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What Actuaries Should Know 
About Nonparametric Regression 

With Missing Data
by Sam Efromovich

ABSTRACT

To predict one variable, called the response, given another vari-

able, called the predictor, nonparametric regression solves this 

problem without any assumption about the relationship between 

these two random variables. Traditional data, used in nonpara-

metric regression, is a sample from the two variables; that is, it 

is a matrix with two complete columns. In practical applications 

some observations in that matrix may be missed, and what can 

be done in this case is the subject of this paper. Three possible 

scenarios are considered. First, if the probability of missing an 

observation depends on its value, then no consistent estimation 

is possible. Second, if all predictors are available and the proba-

bility of missing the response depends on value of the predictor, 

then a nonparametric regression, based on complete cases, is 

optimal. Third, if all responses are available and the probability 

of missing the predictor depends on value of the response, then 

a special estimation procedure, based on all available observa-

tions, is optimal. The results are illustrated via examples, and 

possible extensions are discussed.
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b0 + b1x and then estimates parameters b0 and b1. 
While classical parametric regression and its actuarial 
applications are well known (see Frees 2010; Frees,  
Derrig and Meyers 2014; and Charpentier 2015), 
modern nonparametric regression is less familiar to 
actuaries. As a result, let us begin with presenting 
several examples that shed light on nonparametric 
methodology and a variety of casualty actuarial appli-
cations. A primer on nonparametric series estimation 
will be presented in Section 2.

Figure 1 presents two familiar datasets. For now 
let us ignore curves and concentrate on observations 
(pairs (Xl, Yl), l = 1, 2, . . . , n) shown by circles. A plot 
of the pairs (Xl, Yl) in the xy-plane (so-called scatter-
gram or scatter plot) is a useful tool to get a first 
impression about a data at hand. Let us begin with 
analysis of the top diagram. The scattergram exhibits 

1. Introduction

Consider a pair of variables (X, Y ). Suppose that 
we are interested in prediction of Y given X = x. The 
optimal predictor m(x), which minimizes the con-
ditional mean squared error E{(Y - µ(x))2X = x} 
among all possible predictors µ(x), is the conditional 
expectation:

m x Y X x yf y x dyY X: . (1.1)E ∫( ) { } ( )= = =

Here fYX(yx) is the conditional density of Y given X.  
If no assumption about the shape of m(x) is made 
then (1.1) is called the nonparametric regression of 
response Y on predictor X. The familiar alternative 
to the nonparametric regression is the parametric lin-
ear regression when the actuary assumes that m(x) :=  

50 60 70 80 90

10
00

0
20

00
0

30
00

0

Automobile Insurance Claims

Age of Operator

A
m

ou
nt

 P
ai

d

0 20 40 60 80 100

50
10

0
15

0
20

0

US Monthly Housing Starts

Month

H
ou

si
ng

 S
ta

rt
s

Figure 1. Linear and nonparametric regressions for two classical  
datasets. Observations are shown by circles, linear and 
nonparametric regressions by solid and dashed lines, respectively. 
Sample sizes in the top and bottom diagrams are 124 and 108, 
respectively.
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time at the data and you may notice that this conclu-
sion has merit.

The bottom diagram in Figure 1 presents monthly 
housing starts from January 1966 to December 1974; 
this is the R test data. An interesting discussion of 
actuarial values of housing markets can be found in 
Wang and Chen (2014). While the top diagram pre-
sents a classical regression data of independent pairs 
of observations, here we are dealing with a time series 
where each response Yl is recorded at a specific time 
Xl, and Xl + 1 = Xl + 1. The simplest classical decompo-
sition model of a time series is

Y m X S Xl l l l (1.2)( ) ( )= + + ε

where m(x) is a slowly changing function known as 
a trend component, S(x) is a periodic function with 
period T (that is, S(x + T ) = S(x)) known as a sea-
sonal (cyclical) component (it is also customarily 
assumed that the sum of its values over the period 
is zero), and el are random and possibly dependent 
components with zero mean; see a discussion in 
Chapter 5 of Efromovich (1999). While a traditional 
time series problem is to analyze the random com-
ponents, here we are interested in estimation of the 
trend. Note that E(YlXl = x) = m(x) + S(x), by its 
definition the trend is a “slowly” changing (with 
respect to the seasonal component) function, and 
therefore the problem of interest is the regression 
problem with so-called fixed design (compare with 
the random design in the top diagram) when we 
are interested in a low-frequency component of the 
regression; see more in Section 5.1 of Efromovich 
(1999). Again, please use your imagination and try 
to draw the trend m(x) via the scattergram. Note that 
the period of seasonal component is 12 months and 
this may simplify the task. Now look at the solid line 
(linear regression is a classical tool used for finding 
trends); it clearly does not fit the data. Then compare 
with the dashed line (nonparametric trend). The non-
parametric trend clearly exhibits the famous boom 
and the tragic collapse of the housing market in the 
seventies, and it nicely fits the scattergram by show-
ing two modes in the trend.

a portion of the automobile insurance claims data 
from a large midwestern (US) property and casualty 
insurer for a private passenger automobile insurance 
(Frees 2010, pp. 16, 135). The dependent variable Y is 
the amount paid on a closed claim, in (US) dollars, and 
the predictor X is the age of the operator. Only claims 
larger than $10,000 are analyzed (two claims larger 
than $60,000 are omitted as outliers). Because the 
predictor is the random variable, the regression (1.1)  
may be referred to as a random design regression.

An appealing nature of the regression problem is 
that one can easily appreciate its difficulty. To do this, 
try to draw a curve m(x) through the middle of the 
cloud of circles in the scattergram that, according to 
your own understanding of the data, gives a good fit 
(describes a relationship between X and Y) according 
to the model (1.1). Clearly such a curve depends on 
your imagination as well as your understanding of 
the data at hand. Now we are ready to compare our 
imagination with statistical estimates. The solid line 
shows us the classical linear least-squares regres-
sion. It indicates that there is no statistically signifi-
cant relationship between the age and the amount 
paid on a closed claim (the estimated slope of 14.22 
is insignificant with p-value equal to 0.7). Using 
linear regression for this data looks like a reasonable 
approach, but let us stress that this is up to the actuary 
to justify that the relationship between the amount 
paid on a claim and the age of the operator is linear 
and not of any other shape. Now let us look at the 
dashed line which exhibits the nonparametric esti-
mate whose shape is defined by data. How this esti-
mate is constructed will be explained in Section 2. 
The nonparametric regression exhibits a pronounced 
shape which implies an interesting conclusion: the 
amount paid on closed claims is largest for drivers 
around 68 years old and then it steadily decreases 
for both younger and older drivers. (Of course, it 
is possible that drivers of this age buy higher lim-
its of insurance, or there are other lurking variables 
that we do not know. If these variables are available 
then a multivariate regression, discussed in Section 6,  
should be used.) Now, when we have an opinion of 
the nonparametric estimate, please look one more 
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for instance, X may be general economic inflation, or 
deductible, or age of roof, or credit score, etc. We are 
interested in estimation of the conditional probability 
P(Y = 1X = x) = m(x). On first glance, this problem 
has nothing to do with regression, but as soon as we 
realize that Y is a Bernoulli random variable then we 
get the regression E{YX = x} = P(Y = 1X = x) = m(x). 
The top diagram in Figure 2 illustrates this problem. 
Here X is uniformly distributed on [0, 1] and then  
n = 200 pairs of independent observations are generated 
according to Bernoulli distribution with P(Y = 1X) =  
m(X) and m(x) is shown by the short-dashed line (this 
function is a normal density). Because the regression 
function is known, try to recognize it in the scatter-
gram. Linear regression, as it could be expected, gives 
us no hint about the underlying regression while the 
nonparametric estimate (which will be explained in 

Unfortunately, analysis of real data does not allow us 
to appreciate how well a particular estimator performs. 
To overcome this drawback, statisticians use numerical 
simulations with a known underlying regression func-
tion. We are going to use this approach to shed addi-
tional light on nonparametric estimation and several 
attractive actuarial applications of the regression. We 
begin with the study of the likelihood (probability) of 
an insurable event, which may be a claim, payment, 
accident, early prepayment on mortgage, default on 
a payment, reinsurance event, early retirement, theft, 
loss of income, etc. Likelihood of an event is the most 
fundamental topic in actuarial science, and the likeli-
hood may depend on observed variables; see chapter 9  
in Klugman, Panjer and Willmot (2012). Let Y be the 
indicator of an insurable event (claim), and X be a 
covariate which may affect the probability of claim; 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Likelihood of Claim

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
12

Number of Claims

X

Y

Figure 2. Linear and nonparametric regressions for simulated 
data, n = 200. Observations are shown by circles, underlying 
regression functions, linear and nonparametric regressions by 
short-dashed, solid and long-dashed lines, respectively.
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erature). It involves eliminating all records with 
missing values on any variable. Many statistical 
packages, including R, use this as the default solu-
tion to missing values. This method is the simplest, 
intuitively appealing and, as we will see shortly, 
for some settings it is even optimal but for others 
may imply inconsistent estimation.

2. Imputation is a common alternative to the dele-
tion. It is used to “fill in” a value for the missing 
data using the other information in the database. 
A simple procedure for imputation is to replace 
the missing value with the mean or median of 
that variable. Another common procedure is to 
use simulation to replace the missing value with 
a value randomly drawn from the records having 
values for the variable. It is important to stress 
that imputation is only the first step in any estima-
tion and inference procedure. The second step is 
to propose an estimator and then complement it 
by statistical inference about the properties of the 
estimator, and these are not trivial steps because 
imputation creates dependence between observa-
tions. Warning: the fact that a complete data is cre-
ated by imputation should be always clearly cited 
because otherwise a wrong decision can be made 
by an actuary who is not aware about this fact. As 
an example, let us have a sample from a normal 
distribution (µ, s2), of which some observations 
are missed. Suppose that an actuary is interested in 
the estimation of the mean µ, and an oracle helps 
by imputing the underlying µ in place of the lost 
observations. This is an ideal imputation, and then 
the actuary correctly uses the sample mean to 
estimate µ. However, if another actuary will use 
this imputed (and hence complete) sample to esti-
mate the variance s2, the classical sample variance 
estimate will yield a biased estimate.

3. Multiple imputation is another popular method. It 
is based on repeated imputation–estimation steps 
and then aggregation (for instance, via averaging) 
of the estimates. Multiple imputation is a compli-
cated statistical procedure which requires a rigor-
ous statistical inference.

Section 2) nicely exhibits the unimodal shape of the 
regression.

Now let us consider our second simulated exam-
ple where Y is the number of claims (events) of inter-
est, or it may be the number of noncovered losses, 
or payments on an insurance contract, or payments 
by the reinsurer, or defaults on mortgage, or early 
retirees, etc. For a given X = x, the number of claims 
is modeled by Poisson distribution with parameter 
l(x); that is, P(Y = kX = x) = e-l(x) [l(x)]k/k!, k = 0, 
1, 2, . . . The problem is to estimate l(x), and because 
E{YX = x} = l(x) this problem again can be con-
sidered as a regression problem. A corresponding 
simulation with n = 200 observations is shown in the 
bottom diagram of Figure 2. The underlying regres-
sion function is shown by the short-dashed bimodal 
line created by a mixture of two Gaussian densities. 
Again, try to use your imagination and draw a regres-
sion curve through the scattergram, or even simpler, 
try to recognize the regression function in the cloud 
of circles. The nonparametric estimate is shown by the 
long-dashed curve and it does exhibit two modes. 
The estimate is not perfect but it does correspond to 
the scattergram.

In summary, nonparametric regression can be used 
for solving a large and diverse number of actuarial 
problems. We will continue our discussion of the 
nonparametric regression in the next sections, and 
now let us turn our attention to the main topic of 
this paper—regression estimation with missing data 
when values of some responses and/or predictors are 
not available. Francis (2005, sec. 4.2), in the review 
of methods for dealing with missing data in insur-
ance problems, writes that “. . . In large insurance 
databases, missing data is the rule rather than the 
expectation. It is also not uncommon for some data 
to be missed in database used for smaller analytical 
projects . . .” That review presents several methods 
that are used by actuaries to adjust for the missing 
values when performing an analysis:

1. The most common approach is referred to as a 
complete-case approach (case wise or list wise 
deletion is another name often used in the lit-
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2. Primer on nonparametric 
orthonormal series regression 
estimation for complete data

We are interested in estimating a regression func-
tion m′(x) on interval x ∈ [b1, b1 + b2] using a sample 
(X′1, Y1), . . . , (X′n, Yn) from (X′, Y ). It is assumed that 
[b1, b1 + b2] is the support of X′ and hence b1 ≤ X′(1) 
≤ X′(n) ≤ b1 + b2 with X′(l) being a traditional notation 
for ordered predictors. (If [b1, b1 + b2] is a subset of 
the support then in what follows one may consider 
YlI(X′l ∈ [b1, b1 + b2]) in place of Yl with no other 
changes in the proposed estimator. Here and in what 
follows I(z) is the indicator.) It is convenient to trans-
late [b1, b1 + b2] onto a standard interval, say [0, 1]. 
We can always do this by defining X := (X′ - b1)/b2  
and then estimating m(x) := m′(b2(x + b1)). From now 
on we consider the pair (X, Y), with X being sup-
ported on [0, 1], and estimate the regression function 
m(x) = E{YX = x}.

Introduce a classical orthonormal basis j0(x) = 1, 
jj(x) = 21/2 cos(pjx), j = 1, 2, . . . on [0, 1]. Note that 
∫1

0 jj(x)ji(x)dx = I( j = i). Then any square integrable 
function m(x) that is a function satisfying ∫1

0 [m(x)]2 
dx < ∞ can be written as a Fourier series

m x xj j
j

. (2.1)
0

∑( ) ( )= θ ϕ
=

∞

In (2.1) the parameters

m x x dxj j: (2.2)
0

1

∫ ( ) ( )θ = ϕ

are called Fourier coefficients of function m(x). Then 
the Parseval identity

m x dx j
j

∫ ∑[ ]( ) = θ
=

∞

(2.3)2

0

1 2

0

allows us to write down the integral of a squared func-
tion via sum of its squared Fourier coefficients. For 
now this is all that we need to know about orthonormal 
basis and series expansion.

4. If the distribution of the data is known, then 
the maximum likelihood method may be used, 
and its numerically friendly EM (expectation- 
minimization) algorithm is convenient for models 
with missing data. Rempala and Derrig (2005) 
give a nice overview of the EM with applications 
to insurance problems.

A general discussion of statistical (primarily para-
metric) analysis with missing data can be found in 
Little and Rubin (2002) and Enders (2010). There 
are several classical scenarios for missing data, for 
which rather general conclusions are made:

1. If missing occurs purely at random then the miss-
ing mechanism (and the corresponding data) is 
called MCAR (missing completely at random). 
The complete-case approach is typically optimal 
for MCAR data.

2. If the probability of missing depends on always 
available (never missing) variable then the missing 
mechanism is called MAR (missing at random). 
Consistent estimation is possible and optimal esti-
mation procedure depends on an underlying model.

3. In a general case, when the probability of missing 
may depend on the value of missing variable, the 
missing mechanism is called MNAR (missing not 
at random). Typically no consistent estimation is 
possible for MNAR data.

The context of the paper is as follows. Section 2 
explains how to construct an optimal nonparametric 
regression estimator for the case of data with no miss-
ing values. Here an orthogonal series method, based 
on classical cosine basis, is explained because it 
implies best constant and rate of the risk convergence. 
The fact that the estimator attains the best constant is 
critical because MAR does not affect rate, hence we 
must explore the constant to point upon best estima-
tor. Sections 3 and 4 discuss nonparametric regres-
sion estimation for MAR data with missing responses 
and predictors, respectively. Numerical analysis of 
real and simulated datasets complements theoretical 
results. Section 5 presents a discussion of results and 
some open problems.
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numerical integration is recommended in Section 4.2 
of Efromovich (1999)

s Y x dxj l jX

X

l

n

l s

l sˆ : 2 , (2.6)1

1
∫∑( ) ( )θ = ϕ( )

−

= ( )

( )

−

+

where Y(l) are responses corresponding to X(l) and, to 
take care about boundaries, we define artificial X(l) := 
2X(1) - X(2+l) for l < 1 and X(l) := 2X(n) - X(2n-l) for l > n,  
and s is the rounded-up (1 + ln(ln(n + 20)))/2. The 
underlying idea of this special numerical integra-
tion is that X(l+s) - X(l-s) is inversely proportional to  
nfX(X(l))/(2s), and then the estimator is similar to (2.5). 
Furthermore, the numerical integration can be also 
used for a fixed-design regression such as in the time 
series example of monthly housing starts presented in 
the introduction. As a result, we get a universal esti-
mator for both random and fixed designs.

To finish our discussion of the first step, we note that 
via a standard calculation (for details, see Section 4.2 
in Efromovich 1999) we get for some constant d,

E dn o oj j n j
ˆ 1 1 1 . (2.7)

2 1{ }( ) [ ]( ) ( )θ − θ = + +−

Here and in what follows we use a standard notation 
os(1) for vanishing sequences as s → ∞. For instance, 
if Y = m(X ) + s(X)x and x is independent standard 
normal random variable, then d = ∫1

0[(s(x))2/f X(x)]
dx. If one wants to estimate d, then this can be done 
either using a corresponding formula for d or using 
the universal method based on the following math-
ematical result.

Suppose that function g(x) is differentiable on [0, 1]. 
Using sin( jp) = 0 for j = 1, 2, . . . we get via integration 
by parts,

∫

∫ ( )

( ) ( )

( ) ( )

θ = ϕ

= − π π  ≥− −

g x x dx

j dm x dx jx dx j

j j

2 sin , 1.

(2.8)

0

1

1 1 1 2

0

1

We conclude that Fourier coefficients of a differ-
entiable function decrease and decrease fast. The 

Our aim is to estimate the regression function m(x) 
via the expansion (2.1) where the infinite number of 
unknown Fourier coefficients should be replaced by 
their estimates. This explains the terminology “non-
parametric series estimation.” There are two steps in 
nonparametric series estimation:

1. Suggest a reasonable estimator of qj. Note that 
this is a traditional parametric problem.

2. Plug into the expansion (2.1) a finite (but possi-
bly increasing with sample size n) number of esti-
mated Fourier coefficients and set all others equal 
to zero.

We begin with the first step of estimating qj. In what 
follows we present two popular methods of estima-
tion. The former is the classical method of moments 
when the population mean is estimated by the sample 
mean. This method is convenient for a random design 
regression (the predictor X is a random variable with 
marginal density fX(x)). In this case, using (1.1), the 
Fourier coefficient can be written as the expectation,

E E

∫

∫

( ) ( )

{ } ( ) ( )
( )

θ = ϕ

= = ϕ =
ϕ








m x x dx

Y X x x dx
Y X

f X

j j

j
j

X . (2.4)

0

1

0

1

Then the method of moments yields the estimator

n
Y X

f X
j

l j l

X
ll

n

: . (2.5)1

1

�
�∑ ( )

( )
θ =

ϕ−

=

Here f
~X is a series estimate of the marginal density. 

Namely, write f X(x) = Σ∞
j=0 k jjj(x) where kj = ∫1

0 f
X(x)

jj(x)dx = E{jj(X)}, and then method of moments 
yields the estimate k~j := n-1 Σn

l=1 j(Xl). More about 
nonparametric density estimate can be found in Sec-
tion 3.1 of Efromovich (1999), and we will see how 
it performs in Section 4.

Instead of using the method of moments, for regres-
sion problems a numerical integration approach is 
an attractive alternative. Remember that qj = ∫1

0 m(x)
jj(x)dx, and we can evaluate this integral using the 
available observations. In particular, the following 



Variance Advancing the Science of Risk

152 CASUALTY ACTUARIAL SOCIETY VOLUME 10/ISSUE 1

Because the integral ∫1

0 m
2(x)dx does not depend on 

J, we can use (2.7) and (2.9) to minimize the MISE 
with respect to J. It is possible to show that this sim-
ple procedure leads to rate but not sharp optimal esti-
mation (the terminology will be explained shortly). 
To improve projection estimator and obtain a sharp 
estimator, we use “shrinked” estimates njq̂j, nj ∈  
[0, 1]. To understand why, let us remember a classical 
statistical assertion (it is verified straightforwardly 
using (2.7)),

E E

dn
o o

j j j j j

j
j

j
j n

* ˆ min ˆ ,

* 1 1 1 . (2.12)

2 2

2

1 2

{ } { }( ) ( )

[ ]( ) ( )

λ θ − θ ≤ λθ − θ

λ =
θ

+ θ
+ +

λ

−

This result yields two popular methods of improving 
the projection estimator. The former is called univer-
sal thresholding where nj = I(q̂2

j ≥ 2 ln(n)d̂n-1). The 
latter uses shrinking coefficients nj which mimic l*

j 
defined in (2.12). It is also possible to combine these 
two methods as explained in Sections 3.3 and 4.2 of 
Efromovich (1999), and this is how the estimator 
supported by R-software of that book is constructed. 
For instance, estimates shown in Figure 2 are: (i) For 
the likelihood of claim m̂(x) = 0.39 - 0.27j3(x) + 
0.18j5(x); (ii) For the number of claims m̂(x) = 3.17 
- 0.32j1(x) - 1.35j2(x) + 0.53j3(x) - 0.54j4(x) + 
0.17j5(x) + 0.49j5(x) - 0.52j6(x) + 0.19j7(x). Cor-
responding d̂  are 0.18 and 3.9, so we can compare 
levels of difficulty for these two regressions.

Finally, let us finish this primer with a theoreti-
cal result which explains the notion of sharp-minimax 
nonparametric estimation. Introduce a class of 
a-differentiable on [0, 1] Sobolev functions

S

∑

∑( )
( )

( ) ( )

( )
α =

= θ ϕ

+ π θ ≤





















∞

∞
α

Q

m m x x

j Q

j
j j

j
j

, :

: ,

1

. (2.13)
=0

=0

2 2

Consider a random design regression Y = m(X) + 
s(X)e with e being standard normal and independent 

interested reader can continue (2.8) for the case of 
twice-differentiable g(x) and check that in this case qj 
decreases proportionally to j-2.

Now we can explain the universal method of the 
estimation of d which is based on (2.7) and (2.8). 
Consider two increasing sequences L1,n and L2n and 
define the universal estimate

∑= θ−

+

+

d nL n
j L n

L n L n

j
ˆ : ˆ . (2.9)2

1

= 1 1

1 2
2

Only the product d̂n-1 is used by a series estimator, 
and this explains why the factor n in (2.9) does not 
“blow up” calculations. More about the universal 
method of the estimation of the parameter d and its 
statistical properties can be found in Efromovich 
and Pinsker (1996) and Section 4.1 in Efromovich 
(1999).

Now let us explain the second step of choosing 
a finite number of Fourier coefficients used by the 
series estimator. First of all, according to (2.8), an 
estimator should be based on low-frequency com-
ponents. This leads us to a preliminary projection 
estimator m̃(x, J) := ΣJ

j=0 q̂jjj(x) where J is called a 
cutoff. Its mean integrated squared error (MISE) 
can be expressed via Fourier coefficients using the 
Parseval identity (2.3),

�m x m x dx
j

J

j j
j J

j
ˆ .

(2.10)

0

1 2

=0

2

>

2E E∫ ∑ ∑{ }{ } ( )( )( ) ( )− = θ − θ + θ

Now we would like to find the optimal cutoff which 
minimizes the MISE. To do this we need to avoid an 
analysis of the infinite sum in the right side of (2.10), 
and this is possible to do. The Parseval identity allows 
us to write Σj>J q2

j = ∫1

0 m
2(x)dx - ΣJ

j=0 q2
j, and then we 

can rewrite (2.10) as

�m x m x dx

m x dx
j

J

j j j

E

E

∫

∑ ∫{ }
{ }

( )

( )( ) ( )

( )

−

= θ − θ − θ



 +ˆ . (2.11)

0

1 2

=0

2 2

0

1 2
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vice versa. On the other hand, there are many situ-
ations when we are dealing with a pair of random 
variables and each can be the predictor. Figure 3 pre-
sents such an example. Crosses show n = 441 pairs of 
observations from the WHEL study of women after 
breast cancer surgery (see Pierce et al. 2007). The 
left diagram shows the regression of beta-carotene 
(based on blood test) versus BMI (body mass index), 
while the right diagram shows the same data, only 
now for the regression of BMI on beta-carotene. 
Regression estimates are shown by solid lines. Note 
that a BMI of 18.5 to 25 may indicate an optimal 
weight, a number above 25 may indicate the per-
son is overweight, and a number above 30 suggests 
the person is obese; at the same time an increase 
in beta-carotene decreases the likelihood of breast 
cancer relapse. The shown scattergrams are compli-
cated: there is a huge variability (heteroscedastic-
ity) in both variables and the marginal distributions 
are far from being homogeneous. Now let us look 
at the regression estimates. Overall they indicate a 
negative correlation between the variables (as may 
be expected) but the relationship is far from being 
obvious. Note that the curves resemble neither each 
other nor their inverse functions. The latter is typi-
cal for dependent random variables. As a result, it 
would be wrong to estimate E{YX = x} and then 
try to use this estimate to infer about E{XY = y}. 
This conclusion also holds for linear regression; see 
Casella and Berger (2002).

3. Regression with missing 
responses

The traditional model of regression with missing 
responses assumes that we observe a sample from a 
triplet (X, AY, A). Here the indicator A of availabil-
ity of the response is the Bernoulli random variable 
which takes on values zero or one, and if A = 1 then 
the response is available (observed) and otherwise it 
is not available (missed). (The reader familiar with 
R-software can recall that it uses NA (not available) 
as a logical constant to denote a missing value.) In 
general there may be dire consequences of missing 

of X, s(x) and fX(x) being differentiable and fX(x) > c 
> 0 on [0, 1]. Then the following lower bound for the 
MISE is valid,
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where the infimum is taken over all possible estima-
tors based on a sample of size n, d := ∫1

0[(s(x))2/fX(x)]dx  
and

P Q Q, : 1 2 1 .

(2.15)
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Furthermore, there exists a series estimator (discussed 
earlier) whose MISE attains this lower bound. This is 
why (2.14) is called a sharp minimax lower bound, 
constant P is called sharp, and n-2a/(2a+1) is called opti-
mal rate of the MISE convergence. The interested 
reader can verify, using (2.7), (2.10) and (2.13), that a 
projection estimate with cutoff J = n1/(2a+1) is rate opti-
mal but not sharp. There are many different nonpara-
metric estimators (kernel, spline, local polynomial, 
nearest neighbor) that are rate optimal but only a series 
estimator is known to be sharp minimax. As we shall 
see shortly, this property becomes important for the 
case of missing data.

For the case where the regression error e is not 
normal, a similar lower bound exists with the coef-
ficient d depending on a corresponding Fisher 
information (remember that 1/s2 is the Fisher infor-
mation of normal random variable with variance s2);  
see Efromovich (1996) and Chapters 3 and 7 in 
Efromovich (1999).

Remark 1 (Causality in Regression). Regres-
sion does not shed light on causality, and this is up 
to the actuary to resolve this issue. The latter is not 
an issue for all the above-presented examples where 
causality is plain. For instance, it is clear that the 
age of driver may be a predictor variable for a car 
accident and the corresponding loss amount, but not 
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(and, as a result, the conditional expectation) unless 
we know h(y), and the latter is typically not the case. 
As a result, in general (3.1) precludes us from esti-
mation of the regression function. Recall that in the 
introduction this setting was called missing not at 
random (MNAR), and more about MNAR can be 
found in Little and Rubin (2002) and Enders (2010). 
Discussion of MNAR is beyond the scope of this 
paper, and let us just mention that a possible solution 
is based on finding another always observed variable V  
which makes setting MAR; that is, we get P(A =  
1X, Y, V) = P(A = 1X, V).

In what follows we restrict our attention to the 
case of MAR responses when

A X x Y y

A X x h x c

P

P

( )

( ) ( )

= = =

= = = = > >

1 ,

1 : 0. (3.3)

responses. For instance, suppose that the conditional 
probability of availability of the response depends on 
its value; that is,

A X x Y y h y1 , . (3.1)P ( ) ( )= = = =

Let us show that in this case the regression function 
is not identifiable. Indeed, the joint (mixed) density 
of the triplet can be written as (here and in what fol-
lows a ∈ {0, 1}),

f x ay a h y f y x f x

h y f y x dy f x
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The joint distribution of the triplet, as a function in 
y, depends on the product h(y)f YX(yx) and there is 
no way to estimate the conditional density f YX(yx) 
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Figure 3. Nonparametric regression estimates for complete data. 
The same dataset of size n = 441 is shown in both diagrams by 
crosses, the solid lines show nonparametric regression estimates.
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As a result, we can always use a complete-case 
approach to solve the problem of MAR responses. 
Can this approach be improved by taking into account 
all predictors? There are a number of publications 
showing, both theoretically and empirically, that a  
complete-case approach can be improved via an 
appropriate imputation (recall our discussion of impu-
tation in the introduction) and then using a standard 
nonparametric regression estimator. In particular, ker-
nel smoothing is explored in Chu and Cheng (1995), 
nearest neighbor imputation is considered in Chen 
and Shao (2000), semiparametric estimation is dis-
cussed in Wang et al. (2004), nonparametric multiple 
imputation is discussed in Aerts et al. (2002), empiri-
cal likelihood over the imputed values in Wang and 
Rao (2002), local polynomials in Gonzalez-Manteiga 
and Perez-Gonzalez (2004), and local M-smoother in 
Boente et al. (2009). For instance, Boente et al. (2009) 
compared a simplified local M-smoother, based only 
on complete cases, with an imputed local M-smoother.  
The conclusion is that both estimators are consistent 
and robust, the imputed estimator is computationally 
more expensive but overall its performance is better.  
A similar approach is used in all above-mentioned 
research papers where a reasonable complete-case 
estimator is compared with a proposed estimator based 
on imputation.

To the contrary of the conclusion made in the 
above-cited literature, Efromovich (2011a) shows 
that the complete-case approach can perform on par 
or better than any other method based on all predic-
tors. Let us explain how this result is established and 
why there is the controversy. It is known that missing 
responses do not affect the rate of the MISE conver-
gence; hence to find an optimal estimator we need 
to find a sharp constant (remember our discussion 
about sharp constants in Section 2). Under the addi-
tional assumption that function h(x) is differentiable 
and h(x) > c > 0 on [0, 1], it is shown in Efromovich 
(2011a) that the lower bound (2.14), with m̆  based on 
a sample of size n from (X, AY, A), holds with new  
d = ∫1

0[(s(x))2/(h(x)f X(x))]dx. Then it is established 
that the series estimator of Section 2, based only on 

Note that if A = 0 then the response is missed, but the 
predictor is available and the probability of missing 
depends only on the value of the always observed 
predictor.

Let us show that in the MAR case the problem of 
nonparametric regression has a solution, and further-
more this solution can be based only on complete 
pairs. Write the joint (mixed) density of the triplet,
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It follows from (3.4) that if we consider only com-
plete pairs then the “new” design density (the prob-
ability density of predictors in complete pairs) is 
gX(x) = h(x)f X(x)/q, where q := ∫1

0 h(x)f X(x)dx =  
P(A = 1) is the probability of observing a complete 
pair (not missing the response); q can be estimated 
by the sample mean estimate q̂ := N/n where N := Σn

l=1 
Al is the total number of complete pairs. This result 
immediately implies that Fourier coefficients qj in 
expansion (2.1) can be written as (compare with (2.4))
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Using the density estimator defined in the paragraph 
below line (2.5), we can use predictors in complete 
pairs and construct the estimator ĝX of gX. Then the 
following method of moments estimate of Fourier 
coefficients (3.5) is proposed (compare with (2.5)),

�
AY A g X

A
j

l

n

l l j l
X

l

l

n

l

ˆ
. (3.6)1

1

∑

∑

( ) ( )
θ =

ϕ
=

=

Note that the estimator (3.6) is based only on com-
plete pairs. Further, because the universal estimator 
(2.6) is based on numerical integration, it also can be 
used here for complete pairs; recall that this estima-
tor can be used for both random and fixed designs. 
More on technical details can be found in Efromovich 
(2011a).
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The conclusion is that only pairs with available 
responses can be considered and then the same non-
parametric regression estimator, suggested for the 
case of data with no missing observations, can be 
used. Furthermore, even if some predictors in incom-
plete pairs are also missed or corrupted (and the 
latter occurs in some datasets), this has no effect on 
the estimation.

Let us complement the theoretical discussion 
by several numerical examples. We begin with the 
WHEL data shown in Figure 3a. Let us simulate  
n = 441 observations of Bernoulli random variable A  
with h(x) decreasing in x. Figure 4 shows us the data: 
crosses and the solid line are the same as in Fig-
ure 3a, circles show realizations of (X, AY) with the 
number N = 312 of complete pairs shown by crossed 
circles. The dashed line is the nonparametric esti-
mate based on complete cases (crossed circles). Note 
that not-crossed circles indicate cases with missed 
responses and observed predictors, while not-circled 
crosses show us missed responses that would not be 
available in a real dataset. As a result, Figure 4 is a 
good tool for understanding the problem, and it indi-
cates that despite the complexity of the setting and 
losing 30% of responses, which is a rather large pro-
portion even for parametric settings (Enders 2010), 
the nonparametric estimator based on complete pairs 
performs well.

Our next example is based on two simulated data-
sets shown in Figure 2 where we know the under-
lying regression functions. Let us make responses 
available according to h(x) = 0.7 + 0.3 cos(px). Com-
plete pairs are shown in Figure 5. First of all, we 
see that the missing mechanism significantly affects  
the number of available complete pairs. The original  
n = 200 observations in two datasets are reduced to 
N = 130 and N = 140 observations, correspondingly 
(note that N is random and depends on a particu-
lar simulation from A). The loss of complete pairs 
is significant and this may force many statisticians 
and actuaries to think about imputation, because it is 
difficult to believe that nothing can be done and the 
information is completely lost, but as we now know, 

complete pairs, is sharp minimax; that is, its MISE 
attains this lower bound and therefore the complete-
case approach is sharp minimax (efficient). As a result, 
any other approach, based on imputation, multiple 
imputation, EM, etc., may match the performance of 
the complete-case approach but not dominate it.

But why do many publications assert that imputa-
tion implies better estimation? The answer is simple. 
Missing does not affect the rate of the MISE conver-
gence, and hence only a sharp constant can point to 
the optimal solution. If the constant is unknown, then 
in the literature a reasonable complete-case estima-
tor is compared with a proposed estimator based on 
imputation and then it is established, both theoreti-
cally and empirically, that the latter is better. Note 
that the root of the controversy is that a reasonable 
(but not optimal) complete-case estimator is used as 
a benchmark for the imputation estimator, and then 
any desired conclusion about superiority of imputa-
tion can be achieved.

One more remark about the above-discussed con-
troversy. Until recently a similar situation has been 
known in parametric regression. Müller (2009), using 
a theoretical analysis of MAR responses, established 
a sharp lower bound and then suggested an estima-
tor, based on a kernel imputation, which attains that 
sharp lower bound. At the same time, a reasonable 
complete-case estimator, considered in the paper, has 
been found to be not sharp minimax. This prompted 
the conclusion of superiority of the imputation for 
parametric regression. But later, Müller and Van 
Keilegom (2012) proposed a complete-case estima-
tor which also attains the lower bound. This conclu-
sion coincides with Efromovich (2011a).

Let us explain, using the likelihood approach, why 
ignoring incomplete pairs does not affect the quality 
of estimation. Consider (3.4) and the case A = a = 0 
when the response is missed. In this case the likeli-
hood is f X,AY,A(x, 0, 0) = (1 - h(x))f X(x) and it does not 
depend on f Y |X. Hence, according to the likelihood 
principle, incomplete pairs contain no information 
about the parameters of interest and the correspond-
ing Fisher information is zero.
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The Bernoulli random variable A is the indicator of 
availability (not missing) of the predictor X; in (4.1) 
the first equality is the assumption, the second equal-
ity is an identity, and the third equality is the defini-
tion of positive function h(y).

Statistical literature devoted to this case of missed 
predictors is practically next to none because the 
problem is dramatically more complicated than pre-
viously considered. Let us mention Nittner (2003) 

there is nothing that can be done about this loss. A 
silver lining is that optimal complete-case estimates, 
shown by long-dashed lines, are relatively (with 
respect to shown in Figure 2) good and exhibit uni-
modal and bimodal shapes of underlying regressions 
shown by the short-dashed lines.

4. Regression with missing 
predictors

Here we are dealing with a sample from the MAR 
triplet (AX, Y, A) where
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Figure 4. Nonparametric regression for the case of missed 
responses. Crosses and the solid line are identical to ones in  
Figure 3a, that is, crosses are n = 441 realizations of (X, Y) for 
the WHEL breast-cancer data. Then a sample of size n = 441 
from Bernoulli A is generated, and circles show realizations of 
(X, AY) with the number of complete pairs N = 312. As a result, 
for the case of missed responses, available complete pairs are 
shown by crossed circles, incomplete observations are shown by 
circles with the corresponding (unavailable for statistical analysis) 
complete pairs shown by crosses. The long-dashed line shows the 
nonparametric estimate based on complete pairs.
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As we see, to identify the conditional density f Y |X(yx), 
and therefore the nonparametric regression, we could 
use only complete pairs if we had known h(y) and 
f X(x). Can these two functions be estimated from all 
available observations? The answer is “yes.” Indeed, 
according to the last equality in (4.1), h(y) is the  
Bernoulli regression of A on Y, and note that all n 
realizations of pair (Y, A) are available. We know 
from the introduction (recall the Bernoulli example 
in Figure 2) and Section 2 how to construct an esti-
mate ĥ(y) of h(y); see also Section 4.5 in Efromovich  
(1999). Note that the estimate ĥ(y) uses all n responses, 
including those from incomplete pairs. To estimate an 
underlying design density fX(x) of the predictor X we 
note that its Fourier coefficients kj = ∫1

0 f
X(x)jj(x)dx 

can be written as

E A AX h Yj j . (4.3)1{ }[ ]( ) ( )κ = ϕ −

where imputation of predictors, based on the near-
est neighbor method, is suggested and studied via 
numerical simulation. Another available publication, 
considered below, is Efromovich (2011b) where the 
optimal solution of this problem is proposed. (It is 
worthwhile to remind the reader that all regression 
settings with issues related to predictors are typi-
cally very complicated. For instance, if predictors are 
observed with measurement errors, then the regres-
sion problem becomes ill-posed and special estima-
tors are required. See the discussion in Casella and 
Berger 2002 and in Section 4.11 of Efromovich 1999.)

To explain the solution, we begin with writing 
down the joint (mixed) density of the triplet,
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Figure 5. Nonparametric regression, based on complete pairs, for 
the case of missed responses. Original data is shown in Figure 2. 
Number N of complete pairs is shown in the diagrams. The short-
dashed, solid and long-dashed lines show underlying regression 
functions, linear and nonparametric regressions, respectively.
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These estimates of Fourier coefficients, according 
to Section 2, allow us to construct a nonparametric 
regression estimator m̌(x).

It is shown in Efromovich (2011b) that this method 
of estimation of regression function is optimal. Let us 
check how the estimator performs. Figure 6 exhibits 
the same data as in Figure 3. The solid line is the 
same as in Figure 3b; it is our nonparametric esti-
mate based on all n = 441 underlying observations 
shown by crosses. It can be considered as an “oracle” 
regression for the case of observations with missed 
predictors. Now let us consider a naive approach 
when only complete pairs are used for estimation. 
Here we have N = 312 complete pairs, shown by 
crossed circles; this is a relatively large number but 
we know that a complete-case approach yields an 

This formula follows from (4.2). Then we can esti-
mate kj by the sample mean estimate
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As was explained in Section 2, Fourier estimates (4.4) 
allow us to construct an estimate f̌ X(x) of the design 
density.

Now we can propose the following sample mean 
estimate of Fourier coefficients of the regression 
function,
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Figure 6. Nonparametric regression for the case of missed 
predictors. Observations, shown by circles and crosses, are the 
same as in Figure 3. The solid, long-dashed and short-dashed 
lines are: the estimate shown in Figure 3b which is based on all 
underlying observations shown by crosses; the recommended 
estimate based on data with missed predictors shown by circles; 
the estimate based on complete cases shown by crossed circles.
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coordinates of circles indicate observed GPAs. Note 
that it is difficult to analyze the GPA in the traditional 
regression scattergram shown in the top diagram, and 
the second diagram dramatically improves the visu-
alization. Note that no value of GPA is missed and 
thus the standard estimator of the R package is used 
here to estimate the density of GPA (Efromovich  
1999). The third from the top diagram allows us to 
visualize the missing pattern of credit scores indi-
cated by values of A. Remember that A = 1 if the 
credit score is available and A = 0 if not, and Y is 
the GPA. It is easy to see that students with lower 
GPA are less likely to provide their credit score. The 
estimated conditional probability h(y) = P(A = 1Y 
= y) is shown by the solid line. Note that the estimate 
does fit the data and corresponds to the visual analy-
sis. The bottom diagram presents an opportunity to 
look at the available credit scores whose values are 
shown by horizontal coordinates of the circles. It is 
clear that circles are skewed to the right. Nonethe-
less, the above-proposed density estimate, shown 
by the solid line, is fairly symmetric. Let us explain 
this outcome. According to the estimated h(y), the 
lower the GPA, the larger the probability of a miss-
ing credit score. Now, if for a moment we return to 
the top diagram, then it indicates that the higher the 
credit score, the higher the GPA. Combining these 
two observations together, we conclude that students 
with a lower credit score (even if they do not know 
it) are more likely to not report it.

Now let us return to the top diagram. If we look 
only on complete pairs (do not take into account 
circles with zero x-coordinates), then the solid line 
clearly does not go through the center of the cloud of 
circles as it would in a standard regression. Remem-
ber Figure 5, where we have seen a similar behavior 
in the simulated example.

The above-discussed nuisance functions in non-
parametric regression with missing predictors may 
be of interest on their own. To understand why, let 
us look at Figure 8 presenting data for class B which 
is another section of the same course. Here 72 stu-
dents provided their GPA but only 50 provided their 
credit score. The structure of Figure 8 is identical to 

inconsistent estimation, and hence it is of interest to 
look at the corresponding estimate. This estimate is 
shown by the short-dashed line. As we see, due to 
not taking into account incomplete pairs, the curve 
is significantly below the “oracle.” This is due to the 
fact that larger BMIs are missed, and we can see this 
via analyzing non-circled crosses that show under-
lying missed predictors. The long-dashed line is the 
recommended estimate. It is not perfect due to the 
right tail, but note that this is the area where we lost 
many observations. Overall, keeping in mind that 
30% of predictors are missed, the outcome is good.

Now let us consider an analysis of other real data 
with missing predictors from a survey of college stu-
dents published in Journal of American Statistical 
Association (Efromovich 2011b). One of the tasks 
of the survey was to understand how the credit score 
can predict the grade point average (GPA). Students 
were asked to get their current credit score on the 
Internet and then report it anonymously together with 
their GPA. Analysis of collected data revealed that 
all students who volunteered to participate in the sur-
vey reported their GPA, but many skipped report-
ing the credit score. (Reports indicating “no credit 
history” were excluded from the analysis and they 
were primarily from foreign students.) A discussion 
of results of the survey with students revealed that 
a missing credit score indicated that a student had  
no time and/or motivation to get the credit score, 
and the latter in no way was related to the value of 
the unknown credit score. As a result, the survey 
data fits the above-considered model of missing pre-
dictors. In what follows, observations are rescaled  
onto [0, 1]2.

The top diagram in Figure 7 exhibits collected data 
for class A. Ninety-two students provided GPA but 
among them only 41 provided their credit score. The 
solid line in the top diagram exhibits the estimated 
regression function that can be used for predicting 
the GPA for a known value of the credit score. We 
will return to this curve shortly, and now let us con-
centrate on estimated “nuisance” functions. The esti-
mated density of the GPA is shown by the solid line 
in the second (from the top) diagram. The horizontal 
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more likely to report their credit score. This is a com-
plete reversal from the missing pattern in class A. 
At the same time, the estimated densities of credit 
scores in both classes look very similar (compare the 
two bottom diagrams in Figures 7 and 8). Finally, 
let us stress that the estimated regression functions, 
describing the relationship between the credit score 
and GPA, are very similar for the both classes (com-
pare solid lines in the top diagrams in Figures 7 and 8). 

Figure 7. Let us examine estimated nuisance func-
tions. The diagram second from the top shows the 
density of GPA. With respect to class A, here more 
students have lower GPA and the density is no longer  
symmetric. This observation indicates that students 
in classes A and B are different. Now let us look at 
the diagram third from the top. This is where we 
observe the most striking difference between the two 
classes. In class B students with a smaller GPA are 
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Figure 7. Analysis of (Credit Score, GPA) data for class A with n = 92 and N = 41.
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regression, are based on a priori assumed shape of 
the regression. In other words, the actuary makes 
a decision about the shape of the regression. Non-
parametric regression is based solely on data,  
requires no input from the actuary about the shape 
of an underlying regression, and for now it is one 
of the pillars of modern statistics. Methodology 
and methods of nonparametric estimation of  
regression functions are well developed for the 

We may conclude that the proposed nonparametric 
regression estimator is robust.

5. Conclusions

1. Regression is the tool which allows the actuary 
to understand how one variable (the response) 
responds to changes in another variable (the 
predictor). Traditional regressions, like a linear  
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Figure 8. Analysis of (Credit Score, GPA) for class B with n = 72 and N = 50.
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If the latter is not the case, then optimal esti-
mation is possible. For the case of a regression 
with missing at random responses, the optimal 
strategy is to simply ignore cases with missing 
responses. For a regression with missing pre-
dictors, a rather special estimation procedure, 
which includes estimation of nuisance functions, 
is optimal.

4. In this paper the case of a univariate predictor is 
considered; this is a prudent first step in any re-
gression analysis. In some cases, like in the auto-
mobile insurance claims example, discussed in 
the introduction, univariate analysis raises ques-
tions about the effect of other covariates and the 
necessity to use a multivariate regression. The 
orthogonal series approach is easily expanded 
to a k-dimensional predictor X := (V1, . . . , Vk). 
The only difference is that now a k-dimensional 
basis jj(X) with j := (j1, . . . , jk) is used; Sec-
tion 6.1 in Efromovich (1999) explains how to 
construct the basis using the tensor-product of 
k univariate bases. Then the estimator (2.5) can 
be still used, and this is the main estimator for 
a multivariate problem. The estimator (2.6), 
which has been so successful for the univariate 
case, unfortunately has no multivariate analog. A 
discussion of sharp minimax estimation for the  
case of complete data can be found in Efromovich 
(1999; 2000). There is a specific difficulty in 
multivariate estimation, which is even referred 
to as the curse of multidimensionality. Namely, 
if a k-dimensional regression function is a-fold 
differentiable with respect to each variable, then 
the MISE convergence slows down to n-2a/(2a+k).  
Nonetheless, a reasonable estimation for small 
sample sizes is still possible and a number of 
elegant methods is proposed to overcome the 
curse; see Chapter 6 in Efromovich (1999).  
Optimal multidimensional regression with missing 
data is an open problem. Based on the presented 
univariate results, it is reasonable to conjecture 
that above-presented main conclusions will remain  
the same.

case of complete data. The introduction presented 
a number of novel applications of nonparametric 
regression in casualty actuarial science, including 
nonparametric estimation of conditional likeli-
hood of insurance event, conditional distribution 
of the number of insurance events, and the trend 
of a nonstationary time series.

2. A primer on nonparametric series regression esti-
mation is presented in Section 2 and the method 
is illustrated via a number of real and simulated 
examples. Nonparametric series estimation is 
the simplest and most efficient method of esti-
mation. Its underlying idea is based on the fol-
lowing 4 steps:
a.  Use an orthonormal basis, with cosine basis 

being the simplest and most convenient one.
b.  Approximate a known regression function by 

a truncated series.
c.  Estimate Fourier coefficients either via method of 

moments or via method of numerical integration.
d.  Choose only statistically significant estimated 

Fourier coefficients. Most popular methods 
of choosing are empirical risk minimization, 
shrinking and thresholding.

The series estimator adapts to unknown smooth-
ness (number of derivatives) of an underlying regres-
sion function as well as to unknown design density. 
The estimator is also sharp minimax because its 
MISE attains the sharp minimax lower bound. Many 
other nonparametric estimators are proposed in sta-
tistical literature, like kernel, spline, nearest neigh-
bor, etc., but only the series one is known to be sharp 
minimax.

3. In many actuarial applications it is typical to 
perform regression analysis with missed data. A 
thorough general discussion of the effect of miss-
ing data on regression estimation is presented. 
The actuary should be aware of several possible 
missing mechanisms. First of all, if the proba-
bility of missing a variable depends on its value  
(for instance, the probability of missing the amount 
paid on a closed claim depends on the amount) the 
missing precludes us from consistent estimation. 
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5. It is not unusual for actuarial data to be modified 
(incomplete) due to truncation and/or censoring. 
Most typical occurrences are due to deductibles 
and limits on payments. While such a modification 
leads to some missing information, truncation and 
censoring are treated by different methods and tra-
ditionally studied by a special branch of statistical 
science called survival analysis. To explain the dif-
ference, let us, for example, consider a regression 
of the amount of payment Y, which is subject to the 
limit on payment Z, on predictor X. This is the case 
of right-censored response and we observe realiza-
tions of the triplet (X, min(Z, Y), I(Y ≤ Z)) where I(z) 
is the indicator function. Now recall the “MAR-
responses” setting of Section 3 where we observe 
realizations of the triplet (X, AY, A). Clearly we are 
dealing with different types of data. Furthermore, 
if the value of the response is not available due to 
right censoring, there is more information about its 
value (we do know that it is at least the limit on 
payment) than in the case of MAR response. It is 
an interesting and open problem to explore the case 
of modified (due to truncation and/or censoring) 
and then possibly missing data.
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