.05 0.79 0.35 0.27 0.25 0.25 0.25 0.27 0.28 0.30 0.32
Gk 22.92 19.10 24.32 10.50 2.71 0.37 0.28 0.25 0.25 0.26 0.27 0.28 0.30 0.32
Efficiency 0.08 1.23 2.25 3.45 3.44 1.07 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01

True distribution: Burr
Cutoff D 24.87 15.12 12.86 7.7 4.57 2.69 1.99 1.62 1.39 1.25 1.14 1.07 1.03 1
Hill 81.77 13.49 9.19 2.98 0.58 0.35 0.29 0.26 0.23 0.21 0.19 0.19 0.22 0.29
Gk 22.17 19.22 27.52 9.24 2.33 0.37 0.30 0.26 0.23 0.21 0.20 0.19 0.22 0.30
Efficiency 0.27 1.42 2.99 3.10 3.98 1.05 1.03 1.02 1.01 1.01 1.01 1.01 1.02 1.02

True distribution: Half T
Cutoff D 18.82 12.2 10.64 7.02 4.71 3.2 2.55 2.15 1.87 1.65 1.47 1.3 1.15 1
Hill 88.80 38.79 42.35 4.35 0.91 0.59 0.48 0.40 0.34 0.27 0.21 0.15 0.14 0.21
Gk 25.75 21.83 32.76 14.40 3.70 0.61 0.49 0.41 0.35 0.27 0.21 0.15 0.15 0.22
Efficiency 0.29 0.56 0.77 3.31 4.09 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.01
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Appendix B

Table 8. Robustness of the proposed estimator against the underlying distribution, n = 500

RMSE
True F(x) Hill q:90 Hill q:80 ML Pareto ML GPD ML Burr ML T

Individual Pareto 5.01 3.52 1.62 6.92 12.31 3.09
data GPD 10.20 8.26 34.90 5.49 126.22 77.25

Burr 11.05 9.99 7.15 7.42 2.06 4.43
Half T 5.07 4.95 9.43 7.99 36.51 3.09

True F(x) G6 G7 ML Pareto ML GPD ML Burr ML T
Partitioned Pareto 5.33 3.60 1.63 7.06 12.34 3.20
data GPD 11.13 8.78 35.57 5.52 128.47 78.05

Burr 11.65 10.58 7.23 7.67 2.07 4.59
Half T 5.19 4.99 9.58 8.09 36.39 3.10

Efficiency
True F(x) Hill q:90 Hill q:80 ML Pareto ML GPD ML Burr ML T

Individual Pareto 3.10 2.18 1.00 4.27 7.61 1.91
data GPD 1.86 1.50 6.35 1.00 22.97 14.06

Burr 5.36 4.85 3.47 3.60 1.00 2.15
Half T 1.64 1.60 3.05 2.59 11.82 1.00

True F(x) G6 G7 ML Pareto ML GPD ML Burr ML T
Partitioned Pareto 3.27 2.20 1.00 4.33 7.56 1.96
data GPD 2.02 1.59 6.45 1.00 23.29 14.15

Burr 5.63 5.11 3.49 3.71 1.00 2.22
Half T 1.67 1.61 3.09 2.61 11.73 1.00
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Table 9. Robustness of the proposed estimator against the underlying distribution, n = 250

RMSE
True F(x) Hill q:90 Hill q:80 ML Pareto ML GPD ML Burr ML T

Individual Pareto 7.43 5.27 2.35 7.04 12.76 4.40
data GPD 13.39 10.67 38.21 7.08 137.87 79.16

Burr 13.97 11.94 7.19 8.00 2.90 6.01
Half T 5.98 5.14 9.98 7.89 38.17 3.92

True F(x) G6 G7 ML Pareto ML GPD ML Burr ML T
Partitioned Pareto 8.02 5.49 2.37 7.16 12.80 4.48
data GPD 14.26 10.99 38.79 7.17 139.55 80.78

Burr 14.12 12.85 7.25 8.19 2.92 6.14
Half T 6.18 5.24 10.11 8.00 37.97 3.95

Efficiency
True F(x) Hill q:90 Hill q:80 ML Pareto ML GPD ML Burr ML T

Individual Pareto 3.17 2.25 1.00 3.00 5.44 1.87
data GPD 1.89 1.51 5.40 1.00 19.47 11.18

Burr 4.81 4.12 2.48 2.76 1.00 2.07
Half T 1.53 1.31 2.54 2.01 9.73 1.00

True F(x) G6 G7 ML Pareto ML GPD ML Burr ML T
Partitioned Pareto 3.38 2.31 1.00 3.02 5.40 1.89
data GPD 1.99 1.53 5.41 1.00 19.46 11.26

Burr 4.84 4.40 2.49 2.81 1.00 2.11
Half T 1.56 1.33 2.56 2.02 9.61 1.00

236 CASUALTY ACTUARIAL SOCIETY VOLUME 3/ISSUE 2



Extreme Value Analysis for Partitioned Insurance Losses

Table 10. Robustness of the proposed estimator against the underlying distribution, n = 100

RMSE
True F(x) Hill q:90 Hill q:80 ML Pareto ML GPD ML Burr ML T

Individual Pareto 11.02 7.98 3.59 7.38 13.96 6.72
data GPD 16.94 17.26 50.89 11.52 152.79 69.69

Burr 14.85 16.20 7.25 9.21 4.66 9.78
Half T 8.10 6.73 11.06 8.25 41.89 5.63

True F(x) G6 G7 ML Pareto ML GPD ML Burr ML T
Partitioned Pareto 11.47 8.32 3.61 7.48 14.00 6.77
data GPD 17.38 15.89 51.00 12.04 149.07 69.94

Burr 14.82 16.36 7.33 9.31 4.69 9.89
Half T 8.31 6.85 11.32 8.29 42.15 5.71

Efficiency
True F(x) Hill q:90 Hill q:80 ML Pareto ML GPD ML Burr ML T

Individual Pareto 3.07 2.22 1.00 2.06 3.89 1.87
data GPD 1.47 1.50 4.42 1.00 13.26 6.05

Burr 3.19 3.48 1.56 1.98 1.00 2.10
Half T 1.44 1.19 1.96 1.46 7.44 1.00

True F(x) G6 G7 ML Pareto ML GPD ML Burr ML T
Partitioned Pareto 3.17 2.30 1.00 2.07 3.87 1.87
data GPD 1.44 1.32 4.24 1.00 12.38 5.81

Burr 3.16 3.49 1.56 1.99 1.00 2.11
Half T 1.46 1.20 1.98 1.45 7.38 1.00
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Appendix C

Table 11. Bias in estimating e(q:95)

Individual Data Grouped Data
Hill ML Estimator Proposed ML Estimator

N q:90 q:80 Pareto GPD Burr halfT G6 G7 Pareto GPD Burr halfT

True F(x): Pareto
100 1.11 1.33 0.21 ¡6:67 12.44 0.06 1.30 1.38 0.21 ¡6:77 12.44 ¡0:11
250 0.95 0.55 0.12 ¡6:80 12.13 ¡0:60 1.18 0.63 0.12 ¡6:95 12.14 ¡0:75
500 0.24 0.08 0.09 ¡6:82 12.02 ¡0:77 0.44 0.11 0.10 ¡6:97 12.05 ¡0:91
1000 0.56 0.25 0.05 ¡6:74 11.93 ¡0:76 0.60 0.23 0.06 ¡6:93 11.94 ¡0:96

True F(x): GPD
100 ¡0:19 4.85 40.77 ¡0:77 123.27 49.34 ¡0:26 4.14 40.73 ¡0:58 120.32 48.43
250 1.99 3.71 34.97 ¡1:73 122.99 63.86 2.21 3.72 35.45 ¡1:71 123.80 64.50
500 2.19 3.65 33.40 ¡1:71 118.62 66.24 2.72 3.83 34.00 ¡1:65 120.31 67.10
1000 1.20 3.15 33.68 ¡1:67 117.75 65.97 1.46 3.07 34.16 ¡1:67 118.79 67.80

True F(x): Burr
100 2.94 7.16 ¡6:80 ¡6:49 0.61 0.18 2.21 6.74 ¡6:89 ¡6:75 0.61 ¡0:26
250 5.47 6.08 ¡7:05 ¡7:34 0.16 ¡1:66 5.68 6.66 ¡7:12 ¡7:53 0.18 ¡1:99
500 5.73 6.63 ¡7:09 ¡7:15 0.06 ¡1:58 5.95 6.89 ¡7:17 ¡7:43 0.05 ¡2:00
1000 4.77 5.56 ¡7:12 ¡7:21 0.01 ¡1:78 5.05 5.76 ¡7:19 ¡7:50 0.01 ¡2:21

True F(x): Half T
100 ¡3:43 ¡4:27 9.67 ¡8:01 38.50 ¡1:39 ¡3:53 ¡4:16 9.84 ¡8:05 38.45 ¡1:36
250 ¡3:00 ¡4:21 9.33 ¡7:80 36.73 ¡1:42 ¡2:90 ¡4:27 9.46 ¡7:92 36.50 ¡1:42
500 ¡3:70 ¡4:64 9.12 ¡7:95 35.86 ¡1:84 ¡3:68 ¡4:66 9.26 ¡8:05 35.70 ¡1:81
1000 ¡3:72 ¡4:53 8.92 ¡7:91 35.15 ¡1:85 ¡3:73 ¡4:53 9.05 ¡8:01 34.98 ¡1:82
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