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A Family of Chain-Ladder Factor 
Models for Selected Link Ratios
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AbSTRACT

The models of Mack (1993) and Murphy (1994) are expanded to 

a continuously indexed family of chain-ladder models by broad-

ening the variance structure of the error term. It is shown that, 

subject to certain restrictions, an actuary’s selected report-to-

report factor can be considered the best linear unbiased estimate 

for some member of this family. The approach given in Murphy 

(1994) yields a mean square error estimate of the unpaid claim 

liability that is consistent with the actuary’s selections.
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the most recent five years but derives variation esti-
mates that reflect information from all years, not just 
the most recent five. Verrall’s approach holds promise 
as actuaries become more comfortable with the Bayes-
ian perspective, which can be useful for combining 
statistics and judgment but which requires “prior” dis-
tributions and sophisticated statistical software.

An approach with which actuaries do appear com-
fortable is based on scaling. Panning (2006) argues 
that loss reserve uncertainty under his method is “scal-
able.” By that he means that his method’s coefficient of 
variation (CV) “is applicable to reserves that have been 
estimated in different ways” (Panning 2006). Scaling 
is an actuarial technique utilized in a wide variety of 
applications. In stochastic analysis the authors are 
aware that it is common practice to apply a CV based 
on the Mack method to a chain-ladder point estimate 
that is based on selected factors other than the all-year 
volume-weighted average. The authors are concerned 
that bifurcated point and variability estimates may 
underestimate the volatility of the underlying claims 
process.

This paper takes a more direct approach. We show 
how, under certain restrictions on the selected link 
ratio, a chain ladder model can be formulated such that 
the actuary’s selection can be considered a “consis-
tent unbiased estimate” of the model. Our chain lad-
der models are similar to those of Mack and Murphy, 
but allow for a broader set of “weights” by expand-
ing the domain of the exponent of the beginning value 
of loss to the entire real line. Using classical regres-
sion analysis, variability estimates fall out of the same 
model. This overcomes the scaling disconnect alluded 
to above. We also believe our approach is more acces-
sible to practicing actuaries than Verrall’s Bayesian 
approach. Although a drawback of our approach is that 
our mean square error formulas are more complicated 
than those of Mack and Murphy, this should not be 
unexpected for models that allow for a continuum of 
selected factors rather than just the standard averages. 
Despite the higher degree of difficulty, our formulas 
can be calculated in a spreadsheet.

To the authors’ knowledge, this is the first paper 
to posit models that reflect the chain-ladder method  

1. Introduction

The chain-ladder variance formulas first proposed  
by Dr. Thomas Mack (1993) are based upon all-year 
volume-weighted average report-to-report factors 
(“link ratios” or “factors”) and an assumed vari-
ance structure that is proportional to the development 
period’s initial loss. Under the regression approach 
of Daniel Murphy (1994) it was shown that the pro-
portional variance structure assumption is sufficient 
for the weighted average link ratio to be considered 
the best linear unbiased estimate (BLUE) of such a 
chain-ladder model.1

In practice, however, the actuary selects factors. 
Factor selection is an important component of actu-
arial analysis2 that utilizes actuarial judgment in its 
consideration of those—and other—averages as well 
as additional information gleaned from benchmark 
link ratios, industry trends, discussions with com-
pany management, etc. Although much research has 
been dedicated to framing the chain-ladder method 
within a statistical structure,3 little ground is devoted 
to the treatment of the uncertainty of the unpaid 
claim estimates when the selected factors differ from 
some prescribed formula. The few treatments on the 
subject tend to adopt a bifurcated approach, that is, 
one which supplements the expected value estimates 
from one model with variability estimates from a dif-
ferent model.

A Bayesian perspective can be exploited to combine 
point and uncertainty estimates derived from bifurcated 
models. For example, Verrall (2007) assumes the actu-
ary selects volume-weighted average link ratios from 

1An alternative variance assumption for which the simple average link 
ratio is the BLUE solution was also provided.
2For a mandate on the requirement to exercise judgement in selecting 
link ratios, see, for example, Friedland (2009). For a survey of how a 
group of actuaries selected factors under “test conditions” see Blumsohn 
and Laufer (2009).
3For stochastic research related to the chain-ladder method, see Bardis, 
Majidi, and Murphy (2008), Buchwalder et al. (2006), Mack (1993, 
1994), Mack, Quarg, and Braun (2006), Mack (1999), Murphy (1994), 
Venter (2006), Wright (1990) and Barnett and Zenwirth (2000) in the ref-
erences. Other prominent research includes Christofides (1997), Panning 
(2006), Rehman and Klugman (2009) (regression); England and Verrall 
(2002) (bootstrapping); Verrall (2004, 2007) (Bayesian).
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for 1 ≤ i ≤ I and 1 ≤ j ≤ I. Under these assumptions 
it is well known (first shown by Aitken 1935) that 
the best linear unbiased estimate (BLUE) of the 
link ratio f

j
 from age j to age j + 1 given triangle D, 

denoted f̂
j
, is a weighted average of the observed 

link ratios:
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are the observed link ratios based on the triangle.
Model (1) describes a family of models indexed 

by a continuous parameter a
j
 ∈ R. This family con-

tains the models given in Mack (1993; 1999) and 
Murphy (1994) as special cases, where those authors 
propose that the a

j
 indices assume the values 0, 1, 

and 2, at most.5 Murphy (1994) demonstrated that 
for the member indexed by a

j
 = 1 the weighted 

average link ratio is the best linear unbiased esti-
mate consistent with the model’s parameter f; for 
the a

j
 = 2 member, the simple average link ratio is 

a consistent estimator; for a
j
 = 0, a consistent link 

ratio is the slope of a simple regression line through 
the origin. Model (1) allows the domain of possible 
values for a to encompass the entire real line rather 
than just the values 0, 1, and 2. As a result, a con-
tinuum of selected factors has the potential to be 
consistent with Model (1). Put another way, Model 
(1) allows for an actuary’s selected link ratio that is 

in practice, i.e., when selected factors are other than 
the volume-weighted or simple averages. The authors 
believe that by associating the actuary’s choice with 
a model, the selected link ratio can better be back-
tested against the observable data, which can add 
more insight into the reserving exercise. We caution, 
however, that it is not necessarily possible to identify 
a chain-ladder model in our framework that is con-
sistent with every potential selected factor. Restric-
tions are defined in the paper. Of course, the results of 
our chain ladder model are subject to model error. As 
with all stochastic models, the actuary must assess the 
applicability of the indications relative to his or her 
understanding of the model’s assumptions, familiar-
ity with the triangle and other data, and the judgment 
underlying the factor selections.

The remainder of this paper is organized as fol-
lows. In Section 2 we present a family of models that 
generalizes those in Mack (1993; 1999) and Murphy 
(1994) and is consistent with the practical implemen-
tation of the chain ladder method, because it allows 
for conformance with a broad set of judgmentally 
selected factors. In Section 3 we give formulas for 
the expected value and mean square error of chain 
ladder projections from selected factors. In Section 4 
we demonstrate the concepts and calculations in a 
worked-through, spreadsheet-based example. Sec-
tion 5 is a summary. Appendix A includes proofs of 
our results. Appendix B compares our model’s recur-
sive formulas with those of Mack (1999).

2. A chain-ladder model for 
judgmentally selected link ratios

Adopting notation commonly found in the lit-
erature, we denote the observed triangle of positive 
cumulative losses4 by D = {C

i,j
1 ≤ i ≤ I, 1 ≤ j ≤ I}. A 

model equivalent to the chain-ladder method is

C f C Ci j j i j i j j i j

j

, , , , ( )+ = +1
2 1

α

σ ε
independent raandom variables have mean 0
and variance 1

ε i j, 5See also Barnett and Zehnwirth (2000). Murphy considers 0, 1, and 
2. Barnett and Zehnwirth consider 1 and 2, denoting the exponent by 
delta (d). In his original paper (1993) Mack only considered a = 1. Mack 
(1999) reframed his model in terms of link ratios rather than cumulative 
loss and extended a to also include 0 and 1; given the new model formu-
lation, the simple average corresponds to a = 0 in Mack (1999).

4“Losses” can refer cumulative paid or case incurred amounts, cumulative 
counts, or any triangular array of data subject to the given assumptions.
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with the smallest and largest values of loss, respec-
tively, as of the beginning of development period j:

ay C

ay C i I

j i i j

i i j
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. In the case of “ties” for accident years having 
the smallest or largest beginning value C
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, lima→∞ 
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The proof can be found in the appendix.
Lemma 1 says that the best linear unbiased esti-

mate of a link ratio for a given development period 
approaches the link ratio experienced by the acci-
dent year with the smallest/largest value of loss at 
the beginning of the development period as index a 
approaches +∞/-∞.

To illustrate, suppose losses as of the beginning 
and end of development period 1 for five accident 
years are as shown in Table 1. The largest and small-
est values of loss as of the beginning of the period are 
highlighted in yellow.

The link ratio function corresponding to these losses 
is graphed in Figure 1.

As predicted by Lemma 1, the graph is asymptotic 
to the line y = 2.500, the link ratio corresponding to 
accident year 3, and to the line y = 2.101, the link ratio 
corresponding to accident year 5. The blue line cor-
responds to the volume-weighted average link ratio  
(a = 1); the red line to the simple average (a = 2).

The link ratio function need not be monotonic. 
Indeed, change the ending value of accident year 5 to 

different from the simple or volume-weighted aver-
age to be, nevertheless, a linear unbiased estimate of 
a statistical model consistent with the chain-ladder 
method.

We refer to Model (1) as the chain-ladder factor 
model (CLFM). With that as background, there remain 
the following questions:

•   When a selected link ratio is not one of the usual 
averages, how does one find a member of the 
CLFM family for which it could be considered 
consistent?

•   How  does  one  calculate  the  value  and  the  risk  of 
a point estimate under the CLFM framework, and 
what additional assumptions are needed?

To help answer these questions we introduce the link 
ratio function, a concept fundamental to CLFM theory 
and results.

2.1. The link ratio function

Definition: Given observations of loss at the 
beginning and end of development period j, the link 
ratio function LR

j
(a) is a mapping on the real line 

given by

LR Rj α αα( ) = ∈( )( )

=

−

∑: , ( ), ,w Fi j i j
i

I j

1

5

where w
i,j 
(a) and F

i,j
 are defined in (3) and (4) above.6 

The link ratio function calculates weighted averages 
of the observed link ratios, where the weights depend 
on the exponent of loss at the beginning of the period. 
We begin our investigation of the link ratio function 
by considering its asymptotic properties as a→±∞.

Lemma 1: Asymptotic properties of the link 
ratio function

Consider for a given triangle D and development 
period j the set of all possible values of linear esti-
mates (2) as a function of a real valued parameter a 
∈ R. Let aymin

j
 and aymax

j
 denote the accident years 

6We may sometimes omit the subscript j when the context of develop-
ment period j is understood.

Table 1. development period 1 losses

Ci,j j  = 1 j  = 2 Fi,1

i  = 1 280 680 2.429

i  = 2 250 550 2.200

i  = 3 300 750 2.500

i  = 4 235 466 1.983

i  = 5 207 435 2.101

volume weighted avg. 2.265

simple avg. 2.243
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a given triangle. In fact, the maximum or minimum 
empirical link ratio may not even be achievable (the 
1.983 link ratio for accident year 4 is literally “off 
the chart” in Figure 2). Mathematically stated, the 
image of the link ratio function is not the entire real 
line. In other words, many link ratio selections would 
be inconsistent for any member of the CLFM family 

500. Year 5 would still have the smallest beginning 
value so its link ratio, now 2.415, would still be the 
asymptote. The new non-monotonic link ratio func-
tion, graphed in Figure 2, has a minimum somewhere 
in the vicinity of a = 6.

From Figures 1 and 2 it should be clear that not 
all possible link ratios (abscissa) are achievable from 
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and selecting the smallest positive value if one exists 
or the negative value closest to the origin.

According to traditional actuarial thinking, the vari-
ability of projected loss increases as the beginning 
value of loss increases, i.e., the value of a in the expo-
nent of C

ij
 in model (1) should be positive. A negative 

value of a would say that the variability of projected 
losses is inversely proportional to the beginning value, 
a seemingly counterintuitive result. However, we have 
found contexts in which such a counterintuitive result 
is not unreasonable. For example, given a book of first 
party business with low policy limits, case reserves for 
“obvious limits losses” would tend to be more certain 
than reserves on smaller claims. For that situation it 
would not be unreasonable to find the variability of 
losses at the end of a calendar period to be inversely 
proportional to the beginning value of loss. We only 
suggest that actuaries stay open to the story that data 
have to tell.

3. CLFM chain-ladder  
projection formulas

CLFM formulas are recursive because that allows 
for maximum flexibility in selecting different family 
members from one period to the next.

3.1. Expected value formulas

We adopt the usual chain ladder convention of 
developing the current diagonal. For accident year i  
with current diagonal value C

i,j
 and a selected link 

ratio f̂
j
, the expected value at the end of the first 

future development period is Ĉ
i,j + 1

 = Ĉ
i,j

f̂
j
. This esti-

mate is clearly unbiased if f̂
j
 is unbiased because  

C
i,j
 is a scalar. The expected value at the end of the 

next development period is Ĉ
i,j + 2

 = Ĉ
i,j + 1

f̂
j + 1

. Expected 
value estimates for subsequent development periods 
are iterated in a similar fashion.

The estimate Ĉ
i,j + 2

 will be unbiased if we assume 
that the product of the two estimates f̂

j
 and f̂

j + 1
 equals 

the product of the two underlying parameters f
j
 and 

f
j + 1

. Note that this assumption is implicit in chain 
ladder calculations where, say, a higher than aver-
age link ratio on the current diagonal has no bear-

relative to a given triangle D.7 This brings us to our 
next definition, that of a reasonable link ratio.

Definition: A link ratio lr is reasonable with 
respect to a given triangle D if there exists a member 
of the a-indexed CLFM family for which lr can be 
calculated as in (5). We denote the set of all reason-
able development period j link ratios by LR

j
(D):

LR
LR for some ,

given triangle
j

j

D
lr lr

( ) =
= ( ) ∈α α �

.
D













Noting that large values of a may lead to impracti-
cally large factors Ca/2 in the error term of (1), we 
recommend limiting a to a prudently bounded inter-
val; we selected [-8, 8] judgmentally.

A selected link ratio may be associated with more 
than one value of a (e.g., in Figure 2 the blue, volume- 
weighted line crosses the graph at more than one point). 
That is to say, there may be more than one member of 
the CLFM family whose best linear unbiased estimate 
is the selected factor. We suggest the following proce-
dure for selecting the selection-consistent alpha value.

Definition: The selection-consistent alpha of a 
reasonable link ratio lr

j
 is the smallest positive solu-

tion a ∈ [-8, 8] of the equation lr
j
 = LR

j
(a), or, if no 

positive solution exists, the smallest solution in abso-
lute value. Mathematically this is expressed as

ˆ max
min ,
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α

α α

α α
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By convention, if the selected link ratio lr
j
 is the  

volume-weighted average we set â
j
 = 1; for the sim-

ple average we set â
j
 = 2.

Given a selected link ratio lr
j
, the selection- 

consistent member of the CLFM family can be 
determined by finding positive and negative solu-
tions a of the equation

lr lr C C Cj j i j
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7It is hoped that the actuary would rely on information beyond the tri-
angle to justify such a selection.
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3.2.1. Standard error formulas for an 
individual accident year

Consider an individual accident year i and its 
estimate Ĉ

i,j
 at age j. The mean square error of the 

estimate Ĉ
i,j
 is the sum of parameter risk and pro-

cess risk:

mse E

E

ˆ ˆ
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Parameter risk (denoted D2) and process risk (denoted 
G2), notation borrowed from the literature, can be cal-
culated recursively according to the formulas shown 
next.11

3.2.1.1. Parameter risk: Variance of the 
estimate of the mean future value of loss

For the first period after the current diagonal (s = 1),

∆ ∆2

1

2 2 8C C fi j i j j, , ( )+( ) = ( )

because C 2
i,j
 is a constant. For s = 2, 3, . . .
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2 2C f f Ci j s i j s j s j s i, ,
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where µ i j s i j sC D, ,:+ − + −= ( )1

2

1E . Formula (9) is consis-
tent with the formula in Mack (1999) for a = 1, 2 
except for the third term, which Mack excludes.12

ing on the factors selected to develop that year going 
forward.8

The expected value of the sum of all accident 
years combined at development age j is the sum of 
the estimates of the individual accident years at the 
same age.

3.2. Standard error formulas

The first step in working with loss variation 
over a given development period is estimating the 
scale parameters s

j
, which can easily be found using 

weighted least squares available in virtually all 
popular statistical packages. Equivalently, for each 
development period the data can be transformed 
into ordinary least squares (OLS) form by divid-
ing the beginning and ending values of loss by the 
beginning value raised to the power a/2. As trans-
formed, model (1) is

C C f C Ci j i j j i j i j j i j

j j

, , , , , . ( )+ = +1

2 2 7α α σ ε

The formula for calculating an estimate ŝ2
j
 of s2

j
 can 

be found in any good statistical text. In the example 
we illustrate this approach using the LINEST func-
tion in Excel.

The next step is to estimate the variability of the 
selected factors f̂

j
. The estimate of the conditional 

variance of those factors, which we denote by D,9 is by 
definition the quantity ∆2

2

f f f D Dj j j( ) = − ( )( )( ): ˆ ˆE E . 
As with the estimates of s2

j
, these estimates are also 

standard outputs of regression software.10

8Mack (1993) proved that weighted average loss development factors are 
uncorrelated. His proof is an unconditional result, however, that does not 
necessarily hold conditionally for a specific triangle. Indeed, it is pos-
sible to simulate triangles that have correlated development factors, yet 
where all assumptions in (1) are satisfied.
9We use the delta operator D to denote parameter risk and the gamma 
operator G for process risk.
10We also use Excel’s LINEST function for this estimate. Alternatively 

one could use the formula (Mack 1999, p. 363) ∆
Σ

2
2

1

ˆ

,

f
c

j
j

i
n j

i j
j

( ) =
=
−

σ
α  where

weights w
i,j
 ≡ 1.

11Derived in Appendix A.
12See Appendix B for more information.
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For ages j = 2, 3, . . . , let X Cj i I j

I

i j= = − +Σ 2 ,
 be the 

sum of the future losses for accident years that have 
not yet matured to age j. Let Mj i I j

I

i j: ,= = − +Σ 2 µ  denote 
the expected value of X

j
 and let ˆ ˆ

,X Cj i I j

I

i j= = − +Σ 2
 be its 

chain ladder estimate.

3.2.2.1. Parameter risk: Variance of the 
estimate of the mean future value of total loss

For j = 2, only the most recent accident year is 
included in the total, so the parameter risk of the total 
is equal to the parameter risk of the most recent year: 
D2(X

2
) = D2( f

1
) ? C2

I,1
. For j = 3, 4, . . . ,
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3.2.2.2. Process risk: Variance of Xj

Model (1) assumes all accident years are indepen-
dent. Therefore the process variance of the sum of 
the future values as of a given age is the sum of the 
process variances:

Γ Γ2 2

2

13X Cj i j
i I j

I

( ) = ( )
= − +
∑ , . ( )

4. An example

We consider the triangle of RAA data analyzed in 
Mack (1993), Barnett and Zehnwirth (2000) and else-
where in the literature and illustrate spreadsheet cal-
culations of process risk and parameter risk within the 
CLFM framework. We selected simple and volume- 
weighted average link ratios for a few ages, and “judg-
mental” selections for other periods to demonstrate 
the concepts. Losses, link ratios, simple and volume-
weighted averages and the selections are shown in 
Table 2.

The mean and standard error estimates based on this 
triangle D, the selected factors, and the CLFM formu-
las are summarized in Table 3. We will illustrate the 
CLFM calculations for a few representative entries.

4.1. Expected value calculations

Table 4 shows the projected chain-ladder values 
based on the latest diagonal and the selected factors. 

3.2.1.2. Process risk: Variance of the deviation 
of future value of loss from its mean

For the first period after the current diagonal

Γ 2
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2 10C Ci j i j j
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, ,
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For subsequent periods
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As noted in the proof in Appendix A, the process 
risk calculation, drawing upon the Law of Total Vari-
ation, involves the expectation E(Ca) which is not 
the same as E(C)a. Since E(C) is a readily available 
quantity, Y is our “helper” function which, when mul-
tiplied by E(C)a, yields E(Ca). For example, since 
E(X2) = E2(X) + Var(X), E(X2)/E2(X) = 1 + cv2(X), so 
Y(2, k) = 1 + k2. Clearly Y(1, k) = 1; and Y(0, k) = 1  
as well. For higher raw moments, the ratio of E(Ca) 
to E(C)a depends on the distribution; for the normal 
distributions it is a polynomial in k. We adopt that 
simplification for our purposes. Therefore, for non-
negative integer values n of alpha we define Y as

Ψ α κ,
. . .

!
( ) =

−( ) − −( )( )






=

1 1 1

2 2
2

0

• •n n n j
j j

j
jj even

n
j∑ κ .

For a > 0 but not an integer, we define Y(a,k) to  
be the linear interpolation between Y([a],k) and 
Y([a] + 1,k) where [x] denotes the greatest integer 
function. For negative values of a we recommend 
approximating Y using simulation.13

3.2.2. Standard error formulas for all 
accident years combined

Recursive variance formulas for all accident years 
combined become slightly more complicated because 
at each new age an additional accident year is included.

13See Bardis, Majidi, and Murphy (2008) for more details.
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Table 2. RAA data

Losses

AY/Age 1 2 3 4 5 6 7 8 9 10

1 5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834

2 106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704

3 3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466

4 5,655 11,555 15,766 21,266 23,425 26,083 27,067

5 1,092 9,565 15,836 22,169 25,955 26,180

6 1,513 6,445 11,702 12,935 15,852

7 557 4,020 10,946 12,314

8 1,351 6,947 13,112

9 3,133 5,395

10 2,063

Link Ratios

AY/Dev. Period 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

1 1.650 1.319 1.082 1.147 1.195 1.113 1.033 1.003 1.009

2 40.425 1.259 1.977 1.292 1.132 0.993 1.043 1.033

3 2.637 1.543 1.163 1.161 1.186 1.029 1.026

4 2.043 1.364 1.349 1.102 1.113 1.038

5 8.759 1.656 1.400 1.171 1.009

6 4.260 1.816 1.105 1.226

7 7.217 2.723 1.125

8 5.142 1.887

9 1.722

Simple average 8.206 1.696 1.315 1.183 1.127 1.043 1.034 1.018 1.009

Volume-weighted average 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009

Selected 8.206 1.624 1.275 1.175 1.115 1.042 1.035 1.018 1.009 1.000

Table 3. CLFM calculations for representative entries

AY/Age Estimated Ultimate Current Diagonal Estimated Unpaid Total Risk CV

1 18,834 18,834 — — —

2 16,858 16,704 154 9 6.0%

3 24,109 23,466 643 620 96.4%

4 28,781 27,067 1,714 798 46.6%

5 29,006 26,180 2,826 1,500 53.1%

6 19,583 15,852 3,731 1,979 53.0%

7 17,874 12,314 5,560 2,180 39.2%

8 24,266 13,112 11,154 5,606 50.3%

9 16,210 5,395 10,815 6,433 59.5%

10 50,866 2,063 48,803 81,878 167.8%

All 246,387 160,987 85,400 82,838 97.0%
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ple, for period 3-4, a = 1.158 (Table 5), the data for 
the transformed model (7) are given in Table 6, and 
the LINEST estimate for s is 13.03.

The 9 to 10 development period has only one obser-
vation, insufficient for regression; we used Mack’s sug-
gested heuristic [10, p. 363] s 2

n - 1
 = min (s 4

n - 2
/s 2

n - 3
,  

min (s 2
n - 3

, s 2
n - 2

)). Table 7 summarizes the s2 esti-
mates for all development periods.

4.2.3. D2(fj)
For the standard error of the selected link ratio, 

denoted in our paper as D2( f
j
), either refer to the 

output of the software employed—LINEST15 in our  
case—or use the formula [(Mack 1999 p. 363); see

footnote 10] ∆
Σ

2

2

1

f
cj

j

i

n j

i j

j
( ) =

=
−

ˆ

,

σ
α

 which we did for the 

problematic 9-10 development period. Table 8 sum-
marizes these estimates.

4.2.4. Parameter risk (D) for projected loss
Parameter risk is estimated recursively in an 

analogous fashion to the expected value. Table 9 dis-
plays the parameter risk estimates by accident year 
as of each future evaluation and for all accident 
years combined.

For example, for accident year 10 the projected value 
in the first future diagonal is the product of the diago-
nal value and the 1-2 selected factor (2,063 ? 8.206 = 
16,929). For the next diagonal the projected value is 
the product of the age 2 projection and the 2-3 selected 
factor (16,929 ? 1.624 = 27,485). The values in the 
bottom row (“All”) are the sums of the values in their 
respective columns.

4.2. Variability calculations

4.2.1. Selection-consistent alphas
The simple average was selected for development 

period 1-2 and the volume-weighted average for peri-
ods 2-3 and 6-7. Accordingly, the respective selection-
consistent alphas are 2 and 1 by convention. For the 
remaining selections the selection-consistent alphas 
are the solutions of Equation (6), which we solved 
in Excel with a Newton-Raphson technique.14 The 
values of a shown in Table 5 thus identify selection-
consistent members of the CLFM family.

4.2.2. s2

We chose the OLS approach to illustrate how to 
carry out the CLFM calculations in Excel. For exam-

Table 4. Projected loss by accident year and age

AY\ Age 1 2 3 4 5 6 7 8 9 10=Ultimate

1

2 16,858

3 23,888 24,109

4 28,014 28,519 28,781

5 27,278 28,233 28,741 29,006

6 17,675 18,416 19,061 19,404 19,583

7 14,469 16,133 16,809 17,398 17,711 17,874

8 16,718 19,643 21,902 22,821 23,620 24,045 24,266

9 8,759 11,168 13,122 14,631 15,245 15,778 16,062 16,210

10 16,929 27,485 35,043 41,176 45,911 47,836 49,511 50,402 50,866

All (X ) 16,929 36,244 62,929 88,410 116,252 148,405 181,614 208,771 227,553

14For development years 9-to-10, where we do not have sufficient data 
to perform a regression, we selected a selection-consistent alpha equal to 
the one calculated for the 8-to-9 development years.

15LINEST labels the estimate of s as “se
y
” and the standard error of the 

slope parameter as “se
1
.”
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Estimates for the remaining ages are iterated in a 
similar fashion.

4.2.4.2. Parameter risk: D2(X) for all accident 
years combined

For all accident years combined, the parameter risk 
for age 2 is identical with the parameter risk for acci-
dent year 10 alone: D2(X

2
) = 72,014,303. For age 3, we 

use Formula (12):

∆ ∆

∆ ∆ ∆

2

3 2 9 2

2 2

2

2

2 2

2

2

2

2

X M C f

f X f

( ) = +( ) ( )
+ ( ) + ( )

,

ˆ XX2

2

2

16 929 5 395 0 018

1 624 72 014 3

( )
= +( )

+

, , .

. , ,

•

• 003 0 018 72 014 303

200 341 585

+

=

. , ,

, , .

•

The value for M
2
 = E(X

2
) comes from Table 4, the 

actual diagonal value C
9,2

 from Table 3 and the value 
of D2(X

2
) from the previous recursion step. Esti-

mates for the remaining ages are iterated in a similar 
fashion.

4.2.5. Process risk (G) for projected loss
Table 10 summarizes the process risk estimates by 

accident year and for all accident years combined. 
The process risk estimates for all accident years com-
bined is the sum of the process risk estimates for the 
individual accident years. The process risk estimates 
for individual accident years are calculated recur-
sively. We illustrate with accident year 10.

4.2.4.1. D2(C) for an individual accident year
To illustrate how we calculate these parameter risk  

estimates for an individual accident year, let’s work 
with accident year 10. For the first period after the 
current diagonal (i = 10 and j = 2) we use Formula (8),  
the actual loss in Table 2, and the link ratio uncer-
tainty estimate from Table 8:

∆ ∆2

10 2 101

2 2

1

22 063 16 921

72 01

C C f, , , .

,

( ) = ( ) =

=

• •

44 303,

For the next development period we use Formula (9), 
the estimated projected loss µ

10,2
 from Table 4, the 

selected link ratio in Table 2, Table 8 and the result 
of the previous calculation:

∆ ∆ ∆ ∆ ∆2

10 3 10 2

2 2

2 2

2 2

10 2

2

2C f f C f, , ,( ) = ( ) + ( ) + ( )µ 22

10 2

2 216 929 0 018 1 624 72 014 303

0

C ,

, . . , ,

( )
= +

+

• •

.. , ,

, , .

018 72 014 303

196 434 086

•

=

Table 5. Selection-Consistent alpha

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

2.000 1.000 1.158 1.305 1.117 1.000 2.565 2.005 2.005

Table 6. Transformed data for OLS regression

AY/Age 3 4

1 50.072 54.195

2 37.235 73.600

3 55.408 64.466

4 58.473 78.871

5 58.582 82.009

6 51.577 57.012

7 50.148 56.415

Table 7. s2 estimates

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

152.287 1,108.526 169.856 3.327 37.370 40.820 0.00000029 0.00044 0.00000029

Table 8. D2(fj)

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

16.921 0.018 0.009 0.001 0.001 0.001 0.000025 0.00023 0.00000000000000079
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method CV assuming weighted average link ratios 
and all years in the triangle would be applied to the 
point estimate based on a different set of factors. The 
Mack method CV from the RAA data is 51.6%.17 
This is about half the CLFM CV in Table 3. Thus, the 
CLFM risk estimate would be about twice the value 
of the risk estimate from the Mack method as we 
understand its common implementation in practice.

5. Summary

This paper presents a family of models that is con-
sistent with the implementation of the chain-ladder 
method as used in practice. Our approach is different 
from the methods of Mack (1993, 1999) and Murphy 
(1994) because, whereas their models assume that the 
selected chain-ladder link ratio is a volume-weighted 
or simple average, our model accepts an actuary’s 
judgmentally selected factor as a fundamental input. 
By enlarging the domain of the exponent of the chain 
ladder method’s “explanatory variable” (the value of 
loss at the beginning of the development period) in 
its influence on modeling loss development variabil-
ity, our approach allows for many more selected link 
ratios than just the usual averages to be considered 
best linear unbiased estimates within a chain-ladder-
consistent stochastic model. As a result, point esti-
mates and risk estimates of unpaid claim liabilities 
can be calculated simultaneously. This avoids the 
need to scale chain ladder point estimates based on 
one model (selected factors) with CVs based on a 
different model (e.g., volume-weighted or simple 
averages) or with CVs based on a different method-
ology entirely (e.g., bootstrapping). Our approach 
can be implemented in a spreadsheet, thus avoiding 
the need for more sophisticated statistical software.

The theory of our approach and illustrated in the 
example suggests that scaling a chain-ladder point 
estimate with a Mack method CV based on the all-
year volume-weighted average will understate the 

For the first period after the current diagonal (i = 
10 and j = 2), we use Formula (10), the actual loss in 
Table 2, and the scale parameter estimate from Table 7:

Γ 2

10 2 10 1 1

2 21 2 063 152 287 648 12C C, ,
ˆ , . ,( ) = = =α σ • 88 730, .

For the next development period (j = 3) we use For-
mula (11):
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because Y(a, k) ≡ 1 when a = 1. For the process 
risk at age j = 4 where a

3
 = 1.158 we linearly inter-

polate between Y(1, k) = 1 and Y(2, k) = 1 + k2 
where κ = =1 727 121 088 27 485 1 512, , , , .  and get 
Y(1.158, 1.51) = 1 + (1.158 - 1)(1.512)2 = 1.362. So
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Estimates for the remaining ages are iterated in a 
similar fashion.

4.3. Comparison of the CLFM vs.  
the Mack method

The question of how the CLFM and Mack results 
compare often arises.16 As we understand the popu-
lar practice of the method of Mack (1993), the Mack 

16Most recently by a reviewer of the paper.

17This cv can be produced by the formula in Mack (1993) or by the  
approach herein, where unity a is selected for all development periods.
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standard error of the projections; the greater the differ-
ence between the actuary’s selections and the volume-
weighted averages, the greater the understatement.

It goes without saying that to model loss devel-
opment within the CLFM family does not eliminate 
model risk, an inescapable side effect of any statis-
tical model by definition. The authors also caution 
that it is not necessarily possible to identify a CLFM 
family member that is consistent with every potential 
link ratio selection. Refer to the constraints outlined 
in the paper.

Various reviewers have suggested that the alpha 
index that identifies a member of a CLFM family can 
be considered a “parameter” rather than an “index” 
and therefore some component of the model risk 
might possibly be quantified by an estimate of that 
parameter’s estimation risk. The authors had indeed 
investigated that work stream within a maximum like-
lihood context. Although the mathematics was inter-
esting, that research thread was abandoned because 
there was no guarantee that the likelihood maximiz-
ing value of alpha would index the CLFM mem-
ber consistent with the actuary’s selection. Others 
may find this work stream more fruitful, but our 
primary goal was to identify selection-consistent  
models that cater to the needs of practitioners who 
select development factors based on judgment on a 
daily basis.

For diagnostics regarding the selections relative to 
potential trends in the triangle, we refer the reader to 
our first paper (Bardis, Majidi, and Murphy 2008).

The authors also wish to point out the CLFM 
framework assumes that the only available data that 
might shed light on link ratio uncertainty is the tri-
angle alone. When exogenous data help determine 
factor selection, unpaid claim estimate uncertainty 
will undoubtedly be improved by incorporating addi-
tional sources of pertinent quantifiable information 
within a broader model that is not limited to the tri-
angle alone. We anticipate much research in that area 
in the future.

The authors want to thank Tom Ghezzi and the many 
reviewers for their helpful comments and suggestions.
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Appendix A

Proof of Lemma 1 (Link Ratio Function)

1. We first note that for arbitrary a we have
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weight as

w C C Cay j ay j k j
k

I j

ayj jmin , min , , mi

α α α= =− −

=

−

∑2 2

1
nn , ,

min , , .

j

j

j k j
k

I j

ay j k j

C

C C

2 2

1=

−

∑

( )•
α

Obviously (C
ayminj

/C
k,j

) < 1 for all k ≠ aymin
j
. Thus 
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j
, so that  
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 as a → ∞. That 

proves wa
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 → 1 as a → ∞ and subsequently wa
ij,j

 → 0  
as a → ∞ for all i ≠ aymin

j
 based on (A). The propo-

sition is then obvious: lima→∞ LR
j
(a) = F

ayminj,j
.

2.  The proof that lima→-∞ LR
j
(a) = F

aymaxj,j
 is similar 

to 1.
The generalization to the case where the accident 

years having the minimum/maximum beginning val-
ues of loss are not unique is obvious, as the limits of 
the corresponding weights are 1 as well.

Proof of the Parameter Risk Formulas—
single accident year

For the first period after the current diagonal,  
Ĉ

i,k + 1 = f̂
k
C

i,k
, so D2(C

i,k + 1
) = C2

i,k
D2( f 2

k
) because C2

i,k
 is 

a constant. For s > 1 periods after the current diago-
nal, Ĉ

i,k + s = f̂
k + s - 1Ĉi,k + s - 1, so based on the “law of 

total variance”:
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Proof of the Process Risk Formulas—
single accident year

For the first period after the current diagonal, 
G(C

i,k + 1) = C
i,k
ak s2

k
. For s > 1 periods after the current 

diagonal, process risk can be calculated recursively 
according to the formula

Γ Γ2

1

2 2

1 1C f C Ci k s k s i k s i k s
k

, , ,+ + − + − + −( ) = ( ) +• E α ++ −( ) + −
s D k s

1

1

2σ .
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because C
I - j + 2, j - 1

 is a constant.

Proof of the Process Risk Formulas— 
all accident years combined

The formula for process risk is straightforward since 
all accident years are assumed to be independent and 
the process variance of the sum of the losses for all 
accident years is the sum of the process variance of 
each accident year.

Proof:

For the first period after its current age (s = 1)  
the process risk for C

i,k + 1 is a direct result of assump-
tion (1):

Γ 2

1

2C Ci k i k k
k

, ,+( ) = α σ

because C ak
i,k

 is a known constant.
For s > 1 we again rely on the “law of total variance”:

Γ 2 C C D C Di k s i k s i k s, , ,+ + +( ) = ( )( ) + ( )( )
=

E Var Var E

EE Var EC D f C Di k s k s i k s
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1α
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As explained in the text, in practice we favor  
approx imating E C Di k s

k s

, + −
+ −( )1

1α  with E C Di k s

k s

, + −( )( ) + −

1

1α
•

Ψ, where factor Y is a function of a and the coef-
ficient of variation k.

For estimates of G2 we replace all unknown quan-
tities by their best estimates: f

k
 by f̂

k
, s2

k
 by ŝ2

k
, etc. 

Again we note here that ŝ2
k
 and f̂ 2

k
 both depend on â

k
. 

However, we drop the functional notation ŝ2
k
(â

k
) and 

f̂ 2
k
(â

k
) for convenience of presentation.

Proof of the Parameter Risk Formulas—
all accident years combined

For j = 3, 4, . . . , X̂
j
 = f̂

j - 1 ? (X̂j - 1 + C
I - j + 2, j - 1

), where 
I - j + 2 is the only accident year that has matured as 
of age j - 1. By employing the “law of total variance” 
mentioned above, we have:
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Appendix B

The Mack (1999) model is based on the assump-

tions that E(F
j
C

j
) = f

j
 and Var F C

C
j j

j

j

( ) =
σ

α

2

 where, 

for simplicity, we omit his accident year index i and 
assume that all weights are equal to 1. Mack (1999) 
calculates standard error recursively as follows:

s.e. s.e. s.e.2 2 2ˆ ˆ ˆ ˆC C F f fk k k k k+( ) = ( ) + ( )( ) +1

2 22 s.e.2 ˆ .Ck( )

Case 1: Volume-weighted average  
link ratios

In the Mack framework the volume-weighted aver-
age case is achieved for a = 1. Thus
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Within the CLFM framework the volume-weighted 
average case is also achieved for a = 1. The CLFM 
formula for mean square error (mse) in Mack’s nota-
tion (s.e.2) is
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III)

The last “cross-variance” term in (II), i.e., D2( f
k
) D2(C

k
), 

is not included in the Mack’s volume-weighted aver-
age formula (I). This is a well-known result.18

Case 2: Simple average link ratios

In the Mack framework the simple average case is 
achieved for a = 0. Thus
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Within the CLFM framework the simple average 
case is achieved for a = 2. Again using Mack’s nota-
tion, the CLFM mse formula is
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18See, for example, Buchwalder et al. (2006).
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In both cases, mse estimates based on Mack’s for-
mulas will be smaller than those based on CLFM 
formulas by a magnitude equal to the “additional 
terms.” For most relatively stable triangles, the cross-
variance terms will have relatively little impact. But 
when there is considerable volatility in the empiri-
cal loss ratios, the magnitude of the cross-variance 
terms can be significant. (This was demonstrated for 
the volume-weighted case in the example). In the 
straight average case the other term G2(C

k
)s

k
2 not 

included in Mack’s formula can overshadow the 
cross-variance term, as it does with the Example data 
(analysis omitted above). When the judgmentally 
selected link ratio is not one of these two cases, the 
differences between the CLFM and Mack mse esti-
mators will depend on the proximity of the selection 
to the straight average and volume-weighted average 
cases.
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So the difference between the CLFM and Mack for-
mulas for mean square error in the simple average 
case is comprised of the last two “cross-variance  
terms” in (IV), i.e., D2(f

k
) D2(C

k
) + G2(C

k
)s

k
2. As far 

as the authors can tell, this comparison is a new 
result.


