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ABSTRACT

Longitudinal data (or panel data) consist of repeated ob-
servations of individual units that are observed over time.
Each individual insured is assumed to be independent but
correlation between contracts of the same individual is
permitted. This paper presents an exhaustive overview of
models for panel data that consist of generalizations of
count distributions where the dependence between con-
tracts of the same insureds can be modeled with Bayesian
and frequentist models, based on generalization of Poisson
and negative binomial distributions. This paper introduces
some of those models to actuarial science and compares the
fitting with specification tests for nested and non-nested
models. It also shows why some intuitive models (past ex-
perience as regressors, multivariate distributions, or cop-
ula models) involving time dependence cannot be used to
model the number of reported claims. We conclude that
the random effects models have a better fit than the other
models examined here because the fitting is improved and
it allows for more flexibility in computing the next year’s
premium.
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1. Introduction
Modeling the number of claims is an essen-

tial part of insurance pricing. Count regression
analysis allows identification of risk factors and
prediction of the expected frequency given the
characteristics of the policyholders. A usual way
to calculate the premium is to obtain the condi-
tional expectation of the number of claims given
the risk characteristics and to combine it with the
expected claim amount. Some insurers may also
consider experience rating when setting the pre-
miums, so that the number of claims reported in
the past can be used to improve the estimation
of the conditional expectation of the number of
claims for the following year.
The literature on count regression analysis has

grown considerably in the past years. Simulta-
neously, insurers have accumulated longitudinal
information on their policyholders. In this pa-
per we want to address panel count data models
in the context of insurance, so that we can see
the advantages of using the information on each
policyholder over time for modeling the num-
ber of claims. The existing literature has mainly
advocated the use of the classical Poisson regres-
sion approach, but little has been said on other
model alternatives and on model selection. Al-
though in the insurance context the main inter-
est is to obtain the conditional expectation of the
number of claims, we argue that new panel data
models presented here, which allow for time de-
pendence between observations, are closer to the
data-generating process that one can find in prac-
tice. Moreover, closed-form expressions for fu-
ture premiums given the past observations and
model selection will definitely help practition-
ers to find suitable alternatives for modeling in-
surance portfolios that have accumulated some
years of history.
These panel data models generalize the Pois-

son and the negative binomial distributions into
six different distributions, based on Bayesian and
frequentist modeling. Some of those models are

here introduced to actuarial science for the first
time. Each section presents a different model for
panel data, where the interpretation of the model,
the probability distribution, the properties of the
model, and its first moments are shown. In some
sections, it is shown why some intuitive models
(past experience as regressors, multivariate dis-
tributions, or copula models) involving time de-
pendence cannot be used to model the number of
reported claims. Statistical tests to compare the
nested models are explained and a Vuong test is
used to compare the fitting of non-nested models.
Our results show that the random effects models
have a better fit than the alternative models pre-
sented here. They also have more flexibility in
computing next year’s premium, so that it is not
only based on autocorrelation but on Bayesian
modeling.

1.1. Agenda

Section 2 presents the Poisson and the negative
binomial distributions in time independence situ-
ation. In Section 3, a Bayesian model for time de-
pendence, where the Poisson and negative bino-
mial distributions are modeled by common ran-
dom effects, is shown. Models where past expe-
rience is modeled as covariate are explained in
Section 4. Section 5 reviews the INAR(1) mod-
els, while Section 6 presents common shock
models. Reported claims modeled by copulas are
introduced in Section 7. Section 8 compares a
priori premiums and predictive distribution of all
models analyzed, while Section 9 presents some
specification tests that can be used to compare
models.

1.2. Data used and estimation

In this paper, we worked with a sample of the
automobile portfolio of a major company oper-
ating in Spain. Only private-use cars have been
considered in this sample. The panel data con-
tains information from 1991 to 1998. Our sam-
ple contains 15,179 policyholders that stay in the
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Table 1. Exogenous variables

Variable Description

v1 equals 1 for women and 0 for men
v2 equals 1 if the client has been in the company

between 3 and 5 years
v3 equals 1 if the client has been in the company for

more than 5 years
v4 equals 1 if the insured is 30 years old or younger
v5 equals 1 if power is larger or equal to 5500 cc

company for seven complete periods, resulting in
106,253 insurance contracts.
We have five exogeneous variables, described

in Table 1, that are kept in the panel, plus the
yearly number of accidents. For every policy we
have the initial information at the beginning of
the period and the total number of claims at fault
that took place within this yearly period. The av-
erage claim frequency is 6.8412%.
In this paper, these exogenous variables are

used to model the parameters of the distribu-
tions. The characteristics of the insureds are ex-
pressed through functions such as h(¯0 + x

0
i,t¯),

where ¯0 is the intercept and ¯
0 = (¯1, : : : ,¯p) is

a vector of regression parameters for explanatory
variables xi,t = (xi,t,1, : : : ,xi,t,p). Subscript t may
be removed where the covariates do not change
over time.
Estimations of the parameters are done by

maximum likelihood. Some models can be eval-
uated using Newton-Raphson algorithms, but we
use the NLMIXED procedure in SAS to find the
estimates and their corresponding standard error
numerically.

2. Minimum bias and classical
statistical distributions

2.1. Minimum bias

Historically, the minimum bias technique in-
troduced by Bailey and Simon (1960) and Bailey
(1963) were used to find the parameters of some
classification rating systems. In these techniques,
Bailey (1963) proposed to find parameters that

minimize the bias of the premium by iterative
algorithms. With the development of the gen-
eralized linear models (GLM) (McCullagh and
Nelder 1989), actuaries now use statistical dis-
tributions to estimate the parameters of a rat-
ing system. It has been shown that the results
obtained from this theory are very close to the
ones obtained by the minimum bias technique
[see Brown (1988), Mildenhall (1999), or Holler,
Sommer, and Trahair (1999), from the 9th exam
of the Casualty Actuarial Society, that expose the
link between the GLM and the minimum bias
technique].

2.2. Poisson

From a statistical point of view, the common
starting point for the modeling of the number of
reported claims Ni,t for insured i at time t is the
Poisson distribution:

Pr[Ni,t = ni,t] =
¸
ni,t
i,t e

¡¸i,t

ni,t!
, (2.1)

where ¸i,t = exp(x
0
i,t¯). Because the Poisson dis-

tribution is a member of the exponential family,
from which the GLM theory comes, it has some
useful properties. For more information about
the technical part of the Poisson distribution for
actuarial science, or even the GLM theory, we re-
fer the interested reader to Feldblum and Brosius
(2002).
However, it is well known that the Poisson

distribution has some severe drawbacks, such
as its equidispersion property, that limit its use
(Gourieroux 1999). To correct these disadvan-
tages, the negative binomial distributions are
common alternatives.

2.3. Negative binomial

There are many ways to construct the negative
binomial distribution, but the more intuitive one
consists of the introduction of a random hetero-
geneity term μ of mean 1 and variance ® in the
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Table 2. Time-independent models

Parameter Poisson NB2 NB1

b0 ¡2:6039 (0.0410) ¡2:6046 (0.0434) ¡2:6059 (0.0426)
b1 0.1047 (0.0337) 0.1059 (0.0356) 0.1167 (0.0348)
b2 ¡0:2106 (0.0390) ¡0:2108 (0.0415) ¡0:2134 (0.0404)
b3 ¡0:2721 (0.0361) ¡0:2727 (0.0383) ¡0:2803 (0.0373)
b4 0.1543 (0.0336) 0.1548 (0.0356) 0.1573 (0.0348)
b5 0.1373 (0.0291) 0.1383 (0.0306) 0.1441 (0.0303)
® ¢ ¢ 1.5744 (0.1095) 0.1102 (0.0077)
Log-Lik. ¡27,133:8 ¡26,933:0 ¡26,926:4

mean parameter of the Poisson distribution. If
the variable μ is following a gamma distribution,
having the following density distribution

f(μ) =
(1=®)1=®

¡ (1=®)
μ1=®¡1 exp(¡μ=®), (2.2)

it is well known that this mixed model will re-
sult in a negative binomial distribution (NB) (see
Greenwood and Yule 1920 or Lawless 1987 and
Dionne and Vanasse 1989 for an application with
insurance data):

Pr[Ni,t = ni,t]

=
¡ (ni,t+®

¡1)
¡ (ni,t+1)¡ (®¡1)

Ã
¸i,t

®¡1 +¸i,t

!ni,t

£
Ã

®¡1

®¡1 +¸i,t

!®¡1
, (2.3)

where the¸i,t= exp(x
0
i,t¯) and the function¡ is the

gamma function, defined by ¡ (a) =
R1
0 e

¡tta¡1dt.
To ensure that the heterogeneity mean is equal
to 1, both parameters of the gamma distribution
are chosen to be equal to 1=®. From this, it can
easily be proved that E[Ni,t] = ¸i,t and Var[Ni,t] =
¸i,t+®¸

2
i,t.

Cameron and Trivedi (1986) considered a
more general class of negative binomial distri-
butions having the same mean, but a variance of
the form ¸i,t+®¸

p
i,t. This kind of distribution can

be generated with a heterogeneity factor follow-
ing a gamma distribution with both parameters
equal to ¸2¡pi,t =®. A model with p= 2 is called
NB2 distribution and is the previous one. When

p is set to 1, it leads to the NB1 model:

Pr[Ni,t = ni,t]

=
¡ (ni,t+®

¡1¸i,t)
¡ (ni,t+1)¡ (®¡1¸i,t)

(1+®)¡¸i,t=®

£ (1+®¡1)¡ni,t : (2.4)

This model is interesting because its variance
is equal to ¸i,t+®¸i,t = Á¸i,t, the same used in
the Poisson GLM approach (such as the one used
for the overdispersion correction of the Poisson
distribution in the GENMOD procedure of SAS).
We can note that the Poisson distribution is the
limiting case of negative binomial distributions
when the parameter ® goes to zero.
There are many possible distributions that can

be used to model the heterogeneity, such as the
inverse Gaussian heterogeneity (Holla 1966 or
Willmot 1987; Dean and Lawless 1989; and
Tremblay 1992 for an application with insurance
data) that leads to a closed-form distribution.
Another important heterogeneity distribution is
the lognormal distribution (Hinde 1982), but
closed-form representation is impossible and nu-
merical computations are needed (see Boucher,
Denuit, and Guillén 2007 for an application of all
these models in insurance). Other Poisson mix-
ture models are possible (see chapter 8 of John-
son, Kotz, and Kemp 1992), but numerical tech-
niques are also needed.

2.4. Numerical application

Results of the application of these time-inde-
pendent models are shown in Table 2. A com-
parison of the log-likelihoods reveals that the ex-
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tra parameter of the negative binomial distribu-
tions improves the fit compared to the Poisson
distribution. The NLMIXED estimations of the
¯ parameters (the intercept and the five covari-
ates from Table 1) are approximately the same
for all models, which is expected when the suffi-
cient conditions for consistency are satisfied (see
Gourieroux, Monfort, and Trognon 1984a and
Gourieroux, Monfort, and Trognon 1984b).

3. Random effects
3.1. Overview

One of the most popular ways to account for
a dependence that can exist between all the con-
tracts of the same insured is the use of a common
term (Hausman, Hall, and Griliches 1984). Insur-
ance data exhibits some variability that may be
caused by the lack of some important classifica-
tion variables (swiftness of reflexes, aggressive-
ness behind the wheel, consumption of drugs,
etc.). These hidden features are usually captured
by the individual specific random heterogeneity
term.
Given the insured-specific heterogeneity term

μi, the annual claim numbers Ni,1,Ni,2, : : : ,Ni,T are
independent. The joint probability function of
Ni,1, : : : ,Ni,T is thus given by

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

=
Z 1

0
Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T j μi]g(μi)dμi

=
Z 1

0

Ã
TY
t=1

Pr[Ni,t = ni,t j μi]
!
g(μi)dμi: (3.1)

Depending on the choices of the conditional
distribution, of the Ni,t and the distribution of
μi, the model can exhibit particular properties,
as seen below.

3.2. Endogeneous regressors and fixed
effects

In linear regression, correlation between the
regressor and the error term leads to inconsis-

tency of the estimated parameters [see Mund-
lak (1978) or Hsiao (2003) for a review in case
of longitundinal data]. The same problem exists
for the count data regression when E[μ j xi] 6=
E[μ] (Mullahy 1997) and it leads to biased esti-
mates of parameters. In insurance, correlation be-
tween regressors and error term is often present
(Boucher and Denuit 2005) and may be caused
by omitted variables that are correlated with the
included ones.
As noted in Winkelmann (2003), consistent es-

timates may be found if corrections are made to
the standard estimation procedures. However, for
insurance application, as shown by Boucher and
Denuit (2005), standard methods of estimation,
such as classic maximum likelihood on joint dis-
tribution based on random effects, can still be
used. Indeed, the resulting estimate of parame-
ters, while being biased, represents the apparent
effect on the frequency of claim, which is the in-
terest when the correlated omitted variables can-
not be used in classification.

3.3. Poisson distribution

The simplest random effects model for count
data is the Poisson distribution with an individual
heterogeneity term that follows a specified dis-
tribution. Formally, we can express the classic
Poisson random effects model as

Ni,t j μi » Poisson(μi¸i,t),

i = 1, : : : ,N t = 1, : : : ,T,

where i represents an insured and t his cover-
ing period. As for the heterogeneous models of
the cross-section data model seen at the begin-
ning of this paper, many possible distributions
for the random effects can be chosen. The use of
a gamma distribution can be used to express the
joint distribution in a closed form. Indeed, the
joint distribution of the number of claims, when
the random effects follow a gamma distribution
of mean 1 and variance ®, is equal to (Hausman,
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Hall, and Griliches 1984):

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

=

"
TY
t=1

(¸i,t)
ni,t

ni,t!

#
¡ (
PT
t=1ni,t+1=®)
¡ (1=®)

£
Ã

1=®PT
t=1¸i,t+1=®

!1=®

£
Ã

TX
t=1

¸i,t+1=®

!¡PT

t=1 ni,t

: (3.2)

This distribution, which has been often ap-
plied (see chapter 36 of Johnson, Kotz, and Bal-
akrishnan (1996) for an overview), is known as a
multivariate negative binomial or negative multi-
nomial. Note that this distribution can also be
seen as the generalization of the bivariate nega-
tive binomial of Marshall and Olkin (1990). For
this distribution, E[Ni,t] = ¸i,t and Var[Ni,t] =
¸i,t+®¸

2
i,t, so overdispersion can be accounted

for. Maximum likelihood estimates of the param-
eters and variance estimates for them are straight-
forward.
The generalization of the variance of the mul-

tivariate negative binomial to obtain a form Á¸i,t,
such as the one obtained in the NB1 distribu-
tion, cannot be done directly. Indeed, since the
heterogeneity term needs to be individually spe-
cific and time-invariant, introduction of covari-
ates in the heterogeneity distribution cannot be
allowed. Approximation of the covariates xi,t by
x̂i can be an interesting solution but cannot be
used directly for prediction because characteris-
tics of the risk at time t+ j are not known for
j > 0.
Instead, a pseudo-multinomial NB1 model can

be used with the time-invariant characteristics,
like the sex of the insured, and can be modeled as
°i = exp(y

0
i±), where yi is a subset of the xi,t that

contains only these invariant covariates. Then, if
we suppose that the heterogeneity is following a
gamma distribution with both parameters equal
to °1¡ki =®, the joint distribution can be expressed

as

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

=

"
TY
t=1

(¸i,t)
ni,t

ni,t!

#
¡ (
PT
t=1 ni,t+ °

1¡k
i =®)

¡ (°1¡ki =®)

£
Ã

°1¡ki =®PT
t=1¸i,t+ °

1¡k
i =®

!°1¡ki =®

£
Ã

TX
t=1

¸i,t+ °
1¡k
i =®

!¡PT

t=1 ni,t

;

(3.3)

where k = 1, this is the standard negative multi-
nomial distribution (MVNB), and where k = 0
is the pseudo-multinomial NB1 equivalence
(PMVNB1). Expressed in its general form, the
Poisson-gamma distribution has the following
moments:

E[Ni,t] = E[E[Ni,t j μi]]

= ¸i,tE[μi]

= ¸i,t, (3.4)

Var[Ni,t] = E[Var[Ni,t j μi]]

+Var[E[Ni,t j μi]]

= ¸i,t+¸
2
i,tVar[μi]

= ¸i,t+®(¸
2
i,t°

k¡1
i ), (3.5)

Cov[Ni,t,Ni,t+j] = Cov[E[Ni,t j μi],E[Ni,t+j j μi]]

+E[Cov[Ni,t,Ni,t+j j μi]]

= Cov[¸i,tμi,¸i,t+jμi] +0

= ¸i,t¸i,t+j®°
k¡1
i , j > 0:

(3.6)

As for the cross-section data, other distribu-

tions can be chosen to model the random effects,

such as the inverse Gaussian or the lognormal

distributions [see Boucher and Denuit (2005) for

an application in insurance], which result in dis-

tributions having the same two first moments as
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the MVNB, distinctions found using higher mo-
ments. All these random effects models come
back to the Poisson distribution in the case where
®! 0.

3.4. Negative binomial

The negative binomial distribution can also be
used with random effects, as shown by Haus-
man, Hall, and Griliches (1984). Conditionally
on the random effects ±i, the authors used a NB1
identical to Equation (2.4) except for a couple of
parameter changes:

Pr[Ni,t = ni,t j ±i]

=
¡ (ni,t+¸i,t)

¡ (¸i,t)¡ (ni,t+1)

μ
±i

1+ ±i

¶¸i,t μ 1
1+ ±i

¶ni,t
,

(3.7)

where ¸i,t = exp(x
0
i,t¯). Under this parameteriza-

tion, the conditional distribution has the follow-
ing moments:

E[Ni,t j ±i] = ¸i,t=±i, (3.8)

Var[Ni,t j ±i] = ¸i,t(1+ ±i)=±2i

= E[Ni,t j ±i](1+ ±i)=±i: (3.9)

Thus, this conditional distribution implies
overdispersion. Under the construction of (3.1),
Hausman, Hall, and Griliches (1984) assumed
that the expression ±i=(1+ ±i) is following a beta
distribution with parameter (a,b), having mean
a=(a+ b) and variance ab=((a+ b+1)(a+ b)2).
Following the development of Hausman, Hall,
and Griliches (1984), the joint distribution can
be expressed as

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

=
¡ (a+ b)¡ (a+

P
t ¸i,t)¡ (b+

P
t ni,t)

¡ (a)¡ (b)¡ (a+ b+
P
t ¸i,t+

P
t ni,t)

£
TY
t

¡ (¸i,t+ ni,t)
¡ (¸i,t)¡ (ni,t+1)

: (3.10)

As for the Poisson distribution with random
effects, it is possible to use covariates to model
a parameter of the beta distribution, like a=
exp(y0i¯). The moments of the negative binomial-
beta distribution are as follows:

E[Ni,t] = E[E[Ni,t j ±i]]

= ¸i,tE[1=±i]

= ¸i,t
b

a¡ 1 , (3.11)

Var[Ni,t] = E[Var[Ni,t j ±i]]+Var[E[Ni,t j ±i]]

= ¸i,tE[(1+ ±i)=±
2
i ]+¸

2
i,tVar[1=±i]

= ¸i,t
(a+ b¡ 1)b
(a¡ 1)(a¡2)

+¸2i,t

·
(b+1)b

(a¡ 1)(a¡ 2) ¡
b2

(a¡ 1)2

¸
,

(3.12)

Cov[Ni,t,Ni,t+j] = Cov[E[Ni,t j ±i],E[Ni,t+j j ±i]]

+E[Cov[Ni,t,Ni,t+j j ±i]]

= Cov[¸i,t=±i,¸i,t+j=±i]+0

= ¸i,t¸i,t+jVar[1=±i]

= ¸i,t¸i,t+j
b

a¡ 1

μ
b+1
a¡ 2 ¡

b

a¡ 1

¶
,

j > 0: (3.13)

The distribution collapses to its negative bino-
mial form for Var[±i=(1+ ±i)] = ab=((a+ b+1)
¢ (a+ b)2)! 0.
Other mixing distributions can be found using

the negative binomial distribution, such as the
negative binomial–triangular distribution pro-
posed by Karlis and Xekalaki (2006). However,
this distribution is not so interesting, since its
variance does not exist.

3.5. Predictive distribution

The computations of the predictive distribu-
tions of panel data with random effects involve
Bayesian analysis. Indeed, at each insured pe-
riod, the random effects μi or ±i can be updated
for past claim experience, revealing some in-
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sured-specific information. Formally:

Pr[Ni,T+1 = ni,T+1 j ni,1, : : : ,ni,T]

=
Pr(ni,1, : : : ,ni,T+1)
Pr(ni,1, : : : ,ni,T)

=

R
Pr(ni,1, : : : ,ni,T+1,μi)dμiR
Pr(ni,1, : : : ,ni,T,μi)dμi

=
Z
Pr(ni,T+1 j μi)

£
Ã

Pr(ni,1, : : : ,ni,T j μi)g(μi)R
Pr(ni,1, : : : ,ni,T j μi)g(μi)dμi

!
dμi

=
Z
Pr(ni,T+1 j μi)

£

0@
hQ

tPr(ni,t j μi)
i
g(μi)R hQ

tPr(ni,t j μi)
i
g(μi)dμi

1Adμi
=
Z
Pr(ni,T+1 j μi)g(μi j ni,1, : : : ,ni,T)dμi,

(3.14)

where g(μi j ni,1, : : : ,ni,T) is the a posteriori distri-
bution of the random effects μi. If this a posteriori
distribution can be expressed in closed form, mo-
ments of the predictive distribution can be found
easily by conditioning on the random effects μi.
Predictive and a posteriori distributions use

Bayesian theory and are strongly related to cred-
ibility theory (Buhlmann 1967; Buhlmann and
Straub 1970; Hachemeister 1975; Jewell 1975).
Linear credibility is a theory used to obtain pre-
mium based on a weighted average of past ex-
perience and a priori premium. An overview of
the process of classification with random effects
and predictive distributions can be found in
Buhlmann and Gisler (2005).

3.5.1. Poisson
As it is well known, we found that the a pos-

teriori distribution of the heterogeneity term for
the Poisson model with gamma random effects is
also gamma distributed with parameters

P
t ¸i,t+

°(1¡k)i =® and
P
t ni,t+ °

(1¡k)
i =®. We also see that

the generalization into pseudo-MVNB1 can be
interesting for the prediction of premium. The fu-
ture premium (frequency part), which is equal to
the expected number of reported claims, is equal
to

E[Ni,t+1 jNi,1, : : : ,Ni,t] = ¸i,t+1
P
t ni,t+ °

(1¡k)
i =®P

t ¸i,t+ °
(1¡k)
i =®

:

(3.15)

The variance of the heterogeneity distribution
depends on time-invariant characteristics of the
insureds. Thus, the impact on premium of having
a claim is more important for low-variance ran-
dom effects and, consequently, premium modi-
fications for negative components of ± are more
severe.

3.5.2. Negative binomial
The a posteriori density of the heterogeneity

term of the negative binomial with beta random
effects, proposed by Hausman, Hall, and Gril-
iches (1984), also has a closed form. Indeed, us-
ing Equation (3.14), it can be shown that the ratio
±i=(1+ ±i) follows a beta distribution with param-
eters

P
t ¸i,t+ a and

P
t ni,t+ b. Consequently, for

this model, the frequency part of the future pre-
mium can be expressed as

E[Ni,t+1 jNi,1, : : : ,Ni,t]

= E[E[Ni,t+1 j Ni,1, : : : ,Ni,t,±i]]

= ¸i,t+1E[1=±i jNi,1, : : : ,Ni,t]

= ¸i,t+1

P
t ni,t+ bP

t ¸i,t+ a¡ 1
, (3.16)

which has the same form as the future premium
with the Poisson-gamma model, but allows more
flexibility, since an additional parameter is used
to calculate the premium. A more formal com-
parison between future premiums and predictive
distributions of the models is made in Section 8.
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Table 3. Random effects models

Parameter MVNB Pseudo-MVNB1 NB-beta

b0 ¡2:6241 (0.0447) ¡2:6257 (0.0447) 0.8198 (0.1522)
b1 0.1080 (0.0407) 0.1184 (0.0385) 0.1170 (0.0404)
b2 ¡0:2012 (0.0398) ¡0:2013 (0.0398) ¡0:2063 (0.0405)
b3 ¡0:2493 (0.0385) ¡0:2493 (0.0385) ¡0:2600 (0.0390)
b4 0.1453 (0.0375) 0.1445 (0.0375) 0.1499 (0.0378)
b5 0.1425 (0.0332) 0.1429 (0.0332) 0.1479 (0.0334)
® 0.8798 (0.0431) 0.0648 (0.0042) ¢ ¢
a ¢ ¢ ¢ ¢ 43.2890 (5.6332)
b ¢ ¢ ¢ ¢ 1.3529 (0.0802)
Log-Lik. ¡26,690:9 ¡26,689:8 ¡26,657:4

3.6. Numerical application

The models with random effects have been ap-
plied and the results are shown in Table 3. If
one looks at the log-likelihood, we can note that
the models with time dependence exhibit a bet-
ter fit than those with no dependence between
contracts of the same insured. Note also that the
model based on the negative binomial distribu-
tion has a lower log-likelihood value than the
others.
The pseudo-MVNB1 model includes the pa-

rameter b1, representing the sex of the driver,
which does not change over time, in the gamma
component, such as °i = exp(b0 + b1xi1). Param-
eter estimates are approximately equal to each
other, but they do exhibit small differences from
the time-independent models. Indeed, such dif-
ferences are expected, since individual insured
characteristics are captured by the random ef-
fect. The p-values of the extra parameters that
account for the dependence between contracts
of the same insureds indicate the significance
of the random effects, but note that precautions
must be taken in this analysis, as we will see
later.
To be compared to the other models, the inter-

cept of the NB-beta distribution must be adapted.
Indeed, the intercept must be modified to include
the ratio b=(a¡ 1), as shown by Equation (3.11).
Using this modification, the adjusted intercept is
equal to ¡2:62255, which is very close to the
intercepts of the multinomial NB models.

4. Past experience
4.1. Overview

To account for time dependence, an intuitive
approach can be the introduction of the past ex-
perience of the insured as covariate (Gerber and
Jones 1975; Sundt 1988). This model interprets
past claims as a factor that changes the mean
of the distribution. The conditional distribution
uses a Markovian property where only the num-
ber of claims of the last period is considered. It
would result in Poisson or negative binomial dis-
tributions with mean equal to exp(xi,t¯+ cni,t¡1).
The variable c can also be computed by covari-
ates, such as ci = y

0
i°, where a negative (posi-

tive) value of c implies negative (positive) de-
pendence.
However, as stated in Gourieroux and Jasiak

(2004), the stationarity property of this model
cannot be established and premiums for new in-
sureds cannot be computed. Thus, contracts that
come from the first year of the data cannot be
used, which is clearly not satisfactory. Neverth-
less, this model can have some uses, as proposed
by Cameron and Trivedi (1998), since regression
of nt on nt¡1 can be used to test the time depen-
dence via a standard t-test on the parameter.

4.2. Conditional distributions with
artificial marginal distribution

4.2.1. Poisson
This kind of model is closely related to a model

described in Berkhout and Plug (2004), where
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n1 is Poisson distributed with parameter ¸1 =
exp(x1¯), while nt j nt¡1, t = 2, : : : ,T are Poisson
with mean ¸t = exp(x

0
t¯+Ánt¡1). Then, condi-

tional expected value and conditional variance
are both equal to ¸t. The joint distribution of
all contracts of insured i for this model, we can
call multivariate Poisson with artificial marginal
distribution (MPAM), can be expressed as (sub-
script i removed for simplicity):

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

= g(n1)g(n2 j n1) : : :g(nT j nT¡1)

=
TY
t=1

¸
nt
t e
¡¸t

nt!
, (4.1)

where even Á can be modeled with covariates,
such as Át = y

0
t°. The distribution exhibits au-

toregressive dependence since the value of nt de-
pends on only nt¡1. Though it has no real im-
pact for insurance applications, note that the
closed form for the marginal distribution of Nt,
t = 2, : : : ,T cannot be found. However, factorial
moments of the joint distribution can be defined.
As proved by Berkhout and Plug (2004), the
(r,s)th factorial moment of Nt¡1 and Nt are equal
to

E[Nt(Nt¡ 1) : : :(Nt¡ r+1)Nt¡1(Nt¡1¡ 1)

: : :(Nt¡1¡ s+1)]

= ¸st¡1e
¸t¡1(exp(rÁ)¡1)+rx0¯+rsÁ: (4.2)

Using this last equation, the mean and the vari-
ance of the marginal distribution can be com-
puted:

E[Nt] = e
¸t¡1(exp(Át¡1)¡1)¸t (4.3)

RVar[Nt] = E[Nt] +E[Nt]
2(e¸t¡1(exp(Át¡1)¡1)

2 ¡ 1),

(4.4)

where we can see that marginal distributions im-
ply overdispersion for all Á different than 0. The
covariance between two successive events can

also be calculated:

Cov(Nt¡1,Nt) = ¸t¡1E[Nt](exp(Át¡1)¡ 1):

(4.5)

Obviously, when the parameter Á is set to 0,
the model collapses to the product of indepen-
dent Poisson distributions.

4.2.2. Negative binomial
Using the same development as for the MPAM

distribution, we can also use conditional negative
binomial distributions to construct a model that
accounts for past experience. Here, we choose
to use the NB1 distribution, but it is also possi-
ble to use other forms of negative distributions.
The multivariate negative binomial with artificial
marginal distribution (MNBAM) also shows a
conditional expected value of ¸i,t, while its con-
ditional variance is equal to ¸i,t+®¸i,t. Using
Equation (4.1), the joint distribution can be ex-
pressed as

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

= g(ni,1)g(ni,2 j ni,1) : : :g(ni,T j ni,T¡1)

=
TY
t=1

¡ (ni,t+®
¡1¸i,t)

¡ (ni,t+1)¡ (®¡1¸i,t)

£ (1+®)¡¸i,t=®(1+®¡1)¡ni,t , (4.6)

with, as for the MPAM model, ¸i,1 = exp(xi,1¯),
while ¸i,t = exp(x

0
i,t¯+Áni,t¡1) for t= 2,3, : : : ,T.

The marginal properties of contracts 2,3, : : : ,T
are useless for insurance application since new
insureds are classified by g(ni,1) and the distri-
butions of other insureds are only interesting for
conditional analysis on past experience. But,
once again, note that no closed form of the mar-
ginal distribution for contracts 2,3, : : : ,T can be
found and even the method used by Berkhout and
Plug (2004) cannot be helpful for the finding of
factorial moments. However, by iterative condi-
tioning on each heterogeneity term, moments can
be found. When ®! 0, the model becomes the
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Table 4. Artificial marginal distributions

Parameter MPAM MNB1AM

¸ : b0 ¡2:6549 (0.0417) ¡2:6582 (0.0433)
b1 0.0995 (0.0337) 0.1103 (0.0348)
b2 ¡0:2152 (0.0390) ¡0:2184 (0.0404)
b3 ¡0:2807 (0.0361) ¡0:2882 (0.0373)
b4 0.1440 (0.0336) 0.1466 (0.0347)
b5 0.1490 (0.0305) 0.1575 (0.0316)

Á: c0 ¡0:3023 (0.0877) ¡0:2886 (0.0892)
c5 ¡0:2609 (0.1076) ¡0:2804 (0.1106)

® ¢ ¢ 0.1064 (0.0076)
Log-Lik. ¡26,985:0 ¡26,790:7

MPAM. Additionally, the model collapses to the
product of independent NB distributions if the
parameter Á is set to 0.

4.3. Predictive distribution

The MPAM model of Berkhout and Plug
(2004) and its generalization into NB distribu-
tions have a Markovian property and only de-
pend on the number of reported claims of the
last insured period. Generalization into models
that incorporate higher order dependences could
be interesting. Consequently, the predictive dis-
tributions of this kind of model, conditionally on
a past insured period, are standard Poisson and
negative binomial distributions.

4.4. Numerical application

The estimated parameters of the multivariate
Poisson and negative binomial with artificial
marginal distributions are shown in Table 4. It
shows that b5, representing the power of the ve-
hicle, has an impact on the dependence between
the past number of claims at t¡ 1. Indeed, vehi-
cles with power equal to or larger than 5500 cc
exhibit less time dependence. For the other pa-
rameters, estimated values are quite the same as
those evaluated by the time-independent models.
Because the Poisson marginal distribution im-
plies marginal equidispersion, it is not surprising
to see that models based on an NB1 marginal
distributions exhibit a better fit.

5. Integer-valued autoregression
models

5.1. Overview

Another method to include the time depen-
dence in the classification process is the integer-
valued autoregressive process, described by Al-
Osh and Alzaid (1987) and McKenzie (1988)
[see Gourieroux and Jasiak (2004) for an over-
view in an insurance context]. As with linear
models, the autoregressive integer process can be
of any order, but for simplicity, we restrict our-
selves to AR(1) models. The integer-valued au-
toregression models of order 1, noted INAR(1),
is defined by the recursive equation

ni,t = ½ ± ni,t¡1 + Ii,t, (5.1)

where ±, the binomial thinning operator (Steutel
and Harn 1979), is defined as ½ ± n=Pn

i=1Yi =
B(½,n), where Yi is a sequence of binary random
variables independent from n, Pr[Yi = 1] = 1¡
Pr[Yi = 0] = ½, ½ 2 [0,1]. The random variable Ii,t
is i.i.d. and independent from ni,t¡1 with discrete
non-negative values.
The INAR(1) distribution models the observa-

tion through two different components that facil-
itate the marginal analyses. As expressed in Free-
land and McCabe (2004a), this distribution can
be interpreted as a birth and death process, where
the component ½ ± ni,t¡1 represents the survivors
of the past period and Ii,t the birth component.
For insurance applications, we can interpret the
parameters differently. Indeed, ½ ± ni,t¡1 can be
roughly seen as the number of claims due to the
impact of the insured’s past claims on his driving
behavior, while Ii,t would represent his number
of claims caused by random variation.
The INAR(1) model has the Markovian prop-

erty:

Pr(ni,t j ni,t¡1,ni,t¡2, : : :) = Pr(ni,t j ni,t¡1):

(5.2)
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This property facilitates the expression of the
joint density of ni,1,ni,2, : : : ,ni,T:

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

= Pr(Ni,T = ni,T j ni,T¡1) ¢ ¢ ¢Pr(Ni,2 = ni,2 j ni,1)

£Pr(Ni,1 = ni,1) (5.3)

where the distribution of f(ni,1) must be chosen
to obtain a stationary INAR(1) process, where
the marginal distribution of each ni,t can be com-
puted easily. This choice is obtained by a check
of the stationarity of the process

E[Ni,t] =
E[Ii,t]
1¡ ½ , (5.4)

Var[Ni,t] =
½E[Ii,t]+Var[Ii,t]

1¡ ½2 , (5.5)

where the results come from conditional compu-
tations and the fact that the expected value and
the variance of ni,t and ni,t¡1 must be equal to
ensure stationarity.
As shown in Brännäs (1995), the parame-

ters can be modeled with covariates, such as
¸i,t = exp(xi,t¯) and ½i,t = log it(zi,t°) = exp(zi,t°)=
(1+ exp(zi,t°)) Under this parameterization, the
two first moments of this process are expressed
as:

E[Ni,t] = ½i,tE[Ni,t¡1]+E[Ii,t], (5.6)

Var[Ni,t] = ½
2
i,tVar[Ni,t¡1]+ ½i,t(1¡ ½i,t)E[Ni,t¡1]¸i,t

+Var[Ii,t]: (5.7)

Conditionally on a time horizon of length h,
covariance between these two events is expressed
as

Cov[Ni,t,Ni,t¡h] =

24h¡1Y
j=0

½i,t¡j

35Var[Ni,t¡h]:
(5.8)

5.2. Poisson

The Poisson-INAR(1) is obtained when the
random variable Ii,t is following a Poisson dis-
tribution of mean ¸i,t. The Poisson distribution
can be chosen since the convolution product of

two Poisson distributions is still a Poisson dis-
tribution. This characterization of the INAR pro-
cess is the most widely used in pratice. Under
this hypothesis, a stationary INAR(1) process is
obtained, where

Pr(Ni,1 = ni,1)

= exp
·¡¸i,1
1¡ ½

¸ [¸i,1=(1¡ ½)]ni,1
ni,1!

, (5.9)

Pr(Ni,t = ni,t j ni,t¡1)

=
min(ni,t,ni,t¡1)X

j=0

Ã
ni,t¡1

j

!
½j(1¡ ½)ni,t¡1¡j

£ e¡¸i,t
¸
ni,t¡j
i,t

(ni,t¡ j)!
, (5.10)

where the number of reported claims ni,t has a
marginal Poisson distribution. Under this hypoth-
esis, conditionally on a time horizon of length
h, the two first moments of this process are ex-
pressed as

E[Ni,t j ni,t¡h] = ½hni,t¡h+
1¡ ½h
1¡ ½ ¸i,t (5.11)

Var[Ni,t j ni,t¡h] = ½h(1¡ ½h)ni,t¡h+
1¡ ½h
1¡ ½ ¸i,t

= E[ni,t j ni,t¡h]¡ ½2hni,t¡h,

(5.12)

From the last equation, we see that the Poisson-
INAR(1) distribution implies underdispersion,
which is not desirable for insurance data. For
½= 0, the distribution collapses to a standard
Poisson distribution.

5.3. Negative binomial

In order to account for the overdispersion of
the data, the first-order INAR time series model,
with negative binomial marginal distributions
(McKenzie 1986; Al-Osh and Alzaid 1993;
Bockenholt 1999; Bockenholt 2003) can be an
interesting alternative. The convolution product
of two negative binomial distributions is again a
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negative binomial for the NB1 form [see Equa-
tion (2.4)] when the two distributions share in
common the parameter ®. Indeed, for two in-
dependent variables i having NB1 (¸i,®) distri-
bution, the sum is also NB1 with mean ¸1 +¸2
and variance (¸1 +¸2)(1+®) [see Winkelmann
(2003) for a formal proof using probability gen-
erating functions].
Using Ii,t »NB1(¸i,t,®), the marginal distribu-

tion of ni,1 must be chosen to obtain a station-
ary process. Using Equations (5.4) and (5.5), pa-
rameters of the marginal distribution of ni,t are
¸i,t=(1¡ ½) and (½+ ½2 +®)=(1¡ ½2).

Pr(Ni,1 = ni,1)

=
¡ (ni,1 +¸i,1=(®(1¡ ½)))

¡ (ni,1 + 1)¡ (¸i,t=(®(1¡ ½)))

£ (1+®)¡¸i,t=(®(1¡½))(1+®¡1)¡n1
(5.13)

Pr(Ni,t = ni,t j ni,t¡1)

=
min(ni,t,ni,t¡1)X

j=0

Cjni,t¡1½
j(1¡ ½)ni,t¡1¡j

£
¡ (ni,t¡ j+®¡1¸)

¡ (ni,t¡ j+1)¡ (®¡1¸i,t)

£ (1+®)¡¸i,t=®(1+®¡1)¡ni,t+j ,

(5.14)

where the number of reported claims ni,t has a
marginal Poisson distribution. Under this hypoth-
esis, conditionally on a time horizon of length
h, the two first moments of this process are ex-
pressed as

E[Ni,t j ni,t¡h] = ½hni,t¡h+
1¡ ½h
1¡ ½ ¸i,t (5.15)

Var[Ni,t j ni,t¡h] = ½h(1¡ ½h)ni,t¡h

+
1¡ ½h
1¡ ½ ¸+

1¡ ½2h
1¡ ½2 ¸®

= E[Ni,t j ni,t¡h]¡ ½2hni,t¡h

+
1¡ ½2h
1¡ ½2 ¸®: (5.16)

For large values of h, conditional distribution

allows for overdispersion, while small values of

h allow overdispersion depending on values of

½ and ®. For null value of the parameter ½, the

NB1-INAR(1) model is the NB1 distribution,

while in the situation where ®! 0, the NB1-

INAR(1) collapses to the Poisson-INAR(1) dis-

tribution.

5.4. Predictive distribution

As for the conditional distributions with ar-

tificial marginal distributions seen in the previ-

ous section, the INAR(1) models also share the

Markovian property. Using generalization into

higher INAR models, it is possible to extend

the dependence into more insured periods. The

INAR models are directly constructed to be used

as predictive distributions.

5.5. Numerical application

We applied our insurance data to the INAR

models seen above and the estimated parameters

are shown in Table 5. As with the MPAM and

the MNB1AM models, the covariate related to

the vehicle power (b5) is also significant in the

parameter involving time dependence. However,

even if it is interesting at this point, it is impor-

tant to note that this parameter in the INAR mod-

els does not represent the same thing as the one

in the artifical margin models. Consequently, it

must be interpreted differently. Other estimated

parameters of the covariates are, once again, very

similar to those obtained by the time-independent

models.

The model based on the NB1 distribution ex-

hibits a better fit than the model based on the

Poisson distribution when we observe the log-

likelihood. Like the MPAM and MNB1AM dis-

tributions, the marginal equidispersion can con-

tribute to this observation but also of importance
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Table 5. INAR models

Poisson NB1

Parameter ¯ ° ¯ °

b0 ¡2:6859 (0.0429) 2.5270 (0.1421) ¡2:6824 (0.0445) 2.5828 (0.1484)
b1 0.1022 (0.0351) ¢ ¢ 0.1110 (0.0362) ¢ ¢
b2 ¡0:2066 (0.0403) ¢ ¢ ¡0:2125 (0.0416) ¢ ¢
b3 ¡0:2652 (0.0372) ¢ ¢ ¡0:2749 (0.0385) ¢ ¢
b4 0.1499 (0.0349) ¢ ¢ 0.1519 (0.0361) ¢ ¢
b5 0.1616 (0.0310) 0.3649 (0.1701) 0.1710 (0.0322) 0.4192 (0.1814)
® ¢ ¢ ¢ ¢ 0.1147 (0.0081) ¢ ¢
Log-Lik. ¡26,993:6 ¡26,816:0

is the conditional equidispersion implied by the
Poisson-INAR model.
Nevertheless, the fits of the INAR models are

disappointing. Indeed, the log-likelihoods obtain-
ed from these models are much smaller that the
ones obtained by the random effects or the Arti-
ficial Marginal distributions. It can be caused by
the lack of flexibility of the model. Indeed, the
time dependence is too much limited by the num-
ber of claims reported in the last insured period.
Consequently, for example, no time dependence
is implied by an insured without a claim in his
last contract.

6. Common shock models

6.1. Overview

Common shock models, where marginal dis-
tributions are standard count distributions, could
seem interesting to model all contracts of an in-
dividual. This distribution is based on a convo-
lution structure. The dependence between con-
tracts of the same insured comes from a com-
mon individual random variable that is added
to each time period [see Holgate (1964) for the
bivariate case]. Suppose T+1 random variables
M1,M2, : : : ,MT and U with respective parameters
¸i,1,¸i,2, : : : ,¸i,T and ¹i. With the assumption that
the random variables Mt and U are independent,
the common shock model is defined as the
T-joint distribution of Mi,1 +Ui,Mi,2 +Ui, : : : ,
Mi,T+Ui. Using appropriate count distribu-

tions, these models show interesting properties
and can be easily tractable. This model can
be interpreted as if an individual specificity
of an insured affects all his contracts. It is
closely related to the random effects models, but
instead of having an impact on the mean param-
eter of all the marginal distributions, the model
impacts equally the number of reported claims
of all contracts.

6.2. Poisson

Multivariate Poisson distribution (MVP) is a
common shock model where all random vari-
ables M1,M2, : : : ,MT and U are Poisson distribut-
ed. Using the property of the sum of independent
Poisson variables, each component of this dis-
tribution has Poisson marginal distribution with
mean and variance equal to ¸i,t+¹i. Note that
the common shock can also be modeled as
¹i = exp(y

0
i°), using time-invariant covariates

such as the sex of the driver in our data, which
allows the dependence between contracts to
be different for men or women drivers, for ex-
ample.
The covariance between contracts of the same

insured, say contracts t and t+ j, can easily be
computed and is equal to ¹i, the mean shock vari-
able. Since U is Poisson distributed, the model
excludes zero and negative correlation. More-
over, it also excludes correlation values higher
than ¹i=(¹i+min(¸t,¸t+j)).
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The joint probability function of the MVP dis-
tribution for insured i is expressed as

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

= exp

"
¡
Ã
¹i+

X
t

¸i,t

!#

£
siX
j=0

¹ji
j!

¸
ni,t¡j
i,t

(ni,1¡ j)!
¢ ¢ ¢

¸
ni,T¡j
i,T

(ni,T¡ j)!
,

(6.1)

where si =min(ni,1, : : : ,ni,T). From the joint prob-
ability, we can see that the common shock can-
not exceed any of the ni,t. Conditional distribu-
tion of ni,t given ni,t¡1 can be computed without
difficulty since it involves ratios of Poisson dis-
tribution that are easily tractable. Interested read-
ers can refer to Kocherlatoka and Kocherlatoka
(1992) for details about the MVP distribution.
The MVP model collapses to the Poisson distri-
bution for ¹! 0.

6.3. Negative binomial

By the same shock process, Winkelmann
(2000) constructed a common shock model for
the negative binomial distribution that we called
common shock negative binomial (CSNB).1 As
it involves sums of distributions, the CSNB dis-
tribution uses NB1 distribution, as for the in-
teger value autoregressive models seen earlier.
On this hypothesis, the marginal distribution of
each contract is NB1 distributed with mean ¸i,t+
¹i and variance (¸i,t+¹i)(1+®), which allows
overdispersion.
The covariance implied between contracts t

and t+ j of the same insured can be shown to
be equal to ¹i(1+®), while the correlation is
exclusively positive with values less than ¹i=
(¹i+min(¸t,¸t+j)).

1We do not call this model multivariate negative binomial or neg-
ative multinomial distributions, since these names refer to Poisson
distributions sharing the same heterogeneity variable, as seen in
Section 3.

As for the MVP distribution, the CSNB is ex-
pressed by convolution:

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

=
siX
j=0

fNB(j)
TY
k=1

fNB(ni,k ¡ j), (6.2)

where si =min(ni,1, : : : ,ni,T) and fNB(ni,t) is ex-
pressed with Equation (2.4). An overview of mul-
tivariate distributions for count data is presented
in Winkelmann (2003). As for the MVP distri-
bution, the CSNB model collapses to the NB1
distribution for ¹! 0. For ®! 0, the CSNB is
not different from the MVP distribution.

6.4. Covariance structure

Under these multivariate distributions, the de-
pendence between contracts of the same insured
is the same. Using a combination of common
shock variables, Karlis and Meligkotsidou (2005)
proposed a multivariate Poisson model with
larger covariance structure, where the generaliza-
tion into common shock negative binomial model
can easily be done.

6.5. Predictive distribution

For the multivariate Poisson and the multivari-
ate negative binomial, the predictive distribution
can be computed easily. Supposing that the com-
mon shock also affects the number of reported
claims at time T+1, the conditional distribution
can be evaluated by Bayesian analysis, such as

Pr(Ni,T+1 = ni,T+1 j ni,1, : : : ,ni,T)

=
f(ni,1, : : : ,ni,T,ni,T+1)
f(ni,1, : : : ,ni,T)

, (6.3)

by using Equation (6.1) or (6.2). For bivariate
distributions, it can be shown that the a posteriori
distribution of the common shock variable fol-
lows a binomial distribution, allowing a linear re-
gression relationship between nT and nT+1. How-
ever, for multivariate variables, the model cannot
be expressed so easily, and numerical compu-
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tation or simulation techniques such as Markov
Chain Monte Carlo (MCMC) can be helpful.

6.6. Numerical application

As seen in Equations (6.1) and (6.2), the com-
mon shock in both multivariate models cannot
exceed any of the ni,t. Consequently, the multi-
variate distributions cannot be used for modeling
the number of reported claims in insurance. In-
deed, in our data and in practically all automo-
bile insurance portfolios, many insureds do not
report a claim. Then, si =min(ni,1, : : : ,ni,T) = 0,
which results in a null ¹i, where the joint distri-
bution becomes a product of independent Pois-
son or NB1 distribution. Indeed, for illustration,
the maximum correlation between two contracts
of insureds who did not report a claim, equal to
¹i=(¹i+min(¸t,¸t+j)), is 0.

7. Copula approach
7.1. Overview
Another possibility to model dependences be-

tween contracts of the same insured is the use of
the copula theory. Several papers used copulas to
model joint distribution between discrete random
variables, such as Lee (1983) and van Ophem
(1999), who used a Gaussian copula; Vanden-
hende and Lambert (2000), who used Archime-
dean copulas; and Cameron et al. (2004), who
used both Gaussian and Archimedian copulas.
These kinds of distributions can be very inter-
esting since they model the dependence of the
marginal distribution, which is very different
from the dependence constructed by the other
models seen so far.
A copula is defined as a multivariate distribu-

tion whose one-dimensional margins are uniform
on [0,1]. Then, C(u1, : : : ,uT) = P(U1 · u1, : : : ,UT
· uT) is a function defined on [0,1] to [0,1].
Copulas allow creation of multivariate distribu-
tion with defined marginal distributions. More
specifically, if C is a copula and FX1 , : : : ,FXT
are marginal distributions, then C(FX1(x1), : : : ,

FXT(xT)) is a multivariate distribution. See Nelsen
(1999) or Joe (1997) for more details about cop-
ulas, or Frees and Valdez (1999) for an overview
of possible uses in actuarial science.
A fundamental theorem in copula theory has

been given by Sklar (1959) that shows that any
joint distribution H(x1, : : : ,xT) with marginals
FX1 , : : : ,FXT can be written with copulas, such as
H(x1, : : : ,xT) = C(FX1(x1), : : : ,FXT(xT)). Addition-
ally, when the random variables X1, : : :XT are
continuous, it can be shown that C is unique.
This conclusion does not apply for discrete data.
However, as shown by Nelsen (1999), it does
not create problems since there exists a unique
subcopula such that the construction of joint dis-
tribution is only determined on the range of mar-
gins.

7.2. Archimedean copulas

Numerous kinds of copulas can be used to
model dependence between random variables.
However, we work with one of the most popu-
lar family of copulas, called Archimedean copu-
las, that can be used easily to model dependence
between more than two variables. These copu-
las are created from a particular generating func-
tion Á, such as C(u1, : : : ,uT) = Á

¡1[Á(u1) + ¢ ¢ ¢+
Á(uT)], where U1, : : : ,UT are a series of random
variables with uniform margins on [0,1].
For T = 2, the generating function Á : [0,1]!

[0,1) is continuous and strictly decreasing such
that Á(0) =1 and Á(1) = 0. For T > 2, another
requirement needs Á¡1 to be completely mono-
tonic on [0,1) (Kimberling 1974). [See Nelsen
(1999) for more details about different families
of copulas.]
In this paper, we use three different Archime-

dean copulas with one parameter. There are many
ways to visualize copulas, but we chose to use
the tail concentration functions (Joe 1997) to fo-
cus on the dependence that can imply each cop-
ula. The tail concentration function LR(z) is con-
structed on left (small value) and right (large
value) dependencies. Formally, with a simplifica-
tion into two dimensions, say random variables
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Figure 1. Frank, Clayton, and Joe copulas

U and V, this function can be expressed as

LR(z) =

(
L(z) if 0· z < 0:5
R(z) if 0:5· z · 1

, (7.1)

where the L(z) function is the probability of U <
z conditionally on V < z, while R(z) is the prob-
ability of U > z conditionally on V > z. For the
three copulas studied in this paper, the Frank,
the Clayton, and the Joe copulas, each LR(z) is
shown in Figure 1.
The Frank copula is a very popular Archime-

dean copula that exhibits radial symetry without
implying tail dependence. The copula can be ex-
pressed as

Cμ(u1, : : : ,uT) =¡
1
μ
log

"
1+

QT
i=1(e

¡μui ¡ 1)
(e¡μ¡ 1)T¡1

#
:

(7.2)

Because copulas involving more than two ran-
dom variables can only imply positive depen-
dence, the parameter μ of the Frank copula is
exclusively positive. When the parameter tends
toward zero, the Frank copula becomes the inde-
pendence copula (¦), expressed as the product

of each marginal distribution. When the parame-
ter is going to infinity, the Frank copula reaches
the upper Frechet bound (M).
As seen in the LR(z) function, the Clayton cop-

ula shows left-tail dependence, implying that a
small value of one variable brings high probabil-
ity of having a small value for the other one. The
T-variate Clayton’s copula is expressed as

Cμ(u1, : : : ,uT) = [u
¡μ
1 + ¢ ¢ ¢+ u¡μT ¡T+1]¡1=μ:

(7.3)

As with the Frank copula, the parameter of
the Clayton copula is strictly positive, ¦ copula
is reached for μ! 0, and M copula is reached
for μ!1.
Last, the Joe copula shows right dependence

and is expressed as

Cμ(u1, : : : ,uT) = 1¡
"
1¡

TY
i=1

(1¡ (1¡ ui)μ)
#1=μ

,

(7.4)

where the parameter μ · 1, ¦ copula reached for
μ = 1 and M copula for μ!1.
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7.3. Dependence

7.3.1. Exchangeable dependence
Supposing a joint distribution that is modeled

by Poisson or negative binomial marginal distri-
butions, we can suppose an exchangeable depen-
dence based on

Pr[Ni,1 = ni,1]

= Pr[Ni,1 · ni,1]¡Pr[Ni,1 · ni,1¡ 1]

(7.5)and

Pr[Ni,1 = ni,1,Ni,2 = ni,2]

= Pr[Ni,1 · ni,1,Ni,2 · ni,2]

¡Pr[Ni,1 · ni,1¡ 1,Ni,2 · ni,2]

¡Pr[Ni,1 · ni,1,Ni,2 · ni,2¡ 1]

+Pr[Ni,1 · ni,1¡ 1,Ni,2 · ni,2¡ 1]

(7.6)

from which we use the generalization of Vanden-
hende and Lambert (2000) for T events to com-
pute the contribution to the likelihood for any
insured i as

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

=
ni,1X

l1=ni,1¡1
¢ ¢ ¢

ni,TX
lT=ni,T¡1

(¡1)
P

j
(ni,j¡lj )

£Pr(Ni,1 · l1, : : : ,Ni,T · lT)

=
ni,1X

l1=ni,1¡1
¢ ¢ ¢

ni,TX
lT=ni,T¡1

(¡1)
P

j
(ni,j¡lj )

£C(Fi,1(l1), : : : ,Fi,T(lT)): (7.7)

As for the other count distributions seen so far,
the marginal distribution can be modeled with
covariates. Additionally, the parameter of the
copula can also be modeled with regressors, but
these regressors must be time invariate since the
parameter of the copula is used to model all time
dependences.
This major drawback of the exchangeable de-

pendence model is that the use of this kind of
model does not allow predictions. Indeed, even if

the dependence between the number of reported
claims is defined for all time periods that are in
the database, we cannot suppose the kind of de-
pendence implied for periods T+ j, j = 1,2, : : : :

7.3. . Autoregressive dependence
As for the other models seen so far, we can

suppose a decreasing dependence with the time
lag separating two insured periods. Following the
work of Vandenhende and Lambert (2000), this
autoregressive dependence is using a first-order
Markov model:

Pr(Ni,t = ni,t j ni,t¡1,ni,t¡2, : : :)

= Pr(Ni,t = ni,t j ni,t¡1)

= Pr(Ni,t · ni,t j ni,t¡1)

¡Pr(Ni,t · ni,t¡ 1 j ni,t¡1), (7.8)

where the probability can be expressed as a func-
tion of a bivariate copula:

Pr(Ni,t · ni,t j ni,t¡1) =

C[Ft¡1(ni,t¡1),Ft(ni,t)]¡C[Ft¡1(ni,t¡1¡1),Ft(ni,t)]
Prt¡1(Ni,t¡1 = ni,t¡1)

,

(7.9)

and the contribution to the likelihood of each in-
sured i can be written as

Pr[Ni,1 = ni,1, : : : ,Ni,T = ni,T]

= Pr(Ni,1 = ni,1)
TY
j=2

Pr(Ni,j = ni,j j ni,j¡1):

(7.10)

Covariates can also be used to model the
marginal distributions, but as opposed to the ex-
changeable dependence model, time-varying co-
variates can be used to model the parameters
of the copula, using appropriate transformations
that respect their domains. While marginal mo-
ments can be found directly with their marginal
distribution (Poisson or negative binomial dis-
tributions), conditional moments cannot be ex-
pressed in a closed form. Use of Equations (7.8)
to (7.10) is needed to compute such moments.
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Table 6. Copula models with Poisson marginal

Parameter Frank Clayton Joe

¸ b0 ¡2:6020 (0.0428) ¡2:6023 (0.0428) ¡2:6127 (0.0423)
b1 0.1015 (0.0356) 0.1014 (0.0356) 0.1037 (0.0349)
b2 ¡0:2040 (0.0400) ¡0:2035 (0.0400) ¡0:2051 (0.0397)
b3 ¡0:2648 (0.0374) ¡0:2647 (0.0374) ¡0:2663 (0.0369)
b4 0.1533 (0.0350) 0.1533 (0.0351) 0.1474 (0.0346)
b5 0.1359 (0.0308) 0.1360 (0.0308) 0.1377 (0.0304)

μ c0 0.8298 (0.1135) 0.3639 (0.1386) ¡3:0691 (0.1611)
c5 ¡0:4218 (0.1392) ¡0:5152 (0.1680) ¡0:3716 (0.1938)

Log-Lik. ¡27,006:3 ¡27,007:2 ¡27,014:1

Table 7. Copula models with NB1 marginal

Parameter Frank Clayton Joe

¸ b0 ¡2:6107 (0.0444) ¡2:6112 (0.0444) ¡2:6079 (0.0442)
b1 0.1143 (0.0367) 0.1142 (0.0367) 0.1153 (0.0361)
b2 ¡0:2074 (0.0414) ¡0:2069 (0.0414) ¡0:2071 (0.0411)
b3 ¡0:2735 (0.0387) ¡0:2732 (0.0387) ¡0:2715 (0.0383)
b4 0.1562 (0.0363) 0.1561 (0.0363) 0.1498 (0.0358)
b5 0.1454 (0.0320) 0.1456 (0.0320) 0.1442 (0.0319)

μ c0 0.8361 (0.1147) 0.3726 (0.1401) ¡2:7734 (0.1494)
c5 ¡0:4257 (0.1406) ¡0:5210 (0.1698) ¡0:3489 (0.1781)

® 0.1102 (0.0077) 0.1102 (0.0077) 0.1167 (0.0081)
Log-Lik. ¡26,800:2 ¡26,801:2 ¡26,796:3

Table 8. Profiles analyzed

Profile Number Kind of Profile v1 v2 v3 v4 v5

1 Good 0 0 1 0 0
2 Average 1 1 0 0 0
3 Bad 1 0 0 1 1

7.4. Predictive distribution

The autoregressive dependence model defined
the predictive distribution directly. It only de-
pends on the number of reported claims of the
last insured period.

7.5 Numerical application

Estimated parameters of the data applied to the
copula models with Poisson and NB1 marginal
distributions are exhibited in Tables 6 and 7.
Clearly and without surprise, we see that the cop-
ulas applied to NB1 distribution result in a log-
likelihood smaller than the one obtained by the
Poisson marginals.

Parameters’ estimates are quite the same as
those observed in other models. An interesting
observation is the fit exhibited by each copula
since the Joe copula with NB1 marginal seems to
exhibit a better adjustment to the data. Remember
that this copula has a tail dependence at the right,
meaning that an insured with a high number of
reported claims in a year will see an increase in
his expected number of reported claims for the
next year.

8. Model comparisons
Differences between models can be analyzed

through the mean and the variance of some in-
sured profiles. The mean corresponds to the fre-
quency part of the a priori premium, that is to
say, premiums for new insureds. Three profiles,
as displayed in Table 8, have been analyzed. The
exogenous variables v1, : : : ,v5 were described in
Table 1.
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Table 9. A priori premiums

Low Risk Medium Risk High Risk

Models Mean Variance Mean Variance Mean Variance

Time Ind Poisson 0.0564 0.0564 0.0666 0.0666 0.1100 0.1100
NB2 0.0563 0.0613 0.0666 0.0736 0.1102 0.1293
NB1 0.0558 0.0619 0.0670 0.0744 0.1122 0.1245

Random Effects MVNB 0.0565 0.0593 0.0661 0.0699 0.1077 0.1179
P-MVNB1 0.0564 0.0593 0.0666 0.0706 0.1086 0.1092
NB-beta 0.0560 0.0630 0.0664 0.0753 0.1100 0.1283

AM MPAM 0.0531 0.0531 0.0626 0.0626 0.1041 0.1041
MNB1AM 0.0525 0.0581 0.0629 0.0696 0.1061 0.1173

INAR Poisson 0.0565 0.0565 0.0663 0.0663 0.1088 0.1088
NB1 0.0559 0.0623 0.0665 0.0741 0.1108 0.1235

Copula Frank Poisson 0.0540 0.0540 0.0669 0.0669 0.1119 0.1119
NB1 0.0530 0.0586 0.0669 0.0743 0.1114 0.1237

Copula Clayton Poisson 0.0569 0.0569 0.0669 0.0669 0.1118 0.1118
NB1 0.0559 0.0620 0.0669 0.0743 0.1113 0.1236

Copula Joe Poisson 0.0562 0.0562 0.0663 0.0663 0.1108 0.1108
NB1 0.0562 0.0627 0.0672 0.0751 0.1110 0.1239

Table 10. Predictive premiums for medium risk (1)

Number of Reported Claims

0 1 2

Models Mean Variance Mean Variance Mean Variance

Random Effects MVNB 0.0624 0.0655 0.1174 0.1377 0.1723 0.2366
P-MVNB1 0.0629 0.0660 0.1192 0.1407 0.1755 0.2441
NB-beta 0.0606 0.0713 0.1054 0.1267 0.1501 0.1843

AM MPAM 0.0626 0.0626 0.1311 0.1311 0.2746 0.2746
MPNB1 0.0629 0.0696 0.1330 0.1472 0.2814 0.3114

INAR Poisson 0.0614 0.0614 0.1354 0.1299 0.2094 0.1984
NB1 0.0618 0.0689 0.1321 0.1342 0.2023 0.1995

Copula Frank Poisson 0.0612 0.0615 0.1489 0.1373 0.1586 0.1448
NB1 0.0614 0.0684 0.1505 0.1559 0.1599 0.1644

Copula Clayton Poisson 0.0612 0.0615 0.1493 0.1374 0.1557 0.1423
NB1 0.0614 0.0685 0.1506 0.1555 0.1568 0.1611

Copula Joe Poisson 0.0625 0.0622 0.1148 0.1135 0.2905 0.3370
NB1 0.0618 0.0678 0.1319 0.1479 0.3117 0.4113

The first profile is known to be a good risk,
while the last profile usually exhibits bad loss ex-
perience the other profile is medium risk. Table
9 shows quite similar premiums for all models,
where the biggest differences for the expected
values are exhibited by the artificial marginal
(AM) and the Frank copula models. Because
the estimations of the parameters are approxi-
mately the same for all models, this result was

expected since the sufficient conditions for con-
sistency are satisfied (Gourieroux, Monfort, and
Trognon 1984a,b). Nevertheless, other elements
can be analyzed, such as the variance values,
which is important in some forms of premium
calculations and solvency analysis that show
greater variations between models.
For an insured with a claim, the expected value

or the predictive premiums are based on the num-
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Table 11. Predictive premiums for medium risk (2)

Number of Reported Claims

3 4

Models Mean Variance Mean Variance

Random Effects MVNB 0.2272 0.3748 0.2821 0.5647
P-MVNB1 0.2318 0.3898 0.2881 0.5916
NB-beta 0.1949 0.2442 0.2397 0.3064

BP Poisson 0.5751 0.5751 1.2042 1.2042
NB1 0.5954 0.6587 1.2594 1.3933

INAR Poisson 0.2833 0.2669 0.3573 0.3354
NB1 0.2726 0.2648 0.3428 0.3302

Copula Frank Poisson 0.1590 0.1451 0.1590 0.1451
NB1 0.1607 0.1651 0.1608 0.1652

Copula Clayton Poisson 0.1559 0.1425 0.1559 0.1425
NB1 0.1573 0.1616 0.1574 0.1616

Copula Joe Poisson 0.6136 0.8830 1.0737 1.7997
NB1 0.5983 0.9606 0.9788 1.8389

Table 12. Predictive premiums for medium risk (3)

Number of Reported Claims

Model A priori 0 1 2 3 5 10

MVNB 0.0661 0.0418 0.0785 0.1153 0.1520 0.2256 0.4093
P-MVNB1 0.0666 0.0417 0.0791 0.1165 0.1538 0.2286 0.4155
NB-beta 0.0664 0.0432 0.0751 0.1070 0.1389 0.2028 0.3623

ber of reported claims of the last insured period,
as shown in Tables 10 and 11 for the medium
risk profile. The time-independent models are
not shown, since the expected value as well as
other property of this distribution do not depend
on past claims. As opposed to a priori premi-
ums, we see that the choice of a model greatly
influences the values of predictive premiums. In-
deed, the ratio increase between the smallest and
the largest predictive premiums is approximately
4% for a claim-free driver, goes to more than
40% for an insured who reported one claim in
his last insured period, goes to 108% for two re-
ported claims, and attains more than 800% for a
4-claims reporter, that is to say, in this case, that
the largest premium is nine times larger than the
smallest one.

Since it is not based on autocorrelation of or-

der one, as opposed to other models, the random

effects models do not only depend on the num-

ber of reported claims of the last insured period
but on the sum of all reported claims. For exam-
ple, for a driver with a history of 10 years, the
predictive premiums of those models are those
shown in Table 12. This property of the random
effects model must be seen as a great advantage
over the other models since the unobserved char-
acteristics of the driver are not only shown by his
last insured period, but by all his claim experi-
ence.

9. Link between models

As shown in the preceding sections, there are
links between some of the models. For specific
parameter restrictions, some models are nested,
such as Poisson and negative binomial and their
generalizations that account for time dependence
or Poisson-based models against their negative
binomial-based generalization. On the other
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hand, some models are non-nested to each other,
such as the link between all models allowing for
time dependence. Though it is not the primary
purpose of this paper, many possible tests are
shown in this section to assess the model fit.

9.1. Nested models

Two situations imply nested models for the
distributions seen on this paper. First, to account
for overdispersion of the marginal distribution,
the Poisson distribution has been generalized into
negative binomial distribution in all models al-
lowing for time dependence. The way to test this
generalization is to check if the extra parame-
ter accounting for the overdispersion is statis-
tically significant. Secondly, other nested mod-
els are the time-independent models and their
generalizations into models where time depen-
dence exists, like the Poisson against its general-
ization into Poisson-INAR(1). As for the over-
dispersion test, it can be done by a check on
the extra parameter that implies the time depen-
dence.
One problem with standard specification tests

(Wald or likelihood ratio tests) happens when the
null hypothesis is on the boundary of the param-
eter space. When a parameter is bounded by the
H0 hypothesis, the estimate is also bounded and
the asymptotic normality of the MLE no longer
holds under H0. Consequently, a correction must
be done. Results from Chernoff (1954) for the
likelihood ratio statistic and Moran (1971) for
the Wald test, reviewed by Lawless (1987) for
the study of the negative binomial distribution,
showed that under the null hypothesis, the LR
statistic has a probability mass of 12 on the bound-
ary and a (1=2)Â21¡2± (rather than Â

2
1¡±) distri-

bution. Consequently, in this situation, a
one-sided test must be used. An analogous re-
sult shows that for the Wald test, there is a mass
of one half at zero and a normal distribution for
the positive values. In this case, as mentioned
by Cameron and Trivedi (1998), one continues

to use the usual one-sided test critical value of
z1¡±.
Another way to deal with this is to use tests

that do not change properties under this kind
of hypothesis, such as score tests (Moran 1971;
Chant 1974) or Hausman (1978) test. However,
testing these overdispersion situations for time-
dependent models or testing the parameter that
implies time dependence has not been the subject
of much research until now. Consequently, in our
situations, we will base our results on adapted
standard tests of Wald and likelihood ratio tests,
even if we know that some improvements must
be done in this area.
For more details about these tests, or other

ones, refer to Cameron and Trivedi (1998) or
Winkelmann (2003) in the context of count data
or Gourieroux and Monfort (1995) for a general
point of view. For actuarial applications of count
data when independence between contracts of the
same insured is supposed, see Boucher, Denuit,
and Guillén (2007).

9.1.1. Numerical application
Three kinds of links can be tested by the tests

of nested models:

² Overdispersion test as Poisson marginal
against negative binomial marginal;2

² Poisson against their generalized models al-
lowing for time dependence;

² Negative binomial against their generalized
models allowing for time dependence.

Direct application of Wald and likelihood ratio
tests can be done on all models seen in this paper.
The results are quite clear: all Poisson marginals
are rejected against their overdispersed general-
ization, all Poisson and negative binomial dis-
tributions are rejected against their generalized
models allowing for time dependence. All these
tests involve p-values less than 0.01%.

2Note that the Poisson random effects model is not nested to the
negative binomial distribution with random effects.
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9.2. Non-nested models

Apart from the comparison between models
where the marginal distribution is Poisson or neg-
ative binomial, the other models can be seen as
non-nested models. Two kinds of non-nested
models exist: overlapping and strictly non-nested
models. Overlapping models refer to models
where neither model can be derived from the
other by parameter restriction, but where some
joint parameter restrictions result in the same
model. Strictly non-nested models refer to mod-
els where even conjoint parameter restriction
cannot produce identical models. For a general
discussion on non-nested models or for more
formal definitions of non-nested models, see Pe-
saran (1974) and Vuong (1989).

9.2.1. Information criteria
Standard methods of comparing non-nested

models refer to the information criteria, based on
the fitted log-likelihood function. Since the log-
likelihood increases with the addition of parame-
ters, the criteria used to distinguish models must
penalize models with a large number of parame-
ters. Developments of such methods began with
the work of Akaike (1973) and Schwartz (1978),
who proposed the Akaike information citeria on
(AIC) =¡2log(L)+ 2k and the Bayesian infor-
mation criteria on (BIC) =¡2log(L)+ log(n)k,
where k and n represent respectively the num-
ber of parameters of the model and the num-
ber of observations. Many other penalized crite-
ria have been proposed in the statistical literature
[see Kuha (2004) for an overview]. However, the
AIC and BIC criteria are the most often used in
practice. Application of these criteria on the non-
rejected models seen in the first section leads to
the results of Table 13.
Models do not contain the same number of

parameters. Consequently, analysis of each in-
formation criteria can result in different conclu-
sions. Note that despite their apparent simplicity,
the information criteria are based on explicit the-

Table 13. AIC and BIC

Models Log-Likelihood AIC BIC

MVNB ¡26,690:9 53,395.78 53,462.79
Pseudo MVNB1 ¡26,689:8 53,393.57 53,460.58
NB1-beta ¡26,657:4 53,330.73 53,407.32
MNB1AM ¡26,790:7 53,599.32 53,685.48
INAR-NB1 ¡26,816:0 53,649.93 53,736.09
Frank-NB1 ¡26,800:2 53,618.48 53,704.64
Clayton-NB1 ¡26,801:2 53,620.31 53,706.48
Joe-NB1 ¡26,796:3 53,610.61 53,696.77

oretical considerations, and AIC and BIC do not
have the same foundations. As shown by Kuha
(2004), referring to older papers such as Atkin-
son (1981) and Chow (1981), the aims of the
AIC and BIC criteria are not the same. The aim
of the BIC, referring to a Bayesian approach, is
to identify the model with the highest probability
to be true, given that one model under investiga-
tion is true. On the other side, the AIC denies
the existence of an identificable true model and,
for example, minimizes the distance or discrep-
ancy between densities. Moreover, in model se-
lection, it has been argued that the BIC criteria
penalizes large models too heavily. However, un-
surprisingly, results of the previous table clearly
show that the random effects models are better to
model the insurance data than the other models
seen in this paper. More particularly, we see that
the NB1-beta model is the model that provides
the better fit to our data.
This analysis can be illustrated differently. In-

deed, we can do an intuitive analysis of the log-
likelihood by models, by separating this statistic
by year. To smooth the random variations be-
tween year, we analyze and illustrate the cumu-
lative difference of fit between each remaining
model and the Poisson distribution, which does
not imply dependence between contracts of the
same insured. Because the models do not involve
the same number of parameters, a correction fac-
tor AIC is also used. Figure 2 shows the values
of a pseudo-AIC by year (versus the Poisson dis-
tribution) for each of the remaining models pre-
sented.
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Figure 2. Values of a pseudo-AIC by year

As the number of experience years grows, we
can see that the fits of the random effects models
are clearly better than the Poisson distribution.
Indeed, as the past experience increases, other
models show their limited predictive capacity,
because the improvement in the fit stays propor-
tional with the number of years, as they are only
based on the number of claims of the last insured
period. By opposition, the random effects mod-
els seem to improve more and more in their fit
as the number of insured periods grows.

9.2.2. Vuong test

Random effects models clearly show a better
fit than the other models. To see if the difference
in the log-likelihood between the MVNB model
(which shows approximately the same fit as
the Pseudo MVNB1) and the NB1-beta model
is statistically significant (as illustrated in the
seventh year of the last graph), a test based on
the difference in the log-likelihood can be per-
formed.
For independent observations, a log-likelihood

ratio test for non-nested models developed by

Vuong (1989) and generalized by Rivers and
Vuong (2002) can be used to see if the NB1-beta
model is statistically better than the other models.
This test is based on the likelihood ratio approach
of Cox (1961), with a correction that corresponds
to the standard deviation of this difference. As
opposed to Boucher, Denuit, and Guillén (2007),
who applied directly the Vuong test on all avail-
able models, this test cannot be applied directly
on our models since some observations–all con-
tracts of the same insured–are not independent.
However, as proposed by Golden (2003), this
non-nested models test can be generalized quite
directly to correlated observations. It can be ex-
pressed as

TLR,NN =

p
nT
³P

i

P
t `(fi,t,

ˆ̄
1)¡ `(gi,t, ˆ̄2)

´
¾TLR,NN

,

(9.1)

where the loglikelihood function for the distribu-
tion f is defined as

`(fi,t,
ˆ̄
1) =¡ log[Pf(ni,t j ni,t¡1, : : : ,ni,1)]:

(9.2)
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Then, for observation at time t, conditional
log-likelihood must be expressed based on ex-
perience 1,2, : : : , t¡ 1, using predictive distribu-
tions. The parameter ¾TLR,NN is the square root of
the discrepancy variance and is expressed as:

¾2TLR,NN =
1
n

nX
i=1

TX
t=1

TX
j=1

(`(fi,t,
ˆ̄
2)¡ `(gi,t, ˆ̄2))

£ (`(fi,j , ˆ̄2)¡ `(gi,j , ˆ̄2)): (9.3)

The expression of the variance is closely re-
lated to the one obtained with the standard Vuong
test, except that the covariances between corre-
lated observations are considered. Note that even
if the generalization of this test for correlated ob-
servations share close similarities to the Vuong
test, intermediary tests must be performed to en-
sure that the test is valid (Golden 2003). First,
a necessary but not sufficient condition to estab-
lish asymptotic properties of this test involves the
calculation of the following matrix:

B =

"
Bf,f Bf,g

Bg,f Bg,g

#
, (9.4)

where

Bf,g =
1
n
=

nX
i=1

TX
t=1

TX
j=1

r`(fi,t, ˆ̄1)r`(gi,j , ˆ̄2):

(9.5)

The matrix B must be positive definite or, at
least, must converge to it [see Golden (2003) for
details]. Since the variance of the difference be-
tween log-likelihood involves covariance terms,
the second intermediary step is done to avoid
a situation where ¾TLR,NN can be equal to zero.
It involves the calculation of the estimated dis-
crepancy autocorrelation coefficient and is de-
fined as:

r̂ =

Pn
i=1
PT
t=1
PT
j=1,j 6=t(`(fi,t,

ˆ̄
1)¡ `(gi,t, ˆ̄2))(`(fi,j , ˆ̄1)¡ `(gi,j , ˆ̄2))

2T
Pn
i=1
PT
t=1(`(fi,t,

ˆ̄
1)¡ `(gi,t, ˆ̄2))2

(9.6)

The adapted test of Golden (2003) assumes
that r̂ 6=¡1=(2T), so this assumption must be ver-
ified to ensure that the test is correctly specified.
The last intermediary test verifies that the two
models cannot be equal. Since we work with
non-nested models and we already verify that
models cannot be equal by simultaneous param-
eter restrictions, this step is not needed in our
case.
To apply the adapted Vuong test for correlated

observations, neither of the two models has to
be true. The null hypothesis of the test is that
the two models are equivalent, expressed as H0 :
E[`(f, ˆ̄1)¡ `(g, ˆ̄2)] = 0. Under the null hypoth-
esis, the tests converge to a standard normal dis-
tribution. Rejection of the test in favor of the dis-
tribution f happens when TLR,NN > c, or in favor
of g if TLR,NN < c, where c represents the critical
value for some significance level.
Modification of this test is needed in the case

where the compared models do not have the same
number of parameters. As proposed by Vuong
(1989), we may consider the following adjusted
statistic:

Ĉ(μ) = C(μ)+K(f,g),

where K(f,g) is a correction factor based on
the difference between the information criteria
(seen in the preceeding subsection) of models f
and g.
For the MVNB against the NB1-beta models,

the Vuong test, adapted to correlated observa-
tions, shows that the NB1-beta model is statisti-
cally better than the MVNB model. Indeed, the
resulting test involves a p-value of less than 0.5%
for the adapted tests (AIC and BIC). Intermedi-
ary tests show that the matrix B is positive def-
inite, while the value of the estimated discrep-
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ancy autocorrelation coefficient is far from ¡1=14
since it equals 0.07.

10. Conclusion

A wide selection of models can be used to
model the dependence that can exist between
contracts of the same insured, and each model
can be interpreted differently. We showed that the
choice of a model has a great impact on the pre-
dictive premiums, that is to say, premiums based
on claim experience. We also showed that, de-
spite their initial intuitive appeal, some models
cannot be used. We conclude that the random
effects models are the better ones to fit the data
since they are more flexible to compute the next
year premium, with dependence not only on the
past insured period but on the sum of all re-
ported claims. More precisely, we saw that the
NB1-beta model exhibits statistically the better
fit. Formally, this choice of the best distribu-
tion describing our data has been supported by
specification tests for nested or non-nested
models.
All the models analyzed were based on gen-

eralizations of Poisson and NB1 distributions.
Models seen in this paper could be applied on
other claim count distributions, such as Hurdle
or zero-inflated models that provided good fit for
cross-section data (Boucher, Denuit, and Guillén
2007). A study in the vein of the present one
could also be performed for claim severities to
propose interpretations of the process that gen-
erates the dependence between claim amounts.
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