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A Linear Approximation 
to Copula Regression
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ABSTRACT

Recently, Parsa and Klugman (2011) proposed a generalization 

of ordinary least squares regression, which they called copula 

regression. Though theoretically appealing, implementation, 

especially calibration, of copula regression is generally more 

involved than for generalized linear models. In this paper a linear 

approximation to copula regression, for which implementation 

is similar to that for least squares regression, will be introduced. 

We proceed by investigating the connection between the pro-

posed approximation to copula regression, and copula regres-

sion itself. In particular, we develop a set of criteria which ensure 

a predictable bias in the estimates from the linear approximation 

to copula regression.
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regression. In section 3 we describe the linear approx-
imation to copula regression, which is the main 
subject of this research. In section 4 we investi-
gate sufficient conditions which ensure a predict-
able pattern of bias in the estimates from the linear 
approximation to copula regression. In section 5 
we introduce transmutation mappings, which play 
an integral role within the linear approximation to 
copula regression, and also within the theory of 
copulas in general. In section 6, we investigate the 
most commonly used loss distributions to see if they 
satisfy the sufficient conditions from section 4, and 
hence lead to predictably biased estimates (with 
respect to full copula regression) from the linear 
approximation to copula regression.

2. Copula regression

Copula methods are essentially just a particular 
way to construct multivariate distributions. Copula 
functions themselves are simply multivariate dis-
tributions whose domain has uniform marginal 
distributions. As described in Parsa and Klugman 
(2011), a copula model can be constructed for an 
n-dimensional set of data by first fitting n marginal 
distributions to the data F1(X1), F2(X2), . . . , Fn(Xn). 
Then the joint-distribution, Fx1, . . . , xn

(X1, X2, . . . , Xn), 
can be created by applying a copula function to 
F1(X1), F2(X2), . . . , Fn(Xn), specifically Fx1, . . . , xn

(X1, 
X2, . . . , Xn) = C[F1(X1), F2(X2), . . . , Fn(Xn)]. The 
copula function C induces a correlation structure 
between the variables X1, X2, . . . , Xn. By construc-
tion, this correlation structure will be independent 
of the marginal distributions of the data. In order to 
ensure that the resulting multivariate function is in 
fact a distribution function, only certain functions can 
be used as copula functions. However, Sklar’s theo-
rem guarantees that, for any set of random variables 
(RVs) X1, X2, . . . , Xn with associated marginal dis-
tributions F1(X1), F2(X2), . . . , Fn(Xn), a copula func-
tion, C, exists s.t.; Fx1, . . . , xn

(X1, X2, . . . , Xn) = C[F1(X1), 
F2(X2), . . . , Fn(Xn)]. Moreover, if the marginal distri-
butions Fi(Xi) for i ∈ {1, 2, . . . , n} are continuous, 
then there exists a unique copula function, defined 

1. Introduction

Over the past several decades, generalized linear 
models (GLMs) have become ubiquitous in actuarial 
science. Within the insurance industry, GLMs were 
first utilized in the property and casualty industry, 
due to its inherent need for custom modeling. How-
ever, GLMs and predictive modeling have recently 
found application in the life insurance industry as 
well. GLMs have enjoyed this popularity largely due 
to their ability to overcome the limitations of ordi-
nary least squares regression (OLS) when applied 
to data which exhibit non-linear relationships, and 
non-normal distributions. In their traditional form, 
GLMs require that the dependent variable have a dis-
tribution from the exponential family of distributions. 
This requirement primarily ensures the existence of a 
desirable relationship between the variance and mean 
of dependent variable. In most situations this restric-
tion is at most a minor inconvenience; however, there 
are circumstances in which data can be best described 
by distributions outside of the exponential family of 
distributions. In such cases, it can be beneficial to 
have access to an even more general class of models. 
In response to this need, Parsa and Klugman (2011) 
proposed a regression modeling framework which 
exploits the flexibility of copula techniques.

Not long after the introduction of copula regres-
sion, however, it was noticed that the formulation 
of copula regression as a conditional expected value 
could be approximated by an OLS regression on 
appropriately transformed data. Such an approxi-
mation would have the advantage of ease of imple-
mentation, using almost any statistical software or 
even Microsoft Excel. Moreover, upon investigat-
ing this linear approximation to copula regression, 
Parsa and Klugman (2011) noticed that the approxi-
mation often produced estimates which were quite 
close to, yet consistently underestimated those from 
exact copula regression. Further, there seemed to be 
a systematic deviation between the estimates from 
each method. These observations motivated the cur-
rent research. This paper will proceed as follows: In 
section 2 we briefly describe copulas, and copula 
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In this paper, we concentrate on the case where the 
copula function C is the multivariate normal copula, 
and reserve investigation of the t-copula for sub-
sequent research. We now review the basics of copula 
regression, under the multivariate normal copula. 
For a more complete treatment, the interested reader 
is referred to Parsa and Klugman (2011). The distri-
bution function induced by the multivariate normal 
copula has the form:
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where F1(X1), . . . , Fn−1(Xn−1), Fy(Y ) are the mar-
ginal distributions of the RV’s X1, . . . , Xn−1, Y, and 
G(�) is the multivariate normal distribution. In what 
follows we assume that all marginal distributions are 
continuous. Under this assumption, the density func-
tion induced by the multivariate normal copula can 
be written as follows:
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where:

i) v
→
 = (v1, . . . , vn−1, vn), and νi = Φ−1[Fi(Xi)] for  

i = {1, 2, . . . , n − 1}, and νn = Φ−1[Fy(Y)].
ii) I is the Identity matrix.
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on F1(X1), F2(X2), . . . , Fn(Xn), such that Fx1, . . . , xn
(X1, 

X2, . . . , Xn) = C[F1(X1), F2(X2), . . . , Fn(Xn)]. Further, 
in the case of continuous marginal distributions, the 
copula function allows the multivariate dependence 
structure to be separated from the marginal distri-
butions of the data. At this point, it is important to 
point out that, although the mathematical theory of 
copulas is very rich, and many powerful results have 
been proven, not every multivariate distribution can 
be naturally, or “usefully”, modeled using copulas. 
To quote Paul Embrechts: “copulas form a most use-
ful concept for a lot of applied modeling, they do 
not yield, however, a panacea for the construction 
of useful and well-understood multivariate density 
functions” Embrechts (2009). While there are many 
copula models, most are only bivariate, and hence do 
not allow for fully independent correlation between 
the response variable and each of the covariates. For  
this reason, Parsa and Klugman assert that the multi-
variate normal and t-copula are the most useful for 
the purposes of copula regression. In basic OLS 
regression, the distribution of Y given the covariates 
is assumed to be normal, and the predicted values are 
specified by E[Y �X1, . . . , Xn−1]. The predicted values, 
under copula regression, are defined analogously.

Definition. Given N observations of the RVs  
X1, . . . , Xn−1, Y, copula regression, as defined by 
Parsa and Klugman (2011), is the process of estimat-
ing the observed values {yi �i ∈ 1, 2, . . . , N} of the 
RV Y, based on the corresponding values of the RVs 
X1, . . . , Xn−1, namely {x1,i , . . . , xn−1,i �i ∈ 1, 2, . . . , N}.

�y E Y X x X xi i n n i[ ]= = =− −, . . . , , (1)1 1, 1 1,

where the conditional expected value is computed 
with respect to the conditional density of the RVs 
X1, . . . , Xn−1, Y induced from a multivariate copula 
function C, i.e.,
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3. A linear approximation  
to copula regression

Now that copula regression has been described, we 
introduce what the authors have dubbed the linear 
approximation to copula regression. The possibil-
ity of such an approximation to copula regression 
arose organically in response to a question posed by 
a practicing property and casualty (P&C) actuary at 
the 2011 CAS Spring meeting. During the question 
and answer section of their presentation on copula 
regression, Parsa and Klugman were asked the follow-
ing question: “For a given set of RVs X1, . . . , Xn−1, Y,  
since the distribution induced by the multivariate nor-
mal copula is essentially the multivariate normal dis-
tribution applied to the transformed RVs Φ−1[F1(X1)], 
Φ−1[F2(X2)], . . . , Φ−1[Fn−1(Xn−1)], Φ−1[FY(Y )], and since 
a fully probabilistic version of multivariate linear 
regression assumes that the RVs follow a multi variate 
normal distribution, how does copula regression, under 
a multivariate normal copula, differ from simply apply-
ing OLS regression to the transformed RVs:
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In other words, if Y is considered the response vari-
able, what is the difference in the estimates from the 
following models?

Model 1: Perform OLS regression in the U, V
→
 space, 

and then transform back to the Y, X
→
 space:

(a) Transform each of the n variables X1, . . . , 
Xn−1, Y:
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i n

y i i i[ ] [ ]( )

{ }

( )= Φ = Φ

= −

− −and

for 1, 2, . . . , 1

1 1

(b) Perform an ordinary OLS of U on the Vi, to 
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b)  r
→
 = (rx1,y, rx2,y, . . . , rxn−1,y)

T, and:
c) rxi,xj

 is the correlation between vi and vj, and 
rxi,y

 is the correlation between vi and vn, for 
i, j < n.

Correspondingly, it is shown in Clement and Reilly 
(1999) that the conditional density of Y, given X1, 
X2, . . . , Xn−1 has the following form:
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where v* = {v1, v2, . . . , vn−1} with vi = Φ−1 [Fi(Xi)], 
and r

→
, Rn−1, and R are defined as above. Under the 

multivariate normal copula, f (Y �X1, X2, . . . , Xn−1) 
specifies the predicted values E[Y �X1, . . . , Xn−1], up 
to specification of the marginal distributions F1(X1), 
F2(X2), . . . , Fn−1(Xn−1), FY(Y ).

Ideally, to parameterize the copula regression 
model based on empirical data, maximum likeli-
hood estimation is performed using the density 
function f (X1, X2, . . . , Xn−1, Y ), above. If n = 8, 
and each marginal distribution has two param-
eters, it is necessary to estimate 8(2) + 8(8 − 1)/2 =  
44 parameters. Alternatively, one can use the mar-
ginal data to fit each of the marginal distributions 
F1(X1), . . . , Fn−1(Xn−1), Fy(Y ), and then a second optimi-
zation can be performed to estimate the n(n − 2)/2 
correlations, within the MVN copula. As pointed 
out in Parsa and Klugman (2011), this alternative 
will produce suboptimal results. The relative com-
plexity of fitting the n(m) + n(n − 1)/2 parameters of 
a full multivariate normal copula regression model 
with n marginals, each with m parameters, is one 
of the motivations for the linear approximation to 
copula regression, which is the topic this paper. 
For more details on the parametrization of copula 
regression models, the reader is referred to Parsa 
and Klugman (2011).
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between these two estimates of E(Y �X ) can be viewed 
as representing a bias in the estimates from the model 
involving transformations. Although it may escape 
consideration, such a disparity arises whenever trans-
formations of variables are used within OLS. In light 
of this observation, it can be seen that the question 
at hand is fundamentally a question of the bias that 
is induced by applying the specific transformation 
Φ−1[Fi (�)] within OLS regression. Further, due to the 
general nature of the transformations Φ−1[Fi(�)], an 
investigation of the bias between copula regression 
and the linear approximation to copula regression may 
shed light on the bias induced by the use of transfor-
mations within OLS in general. As a first step towards 
investigating this bias, the linear approximation to 
copula regression was computed for the examples pro-
vided in Parsa and Klugman (2011). This resulted in 
several interesting observations. As anticipated by the 
motivating question, it was noticed that the estimates 
from the linear approximation to copula regression 
were in fact often very close to the estimates based on 
copula regression. Moreover, a consistent relationship 
between the two sets of estimates was observed. Spe-
cifically, the estimates from the linear approximation 
to copula regression were noticed to be consistently 
slightly lower than those from copula regression. This 
piqued the interest of the authors, making further 
investigation irresistible. The following results pave 
the way toward a more quantitative understanding of 
the relationship between the estimates from copula 
regression and the linear approximation to copula 
regression. Lemma 4.1 provides a connection between 
the copula regression of Y on X

→
, and the transformed 

variables U, V
→
. In what follows, the authors sometimes 

use the slightly more suggestive notation (Fy
−1 � Φ)(x), 

in place of Fy
−1(Φ(x)).

Lemma 4.1
If Fy(Y ), and Fi(Xi) for i ∈ {1, 2, . . . , n − 1} are the 

continuous CDF’s, corresponding to the RV’s Y, and 
X
→
, respectively, where X

→
 = {X1, X2, . . . , Xn−1}, then:
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Parsa and Klugman were immediately struck by the 
simplistic beauty of this reductive argument, and 
intrigued by the possibility that this approach could 
actually produce a close approximation to copula 
regression. Moreover, they soon realized that this 
question transcended copula regression, and actually 
addressed the larger issue of the effect of transforma-
tions of variables within regression modeling.

4. Sufficient conditions for bias

It seems likely that an understanding of the limi-
tations of variable transformations, as a means to 
coerce data to fit the restrictive normal distribution 
assumption of linear regression, informed the devel-
opment of GLMs. A simple example illustrates the 
difference between these two approaches: Suppose 
that it is known that the dependent variable Y follows 
a lognormal distribution. In introductory applied sta-
tistic classes, students are taught that in this case they 
should apply a log transformation to Y, and then per-
form OLS. The underlying model is that log(Y) = aX 
+ b + ε where ε ∼ N(0, σ2). In other words, the assump-
tion is that log(Y)�X has a normal distribution with  
mean aX + b, and constant variance. Then, one simply 
applies the inverse of the log transform to obtain the 
predicted values Ŷ = E(Y �X ) = exp(aX + b). How-
ever, if Y in fact follows a lognormal distribution, then 
E(Y �X) = exp (aX + b + 1/2σ2). Hence, by applying the 
log transformation and assuming a normal distribution, 
the resulting estimate differs from the theoretically cor-
rect estimate by a factor of exp(1/2σ2). The disparity 
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component-wise to X
→
. If E[Y �X

→
] is the conditional 

expected value with respect to the density induced 
by the multivariate copula given in equation (5), then 
by Lemma 4.1 we have that: E(Y �X

→
) = E [(Fy

−1 � Φ)
(U �V

→
)], and since g(U ) = (Fy

−1 � Φ)(U ) is convex, 
Jensen’s inequality gives that:

( ) ( )( ) ( )Φ  ≥ Φ  
− −

� �
� � (8)1 1E F U V F E U Vy y

Further, since Fy
−1(Φ(Û)) is the linear approxima-

tion to copula regression, Û  is obtained from the 
OLS regression of U on the Vi. So, by definition  
Û  = E[U |V

→
], we have that:

�
�F U F E U Vy y( )( ) ( )( )Φ = Φ  

− −ˆ (9)1 1

Hence, in conclusion, E[Y �X
→
] ≥ Fy

−1(Φ(Û)).
So, the question is, for what CDFs Fy is the map-

ping (Fy
−1 � Φ)(�) convex? Armed with Theorem 4.2, we 

now know that convexity of the mapping (Fy
−1 � Φ)(�) 

is sufficient to ensure that the estimates from the linear 
approximation to copula regression will be bounded 
above, by the corresponding estimates from exact cop-
ula regression. We now present a set of criteria which 
ensure the convexity of the mappings (Fy

−1 � Φ)(�), and 
hence help quantify the bias in the estimates from the 
linear approximation to copula regression.

Lemma 4.3 If Fy(Y ) is a continuous CDF, and y(x) 
= (Fy

−1 � Φ)(x), then y(x) is convex, for all x IFF:
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for all x where f ′y(y(x)) denotes the derivative of 
fy(y (x)) WRT y, evaluated y(x), and Φ(x) is the stan-
dard normal CDF, and correspondingly, φ(x) is the 
standard normal density.

Proof. Since, y(x) = (Fy
−1 � Φ)(x), we have that  

Fy(y(x)) = Φ (x). Taking the derivative of both sides 

WRT x, we have that: f (y(x)) � 
dy x

dx
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→
), where Φ−1 � Fi is applied 

component-wise to X
→

. Let f (U �V
→

) be the conditional 
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where h(y) = (Φ−1 � Fy)(y). The 2nd to last equality 
holds since Vi = vi → Φ−1[Fi(Xi)] = Φ−1[Fi(xi)] → Xi = 
xi, and since h′(y) > 0 for all y by the inverse function 
theorem, and the last equality holds since h(0) = −∞, 
and h(∞) = ∞.

Next, Theorem 4.2 quantifies when the estimates 
from the linear approximation to copula regression will 
underestimate those from copula regression, by pro-
viding a sufficient condition for the under-estimation.

Theorem 4.2 If the CDF Fy(Y ) is continuous, and 
the mapping g(U ) = (Fy

−1 � Φ)(U ) is convex, then:

�
E Y X F Uy ( )( )( ) ≥ Φ− ˆ (7)1

where E[Y �X
→
] is the conditional expectation used to 

define copula regression, and Fy
−1(Φ(Û)) defines the 

linear approximation to copula regression.

Proof. Let Fy(Y), and Fi(Xi) for i ∈ {1, 2, . . . , 
n − 1} be the continuous CDF’s corresponding to 
the RV’s Y, and X

→
, respectively, where X

→
 = {X1, 

X2, . . . , Xn−1}. Let U and V
→
 be defined as U = (Φ−1 � 

Fy)(Y ) and V
→
 = (Φ−1 � Fi)(X

→
), where Φ−1 � Fi is applied 
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which follows from equation (12). So, in summary, 
if y(x) = (Fy

−1 � Φ)(x), where Fy(Y ) is a continuous 
CDF, and Φ(x) is the standard normal CDF, then 
either of the following equivalent conditions imply 
the convexity of y(x), for all x:

1. 
x

x

f y x

f y x
y

y

,or
2 2

( )
( )

( )( )
( )( )

′φ
φ

≥ ′

2. [ ] [ ]( )( ) ( )φ ≥log log
d

dx
x

d

dx
f y x

Before investigating the convexity of the map-
pings y(x) = (Fy

−1 � Φ)(x), when F is a common loss 
distribution, we pause to consider the interpretation 
of the preceding results. We focus on the 2nd condi-
tion, since it appears to be more amenable to inter-
pretation. By integrating from x = 0 to x = x ′, and 
recalling that y(x) sends the percentiles of φ(x) to 
the corresponding percentiles of f (y), and in particu-
lar, that y(0) is the median of f(y), the 2nd condition 
implies:
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2
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where y f
m denotes the median of f (y). The first condi-

tion shows that fy(y (x)), as a function of x, decays, 

at least, proportionally to e
x−

,2

2

 as x grows large. 
Regarding the 2nd condition, corresponding to the 
left-hand tail, we consider the case when F has posi-
tive support. The condition given in equation (15) is 
surely satisfied if f(y) is monotonically decreasing, as 
is the case for the exponential distribution. However, 
even if f(y) is uni-modal, with f(0) = 0, as is the case 
for the Gamma distribution with scale parameter α > 1,  
the 2nd condition requires that, if y(x) = c ≈ 0 (c > 0), 
then the corresponding x = y−1(c) < 0 is sufficiently 

small that fy(y f
m)

y c( )( )
−





−

exp
2

1 2

 is, nonetheless, 

less than fy(c).

dy x

dx

x

f y x( )
( ) ( )

( )
= φ

(11)

Once again, taking the derivative of both sides 
WRT x, re-arranging terms, and substituting in the 

equality from equation (11) for 
dy x

dx

( )
, we have: 

d y x

dx

x f y x
x

f y x
f y x

( )
( )

( )
( ) ( ) ( ) ( )

( )
( )

=
′φ − ′ φ





.
2

2

2

 Hence, we 

have:

d y x

dx

x

x

f y x

f y x( )
( )
( )( )

( ) ( )
( )

( )
( )

≥ ⇔ ′φ
φ

≥ ′
0 (12)

2

2 2 2

The next corollary gives an equivalent condition for 
convexity of the mappings (Fy

−1 � Φ)(�), and is an 
immediate consequence of Lemma 4.3.

Corollary 4.4 If Fy(Y ) is a continuous CDF, and 
y(x) = (Fy

−1 � Φ)(x), then y(x) is convex, for all x IFF:

d

dx
x

d

dx
f y x[ ] [ ]( )( ) ( )φ ≥log log (13)

for all x where f ′y(y(x)) denotes the derivative of fy(y) 
WRT y, evaluated at y(x), and Φ(x) is the standard 
normal CDF, and correspondingly, φ(x) is the standard 
normal density.

Proof. Since φ(x) ≥ 0 we have that: 
x

x

( )
( )
′φ

φ
≥

2

( )
( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )′ ⇔ ′φ
φ

≥ ′ φ ⇔
2

f y x

f y x

x

x

f y x

f y x

x

f y x
y

y

y

y y

d

dx
x

d

dx
f y x[ ] [ ]( )( ) ( )⇔ φ ≥log log ,  where the last 

inequality follows, since:

i
f y x

f y x

x

f y x

d f y x

dy x

dy x

dx

d

dx
f y x

y

y y

[ ]

[ ]

( )
( ) ( )

( )

( )

( )
( )

( )
( )

( )
( )

( )

( )

′ φ =

=

log

log



A Linear Approximation to Copula Regression

VOLUME 9/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 263

mutation mappings has the potential to produce very 
efficient sampling algorithms, via the leveraging of 
existing samples to create samples from the desired 
distribution(s). In addition to having obvious appli-
cation to sampling theory, especially copula-based 
sampling, Shaw and Buckley also note that trans-
mutation mappings have utility within hypercube-
filling quasi-Monte-Carlo (QMC) methods.

More relevant to our purposes, Shaw and Buckley  
claim that, prior to their research, there had been few, 
or no, analytical results published on transmutation 
maps, outside the asymptotic domain. Shaw and 
Buckley ended this drought through an investiga-
tion of the differential equations that transmuta-
tion mappings obey. They then used these results 
to form new transmutation map expansions, based 
on the power series solutions to these non-linear 
ODEs. Though the results of Shaw and Buckley 
represent a step forward in the analytical analysis 
of transmutation mappings, and are based on dif-
ferential equations, their results are not, however, 
sufficiently strong enough to quantify properties of 
transmutation mappings, such as convexity. In fact, 
to the authors knowledge, there has been no analyti-
cal investigation into the higher-order mathemati-
cal properties, such as convexity, of transmutation 
mapping. This statement is consistent with those of 
Shaw and Buckley, who go on to, quite rightly, point 
out that the dearth of such research is likely due to 
the fact that many common statistical distributions, 
and their inverses, including the ubiquitous normal 
distribution, involve rather intractable mathematical 
special functions. As a result, an attempt to investi-
gate the convexity of transmutation mappings is tan-
tamount, in many cases, to proving results about the 
composition of two mathematical special functions, 
both of which may be very intractable, on their own. 
This is especially the case when one of the distribu-
tions is the Gamma distribution, or the regularized 

incomplete gamma, as it is known within mathe-
matical physics. Regardless, the final section of this 
paper contains a proof of the convexity of this par-
ticular transmutation mapping.

5. Transmutation mappings

In the previous section it was seen that convexity 
of the mappings; (F1

−1 � Φ)(�), . . . . . . , (F −1
n−1 � Φ)(�),  

(FY
−1 � Φ)(�) ensures that the linear approximation to 

copula regression will underestimate exact copula 
regression. In fact, the investigation of the map-
pings (F−1 � Φ)(�) dates back at least to 1937 when 
Cornish-Fisher (C-F) formed polynomial expansions 
to approximate the quantiles of a given non-normal 
distribution function, F, in terms of the quantiles of 
the standard normal distribution. More specifically, 
if Y is a RV with distribution Fy, and Xα is the αth 
quantile of the standard normal distribution, then the 
αth quantile of Y can be approximated by:

�

Y m X X X X

X X

( ) ( )

( )

= + σ + κ
σ

− + κ
σ

−


− κ
σ





 − + 



α α α α α

α α

1

6
1

1

24
3

1

36
2 5 (16)

3

3

2 4

4

3

3

3

2

3

where m, σ and κi denote the mean, standard 
deviation, and ith order cumulant of the RV Y. It 
is important to note that C-F expansions are only 
approximations. Moreover, there are problems with 
C-F expansions, including the fact that introduction 
of additional terms does not always lead to a more 
accurate approximation. In fact, the likelihood of 
negative density values increases as higher-order 
terms are added to the series. As a result, C-F expan-
sions are not useful for investigating the convexity 
of (Fy

−1 � Φ)(�). However, during the 2013 Actuarial 
Research Conference it was pointed out by Vytaras  
Brazauskas, from the University of Wisconsin at 
Milwaukee, that the mappings (Fy

−1 � Φ)(�) were 
recently studied by Shaw and Buckley (2007), and 
later by Steinbrecher and Shaw (2008), Shaw and 
Brickman (2010), and Munir and Shaw (2012). 
Shaw and Buckley (2007) dubbed the mappings  
(Fy

−1 � Φ)(�) transmutation mappings, and noted that 
these mappings, essentially, turn samples from one 
distribution (Φ), into samples from another (Fy). 
Hence, a practical and precise representation of trans-
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F y
y

( ) = − θ
+ θ







α

1 (18)

Unlike the lognormal case, convexity of the trans-
mutation mapping is not as easily verified when F is 
a Pareto distribution.

Proposition 6.2 (Pareto distribution) If Fy(y ) 
is a Pareto distribution, with shape parameter α, 
and scale parameter θ, and Φ(x) (φ(x)) is the CDF 
(density) of the standard normal distribution, then 
y(x) = (Fy

−1 � Φ)(x) is convex, for all x.

Proof. First, consider the case where x < 0. Note 
that, since φ(x) is the normal density, the sufficient 
condition for convexity in Corollary 4.4, namely, 

equation (13), can be written: −x ≥ 
d

dx
log[ f (y(x))], or:

x
d

dx
f y x[ ]( )( )− − ≥log 0 (19)

However, since f( y) is monotonically decreasing, 
for all y, and y(x), and log(x) are both increasing, we 

have that: 
d

dx
 log[ f ( y (x))] < 0, for all y, and hence 

equation (19) is satisfied, for x < 0. Now, consider 

the case where x > 0. Since Fy
−1(τ) = ( )θ − τ − θ−

α1
1

, 
we have that:

y x F x xy ( ) ( )( ) ( ) ( )+ θ = Φ + θ = θ − Φ− −
α1 (20)1
1

so we have that f y x xy [ ]( )( ) ( )= α
θ

− Φ
α+
α1 .

1

 There-

fore, after some routine computation and simplifi-
cation, and using equation (20) for the last equality, 
we have:

i
d

dx
f y x

y x

x

f y x

x x

y

y

[ ]

[ ]

( )
( )

( )
( )

( )
( )

( ) ( )

− = α +
+ θ

φ

= α +
α

φ − Φ −

log
1

1
1 (21)1

Again, by equation (19), we only need to show that: 

x ≤ − d

dx
log[ f(y(x))], for x > 0, which by equation (21) 

6. Results under specific  
loss distributions

We now investigate the convexity of transmutation 
mappings when the distribution F is among those com-
monly used for severity, or size-of-loss, modeling. The 
authors suspect that the results of this section will be 
useful, even outside the statistical community. In par-
ticular, we feel it is likely that researchers in finance 
and even applied mathematics will find interest in 
these results. We first present an example where con-
vexity of the transmutation mapping, almost trivially, 
follows. Since each distribution F under consideration 
is a loss, or severity, distribution, each distribution F 
has support on the positive reals.

Proposition 6.1 (lognormal distribution) If Fy(y) 
is a lognormal distribution, with parameters (µ,σ), 
and Φ(x) (φ(x)) is the CDF (density) of the standard 

normal distribution, then y(x) = (Fy
−1 � Φ)(x) is con-

vex, for all x.

Proof. Since (Fy
−1 � Φ)(x), and its inverse (Φ−1 � Fy)(y)  

are both increasing functions, the convexity of  
(Fy

−1 � Φ)(x) is equivalent to the concavity of  
(Φ−1 � Fy)(y). Hence, it suffices to show that (Φ−1 � Fy)(y) 
is concave. Since Y ∼ LN(µ, σ), we have that:

F y
y

y ( ) ( )= Φ − µ
σ







ln

Hence: (Φ−1 � Fy)(y) = 
( ) ( )Φ Φ − µ
σ












= − µ

σ
− ln ln1 y y

and so, for all y:

( )( )Φ = −
σ

≤− �
d

dy
F y

y
y

1
0 (17)

2

2

1

2

Next, we consider another distribution that is 
commonly used for severity, or loss-size, modeling: 
the Pareto distribution. In particular, we consider the 
Pareto Type II distribution, or Lomax distribution, 
to which it is sometimes referred, with CDF param-
eterized as follows, for y > 0, and α, θ > 0:
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affectionately, the Cinderella of special functions.” 
More relevantly, Gautshi goes on to state that 
“Monotonicity, convexity, and higher monotonicity 
results abound for the gamma function, but seem 
to be scarce for the incomplete gamma function.” 
Moreover, despite the author’s assiduous attempt to 
find inequality results which are tight enough across 
a sufficiently broad range of the domain, to facili-
tate a direct proof of the convexity of the incom-
plete gamma function composed with the inverse 
error function, the breadth of published inequali-
ties was, once again, found to be lacking. Some rel-
evant investigations of the regularized incomplete 
gamma, and other special functions, include Alm 
(2003), Alzer (1997, and 2005), Berg (2008), Carlitz 
(1963), Cerone (2008), Gautschi (1998), Short 
(2013), and Strecok (1968).

The authors did have some success using various 
approaches, including the use of approximations to 
(Φ−1 � Fy)(y) involving inverse hyperbolic trigono-
metric functions, but this necessitated the breaking-up 
of the domain, and additional work would have been 
necessary to make the result rigorous over the full 
domain, Y. More importantly, this approach required 
a constructive argument, which was quite protracted. 
As a result, the focus of the authors returned to obtain-
ing the result through contradiction. Finally, due to 
an éclair de génie, experienced by the third author, a 
surprisingly concise and elegant version of the proof 
was made possible. To the author’s knowledge, this 
analytical result is unique within the study of special 
functions.

Proposition 6.3 (Gamma distribution) If Fy(y) is 

a Gamma distribution, with shape parameter α, and 

scale parameter θ, and Φ(x) (resp. φ (x)) is the CDF 

(resp. density) of the standard normal distribution, 

then y(x) = (Fy
−1 � Φ)(x) is convex, for all x, and for 

all values of the shape parameter α.
Due to the complexity of the proof of Proposi-

tion 6.3, especially when α > 1, the proof is relegated 
to the appendix, and is proceeded by several sup-
porting lemmas.

is equivalent to: x ≤ 
α +
α

1
 φ(x)[1 − Φ(x)]−1, or for 

x > 0:

i
x

x

x

( )
( )

α +
α

≥ − Φ
φ

1 1 1
(22)

But, we note that the quantity m(x) = (1 − Φ(x))/φ(x) 
is the well-known Mill’s Ratio for the normal distri-
bution, which has been the focus of a good amount 
of research. In particular, Baricz (2008, 2010, and 
2012) points out that in 1941 R. D. Gordon proved 
that the Mill’s ratio, for the normal distribution obeys 
the following inequalities, for x > 0:

x

x

x

x x

( )
( )+

< − Φ
φ

<
1

1 1
(23)

2

Hence, since α +
α

1  > 1 we have, for x > 0, and for 

all α > 0, that:

i
x x

x

x

( )
( )

α +
α

≥ ≥ − Φ
φ

1 1 1 1
(24)

We now turn our attention to the Gamma distribu-
tion, or the regularized incomplete gamma function, 
as it is known within the applied mathematics and 
physics communities. The incomplete gamma func-
tion appears ubiquitously within applied mathemat-
ics, and is related to many other mathematical special 
functions, including the Confluent Hypergeometric 
functions, Bessel functions Tricomi (1950a, 1950b), 
the Legendre and Laguerre polynomials, Kummer’s 
functions, the Gaussian error function, as well as the 
exponential integrals. For this reason, the theory of 
the incomplete gamma function, has been (and con-
tinues to be) of keen interest to many mathemati-
cians. The Italian mathematician Tricomi is one such 
example. In fact, in the paper The Incomplete Gamma 
Function Since Tricomi, Gautshi (1998) remarks that 
“the incomplete gamma function held a special fasci-
nation for him (Tricomi), as he was fond of calling it, 
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in avoiding the understatement of reserves and even 
insolvency.

Appendix A

Lemma A.1 Let Fy(y) denote the CDF of the 
Gamma distribution, with shape parameter α, and 
let Φ−1(p) denote the quantile function corresponding 
to the standard normal distribution. Let g(y) = (Φ−1

� Fy)(y), then:

1. limy→0+g′(y) = +∞    for all α
2. limy→∞ g′(y) = 0    for all α
3. g″(y) is continuous on (0,∞)

where g y
d

dy
g y( ) ( )′ = .

Proof. We first prove condition (1), for α ≤ 1. By a 
straightforward calculation, we have that:

�g y
d

dy
g y

d

dy
F y

f y

g y
y

y( ) ( )
( ) ( ) ( ) ( )

( )
′ = = Φ =

φ
− (25)1

Hence, we immediately have the result, since when 
α ≤ 1, we have that:

• limy→0+ fy(y) =
∞ α <

α =




for 1

1 for 1
, and:

• limy→0+φ( g(y)) = 0.

Now consider the case when when α > 1. Note that 
g′(y) > 0, for y ∈ �+, since fy(y), and φ(x), are always 
positive. Further:

i

i

d

dy
g y g y g y

g y g y
f y

g y

g y f y

y

y

[ ]

( ) ( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

φ = ′φ ′

= − φ
φ

= − (26)

which follows from (25), and the identity:

ix x x( ) ( )′φ = − φ (27)

Next, we recall the well-known recurrence relation 
for fy(y), the density of the gamma distribution:

f y
y

f yy y( ) ( )′ = α − −





1
1 (28)

7. Conclusion

Parsa and Klugman (2011) proposed a generaliza-
tion of ordinary least squares regression which is bet-
ter suited to the modeling of actuarial data sets, which 
often possess heavy-tailed marginal distributions and 
non-linear relationships between variables. However, 
not long after the introduction of copula regression, 
a surprisingly simple approximation was suggested. 
In this paper we have presented and investigated 
this approximation, which takes the form of an OLS 
regression, under particular transformations of the 
variables. Next, we described how this linear approx-
imation to copula regression can produce estimates 
which are close to those from exact copula regression. 
However, we present a set of criteria which guaran-
tee that the estimates from the linear approximation 
will underestimate those from exact copula regres-
sion. Further, it is described how the main driver of 
the discrepancy, or bias, between copula regression 
and its linear approximation is a consequence of the 
use of transformations of the variables. Moreover, 
we explain how this discrepancy is not due to the 
form of the transformations used within the linear 
approximation to copula regression, but rather such 
a discrepancy will likely arise whenever transforma-
tions of the variables are used within OLS regression. 
This realization has consequences well beyond the 
specific models investigated in this paper, and serves 
as a salient reminder of the dangers of using transfor-
mations of variables within OLS regression. Finally, 
armed with the aforementioned sufficient conditions 
for underestimation, we continued by investigating 
which of the common loss distributions satisfy these 
criteria. In particular, we were able to prove that the 
lognormal, Pareto, and gamma distributions all sat-
isfy these criteria and in particular, satisfy these cri-
teria for all parameter values. Hence, these results 
allow the partitioner to determine when the estimates 
from the linear approximation to copula regression 
will underestimate the true values. Further, if OLS 
regression involving transformations is used within 
the reserving, capital modeling, or even pricing pro-
cesses of a firm, these results can aid the practitioner 
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Hence, by l’Hôpital’s rule, together with this rela-
tion, and equation (26), we have:

g y
f y

d

dy
g y

f y f y

g y
y
g y

y y

y

y

y y

y

lim lim

lim lim

1
1

(29)

0 0

0 0

( ) ( )

( )( )

( ) ( )
( ) ( )

′ = ′

φ

= ′
−

=

α − −

−

→ →

→ →

+ +

+ +

And, by another application of l’Hôpital and equa-
tion (25), we have:

g y
y

g y

g y

y f y

y y

y

y

( )

( ) ( )
( )

( ) ( )
( )

′ = − α −
− ′

= α − φ

→ →

→

+ +

+

lim lim
1

lim
1

.

0 0

2

0 2

And finally, using yet another application of l’Hôpital 
and equation (26), we have that:

i

g y
g y g y

yf y y f y

g y f y

yf y y f y

g y

y y
y

y y

y y

y

y

y y

y

( )( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
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+ ′

= − α −
+ ′

= − α −
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+

+

lim lim
1

2
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1

2
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1

2
1

1
. (30)

0 0 2

0 2

0
2

Since the denominator can be written [2 + (α − 1) −
y]y, the denominator of equation (30) goes to 0, from 
the right, for all α > 0. Hence, the above limit equals 
+∞, for α > 1. 

Result (2) can be seen to be true, by appealing to 
equation (29), which can be seen to be valid for α ≤
1, as well as for all α > 1, as y → ∞.

Finally, using equation (26) within a derivation 
analogous to that which led to equation (12), it can 
be shown that:

g y
d

dy
g y

f y g y
f y

g y
g y

g y f y f y g y

g y

y

y

y y

( )
( )

( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( )
( )

′′ = =
′ − ′φ

φ






φ

= φ ′ − ′φ
φ

(31)

2

2

2

2 2

3

Hence, we see that g″(y): [0, ∞) → � is continuous, 
at least on (0,∞), which gives 3.

Lemma A.2 Let f (x): �+→ � be any function, s.t.:

1. f ′(x) > 0, for x ∈ �+

2. limx→0+ f ′(x) = ∞
3. limx→∞ f ′(x) = 0

4. f ″(x) exists ∀x ∈ �+

Then, for any point x ∈ �+, ∃ x*, x** ∈ �+ s.t. 0 < 
x** < x < x* < ∞, and f ″(x*) < 0, and f ″(x**) < 0.

Proof. The result follows from a straightforward 
application of the mean-value theorem. Let x ∈ �+. 
By assumption 1, f ′(x) = ε > 0. Further, by assump-
tion 3, ∃ x′ ∈ �+ s.t. x < x′ < ∞, and f ′(x′) = ε/2. Hence, 
by the mean-value theorem, applied to f ′(x), ∃ x* s.t. 

x < x* < x′ < ∞ and f ″(x*) = 
f x f x

x x x x

( )
( )

( )′ ′ − ′
′ −

= −ε
′ −2

 

< 0, since x′ > x.
The result for f ″(x**) follows from an analogous 
argument.

Definitions A.3
Define an auxiliary equation to g″(y), as:

1. ρ(y) = 
g y

g y y

( )
( )
′′
′

= α − −





1
1  + g(y) � g′(y), and note 

 that:
a) ρ(y) has the same sign as g″(y).
b) ρ(y) is continuous on (0,∞).

2. ρ′(y) = −
y

α −1
2

 + [g′(y)]2 + g(y) � g″(y) = ξ(y) + g(y) �

 g″(y) where: ξ(y) = −
y

α −1
2

 + [g′(y)]2 and note 

 that: ρ′(y) is continuous on (0, ∞).

3. ξ′(y) = 
y

α −





2
1

3
 + 2 � g′(y) � g″(y)

Proof of Proposition 6.3
Let Fy(y) denote the gamma distribution, with shape 

parameter α, and let g(y): [0, ∞) → � be defined by 

g(y) = (Φ−1 � Fy)(y). Further, denote d

dy
 g(y) by g′(y), 
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