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ABSTRACT

This paper covers experiences in modeling mortgage insur-
ance claims. In Section 2, mortgage insurance claims are
considered an absorbing state in a Markov chain that in-
volves transitions between the states of healthy, in arrears,
property in possession, property sold, loan discharged, and
claim. Section 3 considers the representation of this process
by a cascade of five frequency generalized linear models
(GLMs) and a further GLM for claim size. These models
are applied to the forecast of technical liabilities in Sec-
tion 4 and the estimation of the associated forecast error in
Section 5.
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1. Introduction

This paper is concerned with modeling mort-
gage insurance claims experience. Most of its
content applies to mortgage insurance generally,
though in some places comment will be slanted
toward insurance of residential, as opposed to
commercial, mortgages.
Mortgage insurance indemnifies the lender

against loss in the event of default under a mort-
gage leading to sale of the collateral property. A
loss would occur if the proceeds of the sale, less
its costs, were insufficient to defray the amount
outstanding in respect of the mortgage loan. In
the parlance of the financial markets, a mortgage
insurance contract is a credit default swap [12].
This line of business has a number of relatively

unique properties:

² Policies provide multiyear coverage in return
for a single premium.

² The claims experience is strongly influenced
by variables that relate specifically to the hous-
ing sector of the economy.

² A claim occurs at the end of a defined se-
quence of events, somewhat different from
those of other lines.

Subsequent sections address this single-premi-
um form of contract. In cases where premiums
are paid periodically, some details of the paper,
particularly in Section 6.1 on earning of pre-
mium, might be subject to change.
In the case of a single premium product, the

premium of any one policy needs to be earned
over a number of years. Typically, an accounting
standard will stipulate that it be earned in pro-
portion to the “incidence of risk,” or some such
phrase that broadly translates as “expected claim
cost incurred.”
In practice, the earning pattern consists of a

set of fixed percentages (e.g., 5% in the first year
of the loan, 15% in the second, and so on). An
examination of claims history reveals, however,
that earning patterns change from time to time,

as conditions influencing the claims environment
change. There is opportunity, therefore, to im-
prove the accuracy of the assumed earning pat-
tern by improved modeling of the claims experi-
ence.
Taylor [14] introduced the application of a gen-

eralized linear model (GLM) to mortgage insur-
ance claims experience, using predictors that
were external to the conventional triangles of
claims experience. Ley and O’Dowd [7] contin-
ued this theme, but with extensions to allow for
new products and other changes in the mortgage
insurance market.
Driussi and Isaacs [2] were less concerned with

modeling of claims experience but provide use-
ful commentary on the market and valuable data.
Kelly and Smith [6] again continue the frame-
work established by Taylor but introduce a de-
tailed stochastic model of some of the external
predictors.
It is characteristic of these papers that wher-

ever they introduce a model of claims experi-
ence, it is a single model, with the number or
amount of claims as the response variable. As
noted above, each claim occurs at the end of a
defined sequence of events (see Section 2), and it
is possible to improve the modeling by extending
it to recognize each component of the sequence.
The purpose of the present paper is to explore

this extension of the modeling.

2. Claim process

The present section describes in detail the pro-
cess by which a mortgage loan generates a claim.

2.1. Multistate process

A mortgage loan will require the borrower to
meet certain repayment obligations. As long as
these are met, the loan will be designated healthy.
If the borrower fails to do so at any time, the loan
will be said to be in arrears.
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Figure 1. Transitions between loan statuses

Figure 2. Transition matrix for the mortgage insurance claim process

If this occurs, the lender will usually take ac-
tion aimed at recovering the arrears and restoring
the loan to a healthy state. If, after a reasonable
period, this has not been achieved, and appears
unlikely to be, the borrower will take possession
of the mortgaged property with a view to sale.
The status of the loan will then be designated
property in possession (PIP).
Once this occurs, the lender will almost cer-

tainly proceed to sale. If the proceeds of the sale,
less the associated expenses (advertisement, cost
of auction, etc.), exceed the outstanding loan bal-
ance, the loan will be discharged. There will be
no mortgage insurance claim. If, however, the
loan balance exceeds the net proceeds of the sale,
a claim for the balance will arise.
The transitions between loan statuses leading

to a claim are represented in Figure 1. The figure

also includes two additional transitions not cov-
ered by the description above. These reflect the
facts that

² Many cases of arrears are cured (returned to
healthy status);

² Some borrowers in arrears voluntarily under-
take sale and thus bypass the PIP status.

Many transitions proceed directly from healthy
to sale, but these lie outside the arrears/claim
model. They result in policy terminations, dis-
cussed in Section 6.2, and also affect the expo-
sures to transition, taken into account in Equa-
tion (3.4). The transition matrix associated with
this process has the appearance set out in Fig-
ure 2.
Note that “Loan discharged” and “Claim” are

absorbing states, and the set of states fPIP, Sold,
Loan discharged, Claimg is absorbing.
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This type of cascaded model involving the
transition of individuals between certain states,
which will later be assumed a Markov chain, is
of growing prominence in the actuarial literature.
A few examples from the literature are Taylor
[13], Haberman and Pitacco [4], Jones [5], and
Taylor and Campbell [15].

2.2. Date of claim occurrence

The usual definition of the date of occurrence
of a claim is the date of the event generating the
claim. In the case of mortgage insurance, there
is some ambiguity about this date.
Past papers have tended to treat it as the date

on which the sale of the property occurred and
proceeds were found to be insufficient; i.e., that
date on which the existence of the claim became
known with certainty. An alternative school of
thought might maintain that the event generating
the claim was the policy’s transition to the arrears
status.
The choice of date of occurrence may affect

the evaluation of an insurer’s technical liabilities.
These consist of the outstanding claims liability
and the unexpired risk liability, which may in
turn be expressed as

² The liability for incurred but not paid (IBNP)
claims, conventionally referred to as outstand-
ing claims; and

² The liability for written but not incurred
(WBNI) claims (unexpired risk).

Note that incurred but not reported (IBNR)
claims form a segment within IBNP and refer
to those claims that have “occurred,” in what-
ever sense has been adopted, but whose occur-
rence has not been reported to the insurer (by the
lender, for example).
A change to the definition of date of occur-

rence causes a change in the dissection of total
technical liabilities into these two components.
It does not affect the expected value of the to-
tal liability, but it may affect the provision made
for it in the insurer’s account because the pro-

vision made for unexpired risk is often an un-
earned premium provision. If this is defined by
reference to incidence of risk, as mentioned in
Section 1, it will take the value

Pf1¡E[Ct]=E[Cn]g (2.1)

for a specific contract after t years of its n-year
term have elapsed, where P is the premium pay-
able under the contract net of acquisition and
reinsurance expense, and Ct denotes the amount
of claims incurred in the t years.
Let this quantity be denoted Ut. Then

Ut = P=E[Cn]fE[Cn]¡E[Ct]g
= (1+¼)fE[Cn]¡E[Ct]g, (2.2)

where the term within braces is the expected
WBNI claims, and ¼ is the profit margin con-
tained in P expressed as a proportion of risk pre-
mium.
Thus unearned premium reserves include not

only the relevant expected claim cost but also the
associated profit margin. If this margin is posi-
tive, the unearned premium will exceed the ex-
pected claim cost. It follows that the later the
choice of date of claim occurrence in Figure 1,
the greater will be the estimated total amount of
technical liabilities.

3. Model structure

The present section describes the model used
to represent the claims process of Section 2.

3.1. Cascaded model

Figure 2 suggests a model consisting of a cas-
cade of submodels, with each submodel repre-
senting a single transition. The resulting models
are as follows:

Submodel 1: Probability of transition from
healthy to in arrears.
Submodel 2: Probability of cure of arrears.
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Submodel 3: Probability of transition from ar-
rears to PIP.
Submodel 4: Probability of transition from PIP
to sold.
Submodel 5: Probability of transition from sold
to claim.
Submodel 6: Distribution of claim sizes.

This is a slightly abbreviated version of the
model suggested by Figure 2, which omits the
model of transition from in arrears to sold. This
case has, in fact been recognized by the insertion
of an artificial transition to PIP infinitesimally
prior to the sale. More accurately, therefore, Sub-
models 3 and 4 are as follows:

Submodel 3: Probability of transition from ar-
rears to PIP or sold.
Submodel 4: Probability of transition from PIP
to sold, with infinitesimal duration between the
two indicating a direct transition from in arrears
to sold.

The cascaded model is assumed to be Marko-
vian.

3.2. Submodel structures

3.2.1. Submodels 1 to 5
Each of Submodels 1 to 5 consists of a col-

lection of binomial variates observed over calen-
dar intervals j = 1,2, : : : ,J . These intervals are of
equal but arbitrary length. We have found quar-
terly intervals useful. The variates are

Y(m)ij » Bin[1,1¡ expfu(m)ij log[1¡p(m)ij ]g],
(3.1)

where Y(m)ij denotes the binomial response of the
i-th policy in Submodel m (= 1, : : : ,5) over the
j-th interval, p(m)ij the associated probability of

transition, and u(m)ij the amount of time the policy
is at risk of transition.
Note the use throughout of the superscript

m to indicate that Submodel m is under discus-
sion. In particular, p(m)ij does not denote an m-step

transition probability, as this notation often
does.
The quantities u(m)ij take values in the range

[0,1]. Values less than unity recognize incom-
plete intervals of exposure. For example, a loan
that commences in an interval will be at risk of
transition to arrears only for the remainder of that
interval; likewise, a policy that terminates will be
at risk of transition only for a fraction of the in-
terval.
In general, if the interval j denotes [j,j+1]

and p(m)ij relates to transition from status s1 to s2,
then

u(m)ij = t2¡ t1, (3.2)
where

t1 = max(j, date first in status s1 in interval j)

(3.3)

t2 = j+1, if transition to s2 occurs during

the interval

= min(j+1, date of termination of the

policy), otherwise. (3.4)

The notation above implicitly assumes that
only one transition s1! s2 can occur in a sin-
gle interval. In fact, multiple transitions may oc-
cur when the status is healthy or in arrears. To
accommodate this within the notation is unneces-
sarily cumbersome. The notation is therefore left
as above, and its extension to multiple transitions
within an interval is taken as obvious.
A transition probability defined in this way

is the probability that the transition in question
would occur over a complete quarter if no other
transition intensities were operating. In actuar-
ial terminology, it is an independent transition
probability [1].
The probabilities in Equation (3.1) may be nat-

urally represented as

logitp(m)ij =§k¯
(m)
k xijk, (3.5)

where xijk denotes value for observation (i,j) of
the k-th predictor used in the six submodels (any
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one predictor may be used in more than one
model, but not necessarily in all), and ¯(m)k its
associated coefficient.
Each model consisting of Equations (3.1) and

(3.5) is a generalized linear model (GLM) [9].

3.2.2. Submodel 6
The response variable Y(6)ij is continuous, but

it may also be modeled with a GLM:

Y(6)ij » EDF(¹ij ,q) (3.6)

log¹ij =§k¯
(6)
k xijk, (3.7)

where EDF(¹ij ,q) denotes a member of the ex-
ponential dispersion family with

E[Y(6)ij ] = ¹ij (3.8)

Var[Y(6)ij ] = ('=wij)¹
q
ij (3.9)

for constants ', wij .
For any given i, there can, of course, be only

one observation Y(6)ij ; i.e., for a unique j. The
index j has been retained in the model because
of the possible dependency of the predictors xijk
on it. Further comment on this appears in Sec-
tion 3.3.

3.3. Predictors

The predictors xijk fall into three categories,
which may be briefly designated:

² Policy variables, with subcategories
² Static,
² Dynamic,

² External variables,
² Manufactured risk indicators.
A reasonably comprehensive list of predictors
appears in Section 4.1.
Policy variables assume values that are spe-

cific to individual policies; e.g., date of policy
issue, loan-to-valuation ratio (LVR), etc. Static
variables are those whose values remain constant

over time (the two examples just given), while
dynamic variables change over time (e.g., for a
policy in arrears, number of quarters since tran-
sition to that status).
Some dynamic variables, such as this last one,

will be simple mappings of calendar time (tran-
sition quarter); hence, the retention of the index
j in the notation Y(6)ij , on which comment was
made at the end of Section 3.2.
External variables are external to individual

policies and assume values that apply globally
over all policies. They are indicators of the ex-
ternal economy, such as housing prices, interest
rates, etc.
Manufactured risk indicators are specifically

constructed from other variables as indicators of
the risks inherent in specific submodels. Exam-
ples of these are updated debt servicing ratio
(DSR) and potential claim size, defined as fol-
lows:

Updated DSR=

Current outstanding principal
£ interest rate

Borrower’s annual income
£average earnings growth factor

(3.10)

Potential claim size =

Amount of arrears

Less

Principal repaid

Less

[Housing price growth factor£ (1¡ q)¡ 1]
£
Original loan amount/LVR, (3.11)

where

² the borrower’s annual gross income is the
amount indicated when the loan was issued
(which is the latest that will usually be on file);

² the average earnings and housing price growth
factors are external variables, and relate to the
period from inception of the loan to the current
date;
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² q is the proportion of property value lost in
deadweight costs on sale.

If original DSR is defined as the ratio of the
borrower’s original per-period interest commit-
ment to annual income, an obvious indicator of
the likelihood of arrears, then updated DSR is
a revised version allowing for any reduction of
principal, change in interest rate, and change in
income over the course of the loan to date.
Potential claim size comprises three members,

of which the last two provide an estimate of the
borrower’s current equity in the property less the
costs of realizing it. The total quantity (3.11) is
therefore an estimate of the amount of loss that
would arise in the event of a claim.

4. Forecasting expected claim
cost

4.1. Model fitting

The present section describes the fitting of the
model of Section 3 to observations on loans and
their transitions between states.

4.1.1. Data
The fitting of the six models described in Sec-

tion 3.2 relied on two data sets:

² A policy file, containing one record per policy
issued by the insurer over a period of years,
and each record containing various attributes
of the policy that are used as policy variable
predictors described in Section 3.3.

² An arrears file, containing one record per oc-
currence of arrears i.e., transition of a loan
from a healthy status to in arrears, and each
record containing details of the arrears, includ-
ing its progress through the statuses illustrated
in Figure 1, particularly the dates of each tran-
sition.

Unfortunately, the proprietary nature of the
data has prevented us from providing more
detail.

4.1.2. Modeling
Since the six sub-models are GLMs, they may

be fitted to the data by means of GLM software.
This may be computationally intensive. For ex-
ample, in the case of an insurer with about 1.25
million policies in force, Model 1 involved about
23 million observations (i.e., (i,j) combinations),
one for each quarter that each policy character-
ized as “healthy” (i.e., at risk of transition to ar-
rears) was in force over a nine-year experience
period (including policies no longer in force).
Otherwise, the application of the software is

routine, with one exception. The appearance of
the term u(m)ij in (3.1) creates some awkwardness.
However, substitution of Equation (3.5) into the
probability in Equation (3.1), followed by a logit
transform, yields (with suffixes temporarily sup-
pressed for brevity)

logit(1¡ expu log(1¡p)) = logit[1¡ (1+ e´)¡u],
(4.1)

where ´ denotes the linear predictor of the model;
i.e., the right side of Equation (3.5).
A little manipulation produces

logit(1¡ expu log(1¡p))
= log[(1+ e´)u¡ 1]
= logu+ ´+(1=2)(u¡ 1)e´

+(1=24)(u¡ 1)(u¡ 5)e2´ + ¢ ¢ ¢ ],
(4.2)

where (1+ e´)u has been expanded as a power
series in e´, and the logarithmic function has then
been expanded as a power series.
This shows that the logit transform of the prob-

ability in (3.1) may be represented by (3.5) with
a correction term of logu, subject to an error of
O(12(u¡ 1)e´) = O(12(u¡ 1)p=(1¡p)). The error
is thus small for p! 0 or u! 1. In GLM termi-
nology, the correction term amounts to adding an
offset of log u into the model.
This treatment of fractional exposures within

a discrete-time framework is somewhat cumber-
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some but, as explained earlier in this section, the
modeling involves a large data set, and we are
unaware of continuous-time software that would
be equal to the task.
In mitigation, it might be pointed out that the

observations involving fractional exposures re-
late mainly to transitions between statuses (which
usually occur within a calendar period) and there-
fore form a distinct minority of the whole set of
observations. Any distortion caused by the trun-
cation of (4.2) should therefore be modest.
For Model 6, the value q= 1:5 was found to

be satisfactory in (3.9). This means that the dis-
tribution of claim size is skewed to the right but
shorter tailed than gamma.
For reasons of confidentiality (not to mention

space), full numerical results are not presented
here. However, a couple of examples will be use-
ful.

EXAMPLE 1. Model of claim size
One of the strong predictors of average claim

size is the potential claim size defined in (3.11).
It contributes to the linear predictor (3.7) as fol-
lows:

0:71£ log[Potential claim size=1000+5]:

In view of the model’s log link, this means
that forecast claim size is proportional to [Po-
tential claim size=1000+5]0:71; and so, for ex-
ample, PIP cases with potential claim sizes of
$20,000 and $5,000, respectively, but otherwise
identical, will have forecast claim sizes in the ra-
tio 1.9:1.

EXAMPLE 2. Model of transition from healthy to
in arrears
The probability of transition from a healthy

status to in arrears is found to depend on dura-
tion from commencement of the loan, after al-
lowance has been made for all other predictors.
In fact, this probability decreases with increasing
development quarter (defined as the difference
between the calendar quarter of commencement

of the loan and the quarter of transition). From
development quarter 1 onward, the decrease is
linear.

Table 1 displays the predictors estimated to
have statistically significant regression coeffi-
cients ¯ in the six models. Table 2 provides some
interpretive comment on some of the predictors.
Many of the issues involved in fitting the

model of claims experience are the same as for
GLM loss reserving in any other line of business
(see, e.g., Taylor and McGuire [16]).
For example, in each of the submodels of tran-

sition from a source status to a target status, one
has the choice of the following time-based pre-
dictors:

² issue quarter,
² duration since transition into the source status,
or

² transition quarter.
These three time dimensions correspond to ac-

cident quarter, development quarter, and calendar
quarter in a more conventional loss reserving.
As usual, collinearity is likely to prevent effi-
cient inclusion of all three in a model, even if all
three have some predictive power. In this case,
it will be desirable to apply a little effort to de-
termining which two have the greatest predictive
power.
It is also desirable to examine the usual di-

agnostics of a GLM regression, such as residual
plots, and triangles of observed to fitted value ra-
tios by “accident period” and “development pe-
riod.” Figure 3 provides an example of the for-
mer in respect of Submodel 2, the probability of
cure of arrears.
In this figure,

² the boxes represent the interquartile ranges;
² the marked points joined by the broken line
are the means,

² the whiskers indicate the total range of obser-
vations, and
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Table 1. Statistically significant predictors

Statistically Significant Predictors

Model 1: Model 2: Models 3 and 4: Model 5: Model 6:
Healthy! In Arrears In Arrears PIP!Claim Claim

Predictor in Arrears !Cured !PIP Occurrence Size

Company within group * * * * *
State of Australia * * * * *
Issue quarter * *
Fixed/variable interest *
Geographic classification code * * * *
Lender type * * *
Loan amount * *
Loan purpose * * *
Loan type *
LVR * * * *
Property type * *
Investment loan * *
Premium insured * *
Principle and interest *
Gross income *
Net servicing ratio (NSR) *
Economic environment risk coefficient * * *
Credit risk coefficient *
Full risk coefficient *
Reinsurer * *
Duration since issue *
Duration since arrears * *
Duration since PIP * *
Transition quarter * * * *
Wage growth(a) *
10-year bond rate(b) * *
GDP growth(a) *
House price index growth(a) *
Stock price index growth(a) * *
Unemployment rate(b) * * *
Vacancy rate(b) *
Claim size potential(c) * *
Updated DSR(c) *

Notes: (a) Growth, as a percentage, measured from commencement of the loan to the quarter of transition. (b) In the quarter of transition.
(c) Defined in Section 3.3.

² the horizontal bars on the whiskers mark the
10th and 90th percentiles.

The figure indicates centeredness and homo-
scedasticity of the residuals with respect to tran-
sition quarter.
Forecasts of the external variables will be re-

quired. It will usually be desirable that these be
obtained from a separate econometric model,
which might include housing prices, stock prices,
gross domestic product, interest rates, inflation
rates, unemployment rates, and possibly other
variables.

4.2. Forecast claims experience

The conventional form of forecast in a loss
reserve model consists of plugging future values
of the predictors, such as accident period and de-
velopment period, into the calibrated model and
taking the results as forecasts of future claim cash
flows.
There are two reasons why this is neither fea-

sible nor reliable on the present occasion:

² Such treatment of a cascaded model is unlikely
to be computationally feasible.

VOLUME 01/ISSUE 01 CASUALTY ACTUARIAL SOCIETY 89



Variance Advancing the Science of Risk

Table 2. Interpretive comment on regression coefficients

Predictor Comment

Company within group The same model covers (with variations) all companies within the group
Issue quarter Issue of the policy, i.e., commencement of the loan
Fixed/variable interest Interest rate carried by the loan
Geographic classification code Metropolitan, rural, etc.
Lender type Insurance company, finance company, etc.
Loan purpose New residence construction, investment property, etc.
Loan type
Property type Freestanding house, semidetached, apartment, etc.
Investment loan
Premium insured
Principle and interest
Gross income
Net servicing ratio (NSR) The net income equivalent of DSR
Economic environment risk coefficient A quantity developed by the company, measuring risk due to market conditions (i.e., not loan

specific) at loan commencement
Credit risk coefficient Lower coefficient´ greater risk
Full risk coefficient A further quantity developed by the company, measuring total risk, including economic

environment and loan specific risk, but excluding credit risk, at loan commencement
Reinsurer Identity of quota share reinsurer
Duration since arrears Since last transition to in arrears status
Duration since PIP Since last transition to PIP status
Transition quarter Calendar quarter of transition to new status (i.e., subject status of model)

Figure 3. Residual plot by transition quarter
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Table 3. Simulated forecast information

Valuation Date + 1 Quarter Valuation Date + 2 Quarters ¢ ¢ ¢
Status at Status at End Claim Payments Status at End Claim Payments

Policy No. Valuation Date of Quarter in Quarter of Quarter in Quarter

1
2
:
:

Figure 4. Evolution of a claim

² For specific reasons related to mortgage insur-
ance, it is likely to produce a biased forecast.

4.2.1. Cascaded models
Note from Table 1 that Submodels 1, 2, and 3

all include “development quarter” (in the form
of one or more of duration since issue, dura-
tion since arrears, and duration since PIP, respec-
tively) as a predictor. Figure 4 illustrates the typ-
ical evolution of a claim.
The probability of this occurrence is equal to

the compound of (h1 + a1) + ¢ ¢ ¢+(hn+ an)+pn
single quarter probabilities, where h1, a1, : : : ,hn,
an, pn, and even n itself, are random variables.
There are thus many combinations of single quar-
ter probabilities, too many for feasible computa-
tion.
It is necessary, therefore, to simulate the expe-

rience of each policy in force at a valuation date.
The simulated liability in respect of each policy
will then be a random variable instead of the ex-
pected liability, but by the law of large numbers,
the realization of the liability for a large number
of policies will approximate its expected value.
The simulation will yield the forecast informa-

tion set out in Table 3.

4.2.2. Multistep transitions
The simulation of claims experience is not

without complexities because, as was pointed out
in Section 3.2, multistep transitions can occur
within a single quarter. Table 3 indicates that
statuses are recorded only at the end of a
quarter, but the transition between end-quarter
statuses for consecutive quarters may be multi-
step.
For example, the status may be healthy at the

ends of both quarters q and q+1, but there may
have been any number of healthy!in arrears!
healthy cycles within the quarter.
These difficulties arise as a direct result of

modeling an essentially continuous-time process
in a discrete-time framework, the reason for
which was given in Section 4.1. Treatment of the
matter requires a continuous-time formulation of
the discrete Markov process described by Figure
2, as abbreviated in Section 3.1. The discrete-
time transition matrix for the abbreviated process
is displayed in Figure 5, and its continuous-time
equivalent in Figure 6.
In these matrices, the statuses of healthy, in ar-

rears, PIP, and sold are denoted by h, a, p, and
s, respectively. The claim status is omitted, be-
cause the transition into it from sold is not time
dependent, but is a simple probability.
The quantity ¸rs (s6= t) denotes the intensity

of status transition r! s between the end of quar-
ter t and the end of quarter t+1 (assumed
constant over this interval) and, since prs is an
independent transition probability (see Section
3.2),

¸rs =¡ log(1¡prs) (4.3)

VOLUME 01/ISSUE 01 CASUALTY ACTUARIAL SOCIETY 91



Variance Advancing the Science of Risk

Figure 5. Discrete-time transition matrix

Figure 6. Continuous-time transition matrix

Figure 7. Whole quarter transition matrix

Table 3 requires the quantities

Prs = Prob[status s at end of quarter t+1 j
status r at end of quarter t] (4.4)

It is evident that the “whole quarter” transition
matrix takes the form set out in Figure 7.
Consider the interval of time between the end

of quarter t and the end of quarter t+1 and let
the time elapsed since t be denoted by ® where
0· ®·1. Define

Prs(®) = Prob[status s at ® j status r
at end of quarter t] (4.5)

Then Prs(1) = Prs as defined in (4.4).
Values of Prs(1) were calculated by solving the

Kolmogorov Forward Equation

@W(®)=@® j®=1=W(®)Q, (4.6)

subject to initial conditions W(0), where W(®)
is the partial quarter transition matrix and Q is
the continuous-time transition matrix (Figure 6).
The Kolmogorov Forward Equation was solved
using Mathematica [8], and the values of Prs(1)
are set out in Appendix A. These are the prob-
abilities used to simulate change in status from
one quarter-end to the next.
If policy m attains end-quarter status s for the

first time in quarter j¤, the further transition to
either claim or discharged status is simulated. If
the latter, simulation for the policy is terminated;
if status is claim, a claim size Y is simulated from
Submodel 6, as described in Appendix B, and
then simulation for the policy is terminated. In
the case of discharge, Y is set to zero.
Let L(j)i denote claim payments for policy i in

quarter j. Then the simulated value is

L(j)i = Y, for j = j¤

= 0, otherwise. (4.7)

The total liability for future claims is then

L=
X
i,j

L(j)i , (4.8)

where the summation runs over all values of i
and future values of j. The total liability can be
dissected in any way required (e.g., according to
year of policy issue) simply by summing over
subsets of (i,j) in (4.8).

4.2.3. Stochastic future parameters
There is a second reason why simulation may

be a desirable form of loss reserving. Let

L:i =
X
j

L(j)i = simulated liability in respect of

policy i

(4.9)

Lj: =
X
i

L(j)i = simulated liability cash flow in
respect of calendar quarter j

(4.10)
so that

L=
X
i

L:i =
X
j

Lj: (4.11)

92 CASUALTY ACTUARIAL SOCIETY VOLUME 01/ISSUE 01



Modeling Mortgage Insurance as a Multistate Process

The forecast of Lj: will depend on the esti-

mates ˆ̄ (m)k of the model parameters ¯(m)k , m=
1, : : : ,6, and also on the x¤ijk taken in future quar-
ter j by the predictors xijk. With these dependen-
cies made explicit, (4.8) suggests the forecast

L¤ =
X
i,j

L(j)i (
ˆ̄ ,x¤ij), (4.12)

where ˆ̄ is the vector of values ˆ̄ (m)k over all m,
and x¤ij the vector with components x

¤
ijk.

In the terminology of Section 3.3, x¤ij may be
decomposed into subvectors:

x¤Tij = [»
¤T
i ,³

¤T
ij ,z

¤T
ij ], (4.13)

where »¤i contains static policy variables (which
do not depend on j), ³¤Tij contains dynamic pol-
icy variables, z¤Tij contains forecasts of external
variables and manufactured risk variables, and T
denotes the operation of transposition.
Dynamic policy variables depend on j but are

simple mappings of it (e.g., number of quarters
since transition to in arrears status), whereas ex-
ternal variables and manufactured risk variables
require forecast. Examples of such predictors,
from Table 1, are growth in house price, growth
in stock price, and generally any predictor taken
from an economic time series.
The z¤ijk are forecasts of quantities zijk that

may be viewed here as themselves random vari-
ables. In this case an unbiased forecast of L
will be

L¤ =
X
i,j

E[L(j)i (
ˆ̄ ,xij)] =

X
i,j

E[L(j)i (
ˆ̄ ,»¤i ,³

¤
ij ,zij)]:

(4.14)

Note that, in general, this is not equal to the
alternative forecast

L0¤ =
X
i,j

L(j)i (
ˆ̄ ,E[xij]) =

X
i,j

L(j)i (
ˆ̄ ,»¤i ,³

¤
ij ,E[zij]):

(4.14a)

Indeed, Jensen’s inequality (see, e.g., Royden
[11]) indicates that (4.14a) may be distinctly bi-
ased relative to (4.14).

Jensen’s inequality. Let A be a real interval
and let f : A!R be convex in the sense that
®f(x1)+ (1¡®)f(x2)¸ f(®x1 + (1¡®)x2) for
all x1,x2 2 A and all 0< ®< 1. Let X be a ran-
dom variable defined on A. Then

E[f(X)]¸ f(E[X]), (4.15)

with equality if and only if either f is linear (i.e.,
equality in the definition of convexity) or the dis-
tribution of X is concentrated at a single point.
Note that a sufficient condition for f to be con-

vex is that f 00 ¸ 0.
Now consider the functional dependency of

L¤ on zij , a subvector of economic time-series
variables, such as house price increases or stock
price increases. The functional dependency on
some of these quantities involves considerable
convexity.
This is particularly the case for house price in-

creases, whose influence on liability is illustrated
by Figure 8. If zijk denotes future annual house
price increase, then @2L=@z2ijk > 0, and Jensen’s
inequality applies.
If other predictors are fixed at their expected

values for the moment, then (4.15) yields

E[L( ˆ̄ ,xij)]¸ L( ˆ̄ ,»¤i ,³¤ij ,E[zij]): (4.16)

What this means is that estimating liability by
taking mean forecasts of future house price in-
creases and plugging them into a liability for-
mula as if they were certain will inevitably un-
derestimate. The extent of the underestimation
will increase with

² the convexity of the liability with respect to
future house price growth, and

² the dispersion of the distribution of these in-
creases.

If the liability displays the same sort of
convexity with respect to other predictors xijk,
the failure of the “plug-in” approach to predic-
tors of the future economic time-series type will
be even greater. This sort of result has recently
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Figure 8. Dependence of liability on future house price increases

been observed empirically by Kelly and Smith
[6].
This feature of loss reserving is virtually

unique to mortgage insurance. The forecasting
of liability in other lines of business does not
usually depend heavily on future economic time
series. The main exception to this is future claims
for inflation, but commonly the convexity of lia-
bility with respect to this variable is less than its
mortgage insurance counterpart, and the disper-
sion in the future time series will often be less
than in mortgage insurance.
The estimation of liability by means of simu-

lation avoids this form of underestimation. The
future values of zij are simulated from a model
of the external economic influences. It is likely
that the components zijk will not all be indepen-

dent. In any case, let z(r)ij , r = 1, : : : ,R, denote the
r-th simulated replicate.
Then, by (4.14), an unbiased forecast of L is

L¤ = R¡1
X
i,j,r

E[L(j)i (
ˆ̄ ,»¤i ,³

¤
ij ,z

(r)
ij )]: (4.17)

The computation in (4.17) is substantial. It in-
volves R simulations of the future experience of
each policy i over future quarters j, with differ-
ent replicates of external economic variables in
each of the R simulations.

5. Forecast error

The present section describes the estimation of
the standard errors associated with the various
predictions of the model.

5.1. Fast bootstrap

Estimation of the forecast error contained in L¤

for such a complex model as defined in Section 3
will not be feasible other than by some form
of bootstrap. However, the conventional form of
bootstrapping, with the refitting of the six mod-
els to each pseudo-data set is not likely to be
feasible.
A “fast bootstrap,” such as discussed in Sec-

tion 8.3 of England and Verrall [3], has there-
fore been used, in which the steps of generating
pseudo-data sets and refitting the model to them
have been bypassed. Instead, pseudo-estimates of
the model parameters are obtained simply by per-
turbing the original estimates, with due reference
to their standard errors.
More precisely, the procedure is as follows. It

is supposed that the vector of parameter estimates
ˆ̄ is accompanied by an estimate V of the associ-
ated covariance matrix. The standard GLM soft-
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ware packages (SAS GENMOD, Emblem, etc.)
produce this.
If ¯ denotes the vector of parameters estimated

by ˆ̄ (let its dimension be q), suppose that

ˆ̄ »N(¯,V): (5.1)

This is asymptotically true for large samples
for the maximum likelihood estimate ˆ̄ . It is not
to assume, of course, that the observations Y(m)ij

are normally distributed.
Diagonalize V:

V = PTDP, (5.2)

where D is diagonal and P is orthogonal. Then

P ˆ̄ »N(P¯,D): (5.3)

Thus, the components of P ˆ̄ may be sampled
independently. Let "(n), n= 1, : : : ,N , be a q-vector
of samplings from the unit normal distribution,
and define

ˆ̄ (n) = PT(P ˆ̄ +D"(n)) = ˆ̄ +PTD"(n):
(5.4)

Then the ˆ̄ (n) are replicates of ˆ̄ in the sense of
satisfying (5.1). These generate replicates L¤(n) of
L¤ whose dispersion reflects the parameter error
in the forecast L¤; i.e., the uncertainty in L¤ in-
duced by uncertainty in ˆ̄ . Note that this is com-
putationally demanding, requiring N replicates
of the previous R simulations.
Figure 9 compares the fast bootstrap procedure

with the conventional one, illustrating how the
former omits the data resampling steps.

5.2. Estimation of forecast error

The fast bootstrap of Section 5.1 is applied as
follows.

5.2.1. Components of forecast error
Consider the forecast L¤ in (4.17). Let L denote

the true (yet to be observed) value of the liability.
The forecast error is

¢= L¡L¤: (5.5)

Noting that L¤ = E[L j ˆ̄ ], one may decompose
this expression as follows:

¢= fL¡E[L]g¡fE[L j ˆ̄ ]¡E[L]g:
This expression may be decomposed further:

¢= fL¡E[L]g¡fE[L jM, ˆ̄ ]¡E[L jM]g
¡fE[L j M]¡E[L]g

=¢Proc¡¢Pa¡¢Sp, say (5.6)

where E[L j ˆ̄ ] has simply been rewritten as E[L j
M, ˆ̄ ], recognizing the model structure to which
the parameter estimates ˆ̄ belong.
The three terms on the right side of (5.6) may

be recognized as process error, parameter er-
ror, and model specification error in the stan-
dard terminology. In fact, it is useful to decom-
pose the second of these even further:

¢Pa = E[L jM, ˆ̄ ]¡E[L jM]

= fE[L jM, ˆ̄ ]¡E[L jM, ˆ̄ ,fxijg]g
+ fE[L j M, ˆ̄ ,fxijg]¡E[L jM]g

=¢Pred +¢Par, say (5.7)

where fxijg denotes the set of predictors over all
i,j, and so (5.7) decomposes parameter error into
that due to variation in the parameters ¯, and that
due to variation in the predictors.
Recall from Section 4.2 that that xij consists

of »i, ³ij and zij , of which the first two are non-
random (other than captured in process error),
so ¢Pred and ¢Par could equally well be defined
with fzijg written in place of fxijg.
By (5.6) and (5.7),

¢=¢Proc¡ [¢Pred +¢Par]¡¢Sp: (5.8)

The four members on the right are stochasti-
cally independent, and so the mean square error
of prediction is

MSEP[L] = Var[¢Proc]+Var[¢Pred]

+Var[¢Par] +Var[¢Sp]: (5.9)
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Figure 9. Fast and conventional bootstraps

5.2.2. Estimation
As usual, estimation of model specification er-

ror is problematic. It falls outside the scope of the
statistical modeling considered here and, while
an issue of substance, is not discussed further in
this paper.
The other three components of forecast error

can be estimated from the simulations defined in
Section 4.2. This will require multiple replicates
of the forecast (4.17). The details are given in
Appendix C.

6. Miscellaneous other matters
There are a couple of matters of relevance to

mortgage insurance reserving that are not inte-
gral to the modelling described above. They are
discussed in the following subsections.

6.1. Earning of premium

Section 1 notes the typical requirement that
premium be earned over the term of a policy in
proportion to the expected claim cost incurred.
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For policies with inception quarter J , define
the earning pattern over quarters J , J +1, J +
2, : : : to be the vector of expected claims incurred
in those quarters expressed as a proportion of
the total incurred for those policies. Denote the
proportion associated with quarter J +d by ¼(J)d ,
where d will be referred to as development quar-
ter.
Estimation of the earning pattern will require

a definition of when claims are incurred. In gen-
eral, a claim is incurred at the time of occurrence
of the event causing it. However, in mortgage in-
surance the definition of this event is less obvious
than in other lines of business. It may reasonably
be taken as the PIP event (or sale in the case
that this is voluntary), or the commencement of
the arrears leading to the claim. Other definitions
may be possible.
For a policy i with inception quarter J , having

completed D development quarters at a val-
uation date, an estimate of future claim pay-
ments L(J+d)i , d =D+1, D+2, etc., is given by
(4.10). Actual claim payments will be available
for past development quarters d = 0,1, : : : ,D. For
present purposes, let these be denoted by L(J+d)i

also.
This gives a complete vector of claim pay-

ments fL(J+d)i ,d = 0,1,2, : : :g for policies from in-
ception quarter J . If an earning pattern is to be
estimated, it will be necessary to recast these
payments according to their dates incurred rather
than dates paid.
If, for example, date incurred is taken as the

PIP event, then all payments will need to be reas-
signed from payment quarter to PIP quarter. For
past payments, these dates will be factual. For
forecast future payments, there will be simulated
PIP and payment quarters, according to which
the reassignment may be made.
This reassignment will convert the payment

vector fL(J+d)i ,d = 0,1,2, : : :g to a vector of in-

curred amounts fI(J+d)i ,d = 0,1,2, : : :g where
§dL

(J+d)
i =§dI

(J+d)
i : (6.1)

The earning pattern may now be calculated as

¼(J)d = I(J+d)=§dI
(J+d), d = 0,1,2, etc.,

(6.2)
where

I(J+d) =
X
i

I(J+d)i , (6.3)

the summation over i running over all policies
with inception quarter J .
Note that the notation ¼(J)d expresses depen-

dency on J . This dependency is induced by
changes in the mix of policies (i.e., changing dis-
tribution of policy variables) with changing in-
ception quarter and by changes in the economy
(i.e., changing external variables) over time.
Consider, for example, the case represented

in Figure 10, in which the housing market pro-
ceeds steadily over quarters 1 to 8, then crashes
over the following four quarters, then recovers
strongly.
Figure 11 illustrates how claims might be in-

curred over time for a number of inception quar-
ters, and Figure 12 converts these into earning
patterns.
Inception quarter 17 experiences a steady 4%

per quarter growth in house prices and may be
taken as the standard in interpreting these plots.
Note that inception quarter 13 experiences a

much lower level of claims. This is because the
recovery in housing prices, with high growth
rates, almost coincides with that quarter. As a re-
sult, housing prices have increased by 50% after
four development quarters, compared with 17%
for inception quarter 17. The corresponding in-
creases after eight development quarters are 75%
and 32%.
Inception quarters 1 and 5 have similar ex-

pected claims experiences except that the latter
is displaced to the left. This is because the prop-
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Figure 10. Housing price index

Figure 11. Expected incurred claims by inception quarter

erty price collapse affects it four development

quarters earlier. Both of these inception quarters

are associated with relatively heavy claims expe-

rience, also due to the collapse.

The earning patterns in Figure 12 simply re-

produce Figure 11 but with each inception quar-

ter rescaled to total 100%. This leads to slightly

paradoxical results, such as the fact that premium

for inception quarter 13 is earned considerably

more slowly over the early development quar-

ters than for inception quarter 9 (see Figure 13),

despite the fact that the claims experience of the
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Figure 12. Earning pattern by inception quarter

Figure 13. Cumulative earning pattern by inception quarter

former is much lower and therefore the profit
margin much higher.
Of course, although the earning pattern for in-

ception quarter 13 releases lesser percentages of
the profit margin than in the case of inception
quarter 9, the quantum of profit margin is much

greater in the former case if there has been no
change in premium rates.

6.2. Policy termination

It is common for mortgage insurance policies
to be terminated before their term has elapsed.
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This usually occurs because the property is sold
or the loan otherwise repaid before the term of
the loan has expired.
It is necessary to allow for this form of exit

from experience in calibrating Models 1 to 5 of
Section 3.1. Specifically, in Equation (3.1) pol-
icy i must be assigned u(m)ij = fraction of calendar
quarter j up to policy termination, when termi-
nation occurs in that quarter.
This ensures correct estimation of transition

probabilities. However, there is a further ques-
tion as to whether or not a valuation of technical
liabilities should anticipate future terminations.
In Australia, at least, it is typical for termina-
tions not to attract any premium refund after one
year’s policy duration. This means that underes-
timation of termination rates (such as not antici-
pating any) will lead to a conservative valuation.

The action taken in this area will be a matter
of taste or statute or both. In the event that policy
terminations are to be anticipated, it will be nec-
essary to estimate termination rates and use these
to simulate survival or otherwise over future
periods of each policy in force at the valuation
date.
Then the simulation of L(j)i in (4.7) will be car-

ried out only for the quarters j for which policy
i is simulated to survive.

Appendix A. Evaluation of
multi-step transition probabilities

The Kolmogorov Forward Equation (4.6) was
solved using Mathematica [8] to produce the fol-
lowing entries in Figure 7:

Phh =
(r2¡¸ha)exp¡r1¡ (r1¡¸ha)exp¡r2

r2¡ r1
(A.1)

Pha =
¸ha(exp¡r1¡ exp¡r2)

r2¡ r1
(A.2)

Php =
¡¸ha¸apfexp¡r2[r2¡ r1¡ (¸ha+¸ah+¸ap¡ 2¸ps)]+ exp¡r1[r2¡ r1¡ (¸ha+¸ah+¸ap¡ 2¸ps)]g

2(r2¡ r1)(¸ha¸ap¡¸ha¸ps¡¸ah¸ps¡¸ap¸ps+¸2ps)

+
¡¸ha¸ap(¡2¸2ha¡ 4¸ha¸ah¡ 2¸2ah+4¸ha¸ap¡ 4¸ah¸ap¡ 2¸2ap)
2[exp¸ps](r2¡ r1)2(¸ha¸ap¡¸ha¸ps¡¸ah¸ps¡¸ap¸ps+¸2ps)

(A.3)

Pah =
¸ah(exp¡r1¡ exp¡r2)

r2¡ r1
(A.4)

Paa =
(r2¡ r1 +¸ha¡¸ah¡¸ap)exp¡r1 + (r2¡ r1¡¸ha+¸ah+¸ap)exp¡r2

2(r2¡ r1)
(A.5)

Pap = ¸ap(exp¸ps)[exp¡r2 + exp¡r1]
£ [(¸ha¡¸ps)(r2¡ r1)2 + (r2¡ r1)+ (¡¸2ha¡¸ha¸ah+¸ha¸ap+¸ha¸ps¡¸ah¸ps¡¸ap¸ps)]
¡¸ap[2¸3ha+4¸2ha¸ah+2¸ha¸2ah¡ 4¸2ha¸ap+4¸ha¸ah¸ap+2¸ha¸2ap¡ 2¸ha¸2ps¡ 4¸ha¸ah¸ps
¡ 2¸ah¸2ps+4¸ha¸ap¸ps¡ 4¸ah¸ap¸ps¡ 2¸ap¸2ps]=
[2(exp¸ps)(r2¡ r1)2(¡¸ha¸ap+¸ha¸ps+¸ah¸ps+¸ap¸ps¡¸2ps)] (A.6)

Ppp = exp¡¸ps, (A.7)
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where

r1 =
1
2f¸ha+¸ah+¸ap
+[(¸ha+¸ah+¸ap)

2¡ 4¸ha¸ap]1=2g
(A.8)

r2 =
1
2f¸ha+¸ah+¸ap
¡ [(¸ha+¸ah+¸ap)2¡ 4¸ha¸ap]1=2g

(A.9)

Appendix B. Simulation from EDF
quasi-likelihood

Let Y » EDF(¹,q), as defined in the GLM (3.6)
—(3.9). Then, with the log link appearing in (3.7)
taken into account, the log-likelihood of Y is

L(y,¹) = ¹¡q'¡1[¹y=(1¡ q)¡¹2=(2¡ q)]:
(B.1)

The deviance residual associated with obser-
vation Y is defined as

d(Y) = sgn(Y¡ Ŷ)f'[L(Y, Ŷ)¡L(Y,Y)]g1=2,
(B.2)

where Ŷ is the value fitted to Y by the GLM.
The standardized deviance residual is

dS(Y) = d(Y)=
nP

d2(Y)
o1=2

, (B.3)

where the summation runs over the deviance re-
siduals for all observations Y in the data set.
The parameter ' is called the scale parameter

and is estimated by
P
d2(Y)=(n¡p), where n is

the number of observations modeled and p the
number of parameters in the model.
It is shown by Pierce and Schafer [10] that

the standardized deviance residuals have a dis-
tribution that is close to unit normal. Therefore,
a random drawing Y from (quasi-)log-likelihood
(B.1) with ¹= Ŷ may be obtained by taking a
random drawing dS »N(0,1), and calculating Y
as the solution of Equation (B.2) for given '
and Ŷ.

Appendix C. Estimation of forecast
error

Let the n-th replicate of forecast (4.17) dis-
cussed in Section 5 be denoted by

L¤(n) = R¡1
X
i,j,r

E[L(j)i (
ˆ̄ (n),»¤i ,³

¤(n)
ij ,z(r)ij )],

n= 1, : : : ,N , (C.1)

where ˆ̄ (n) is the n-th drawing of the vector of
pseudo-parameters, and the notation ³¤(n)ij recog-
nizes that the dynamic predictors will be repli-
cate-dependent.
Note also that the replicates z(r)ij of the variable

of external variables are not dependent on the
parameter vector ¯, and so may be repeated in
each pseudo-estimate ˆ̄ (n).
It is convenient to denote the summand in (C.1)

as L¤(n,r), n= 1, : : : ,N, r = 1, : : : ,R. These N £R
quantities form an empirical distribution of L. In
general, the mean of the distribution L̄¤ will not
equal L¤ from (4.17).
If so desiring, one may adjust to a mean of L¤

by rescaling the empirical distribution, replacing
L¤(n,r) by L¤(n,r)£L¤=L̄¤. However, the difference
between L¤ and L̄¤ may arise from convexity of L
as a function of ˆ̄ , in the same way as discussed
in Section 4.2, and it may be prudent to retain
the unadjusted empirical distribution given by the
L¤(n,r).
In the following, it will be assumed that rescal-

ing is not carried out, but the analysis is easily ex-
tended to the case where it is. Then MSEP[L]¡
Var[¢Sp] = Var[¢Proc] +Var[¢Pred]+Var[¢Par]
is estimated by

s2(Proc,Pred,Par) = (NR)¡1
X
n,r
[L¤(n,r)¡ L̄¤]2:

(C.2)
Let

L̄¤(n,:) = R¡1
X
r

L¤(n,r) (C.3)

L̄¤(:,r) =N¡1
X
n

L¤(n,r): (C.4)
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Then (C.2) may be decomposed by analysis of
variance:

s2(Proc,Pred,Par) = s2(Proc,Par)+ s2(Pred),

(C.5)
where

s2(Proc,Par) =N¡1
X
n

[L̄¤(n,:)¡ L̄¤]2 (C.6)

s2(Pred) =N¡1
X
n

R¡1
X
r

[L¤(n,r)¡ L̄¤(n,:)]2:
(C.7)

As the notation suggests, s2(Proc,Par) esti-
mates Var[¢Proc]+Var[¢Par] and s

2(Pred) esti-
mates Var[¢Pred].
The process error is automatically present in

the original forecast L¤ since this is derived by
simulation. Hence, s2(Proc,Par) is not separable
into its two components without a little effort.
However, an estimate of Var[¢Proc] may

be obtained from (C.6) calculated with ˆ̄ (n) =
ˆ̄ for each n. This eliminates parameter error,
and the only remaining variation is that arising
from the differing simulated experiences with
different n.
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