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ABSTRACT

In this article, we present a Bayesian approach for cal-
culating the credibility factor. Unlike existing methods, a
Bayesian approach provides the decision maker with a use-
ful credible interval based on the posterior distribution and
the posterior summary statistics of the credibility factor,
while most credibility models only provide a point es-
timate. A simulated example is used to demonstrate the
advantages and disadvantages of the Bayesian credibility
factor proposed in this article.
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1. Introduction

Credibility modeling is a ratemaking process
which allows actuaries to adjust future premi-
ums according to past experience of a risk or
group of risks. For instance, Herzog (1994) con-
sidered two sets of data. The first is the collec-
tion of current observations from the most re-
cent period. The second is the collection of ob-
servations from one or more prior periods. Un-
der some credibility approaches, the new rate, C
(for claim frequency, claim size, aggregate claim
amount, etc.), is calculated by:

C = Z £R+(1¡Z)£H, (1)

where R is the mean of the current observations,
H is the mean of the prior observations, and Z
is the credibility factor, ranging from 0 to 1. The
credibility factor Z denotes the weight assigned
to the current data and (1¡Z) is the weight as-
signed to the prior data. Zero credibility (Z = 0)
will be assigned to data too small to be used for
ratemaking, while full credibility (Z = 1) is as-
signed to fully credible data.
Bailey (1950) showed that the formula ZR+

(1¡Z)H can be derived from Bayes’ theorem,
either by using a Bernoulli-Beta model on the
unknown parameter p, or by using a Poisson-
Gamma model on the unknown parameter ¸. Bai-
ley’s work led to the application of Bayesian
methodology to credibility theory. Bayesian sta-
tistical analysis for a selected model begins by
first quantifying the existing state of knowledge
and assumptions. These prior inputs are then
combined with information from observed data
quantified probabilistically through the likeli-
hood function. The mechanism of prior and like-
lihood combination is Bayes’ theorem. In tech-
nical terms, the posterior is proportional to the
prior and the likelihood, i.e.,

posterior/ prior£ likelihood.
However, the prior distributional assumptions

in Bailey’s models were severely limited. Bühl-

mann (1967) overcame these limitations and
proved that Equation (1) is also a distribution-
free credibility formula. The best linear approx-
imation of this formula is found by minimizing
EfE[¹(μ) j x1, : : : ,xn]¡ (a+ bX̄)g2, where ¹(μ) is
the mean of an individual risk (or the hypothet-
ical mean E(Xi j μ)), characterized by a risk pa-
rameter μ, and X̄ = (x1 + x2 + ¢ ¢ ¢+ xn)=n. Addi-
tionally, the process variance, À(μ), is defined
as Var(Xi j μ). Bühlmann and Straub (1970) then
formalized the least squares derivation of

Z = n=(n+ k), (2)

where n is the number of trials or exposure units
and

k =
À

a
, (3)

in which À = E[À(μ)] and a=Var[¹(μ)]. Here,
À and a are also known as the expected value
of the process variance and the variance of hy-
pothetical mean, respectively. This methodology
is called empirical Bayes credibility, although
the Bayesian content of this approach has been
greatly minimized.
In practice, we have to estimate À and a to

determine the credibility factor Z. Naturally, ac-
tuaries use unbiased estimators of À and a, de-
noted as À̂ and â respectively. When a sample
of claims is available, À̂ and â are then realized.
However, actuaries traditionally stop at a point
estimate without considering possible variation
caused by a random sample. Therefore, we take a
Bayesian approach and treat the unknown quan-
tities À and a as random variables. This allows us
to estimate À, a, and Z simultaneously and allows
the assessment of the credibility factor in terms
not only of point estimators, but also of certain
characteristics of probability distributions.
To date, Bayesian methodology has been used

in various areas within actuarial science. Klug-
man (1992) provided a Bayesian analysis to cred-
ibility theory by carefully choosing a paramet-
ric conditional loss distribution for each risk and
a parametric prior. To be useful in public dis-
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cussion, such a prior must be evidence-based in
some sense, e.g., be a summary of an expert’s
opinion on the topic. Bayesian methods provide
a natural way to incorporate this prior informa-
tion, whether statistical or not, in the form of
tables or as expert judgement, through the prior
distribution of the parameters.
In many cases, Bayesian methods can provide

analytic closed-formed solutions for the posterior
distribution and the predictive distribution of the
variables involved. Then, the inference is carried
out directly from these distributions and any of
their characteristics and properties. However, if
the distribution is not a known type, or if it does
not have a closed form, then it is possible to de-
rive approximations by means of Markov chain
Monte Carlo (MCMC) simulation methods.
In summary, MCMC algorithms construct the

desired posterior distributions of the parameters.
Thus, when convergence is reached, it provides
a sample of the posterior distribution that can
be used for any posterior summary statistics of
interest. Details of the technicalities involved in
MCMC can be found in Smith and Roberts
(1993) or in Gilks, Richardson, and Spiegelhalter
(1998). MCMC algorithms have appeared in ac-
tuarial literature by de Alba (2002), Carlin
(1992), Frees (2003), Gangopadhyay and Gau
(2003), Ntzoufras and Dellaportas (2002),
Rosenberg and Young (1999), and Scollnik
(2001). The advantage of using this procedure is
that actuaries can obtain point estimates as well
as probability intervals and other summary mea-
sures, such as means, variances, and quantiles.
In this article, we provide an alternative meth-

od for calculating the credibility factor, partic-
ularly the interval estimation of the credibility
factor. There is a range of concerns that arise
in credibility modeling. We present an effective
method to deal with these concerns. Section 2 in-
troduces the credibility problem. Section 3 uses
a simulated example to illustrate the basic idea
of the Bayesian credibility factor. Section 4 dis-

cusses the advantages and disadvantages of the
Bayesian credibility factor. Remarks are made in
Section 5.

2. Credibility problem

The classical data type in this area involves re-
alizations from the past and present experience of
individual policyholders. Suppose there are r dif-
ferent policyholders. We have a claims record in
year j, j = 1, : : : ,ni, for policyholder i, i = 1, : : : ,r.
Therefore, the data can be summarized in the fol-
lowing form,

X11,X12, : : : ,X1,n1

X21,X22, : : : ,X2,n2

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
Xr1,Xn2, : : : ,Xr,nr ,

(4)

where Xij can be the losses per exposure unit,
the number of claims, or the loss ratio from in-
surance portfolios. The goal is to estimate the
amount or number of claims to be paid on a par-
ticular insurance policy in a future coverage pe-
riod.

2.1. Variance component models

Dannenburg, Kaas, and Goovaerts (1996) in-
troduced the use of variance component models
to the credibility problem. In a variance compo-
nent model, each cell (policyholder i in year j)
consists of a number of contracts mij , which has
been observed over a number of observation pe-
riods ni for contract i. Then, for the ith contract
in the portfolio, i = 1, : : : ,r, in year j = 1, : : : ,ni,
the claim experience is represented by the model

Xij = ¹+®i+ "ij ,

i = 1, : : : ,r and j = 1, : : : ,ni (5)

where ®i and "ij are independent with E[®i] = 0,
Var[®i] = a and E["ij] = 0, Var["ij] = À=mij for
all i and j.

VOLUME 2/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 73



Variance Advancing the Science of Risk

In order to determine the credibility factor and
the credibility premium, we need to estimate pa-
rameters ¹, À, and a. In general, the unknown
parameters ¹, À, and a are associated with the
structural density, say ¼(μ), and hence we refer to
these as structural parameters. For the Bühlmann
and Straub (1970) formulation, the hypothetical
mean is defined as E(Xij j£i = μi)´ ¹(μi) and
the process variance is defined as Var(Xij j£i
= μi)´ À(μi)=mij . Thus, the structural parameters
are given by

¹= E[¹(£i)], À = E[À(£i)], (6)

and
a=Var[¹(£i)]: (7)

Consequently, the credibility factor Zi for each
risk is given by

Zi =
mi

mi+ k
, (8)

where
k =

À

a
(9)

and

mi =
niX
j=1

mij , i= 1, : : : ,r: (10)

2.2. Traditional credibility modeling

If estimators of ¹, À, and a are denoted by ¹̂, À̂,
and â, respectively, then the resulting credibility
premium is given by

P̂i = ẐiX̄i+(1¡ Ẑi)¹̂, i = 1, : : : ,r, (11)

where

Ẑi =
mi

mi+ k̂
, (12)

k̂ =
À̂

â
, (13)

and

X̄i =

Pni
j=1mijXij

mi
, i = 1, : : : ,r: (14)

Today, one of the most widely used method-
ologies for the choice of ¹̂, À̂, and â is empirical
Bayes parameter estimation. It allows us to use
the data at hand to estimate the structural param-

eters. The resulting estimators are

¹̂= X̄ =
Pr
i=1miX̄i
m

, (15)

À̂ =

Pr
i=1
Pni
j=1mij(Xij ¡ X̄i)2Pr
i=1(ni¡ 1)

, (16)

and

â=
Pr
i=1mi(X̄i¡ X̄)2¡ (r¡ 1)À̂

m¡
Pr
i=1m

2
i

m

, (17)

where m=
Pr
i=1mi. Note that Equations (15),

(16), and (17) are unbiased estimators of ¹, À,
and a, respectively.
However, there are some issues raised from

traditional credibility modeling. First, the esti-
mate of a can be negative, a clearly unaccept-
able value. The second issue is the need for ob-
taining a measure of the quality of the credibil-
ity estimate. The measure of error for Equation
(11) depends on a, À, and the credibility factor
Z. None of the standard approaches to credibil-
ity analysis provides a method of accounting for
this extra variability.

3. A simulated example

In this section, we consider an example based
on data simulated from a normal distribution. It
is always a concern with this assumption in cred-
ibility modeling due to the likelihood of a heavy
tail in loss distributions. However, the normal
model is still a very useful approach in many
problems. For non-normal data, we will recom-
mend a data transformation before using a more
sophisticated model. Variable transformations
serve a variety of purposes in data analysis, and
are used in particular to make distributions more
symmetric (or normal), to stabilize variation, and
to render relationships between variables more
nearly linear. These techniques can be found in
Box and Tidwell (1962), Box and Cox (1964),
and Klugman (1992).
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Based on Equation (5), it is assumed that

1. ¹= 200.
2. ®i has a normal distribution with mean 0

and variance 400 (i.e., a= 400).
3. "ij has a normal distribution with mean 0

and variance 2500 (i.e., À = 2500).

Specifically, the data is generated using the fol-
lowing mechanism:

1. μi
i.i.d.» N(200,400).

2. Xij j μi i.i.d.» N(μi,2500).

We consider a portfolio of five policyholders
with five years of experience. There is only one
claim every year for each policyholder. That is
r = 5, ni = 5, and mij = 1 in Equation (5). Using
Equations (8), (9), and (10), we have the true
credibility factor

Z =
5

5+
2,500
400

= 0:4444: (18)

Table 1. Simulated data

Policyholder μi Year 1 Year 2 Year 3 Year 4 Year 5

1 207 242 183 237 141 125
2 196 157 181 268 232 220
3 205 219 185 151 261 120
4 215 331 151 239 203 206
5 189 138 213 222 174 189

Figure 1. Histogram of credibility factors

Table 1 shows simulated data from the above
settings, in which μi = ¹+®i. Using Equations
(15) to (17), we have ¹̂= 200, À̂ = 2684, and â=
¡ 201. Traditionally, actuaries will set â to be
zero when â is negative. Thus, the credibility fac-
tor is calculated as

Ẑ =
5

5+
2,684
0

= 0: (19)

Clearly, this is a situation in which traditional
credibility factor analysis does not perform well.
Figure 1 shows the histogram of credibility fac-
tors based on 1000 simulated portfolios. There
are a large number of simulated portfolios (about
300 out of 1000), resulting in a zero credibility
factor due to a negative value of â.

3.1. Bayesian credibility factor

As seen previously, a negative value of â is
a major drawback of this unbiased estimator.
Therefore, we seek other alternatives to estimate
the credibility factor Z. The Bayesian method
and the MCMC technique can be applied with
objective selection of a model structure and prior
distributions based on actuarial judgement.
In this section, we will focus on the variance

components model introduced in Equation (5).
A general introduction to Bayesian inference on
variance components can be found in Searle,
Casella, and McCulloch (1992). Bayesian cred-
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ibility factors in actuarial applications are intro-
duced in Appendix A. The benefit of a Bayesian
approach is that it provides the decision maker
with a posterior distribution of the credibility fac-
tor as well as a posterior distribution of the pre-
mium.
In actuarial science, both outcomes and pre-

dictors are often gathered in a nested or hierar-
chical fashion (for example, fires within coun-
ties within states, employees within companies
within industries, and patients within hospitals).
Thus, as observed by various researchers in ac-
tuarial science, hierarchical models are ideally
suited to the insurance business in which single-
or multi-stage samples are routinely drawn. A
number of examples can be found in Klugman
(1992) and Scollnik (2001).
For the simulated example, we use the follow-

ing hierarchical setting.

1. Xij j μi,À »N(μi,À).
2. μi = ¹+®i.
3. μi j ¹,a»N(¹,a).
4. ¹ is an unknown constant, estimated by ¹̂

in Equation (15).
5. a»Gamma(®a,¯a).
6. À »Gamma(®À,¯À).
7. The Bayesian credibility factor is given by

Equation (25) in Appendix A.

The Bayesian approach is a powerful formal
alternative to deterministic and classical statis-
tical methods when prior information is avail-
able. The choice of prior is often presented as
an aspect of personal belief. In Appendix B, we
present an empirical Bayesian approach for pri-
ors of À and a.
Based on Equations (37) and (38) in Appendix

B, we have ®À =
Pr
i=1(ni¡ 1)=2 = 10 and ¯À =

®À=À̂init = 10=À̂init. The parameters for the prior
distribution of a are given by ®a = (r¡ 1)=2 = 2
and ¯a = ®a=â0init = 2=â0init as shown by Equa-
tions (39) and (40) in Appendix B.
Using the simulated data in Table 1, we have

À̂init = 2684 and â0init = 336. Therefore, ¯À = 10=

Table 2. Summary statistics for Bayesian credibility factor
ẐB

Mean 2.5% Median 97.5%

0.2985 0.0511 0.2879 0.6026

2684 = 0:0037 and ¯a = 2=336 = 0:0059. The es-
timation of the credibility factor Z, implement-
ed with WinBUGS (Spiegelhalter, Thomas, and
Gilks, 1996), is summarized in Table 2.
The Bayesian approach suggests that the

Bayesian credibility factor, ẐB, is the mean of
the posterior distribution as indicated in Equation
(25). Thus, we have ẐB = 0:2985. Nevertheless,
actuaries must recognize a possible variation in-
herent in the estimation of the credibility factor
as shown in Table 2. Clearly, Table 2 gives us
a more desirable result compared with the result
from Equation (19).
To assess the accuracy of the Bayesian credi-

bility interval estimator, we simulate 40 portfo-
lios from the normal-normal model with À = 502

and a= 202; and we construct a 95% credible
interval for each portfolio based on the poste-
rior distribution of the Bayesian credibility fac-
tor. These credible intervals are shown in Figure
2, where the horizontal line is the true credibility
factor Z = 0:4444 and the dash line is the me-
dian of the posterior distribution of the Bayesian
credibility factor. The true credibility factor falls
in the credible interval 37 times out of 40 trials.
For a detailed introduction to using WinBUGS
in actuarial applications, the reader is referred to
Scollnik (2001).

4. Further analysis

In this section, we extend our analysis to the
advantages and disadvantages of the Bayesian
credibility factor proposed in this article. What
makes credibility theory work is that it results
in a significant improvement in mean-squared
error, even though the resulting credibility pre-
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Figure 2. 95% Credible interval of Z

mium given by Equation (11) is a biased esti-
mator. We expect that the biases will cancel out
over the entire estimation process.

4.1. Sampling distribution

One advantage of the Bayesian credibility fac-
tor approach is its ability to describe the variation
inherent in the process of estimating the cred-
ibility factor. Traditionally, actuaries use Equa-
tion (12) to determine the credibility factor for
each policyholder and speak in absolute rather
than probabilistic terms. After the credibility fac-
tor has been determined, actuaries usually treat
it as a known constant.
However, the credibility factor estimator itself

has a sampling distribution associated with it.
That is, a realization of the credibility factor es-
timator in Equation (12) depends on the sample
(or portfolio) drawn from the underlying popu-
lation. This concept can be seen from Figure 1
and is summarized in Table 3.
Obviously, different simulated portfolios result

in different values of the credibility factor. It is
known that the impact of variation in the credibil-
ity factor estimator diminishes as the amount of
experience grows (see Mahler and Dean, Graph
8.6 on page 597, 2001). However, we apply the
credibility theory mostly because the data at hand
is sparse, and we combine the limited data with

Table 3. Summary statisitcs in 1,000 simulations

Simulated Median Simulated 95%
(À,a) Exact k Exact Z of Ẑ C.I. of Ẑ

(502,202) 6.25 0.4444 0.3565 (0.0000, 0.8553)

Figure 3. Posterior distribution of ẐB

other information. This is the concept embedded
in Equation (1).
On the other hand, the Bayesian approach al-

lows us to describe the phenomenon seen in Ta-
ble 3. From Section 3.1, the Bayesian credibility
factor approach suggests the mean of the poste-
rior distribution as the best estimate of the credi-
bility factor, i.e., ẐB = 0:2985. At the same time,
it also suggests that there is possible variation in
the estimation process.
For the simulated example in Table 1, the

Bayesian credibility factor approach is able to
suggest that we are 95% sure that the true credi-
bility factor will fall into the interval from 0.0511
to 0.6026. Additionally, the posterior distribution
of ẐB for the simulated data in Table 1 can be vi-
sualized in Figure 3.
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Table 4. Traditional credibility factors and Bayesian credibility factors

Trial Ẑ SE
Ẑ

ẐB SE
ẐB

Trial Ẑ SE
Ẑ

ẐB SE
ẐB

1 0.51 0.0038 0.54 0.0100 26 0.57 0.0201 0.59 0.0223
2¤ 0.00 0.1975 0.47 0.0007 27 0.04 0.1620 0.40 0.0024
3 0.74 0.0858 0.71 0.0697 28 0.69 0.0590 0.66 0.0449
4* 0.00 0.1975 0.21 0.0531 29 0.77 0.1064 0.73 0.0843
5 0.50 0.0026 0.54 0.0094 30 0.66 0.0464 0.64 0.0381
6 0.69 0.0585 0.66 0.0476 31 0.19 0.0654 0.43 0.0003
7 0.84 0.1573 0.81 0.1321 32 0.29 0.0253 0.46 0.0002
8 0.42 0.0006 0.51 0.0046 33 0.64 0.0389 0.62 0.0324
9 0.51 0.0039 0.55 0.0109 34¤ 0.00 0.1975 0.24 0.0400

10 0.53 0.0074 0.56 0.0131 35¤ 0.00 0.1975 0.33 0.0125
11 0.28 0.0280 0.46 0.0002 36 0.61 0.0268 0.61 0.0274
12 0.67 0.0502 0.65 0.0409 37¤ 0.00 0.1975 0.51 0.0038
13¤ 0.00 0.1975 0.35 0.0087 38 0.44 0.0000 0.52 0.0058
14 0.18 0.0706 0.43 0.0003 39 0.39 0.0029 0.50 0.0032
15 0.73 0.0836 0.70 0.0660 40 0.63 0.0349 0.62 0.0296
16¤ 0.00 0.1975 0.25 0.0379 41¤ 0.00 0.1975 0.27 0.0321
17¤ 0.00 0.1975 0.31 0.0192 42 0.80 0.1293 0.75 0.0942
18 0.82 0.1408 0.77 0.1068 43 0.35 0.0084 0.48 0.0012
19 0.63 0.0356 0.62 0.0321 44 0.78 0.1155 0.75 0.0942
20 0.81 0.1328 0.77 0.1085 45¤ 0.00 0.1975 0.15 0.0853
21¤ 0.00 0.1975 0.37 0.0048 46 0.55 0.0111 0.57 0.0153
22 0.65 0.0419 0.64 0.0371 47 0.52 0.0059 0.55 0.0101
23 0.38 0.0045 0.49 0.0020 48 0.59 0.0202 0.59 0.0219
24 0.54 0.0101 0.57 0.0150 49¤ 0.00 0.1975 0.30 0.0213
25¤ 0.00 0.1975 0.34 0.0099 50 0.23 0.0470 0.44 0.0000

Mean 0.0882 0.0313

¤Zero credibility suggested by traditional credibility estimator

4.2. Traditional credibility factor versus
Bayesian credibility factor
Now, we want to demonstrate that the Bayesian

credibility process can further improve the mean-
squared errors in determining the credibility fac-
tor and the credibility premium. To see how this
improvement comes about, we use the normal-
normal model in Section 3 to simulate 50 trials
(or portfolios). For each trial, simulated data is
generated the same way as data in Table 1.
We first compare the traditional credibility fac-

tor Ẑ given by Equation (12) to the Bayesian
credibility factor ẐB suggested by Equation (25)
in Appendix A. We use squared error as our crite-
rion. The results are shown in Table 4, in which,
SE

Ẑ
is calculated as (Ẑ ¡ 0:4444)2 and SE

ẐB
is

equal to (ẐB ¡ 0:4444)2. Note that the normal-
normal simulation in Section 3 has a true
credibility factor of 0.4444. For data in Table 1,
we have SE

Ẑ
= (0¡ 0:4444)2 = 0:1975 and SE

ẐB

= (0:2985¡ 0:4444)2 = 0:0213. This is shown
in trial 49 of Table 4. The interesting part is the

significant improvement to mean-squared errors

that result from the Bayesian credibility factor.

Our next task is to compare the traditional

credibility premium P̂i provided by Equation (11)

to the Bayesian credibility premium P̂Bi , where

P̂Bi = Ẑ
B
i X̄i+(1¡ ẐBi )¹̂, i = 1, : : : ,r:

(20)

For each simulated trial, we have £ = (μ1,μ2,μ3,

μ4,μ5) which represents the true underlying in-

dividual premiums. For example, £ is given by

(197,201,202,208,207) for the simulated data in

Table 1. The sum of squared errors for the tradi-

tional credibility premium P̂i is defined as

5X
i=1

(P̂i¡ μi)
2: (21)
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The sum of squared errors for the Bayesian cred-
ibility premium P̂Bi is defined as

5X
i=1

(P̂Bi ¡ μi)
2: (22)

For the simulated data in Table 1, we have P̂1 =
P̂2 = P̂3 = P̂4 = P̂5 = X̄ = 200, since Ẑ = 0. Mean-
while, the Bayesian credibility premium is deter-
mined as follows.

P̂B1 = 0:2985 ¤ X̄1 + (1¡ 0:2985) ¤ 200
= 0:2985 ¤ 185:53+ (1¡ 0:2985) ¤ 200
= 195:35:

Similarly, we have P̂B2 = 203:17, P̂
B
3 = 195:87,

P̂B4 = 207:41, and P̂
B
5 = 195:85. Thus, the sum of

squared errors for P̂i, i = 1, : : :5, is then calculated
as

(200¡ 207)2 + (200¡ 196)2 + (200¡ 205)2

+ (200¡ 215)2 + (200¡ 189)2 = 466:
And the sum of squared errors for P̂Bi , i = 1, : : :5,
is equal to 386. Table 5 shows results for all
50 trials. We also include the individual sam-
ple means X̄i, i = 1, : : : r as a benchmark. They
are known as the maximum likelihood estimates
and are always unbiased. We see that the Bayes-
ian credibility premium has the smallest mean-
squared error.

4.3. Applications

In this section, we show one application of in-
terval estimation of the credibility factor. Focus-
ing on the simulated data in Table 1, we have
P̂B1 = 195:35, P̂

B
2 = 203:17, P̂

B
3 = 195:87, P̂

B
4 =

207:41, and P̂B5 = 195:85. They represent future
premiums without considering possible variation
caused by the credibility factor.
To see the impact of the variation inherent in

the estimation of a credibility factor, we use
Equations (24) and (26) in Appendix A to de-
termine the posterior distribution of P̂B1 . For il-
lustrative purpose, we only consider the impact

Table 5. A comparison of the sample mean (MLE), the
traditional credibility premium, and the Bayesian credibility
premium

X̄i P̂i P̂Bi X̄i P̂i P̂Bi
Trial SSE SSE SSE Trial SSE SSE SSE

1 4473 3040 3100 26 3667 2106 2121
2¤ 4597 4087 3992 27 2542 5335 3643
3 2624 1370 1289 28 4201 1897 1734
4¤ 830 1286 1042 29 3046 1150 950
5 1839 843 845 30 896 635 654
6 846 262 265 31 3636 3807 3581
7 4321 3089 2871 32 1015 1314 877
8 3881 1686 1877 33 806 1142 1182
9 1643 661 660 34¤ 1008 1614 1270

10 1873 302 343 35¤ 3051 684 1004
11 2472 2786 2314 36 1634 911 912
12 2338 944 908 37¤ 1566 1392 952
13¤ 1601 330 453 38 2086 790 777
14 2346 1699 1448 39 1559 1133 1116
15 3352 1523 1383 40 3206 1198 1146
16¤ 1150 745 628 41¤ 1534 1428 1129
17¤ 5459 5191 4969 42 3415 1674 1338
18 4695 2727 2341 43 1166 268 332
19 4648 2532 2496 44 2252 1265 1196
20 3827 2299 2082 45¤ 198 1106 884
21¤ 3217 3821 3103 46 4258 2290 2337
22 3472 2958 2957 47 2003 697 718
23 1938 618 654 48 8258 5856 5879
24 711 251 244 49¤ 1142 466 386
25¤ 1958 160 351 50 1818 1340 1172

Mean 2601 1734 1598

¤Zero credibility suggested by traditional credibility estimator

Figure 4. Variation of premium caused by variation of
credibility factor

of the variation of the credibility factor on future
premiums. Thus, ¹i and ¹ in Equation (24) are
replaced by their maximum likelihood estimates
X̄1 = 185:53 and X̄ = 200, respectively. Figure 4
shows the posterior distribution of P̂B1 . As we can
see, there is variation in the premium caused by
variation in the credibility factor.
Figure 5 shows the impact of variation in the

credibility factor to future premiums for poli-
cyholders considered in Table 1. The horizon-
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Figure 5. Box plot for P̂Bi , i = 1, : : : ,5 with consideration of the variation in the credibility factor

tal line at 200 represents the value of X̄. The
box plots represent posterior distributions of P̂Bi ,
i = 1, : : : ,5. It gives us a good visual representa-
tion of the variability of the premium caused by
variation in the credibility factor. The median is
shown as a horizontal line within the box. With
this information, actuaries can decide whether or
not to take an action on the volatility caused by
the credibility factor estimation process.

4.4. Disadvantage

The disadvantage of using the proposed Bayes-
ian credibility factor approach shown in Appen-
dices A and B is that we drop the subtraction
term in Equation (30). The impact of this action
is that we systematically shift the prior distribu-
tion of â to the right by the amount of À̂=n. How-
ever, as seen in Table 4, the resulting Bayesian
credibility factors are not materially different
from those traditional credibility factors with
non-zero values. We believe that it is worthwhile
to be biased in the prior distribution of â.
Alternatively, we can also use Equations (28)

and (33) for a non-negative â to have a more

Table 6. Bayesian credibility factor using Equations (29) and
(34)

Trial Ẑ ẐB Adjust ẐB

3 0.74 0.71 0.59
6 0.69 0.66 0.58
7 0.84 0.81 0.79

12 0.67 0.65 0.55
15 0.73 0.70 0.64
18 0.82 0.77 0.76
20 0.81 0.77 0.75
28 0.69 0.66 0.58
29 0.77 0.73 0.69
42 0.80 0.75 0.72
44 0.78 0.75 0.71

precise prior distribution. Table 6 shows a small
sample of trials with this adjustment. We only list
trials with relatively large estimates in Table 6,
because they contribute relatively large variation
in the total squared errors.

5. Remarks

In this article, we have attempted to explore a
range of concerns that arise in credibility mod-
eling. As in any statistical estimation problem,
the goal is to estimate the value of an unknown
quantity, such as a credibility factor or a future
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premium in the actuarial field. There are different
techniques being used for estimation of a cred-
ibility factor or a future premium. Nevertheless,
the objectives remain the same. We want to use
the sample information to estimate the parame-
ters of interest and to assess the reliability of the
estimate.
The variability of a credibility estimator Ẑ can

cause misclassification of and inaccuracy in
the future premium. The benefit of the Bayesian
credibility factor approach is that it provides the
decision maker an interval estimate of a credibil-
ity factor for assessing the accuracy of its point
estimator, while the traditional credibility factor
approach only provides a point estimator.
Additionally, we use an empirical approach to

determine priors for À and a shown in Appendix
B. As described earlier, Bayesian statistical meth-
ods not only incorporate available prior informa-
tion either from experts or previous data, but al-
low the knowledge in these and subsequent data
to accumulate in the determination of the param-
eter values. To avoid negative estimates of a, we
replace Equation (28) with Equation (34). Alter-
natively, one might consider shrinking Equation
(28) for the same purpose. That is, we can con-
sider the shrinkage estimates where we use
Equation (28) if it is positive. If Equation (28) is
negative, we could replace it with 1/2 of the
value from Equation (34). However, it is dif-
ficult to say if this will work without further
investigation.
When credibility theory is applied to ratemak-

ing, À̂ and â, given by Equations (16) and (17),
respectively, contain the least information avail-
able to the actuary. Even if the components of
the prior distributions are not set at their optimal
values, the Bayesian credibility factor and the
Bayesian credibility premium are still likely to
produce better results. Overall, the methodology
is easy and straightforward. We believe that this
model is a good alternative to credibility model-
ing.

Acknowledgments

The authors gratefully acknowledge the refer-
ees for their extensive comments and suggestions
that led to significant improvement of the paper.
The authors would also like to thank the editors
for their help throughout the review process.

References
Bailey, A., “Credibility Procedures,” Proceedings of the Ca-
sualty Actuarial Society 37, 1950, pp. 7—23, 94—115.

Box, G. E. P., and D. R. Cox, “An Analysis of Transforma-
tions,” Journal of the Royal Statistical Society: Series B,
26, 1964, pp. 211—252.

Box, G. E. P., and P. W. Tidwell, “Transformation of the
Independent Variables,” Technometrics 4, 1962, pp. 531—
550.
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Appendix A. Bayesian credibility
factor in actuarial applications

For the hierarchical setting in Section 3.1, let

V = f¹,®1, : : :®r,À,ag:
We use the notation Vnº to represent all other
parameters except º in the parameter set V. Let
p(º j Vnº) be the full conditional distribution of
º j Vnº. For a detailed example of the derivation
of the full conditional distribution, the reader is
referred to Scollnik (2001). Therefore, we have
the following sampling scheme.

1. Initialize ¹, ®1, : : : ,®r, À, and a.
2. Generate ¹ from

p(¹ j Vn¹)/
rY
i=1

niY
j=1

exp
·
¡ 1
2À
(xij ¡¹¡®i)2

¸
:

3. Generate ®i from

p(®i j Vn®i)/ exp
μ
¡ 1
2a
®2i

¶

£ exp
24¡ 1
2À

niX
j=1

(xij ¡¹¡®i)2
35 ,

for i = 1, : : : ,r:

4. Generate a from

p(a j Vna)/ 1
a(r=2)+1

exp

Ã
¡ 1
2a

rX
i=1

®2i

!
:

5. Generate À from

p(À j VnÀ)/ 1
À(N=2)+1

£ exp
24¡ 1
2À

rX
i=1

niX
j=1

(xij ¡¹¡®i)2
35 ,

where N =
Pr
i=1ni.

6. Set the credibility factor as

ZBi =
mi

mi+
À

a

, i= 1, : : : ,r: (23)

7. The credibility premium is defined as

PBi = Z
B
i £¹i+(1¡ZBi )£¹, i = 1, : : : ,r:

(24)

In the sampling scheme, steps 1 through 7 are
repeated. For the hierarchical setting introduced
in Section 3.1, ¹ is estimated by ¹̂ in Equation
(15). The Gibbs sampling is carried out in two
stages. The first stage is a burn-in period. At the
end of this stage, it is assumed the iterations have
converged to draws from the posterior distribu-
tion. The second stage is called the sampling
stage, which is used to estimate the posterior
means. After a sufficiently long burn-in period,
we have a sample of the credibility factor ZBi,l,
l = 1, : : : ,N . Similarly, we have a sample of the
credibility premium Pli , l = 1, : : : ,N.
Thus, the Bayesian credibility factor is given

by

ẐBi =

PN
l=1Z

B
i,l

N
, i = 1, : : : ,r, (25)

and the Bayesian credibility premium is given by

P̂Bi =
PN
l=1Pi,l
N

, i = 1, : : : ,r: (26)

For the simulated data in Table 1, the MCMC
sampling scheme described above can be imple-
mented in WinBUGS as below. The code itself
is fairly self-explanatory. For a comprehensive
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overview of how to implement actuarial mod-
els with MCMC and WinBUGS, the reader is
referred to Scollnik (2001), in which monitor-
ing and assessing the convergence of the MCMC
simulation is also clearly addressed.

CODE for SIMULATED DATA in TABLE 1
model;
f
### Step 1 ###
for( i in 1 : 5 ) f
for( j in 1 : 5 ) f
y[i , j] ˜dnorm(theta[i],tau.v)

g
g

for( i in 1 : 5 ) f
theta[i] ¡- mu.hat+alpha[i]

g
### Step 2 ###
mu.hat ¡- mean(y[,])

### Step 3 ###
for( i in 1 : 5 ) f
alpha[i] ˜dnorm(0, tau.a)

g
### Step 4 ###
a ˜dgamma(2,0.0059)
tau.a ¡- 1 / a

### Step 5 ###
v ˜dgamma(10,0.0037)
tau.v ¡- 1 / v

### Step 6 ###
k ¡- v / a
z ¡- 5 / (5 + k)

### Step 7 ###
for( i in 1 : 5 ) f
PB[i] ¡- z*mean(y[i,])+(1-z)* mean(y[,])

g
g

Appendix B. Empirical Bayesian
approach to priors

The prior distribution usually presents a sum-
mary of external evidence about the quantities of
interest. To be useful in public discussion, such
a prior must be evidence-based in some sense.
Here, we use an empirical approach to determine
priors for À and a. Recall in Equations (16) and

(17), we have

À̂ =

Pr
i=1
Pni
j=1mij(Xij ¡ X̄i)2Pr
i=1(ni¡ 1)

(27)

and

â=
Pr
i=1mi(X̄i¡ X̄)2¡ (r¡ 1)À̂

m¡
Pr
i=1m

2
i

m

: (28)

For the basic model, mij = 1 for 1· i· r,1·
j · n, Equation (5) provides a balanced one-way
variance component model. Hence, we have

À̂ =

Pr
i=1
Pn
j=1(Xij ¡ X̄i)2
r(n¡ 1) (29)

and

â=
Pr
i=1(X̄i¡ X̄)2
r¡ 1 ¡ À̂

n
: (30)

To obtain empirical prior distributions on these
parameters, we need to estimate the moments of
these estimators (i.e., method of moments). Since
E(À̂) = À and E(â) = a, estimates themselves can
be used as estimates of the first moments. Mean-
while, we have r(n¡ 1)À̂=À coming from a Â2-
distribution with r(n¡ 1) degrees of freedom.
Thus, we can obtain the estimated variance of
À̂ as

V̂ar(À̂) =
2À̂2initPr
i=1(n¡ 1)

, (31)

where À̂2init is the initial value obtained from
Equation (29).
As for â, there is no identifiable distribution

for this estimator. Nevertheless, the variance of
â can be derived as

Var(â) =
2

r¡ 1
μ
a+

À

n

¶2
+

2
(m¡ r)n2À

2:

(32)

An unbiased estimator of this variance is given
by

V̂ar(â) =
2

r+1

"Pr
i=1(X̄i¡ X̄)2
r¡ 1

#2
+

2
(m¡ r)n2 À̂

2:

(33)
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Then, parameters of the prior distribution ¼2(a)
can be determined by matching its mean and
variance with â and Equation (33) respectively.
However, this approach does not eliminate the

issue of negative values for â. Thus, we use an
approximation for the variance of â. To avoid
the negativity in the estimation of a, we drop the
subtraction term in Equation (30), i.e.,

â0 =
Pr
i=1(X̄i¡ X̄)2
r¡ 1 : (34)

Note that â converges in distribution to â0 as n!
1. Suppose E(â0) = a0. Then, (r¡ 1)â0=a0 has a
Â2-distribution with (r¡ 1) degrees of freedom.
Thus, we obtain the approximated variances of â
by

V̂ar(â) =
2â0

2
init

r¡ 1 (35)

where â0
2
init is the initial value obtained by Equa-

tion (34).
For example, if we adopt Gamma(®,¯) as our

prior distribution, we can quickly determine ®
and ¯ by matching the moments. The equations
to find parameters for the prior distribution of À
are given by

®À=¯À = À̂init, ®À=¯
2
À =

2À̂2initPr
i=1(n¡ 1)

(36)

with solutions,

®À =
Pr
i=1(n¡ 1)
2

(37)

and
¯À =

®À
À̂init

: (38)

Similarly, parameters with ad hoc approximation
for the prior distribution of a are given by

®a =
r¡ 1
2

(39)

and
¯a =

®a

â0init
: (40)

In the Bühlmann-Straub setting, the data are not
balanced, however, and there are unequal num-
bers of observations in the subclasses. The mean
squares are no longer independent and they
do not have Â2-distributions. The variance of
weighted sums of squares needs to be approx-
imated and usually is much more complicated
than balanced data. We recommend simply us-
ing Equations (27) and (34) to match the first
moment of the prior distributions.
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