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The Mathematics of Excess Losses
by Leigh J. Halliwell

AbSTRACT

After laying a fairly rigorous foundation for the mathematical 

treatment of excess losses, this paper shows that the excess-

loss function is akin to the probability distribution of its loss. 

All the moments of the loss can be reclaimed from the excess-

loss function, the variance being especially simple. Excess-loss 

mathematics is a powerful tool for pricing loss layers, as in rein-

surance. In some settings it may be more powerful than standard 

probability techniques. An example featuring the mixed expo-

nential distribution demonstrates this. Two appendices deal with 

Stieltjes integrals and with proofs of two findings about layered 

losses that are commonly known among reinsurance actuaries.
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function, the complement of F
X
: G

X
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X
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Prob[X > a]. Hence, dG
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(a) = −dF
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(a). G

X
 is also con-

tinuous from the right, and Prob[X = a] = lim
b a→ −

 G
X
(b) −  

G
X
(a). However, it is non-increasing, its limit at infin-

ity is zero, and G
X
(a) = 1 for a < 0.

For r ≥ 0, the expected portion of loss X in excess 
of “retention” r is defined as:
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From their studies, casualty actuaries are familiar 
with this expression.1

The excess-loss function is especially useful in 
reinsurance: if 0 ≤ a ≤ b, the pure premium for the 
portion of loss X in the layer [a, b] equals Excess

X
(a) −  

Excess
X
(b). Note that since G is dimensionless, the 

unit of the excess-loss function is the unit of dx, 
which is the unit of the loss amount and the retention. 
Two appealing properties of the excess-loss function 
are (1) that it is everywhere continuous, even where 
the probability density is discrete, and (2) that if it is 

1. Introduction

The concept of excess loss is widely used and ap-
preciated within the casualty-actuarial world, par-
ticularly in reinsurance, but also in retrospective and 
increased-limits rating. This paper will reveal some 
of its hidden mysteries. In the next section we will 
define the excess-loss function, and state its some-
time advantages over standard probability concepts. 
This will prepare us, in the third section, to find new 
applications of the function, applications extending 
as far as moment generation. Excess losses naturally 
imply loss layers, whose probability distributions we 
will show in the fourth section to be more amenable 
to an excess-loss treatment than to standard probabil-
ity theory. Here also we will introduce an example  
involving the first two moments of a mixed exponen-
tial distribution. Then we will, in the fifth section, 
round out the second moment of the example by con-
sidering the covariances among loss layers, and will 
conclude in the sixth section.

2. The excess-loss function

Let X be a non-negative random variable, i.e., a 
random variable suitable for representing an amount 
of loss. Its cumulative distribution function F

X
(a) = 

Prob[X ≤ a] has the following four properties:

1. If a < b, then F
X
(a) ≤ F

X
(b) non-decreasing

2. lim
a

XF a
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( ) = 1  total probability

3. lim
b a

X XF b F a
→ +

( ) = ( )   continuity from 
the right
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a

XF a
→ −

( ) =
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These properties allow for points of probability 
mass, since

Prob X = a Prob b < X a
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Of particular note, the probability for X to equal 
0 may be positive. Moreover, let G

X
 be the survival 

1It is ably presented and illustrated in Lee (1988), a CAS Exam 9 reading. 
We interpret all integrals as Stieltjes integrals, the subtleties of which are 
treated in Appendix A.
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2The excess-loss curve must stay on or above the line. Otherwise, at 
some value ξ the slope of the excess-loss curve would have to be less 
than negative one, or equivalently, G

X
(ξ) > 1, a probability contradiction.

So for r ≥ 0,
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Figure 1 graphs this function over the domain 
[−θ, 4θ]. In preparation for the next section, we’ve 
also extended as a dotted line the negative-retention 
line, i.e., f(x) = −x + θ.

The straight line itself is the graph of Excessθ(x). It 
is indicative of positive variance that the excess-loss 
function “pulls up and comes in for a landing” to the 
right of the dotted line.2 This is the clue for extracting 
more information from the excess-loss function.

3. Higher moments and the 
excess-loss function

The excess-loss function Excess r G x dxX X

x r

( ) = ( )
=

∞

∫
is not only elegant and useful, it is “full-informational” 
in the sense that one can derive from it all the mo-
ments of X. Above, we saw that the mean of X equals 

positive, it strictly decreases. Moreover, its deriva-
tive at r, if it exists, equals −G

X
(r). Even if it does not 

exist, at least the left and right derivatives exist, and 
the difference of the left derivative from the right is 
the probability mass at r. It is helpful to extend the 
definition of the excess-loss function to negative re-
tentions, at which G

X
(r) = 1. For r < 0:
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Often useful is the form, valid for all r, Excess
X
(r) =  

−min(0, r) + 
x r= ( )

∞

∫
max 0,

G
X 

(x)dx.

It is not difficult to prove two basic theorems. If 
c > 0, then for all r:

Excess r Excess r c

Excess r cExces

X c X

cX

+ ( ) = −( )

( ) = ss r cx ( ).

The first holds true for c = 0; the second holds true 
as well in the limit as c → 0+, from which it follows 
that Excess

0
(r) = −min(0, r). Furthermore, Excess

c
(r) =  

−min(0, r − c) = max(0, c − r).
As an example, let X be exponentially distributed 

with mean θ. Hence, G x
e x

x
X
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Figure 1. Excess-loss function of an Exponential(u) loss
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In general, for h(x) continuous on [0, ∞),
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Instead of the double integration, we may use inte-
gration by parts:
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Now let H′(x) = h(x), or dH(x) = h(x)dx. The follow-
ing derivation relies on a formula from Appendix A, 

viz., E h X h G x dh xX
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(0). That the dimension of the area under the 
excess-loss function is the square of the loss unit 
suggests that the area has something to do with the 
second moment. The following derivation relies on 
the validity of inverting the order of integration over 
the region A, which is the part of the first quadrant 
of the Cartesian plane above the line y = x:
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So the area under the excess-loss function in the 
first quadrant equals half the second moment. There-
fore, the area under the excess-loss function but 
above the dotted line and the x-axis is

1
2

1
2

1
2

1
2

2 2 2E X E X E X E X E X

Var X

[ ]− [ ] [ ] = [ ]− [ ]( )

= [ ]..

Hence, for the excess-loss function to “land” to 
the right of E[X] indicates a non-trivial variance.
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removal of the first two terms of its Maclaurin series. 
The whole moment-generating function of X is recov-
ered as M t Excess t Excess x dteX X X
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 is a trans-

formation that “plays” X one octave lower.3

4. Excess-loss functions  
of layered losses

If X is a non-negative random variable and 0 ≤  
a ≤ b, then define the portion of loss X in the layer 
[a, b] as Layer(X; a, b) ≡ min(b − a, max(0, X − a)). 
The graph in Figure 2 shows that the layer func-
tion is flat except in the interval [a, b], in which 
Layer(x; a, b) = x − a.

Our purpose in this section is to express Excess
Y
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X
, which requires expressing G
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So, the second and higher moments result from 
integrals of the excess-loss function. Of course, the 
first moment is just Excess

X 
(0).

Especially interesting is the integral Excess xX

x

( )
=

∞

∫
0

dtetx, for which h(x) = tetx and H(x) = etx:

Excess x dte E e e E X teX
tx tx t t

x

( ) = [ ]− − [ ]
=

∞

∫ i ii0 0

0

== [ ]− − [ ]

= ( ) − − ′ ( )

= [ ]

E e E X t

M t M
t

M

tx

X X

X
i

i

1

1 0
1

1

i

!

==

∞

∑ ( )
2

0
t

i

i

!
.

This integral of the excess-loss function reproduces 
the moment-generating function of X, except for the 

3How this relates to the coderived distributions of Corro (2008) we 
intend to examine in a subsequent paper.

0 

y = Layer(x;a,b)

a b

b – a

Figure 2. Layer function
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The tables provide an example. First, we mixed 
four exponential distributions (with weights w and 
means θ at the top of Table 1).5 The excess-loss func-
tion of the mixed exponential distribution (the “Mxd-

Exp Excess” column) is Excess r w eMX i i

r

i

i( ) =
−

=
∑ θ θ .

1

4

 Its 

values are shown for retentions from zero to 50 mil-
lion (consider the unit of loss as USD) in steps of 
one million; the values are also equal to the values of 
the previous four columns (gray-shaded), weighted 
according 0.500, 0.250, 0.125, and 0.125. The mean 
loss is 1,375,000. The final column of Table 1 shows 
the area under the Excess

MX
 curve from r to infinity. 

Its formula is
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The total area, which according to Section 3 is 
E[MX2]/2, is 4.000 × 1012 (USD squared). Therefore the 
variance of the mixed exponential loss is 2×4.000×1012 
− 1,375,0002, for a standard deviation of 2,471,715.

Table 2 partitions the support of MX into four non-
overlapping layers: [0, 5M], [5M, 10M], [10M, 
20M], and [20M, ∞).6 Let Y

i
 denote the portion 

of loss MX in the ith layer. Because of the non- 
overlapping and complete partition, MX Yi
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The form Excess
Y
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X
(min(b,r + a)) − 

Excess
X
(b) is valid for all r ≥ 0; it also accommodates 

the three limiting cases a = 0, b = a, and b = ∞.4 Fur-
thermore, E[Y] = Excess

Y
(0) = Excess

X
(a) − Excess
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(b), 

as mentioned in Section 2.
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5The mixed exponential distribution, which ISO and NCCI have incor-
porated into their increased limits factors and excess loss factors, was 
introduced into the actuarial literature by Keatinge (1999). For its use by 
NCCI, see Corro and Engl (2006). Not only is this distribution versatile 
(see Keatinge 1999, p. 657); it is also mathematically tractable, hence 
well-suited as an example.
6In reinsurance parlance, the lower bound of an interval is called the 
retention; the width of an interval is the limit. A layer is usually indenti-
fied by its retention and limit, e.g., [2M, 5M] would be stated as “3M 
in excess of 2M,” or “3M xs 2M,” (our nomenclature in Exhibit 3). 
Sometimes, especially in Europe, the upper bound is called the plafond 
(French for ceiling). The reader should note that the example treats of an 
aggregate loss, as would be reinsured under a stop-loss treaty. More usual 
is per-claim or per-occurrence layering under a specific-excess treaty.
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Table 1. Mixed-exponential excess losses

Wgt (w) 0.500 0.250 0.125 0.125 1.000
Mean (θ) 500,000 1,000,000 2,000,000 5,000,000 1,375,000 ± 2,471,715

Retention (r) Exponential Excess Losses
Mxd-Exp  
Excess

Excess dx
r

∞

∫

0 500,000 1,000,000 2,000,000 5,000,000 1,375,000 4.000E+12
1,000,000 67,668 367,879 1,213,061 4,093,654 789,143 2.971E+12
2,000,000 9,158 135,335 735,759 3,351,600 549,333 2.315E+12
3,000,000 1,239 49,787 446,260 2,744,058 411,856 1.839E+12
4,000,000 168 18,316 270,671 2,246,645 319,327 1.476E+12
5,000,000 23 6,738 164,170 1,839,397 252,142 1.192E+12
6,000,000 3 2,479 99,574 1,505,971 201,314 9.667E+11
7,000,000 0 912 60,395 1,232,985 161,901 7.859E+11
8,000,000 0 335 36,631 1,009,483 130,848 6.402E+11
9,000,000 0 123 22,218 826,494 106,120 5.221E+11

10,000,000 0 45 13,476 676,676 86,280 4.263E+11
11,000,000 0 17 8,174 554,016 70,278 3.483E+11
12,000,000 0 6 4,958 453,590 57,320 2.847E+11
13,000,000 0 2 3,007 371,368 46,797 2.329E+11
14,000,000 0 1 1,824 304,050 38,234 1.905E+11
15,000,000 0 0 1,106 248,935 31,255 1.559E+11
16,000,000 0 0 671 203,811 25,560 1.275E+11
17,000,000 0 0 407 166,866 20,909 1.044E+11
18,000,000 0 0 247 136,619 17,108 8.545E+10
19,000,000 0 0 150 111,854 14,000 6.995E+10
20,000,000 0 0 91 91,578 11,459 5.726E+10
21,000,000 0 0 55 74,978 9,379 4.687E+10
22,000,000 0 0 33 61,387 7,678 3.838E+10
23,000,000 0 0 20 50,259 6,285 3.142E+10
24,000,000 0 0 12 41,149 5,145 2.572E+10
25,000,000 0 0 7 33,690 4,212 2.106E+10
26,000,000 0 0 5 27,583 3,448 1.724E+10
27,000,000 0 0 3 22,583 2,823 1.412E+10
28,000,000 0 0 2 18,489 2,311 1.156E+10
29,000,000 0 0 1 15,138 1,892 9.461E+09
30,000,000 0 0 1 12,394 1,549 7.746E+09
31,000,000 0 0 0 10,147 1,268 6.342E+09
32,000,000 0 0 0 8,308 1,039 5.192E+09
33,000,000 0 0 0 6,802 850 4.251E+09
34,000,000 0 0 0 5,569 696 3.481E+09
35,000,000 0 0 0 4,559 570 2.850E+09
36,000,000 0 0 0 3,733 467 2.333E+09
37,000,000 0 0 0 3,056 382 1.910E+09
39,000,000 0 0 0 2,049 256 1.280E+09
40,000,000 0 0 0 1,677 210 1.048E+09
41,000,000 0 0 0 1,373 172 8.583E+08
42,000,000 0 0 0 1,124 141 7.027E+08
43,000,000 0 0 0 921 115 5.753E+08
44,000,000 0 0 0 754 94 4.710E+08
45,000,000 0 0 0 617 77 3.857E+08
46,000,000 0 0 0 505 63 3.157E+08
47,000,000 0 0 0 414 52 2.585E+08
48,000,000 0 0 0 339 42 2.117E+08
49,000,000 0 0 0 277 35 1.733E+08
50,000,000 0 0 0 227 28 1.419E+08
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Table 2. Layered losses and moments

Layers

0 5,000,000 10,000,000 20,000,000

5,000,000 10,000,000 20,000,000 ∞

Retention Excess Losses in Layer

0 1,122,858 165,861 74,822 11,459

1,000,000 537,001 115,034 58,819 9,379

2,000,000 297,191 75,620 45,861 7,678

3,000,000 159,715 44,568 35,339 6,285

4,000,000 67,185 19,840 26,776 5,145

5,000,000 0 0 19,797 4,212

6,000,000 14,102 3,448

7,000,000 9,451 2,823

8,000,000 5,650 2,311

9,000,000 2,542 1,892

10,000,000 0 1,549

11,000,000 1,268

12,000,000 1,039

13,000,000 850

14,000,000 696

15,000,000 570

16,000,000 467

17,000,000 382

18,000,000 313

19,000,000 256

20,000,000 210

21,000,000 172

22,000,000 141

23,000,000 115

24,000,000 94

25,000,000 77

26,000,000 63

27,000,000 52

28,000,000 42

29,000,000 35

30,000,000 28

E[Y] 1,122,858 165,861 74,822 11,459

Area 1.547E+12 3.347E+11 2.545E+11 5.726E+10

Var[Y] 1.833E+12 6.418E+11 5.033E+11 1.144E+11

Std[Y] ± 1,353,906 ± 801,119 ± 709,449 ± 338,211

CV[Y] 1.21 4.83 9.48 29.52
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The sum of the four areas, 2.193 × 1012, does not 
equal the 4.000 × 1012 of the MX area; nor is the 
sum of the four variances, 3.093 × 1012, equal to 
the variance of MX, 6.109 × 1012. What is lacking 
in the conservation of the second moment is the 
covariance among the layered losses, to which we 
now turn.

5. Covariances among  
non-overlapping layers

Since Cov[Y
i
, Y

j
] = E[Y

i
Y

j
] − E[Y

i
]E[Y

i
], and the 

means are known, we need a formula for the prod-
uct moments E[Y

i
Y

j
], where i ≠ j. The actual formula, 

based on the loss variable of which they are layers, 

is E YYi j

x

[ ] =
=−∞

∞

∫ y
i
(x)y

j
(x)dF(x). A formal derivation is 

not necessary; the following argument will suffice. 
Since the layers are different but non-overlapping, 
one is above the other. The range of the integra-
tion may be restricted to the range over which the 
integrand y

i
(x)y

j
(x) is non-zero, which range is the 

inter section of the non-zero ranges of y
i
(x) and y

j
(x) 

separately. However, due to the non-overlapping lay-
ering, the range of the higher layer must be a subset of 
that of the lower. Therefore, the range of integration 
may be restricted to the range over which the higher 
layer is non-zero. But over this range the lower layer 
is exhausted, or equal to its width. Hence, the prod-
uct moment of two different layers equals the product 
of the width of the lower layer and the mean of the 
higher.9

The 4×4 blue-shaded block at the bottom of  
Table 3 contains the product moments. Down its 
diagonal are E[Y2

i
], or twice the values of the “Area” 

row of Table 2. Off the diagonal are the lower-width-
and-higher-mean products. The augmenting margin 
(unshaded) pertains to the loss from ground up, or MX; 

= Excess
X
(min(∞, r + 20M)) − Excess

X
(∞) = Excess

X 

(r + 20M). As expected, the sum of the means of the 
layered losses, E[Y

i
] = Excess

Yi
(0), equals 1,375,000; 

the partitioning conserves the first moment of the loss.
Table 2, like Table 1, derives the second moment of 

each layered loss from the area under its excess-loss 
curve. But, as one of the advantages of the excess-
loss function, it is not necessary to do this anew; it is 
implicit in Table 1. For algebraically:

E Y
Excess y dy

Excess min b y a Excess b dy

Excess y a Excess b dy

Excess y a dy b a Excess b

Excess x dx b a Excess b

Excess x dx Excess x dx

b a Excess b
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The values of the last two integrals are those of 
the last column of Table 1 at retentions a

i
 and b

i
.7 The 

“Area” row at the bottom of Table 2 contains these 
E[Y 2

i
]/2 values, from which follow the variances 

and standard deviations. It is well known among 
reinsurance actuaries that the coefficients of varia-
tion, CV = Std/E, increase as the layers ascend.8 

7The algebra applies in the limit to the top level as well, since lim
b→∞

(b − a)Excess
MX

(b) = 0. Otherwise, the variance of MX would be in-
finite. The relation of the third and higher moments of the excess 
losses to those of the loss from the ground up is complicated by the 
presence of powers of x in their integrals; yet they too are implicit.  
Klugman, Panjer, and Willmot (1998, p. 604) and Patrik (1996, p. 378)  
treat the second moment in terms of limited expectations of X ∧ u  
= min(u, X). With the identities (derivable by the reader) E[X ∧ u] 

= Excess
X
(0) − Excess

X
(u) and E[(X ∧ u)2] = 2

x

u

=
∫

0

Excess
X
(x)dx −  

2uExcess
X
(u), their formulations can be converted into ours.

8See Appendix B for a proof.

9Similarly for multinomial products, the expectation depends on the 
highest layer, the other layers being determined by their exhaustion. 
Moreover, since only the highest layer can be infinite, the problem of 
multiplying by an infinite width will never arise.
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Table 3 gives the label ‘Z’ to the 5 × 1 vector whose 
first element is MX and remaining four are the Y

i
s. So 

the augmented product-moment matrix is E[ZZ′], as 
labeled. The box above it is the outer product of the 
means, E[Z]E[Z]′. The vector variance, Var[Z] = E[ZZ′] 
− E[Z]E[Z]′, is shown under the heading “Variance.” 
The “Std” column contains the square roots of the 
diagonal elements of the variance matrix, which values 
agree with those of Tables 1 and 2. When covariance 
is taken into account, the second moment of the loss 
is conserved. Finally, removing the standard-deviation 
scale from the variance matrix results in the “Correla-
tion” matrix. It bears out something else well known to 

it contains row and column sums of the blue-shaded 
block, since

E Y MX E Y Y E YYi i j
j

i j
j

  = 








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=
= =

∑ ∑
1

4

1

4



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=  

  = 

 

=

=

∑

∑

E YY

E MX E Y

i j
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i
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1

4
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1

4
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∑MX E Y MX
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i
i

i

1

4
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= ==
∑ ∑∑
i

i j
ji

E YY
1

4

1

4

1

4

.

The soundness of our logic is confirmed inasmuch 
as E⎣MX2⎦ = 8.000 × 1012, which is twice the area  
under the Excess

MX
 curve, according to Table 1.

Table 3. Two-moment summary

Ground Up 5M xs 0 5M xs 5M 10M xs 10M ∞ xs 20M

Loss Layer Mean Std Variance

Ground Up 1,375,000 ± 2,471,715 6.109E+12 2.811E+12 1.702E+12 1.269E+12 3.27 9E+11

5M xs 0 1,122,858 ± 1,353,906 2.811E+12 1.833E+12 6.431E+11 2.901E+11 4.443E+10

5M xs 5M 165,861 ± 801,119 1.702E+12 6.431E+11 6.418E+11 3.617E+11 5.539E+10

10M xs 10M 74,822 ± 709,449 1.269E+12 2.901E+11 3.617E+11 5.033E+11 1.137E+11

∞ xs 20M 11,459 ± 338,211 3.279E+11 4.443E+10 5.539E+10 1.137E+11 1.144E+11

Correlation

100% 84% 86% 72% 39%

84% 100% 59% 30% 10%

86% 59% 100% 64% 20%

72% 30% 64% 100% 47%

39% 10% 20% 47% 100%

E[Z] E[Z]′

1.89E+12 1.54E+12 2.28E+11 1.03E+11 1.58E+10

1.54E+12 1.26E+12 1.86E+11 8.40E+10 1.29E+10

2.28E+11 1.86E+11 2.75E+10 1.24E+10 1.90E+09

1.03E+11 8.40E+10 1.24E+10 5.60E+09 8.57E+08

1.58E+10 1.29E+10 1.90E+09 8.57E+08 1.31E+08

E[ZZ′]

8.000E+12 4.355E+12 1.930E+12 1.372E+12 3.437E+11

4.355E+12 3.094E+12 8.293E+11 3.741E+11 5.729E+10

1.930E+12 8.293E+11 6.693E+11 3.741E+11 5.729E+10

1.372E+12 3.741E+11 3.741E+11 5.089E+11 1.146E+11

3.437E+11 5.729E+10 5.729E+10 1.146E+11 1.145E+11
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reinsurance actuaries, namely, that layered losses are 
positively correlated, although the correlation dimin-
ishes as the distance between the layers increases.10

6. Conclusion

The mathematics of excess losses is not only beauti- 
ful; it is powerful. The excess-loss function impounds 
all the information of the probability distribution of 
its loss. Therefore, although from the beginning actu- 
aries and underwriters have found it convenient for 
the calculation of the pure premiums of layered losses, 
it is just as serviceable for the calculation of higher 
moments, whether the integrals involved be calcu- 
lated analytically (as done in our example) or approx- 
imated numerically. The versatile mixed exponential 
distribution lessens the difficulty of such calculations.

10Again, as per footnote 8, see Appendix B for a proof.
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tion function is continuous from the right. Therefore, 

the Stieltjes integral 
x a

b

=
∫ h(x)dF

x
(x) counts probability 

mass at the upper limit, but not at the lower. This asym-

metry ensures that 
x a

b

=
∫ h(x)dF

x
(x) + 

x b

c

=
∫ h(x)dF

x
(x) = 

x a

c

=
∫ h(x)

dF
x
(x); otherwise, probability mass at the endpoints 

might be either ignored or double-counted.
Therefore, the correct formulation for a non- 

negative random variable X is E[h(X)] = h(0) Prob[X 

= 0] + 
x=

∞

∫
0

h(x)dF
X
(x). From integration by parts, we 

derive the form for the survival function G
X
(x) = 1 − 

F
X
(x), which also is continuous from the right:

E h X h Prob X h x dF x

h Prob X h x dG x

h Prob X h x dG x

G x dh x

h Prob X h G

G x dh x
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For this reason we subtitled this appendix “Watch 
your step!” For the [0, ∞] Stieltjes integrals in this 
paper do not count probability mass at zero. For two 
reasons it is easy to overlook this subtlety. First, if 

Prob[X = 0] = 0, E[h(X)] = 
x=

∞

∫
0

h(x)dF
X
(x), although 

the other form is still E[h(X)] = h(0) + 
x=

∞

∫
0
G

X
(x)dh(x). 

And second, it is common for h(x) to be a positive 
power of x, in which case h(0) = 0.

Watching one’s step at zero also consistently han-
dles a constant shift in h(x):

Appendix A
Stieltjes integrals: watch your step!

The expectation of h(X) is 
i=

∞

∑
1
h(x

i
) ? Prob[X = x

i
], 

if X is discreet, and 
x=−∞

∞

∫ h(x)f
X
(x)dx, if X is continuous. 

But random variables may be mixed, i.e., continuous 
with discrete steps.11 For the sake of generality we 
can employ the Stieltjes integral [1, p. 12]: E[h(X)] 

= 
x=−∞

∞

∫ h(x)dF
X
(x), where F

X
(x) is the cumulative distri-

bution function of X. Of course, if F is differentiable, 
dF

X
(x) = f

X
(x)dx, and the Stieltjes integral reverts 

back to the familiar (Cauchy-Riemann) integral 

x=−∞

∞

∫ h(x) f
X
(x)dx. The Stieltjes integral is defined as

h x dF x h F
x

i i
i

n

x a

b

i

( ) ( ) = ( )
{ }→ ==

∑∫ lim ,
max ∆

∆
0

1

ξ

where the interval is partitioned as a = x
0
 < x

1
 < . . . 

< x
n
 = b, Δx

i
 = x

i
 − x

i−1
, and ΔF

i
 = F(x

i
) − F(x

i−1
). Each ξ

i
 

is arbitrarily chosen from the subinterval x
i
−1 ≤ ξ

i
 ≤ x

i
.

If u is continuous over the interval, nothing is 
problematic about this definition. Now for our pur-
poses X is a non-negative random variable; hence, for  

x < 0, dF
X
(x) = 0, and E[h(X)] = lim

ε ε→ −
=

∞

∫
0 x

h(x)dF
X
(x). One 

is tempted to simplify this to 
x=

∞

∫
0

h(x)dF
X
(x) would miss 

any discrete step at zero, since the cumulative distribu-

11The number of discrete steps may be infinite, but it must be countable, 
or denumerable. To prove this, let p(x) = Prob[X = x] = F

X
(x) − lim

y x→ −

F
X
(y), and M = {x ∈ ℜ : p(x) > 0}. M is the set of points of probability 

mass. To prove that M must be countable, partition it into the countable 

set of subsets M M
i

i=
=

∞

∪
1

, where M
i
 = {x ∈ M : 2−i < p(x) ≤ 2−i+1}. Each 

element of M is in one and only one of the subsets. If M
i
 were infinite, 

any sum of 2i of its elements would exceed one, since all its elements 
are greater than 2−i. But this would lead to total probability in excess 
of one; in fact, total probability would be infinite. Hence, each subset 
is finite. But a countable union of finite sets is countable. In symbols, 

M M
i

i=
=

∞

∪
1

 ≤ ℵ
0
 ? ℵ

0
 = ℵ

0
, where M means the cardinality of M, and 

ℵ
0
 is the cardinality of the natural numbers.
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More over, the second moment is
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For ease of understanding, the derivation pro-
ceeded in many small steps; nevertheless, line seven 
deserves an explanation. Since G

X
 is non-increasing, 

min(G
X
(x

1
), G

X
(x

2
)) = G

X
(max(x

1
, x

2
)). So by divid-

ing the inner integral into the two regions, we can 

Appendix B
Two theorems about  
reinsurance layers

Here we will give proofs of the two facts which this pa-
per claims to be “well known to reinsurance actuaries”:

1.  that the coefficients of variation, CV = Std/E,  
increase as the layers ascend, and

2.  that layered losses are positively correlated,  
although the correlation diminishes as the dis-
tance between the layers increases.

Our proofs will begin with “differential” layers, i.e., 
to layers whose width is dx. But, as we shall show, one 
can integrate such layers into layers of any width.

Let X be a non-negative random variable, whose 
survival function (the complement of the cumulative 
distribution function) is G

X
. The probability that X > 

x is G
X
(x); therefore, the probability of a non-zero loss 

in the interval [x, x + Δx] is G
X
(x). In the limit, as Δx 

→ 0+, the expected loss in the layer, E[Layer(X; x, x + 
Δx)], approaches G

X
(x)Δx. Defining dY(x) as the por-

tion of X in the differential layer [x, x + dx], we may 
say that dY(x) ∼ Bernoulli(G

X
(x)) ? dx. Accordingly, 

E[dY(x)] = G
X
(x)dx and E⎣(dY(x))2⎦ = G

X
(x)(dx)2. Ar-

guing as we did in Section 5, we have E[dY(x
1
)dY(x

2
)] 

= min(G
X
(x

1
), G

X
(x

2
))dx

1
dx

2
, of which E[(dY(x))2] = 

G
X
(x)(dx)2 is a special instance in which x

1
 = x

2
 = x.12

Before we prove the two theorems, it will be in-
structive to see how a layer can be integrated from 
differential layers. If Y is the portion of X in layer 

[a,b], then Y = Layer(X;a,b) = 
x a

b

=
∫ dY(x). Hence,  

E Y E dY x E dY x G x dx
x a

b

X

x a

[ ] = ( )





= ( )[ ] = ( )
= =
∫ .

bb

x a

b

∫∫
=

 

12One may no more object to the differential random variable dY(x) than 
to the dX(t) of the Wiener process. However, unlike the Wiener process, 
in which the dX(t) are independent, the survival or filtration process im-
poses a co-moment structure upon the dY(x).
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max G x G x

G min x x

X X

X ( )

( )

( )

( ) ( )
= −

= −

1

,
1

1

,
1.

1 2

1 2

This coefficient is well defined when G
X
(x

1
) and 

G
X
(x

2
) are non-zero; loss in the differential layers must 

be possible. Furthermore, CV2[dY(x)] = CoefCov[dY(x), 

dY(x)] =
( )

−1
1

G xX

.  Due to the properties of G
X
, 

CV2[dY(x)] is a non-decreasing function in x.
With this preparation, the first fact is easily proven. 

If Y = Layer(X; a,b) = 
x a

b

=
∫ dY(x) and G

X
(a) ≥ G

X
(b)  

> 0, then

CV Y Var Y E Y

Cov dY x dY x

E dY x

E dY x E dY x CoefCov dY x dY x

E dY x E dY x

x a

b

x a

b

x a

b

x a

b

x a

b

x a

b

x a

b

∫∫

∫

∫∫

∫∫

[ ]

[ ] [ ] [ ]

[ ] [ ]

( ) ( )

[ ]

( ) ( ) ( ) ( )

( ) ( )

[ ] [ ] [ ]

( )

=

=






=

==

=

==

==

,

,
.

2 2

1 2

2

1 2 1 2

1 2

21

21

21

Hence, CV2[Y] is a weighted average (weighted over 
two dimensions) of the coefficients of the layer’s co-
variances. And since the weights are non-negative, the 
weighted average must be bounded by the minimum 
and maximum coefficients, which are at the endpoints:

CV dY a CoefCov dY a dY a CV Y

Coef

2 2( )[ ]= ( ) ( )[ ] ≤ [ ]
≤

,

CCov dY b dY b

CV dY b

( ) ( )[ ]
= ( )[ ]

,

.2

Therefore, of two layers, [a, b] and [c, d], where 
a < b ≤ c < d, the CV2 of the lower will be less than 
or equal to that of the higher. And if probability is 
consumed anywhere in these layers,14 the inequality 

identify the minimum.13 The reproduction of the mo-
ments of Y confirms the legitimacy of the formula 

Y dY x
x a

b

= ( )
=
∫ .

One more notion is required for our proofs, a no-
tion which we will call the coefficient of covariance. 
It is the covariance between two random variables 
whose means have been normalized to unity, i.e.,

CoefCov X Y Cov
X

E X

Y

E Y

Cov X Y

E

, ,

,

[ ] =
[ ] [ ]







= [ ]
XX E Y

E XY E X E Y

E X E Y

E XY

E X E Y

[ ] [ ]
= [ ]− [ ] [ ]

[ ] [ ]

= [ ]
[ ] [[ ]

− 1.

Of course, CoefCov[X, X] = CV 2[X]. The coeffi-
cient of covariance between two differential layers is

CoefCov dY x dY x
E dY x dY x

E dY x E dY x

min G x G x dx dx

G x dx G x dx

min G x G x

G x G x

min G x G x

min G x G x max G x G x

X X

X X

X X

X X

X X

X X X X

[ ] [ ]
[ ] [ ]

( )

( )

( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

= −

= −

= −

= −

, 1

,
1

,
1

,

, ,
1

1 2

1 2

1 2

1 2 1 2

1 1 2 2

1 2

1 2

1 2

1 2 1 2
i

13Equivalently, one may argue from symmetry. Let x
1
 be the larger vari-

able and integrate .
x a

x

x a

b

2

1

1 ==
∫∫  But this is half the value of the full integral. 

This extends to higher moments. For example,

E Y G x x x dx dx dx
X

x a

b

x a

b

3

1 2 3 3 2 1

32

[ ] ( )( )∫=
==

max , ,∫∫∫

( )∫∫

=

===

=

x a

b

X

x a

x

x a

x

x a

G x dx dx dx

1

1 3 2 1

3

1

2

1

1

3
bb

X

x a

b

G x x a dx∫ ( )( )∫= −
=

3
2

In general, E[Yk] = k
 x a

b

=
∫ G

X
(x)(x - a)k-1 dx = 

x a

b

=
∫ G

X
(x)d(x - a)k, which is 

the layer-appropriate version of the formula of Section 2 and Appendix A, 

E[h(X)] = h(0) + 
x=

∞

∫
0

G
X
(x)dh(x), for h(x) = (x - 0)k. 14We say that “probability is consumed,” if G

X
(a) > lim

x d→ −
G

X
(x).
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Because E[Y
1
] = 

x a

b

=
∫ G

X
(x)dx ≤ 

x a

b

=
∫ 1? dx = b − a, b − a 

− E[Y
1
] ≥ 0; hence, Cov[Y

1
, Y

2
] ≥ 0. So the correla-

tion coefficient between the portions of X in the two 
layers is

Corr Y Y
Cov Y Y

b a E Y E

Y Y

Y

1 2

1 2

1

1 2

1

,
,[ ] = [ ]

= − − [ ]

σ σ

σ
i

YY

b a E Y

CV Y

Y

Y

2

1

2

2

1

[ ]

=

− − [ ]





[ ]

σ

σ
.

Now consider shifting [c, d] to the right, i.e., to [c + 
ξ, d + ξ], where ξ ≥ 0. And let Y

2
(ξ) = Layer(X; c + ξ, 

d + ξ) = 
x c

d

= +

+

∫
ξ

ξ

dY(x). From the first proof we know that 

CV[Y
2
(ξ)] is non-decreasing. Since the numerator of 

Corr is constant, Corr[Y
1
, Y

2
(ξ)] is non-increasing; 

strictly decreasing if probability is consumed. There-
fore, as the retention of the upper layer so moves 
away from that of the lower as to consume probabil-
ity, the correlation decreases. This implies that in the 
absence of compensating risk premiums, a reinsurer 
should not underwrite neighboring layers.

will be strict. Even if the two layers overlap (i.e., a 
≤ c < b and b ≤ d, but not both a = c and b = d), one 
can consider three intervals, the middle interval be-
ing the overlap. Then, as above, CV 2(A) ≤ CV 2(B) 
≤ CV 2(C). Because the unions involve weighted- 
averaging, CV 2(A) ≤ CV 2 (A ∪ B) ≤ CV 2 (B) ≤ CV 2 
(B ∪ C) ≤ CV 2(C). Therefore, the CV 2 of a higher 
layer is greater than or equal to that of a lower layer, 
even if there is some overlap; the inequality is strict, 
if probability is consumed. Finally, since CV ≥ 0, the 
inequalities are as valid for CV as for CV2. Note that 
the widths of the layers do not need to be equal.

Second, as to correlation, let Y
1
 = Layer(X;a,b) = 

x a

b

=
∫ dY(x) and Y

2
 = Layer(X;c,d) = 

x c

d

=
∫dY(x), for a < b ≤ 

c < d. Therefore, we know that the minimum G
X
 will 

be in the higher interval [c, d].
Under these conditions,
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