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ABSTRACT

This paper shows how expert opinion can be inserted into
a stochastic framework for loss reserving. The reserving
methods used are the chain-ladder and Bornhuet-
ter-Ferguson, and the stochastic framework follows Eng-
land and Verrall [8]. Although stochastic models have been
studied, there are two main obstacles to their more frequent
use in practice: ease of implementation and adaptability to
user needs. This paper attempts to address these obstacles
by utilizing Bayesian methods, and describing in some de-
tail the implementation, using freely available software and
programs supplied in the Appendix.
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1. Introduction

There has been a lot of attention given to sto-
chastic reserving methods in the actuarial liter-
ature over recent years. Useful summaries can
be found in England and Verrall [8] and Tay-
lor [17]. The reader is strongly recommended
to read England and Verrall [8], which contains
more details on the basic models, before reading
this paper.
There have been many useful things that have

resulted from the recent papers on stochastic loss
reserving: it is now possible to use a variety of
methods to obtain reserve estimates, prediction
intervals, predictive distributions, and so on. It
is possible to use these methods for assessing
the reserving risk, and for modeling a portfolio,
line of business, or a whole company in a dy-
namic financial analysis. In short, the research
published in recent years has been very success-
ful in enhancing the understanding of loss re-
serving methods. This has been done by estab-
lishing stochastic approaches to models that are
commonly used for loss reserving–for exam-
ple, the chain-ladder technique, the Hoerl curve,
and other parametric and non-parametric mod-
els. The stochastic approaches have added fur-
ther models to the range of possible approaches.
To take just one example, England and Verrall
[7] showed how a nonparametric approach can
be used to define a complete spectrum of mod-
els, with the chain-ladder technique at one end
and the Hoerl curve at the other end.
In practical terms, it appears that the stochastic

approaches that have found most popularity are
those that are the simplest to implement. To pick
out two examples, both Mack’s model ([11]) and
the bootstrap ([6] and [5]) are straightforward to
implement in a spreadsheet. In contrast, using the
full statistical model requires the use of statis-
tical software, with some careful programming.
It is not surprising, therefore, that a practitioner
requiring prediction intervals as well as reserve
estimates, or simply wanting to investigate the

use of a stochastic approach, should choose the
methods that are simplest to implement.
One aspect of reserving that has not, so far,

received a great deal of attention in the litera-
ture is the question of intervention in the pro-
cess by the actuary. In other words, the stochas-
tic models have largely concentrated on provid-
ing a framework for the basic, standard methods.
When these are used in practice, it is common to
apply some expert knowledge or opinion to ad-
just the results before they are used. Examples
of situations when intervention may be desirable
is when there has been a change in the payment
pattern due to a change in company policy, or
where legislatures have enacted benefit limita-
tions that restrict the potential for loss develop-
ment and require an adjustment to historical de-
velopment factors.
While it is possible to intervene in some mod-

els, the tendency is for this intervention to disrupt
the assumptions made in the stochastic frame-
work. For example, it is possible to change one
or more of the residuals before applying a boot-
strapping procedure, if the observed residuals ap-
pear to be out of line with what might be ex-
pected. But if this is done, the validity of the
stochastic assumptions may be compromised. To
take another example, consider the chain-ladder
technique. This method involves the estimation
of development factors, but it is often the case
that these are adjusted before being applied to
obtain reserve estimates. If this is done, the esti-
mates from the stochastic model are being aban-
doned, and it is not clear what effect this might
have on the prediction errors. For example, it is
possible to calculate estimation errors for any pa-
rameter estimated in a stochastic model, but what
estimation error should be used for a parameter
that is simply inserted? The only way to address
this properly is to use the Bayesian approach,
and this provides an important motivation for the
ideas discussed in this paper.
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A second area where expert knowledge is ap-
plied is when the Bornhuetter-Ferguson [1] tech-
nique is used. This method uses the develop-
ment factors from the chain-ladder technique, but
it does not apply these to the latest cumulative
losses to estimate the outstanding losses. Instead,
an estimate is first procured separately, using
background knowledge about the claims. This is
then used with the development factors to obtain
reserve estimates. Although not originally for-
mulated using a Bayesian philosophy, the Born-
huetter-Ferguson technique is quite clearly suited
to this approach because of the basic idea of
what it is trying to do: incorporate expert opin-
ion. Thus, we have a second important motiva-
tion for considering the use of Bayesian reserv-
ing methods. These are two very important ex-
amples of reserving approaches commonly used,
which are best modeled using Bayesian methods.
Among previous papers to discuss Bayesian loss
reserving, we would mention de Alba [4] and
Ntzoufras and Dellaportas [13].
One important property of Bayesian methods

that makes them suitable for use with a stochas-
tic reserving model is that they allow us to incor-
porate expert knowledge in a natural way, over-
coming any difficulties about the effect on the
assumptions made. In this paper, we consider the
use of Bayesian models for loss reserving in or-
der to incorporate expert opinion into the pre-
diction of reserves. We concentrate on two areas
as mentioned above: the Bornhuetter-Ferguson
technique and the insertion of prior knowledge
about individual development factors in the
chain-ladder technique. The possibility of includ-
ing expert knowledge is an important property
of Bayesian models, but there is another equally
important point: the ease with which they can
be implemented. This is due to modern devel-
opments in Bayesian methodology based on so-
called “Markov chain Monte Carlo” (MCMC)
methods. It is difficult to emphasize enough the
effect these methods have had on Bayesian statis-

tics, but the books by Congdon ([3] and [2]) give
some idea of the scope of the applications for
which they have been used. The crucial aspect
as far as this paper is concerned is that they are
based on simulation, and therefore have some
similarities with bootstrapping methods that, as
was mentioned above, have gained in popularity
for loss reserving.
It is also important that easy-to-use software

is now available that allows us to implement the
Bayesian models for loss reserving. While it is
straightforward to define a Bayesian model, it is
not always so easy to find the required posterior
distributions for the parameters and predictive
distributions for future observations. However,
this has been made much easier in recent years by
the development of MCMC methods, and by the
software package winBUGS [16]. This software
package is freely available from http://www.mrc-
bsu.cam.ac.uk/bugs, and the programs for car-
rying out the Bayesian analysis for the models
described in this paper are contained in the Ap-
pendix. Section 6.1 provides instructions on
downloading this software. An excellent refer-
ence for actuarial applications of MCMC meth-
ods using winBUGS is Scollnik [15].
The basic idea behind MCMC methods is to

simulate the posterior distribution by breaking
the simulation process down into a number of
simulations that are as easy to carry out as pos-
sible. This overcomes a common problem with
Bayesian methods–that it can be difficult to de-
rive the posterior distribution, which may in
many cases be multidimensional. Instead of try-
ing to simulate all the parameters at once, MCMC
methods use the conditional distribution of each
parameter, given all the others. In this way, the
simulation is reduced to a univariate distribution,
which is much easier to deal with. A Markov
chain is formed because each parameter is con-
sidered in turn, and it is a simulation-based
method: hence the term Markov chain Monte
Carlo. For the readers for whom this is the first
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time they have encountered MCMC methods, it
is suggested that they simply accept that they are
a neat way to get the posterior distributions for
Bayesian models and continue reading the paper.
If they like the ideas and would like to find out
more, Scollnik [15] gives a much fuller account
than is possible here, and the reader is advised
to spend time working through some simpler ex-
amples with the help of the Scollnik paper.
This paper is set out as follows. In Section 2,

we describe the notation and basic methods used,
and in Section 3 we summarize the stochastic
models used in the context of the chain-ladder
technique. Sections 4 and 5 describe the Bayesian
models for incorporating prior information into
the reserving process. In Section 6 we describe
in some detail how to implement the Bayesian
models so that the reader can investigate the use
of these models, using the programs given in the
Appendix. In Section 7 we state some conclu-
sions.

2. Notation and basic methods

To begin with, we define the notation used in
this paper, and in doing so we briefly summarize
the chain-ladder technique and the Bornhuetter-
Ferguson method.
Although the methods can also be applied to

other shapes of data, in order that the notation
should not get too complicated we make the as-
sumption that the data is in the shape of a trian-
gle. Thus, without loss of generality, we assume
that the data consist of a triangle of incremental
losses:

C11 C12 ¢ ¢ ¢ C1n

C21 ¢ ¢ ¢ C2,n¡1
...

Cn1

:

This can also be written as fCij : j = 1, : : : ,n¡
i+1; i = 1, : : : ,ng, where n is the number of ac-
cident years. Cij is used to denote incremental

losses, and Dij is used to denote the cumulative
losses, defined by:

Dij =
jX
k=1

Cik: (2.1)

One of the methods considered in this paper is
the chain-ladder technique, and the development
factors f¸j : j = 2, : : : ,ng. The usual estimates of
the development factors from the standard chain-
ladder technique are

ˆ̧
j =

Pn¡j+1
i=1 DijPn¡j+1

i=1 Di,j¡1
: (2.2)

Note that we only consider forecasting losses
up to the latest development year (n) so far ob-
served, and no tail factors are applied. It would
be possible to extend this to allow a tail factor,
using the same methods, but no specific model-
ing is carried out in this paper of the shape of
the run-off beyond the latest development year.
Thus, we refer to cumulative losses up to de-
velopment year n, Din =

Pn
k=1Cik, as “ultimate

losses.” For the chain-ladder technique, the es-
timate of outstanding losses is Di,n¡i+1( ˆ̧ n¡i+2
¢ ˆ̧n¡i+3 : : : ˆ̧ n¡ 1).
The first case we consider is when these de-

velopment factor estimates are not used for all
rows. In other words, we consider the more gen-
eral case where there is a separate development
factor in each row, ¸i,j . The standard chain-ladder
model sets ¸i,j = ¸j , for i = 1,2, : : : ,n¡ j+1;
j = 2,3, : : : ,n, but we consider allowing the more
general case where development factors can
change from row to row. Section 4 describes
the Bayesian approach to this, allowing expert
knowledge to be used to set prior distributions
for these parameters. In this way, we will be able
to intervene in the estimation of the development
factors, or else simply leave them for the standard
chain-ladder model to estimate.
In Section 5 we consider the Bornhuetter-

Ferguson method. This method uses the develop-
ment factors from the chain-ladder technique, but
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it incorporates knowledge about the “level” of
each row by replacing the chain-ladder estimate
of outstanding claims, Di,n¡i+1( ˆ̧n¡i+2 ˆ̧n¡i+3 : : :
ˆ̧
n¡ 1) by Mi(1=(

ˆ̧
n¡i+2 ˆ̧ n¡i+3 : : : ˆ̧n))( ˆ̧ n¡i+2

¢ ˆ̧n¡i+3 : : : ˆ̧n¡ 1). Here, Mi denotes a value for
the ultimate losses for accident year i that is ob-
tained using expert knowledge about the losses
(for example, taken from the premium calcula-
tion). Thus, Mi(1=(

ˆ̧
n¡i+2 ˆ̧n¡i+3 : : : ˆ̧ n)) replaces

the latest cumulative losses for accident year i, to
which the usual chain-ladder parameters are ap-
plied to obtain the estimate of outstanding losses.
From this, it can be seen that the difference be-
tween the Bornhuetter-Ferguson method and the
chain-ladder technique is that the Bornhuetter-
Ferguson technique uses an external estimate of
the “level” of each row in the triangle, while the
chain-ladder technique uses the data in that row
itself. The Bornhuetter-Ferguson method can be
formulated using a Bayesian approach, with the
information about the external estimates for each
row being used to form the prior distributions, as
in Section 5.
This section has defined the notation used in

the paper, and outlined the basic reserving meth-
ods that will be considered using stochastic ap-
proaches. In order to do this, a brief introduction
to the stochastic models is needed, and this is
given in Section 3.

3. Stochastic models for the
chain-ladder technique

This section gives a brief summary of stochas-
tic models that are related to the chain-ladder
technique. A much fuller account may be found
in England and Verrall [8], and in that paper’s
references and discussion. We consider the chain-
ladder technique and note that it is possible to ap-
ply Bayesian methods in a similar way to other
models.
There are a number of different approaches

that can be taken to the chain-ladder technique,
with various positivity constraints, all of which

give the same reserve estimates as the chain-
ladder technique. The connections between the
chain-ladder technique and various stochastic
models have been explored in a number of pre-
vious papers. For example, Mack [11] takes a
non-parametric approach and specifies only the
first two moments for the cumulative losses. In
Mack’s model the conditional mean and variance
of Dij jDi,j¡1,¸j ,¾2j are ¸jDi,j¡1 and ¾2j Di,j¡1,
respectively. Estimates of all the parameters are
derived, and the properties of the model are ex-
amined. As was stated in the introduction, one
of the advantages of this approach is that the pa-
rameter estimates and prediction errors can be
obtained using a spreadsheet, without having re-
course to a statistical package or any complex
programming. The consequence of not specify-
ing a distribution for the data is that there is no
predictive distribution. Also, there are separate
parameters in the variance that must also be esti-
mated, separately from the estimation of the de-
velopment factors.
As a separate stream of research, generalized

linear models have also been considered. Ren-
shaw and Verrall [14] used an approach based
on generalized linear models [12] and examined
the over-dispersed Poisson model for incremen-
tal losses:

Cij j c,®,¯,'» independent over-dispersed

Poisson, with mean, mij , where log(mij) =
c+®i+¯j , and ®1 = ¯1 = 0:

The term “over-dispersed” requires some
explanation. It is used here in connection with
the Poisson distribution, and it means that if X »
Poisson(¹), then Y = 'X follows the over-dis-
persed Poisson distribution with E(Y) = '¹ and
V(Y) = '2E(X) = '2¹. ' is usually greater than
1–hence the term “over-dispersed”–but this is
not a necessity. It can also be used for other dis-
tributions, and we make use of it for the negative
binomial distribution. As with the Poisson distri-
bution, the over-dispersed negative binomial dis-
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tribution is defined such that if X » negative bi-
nomial then Y = 'X follows the over-dispersed
negative binomial distribution. Furthermore, a
quasi-likelihood approach is taken so that the
loss data are not restricted to the positive inte-
gers.
It can be seen that this formulation has some

similarities with the model of Kremer [9], but it
has a number of advantages. It does not necessar-
ily break down if there are negative incremental
loss values, it gives the same reserve estimates as
the chain-ladder technique, and it has been found
to be more stable than the log-normal model of
Kremer. For these reasons, we concentrate on it
in this paper. There are a number of ways of
writing this model, which are useful in different
contexts (note that the reserve estimates are un-
affected by the way the model is written). In a
strict sense, the formulation requires that the data
are positive–otherwise it is more difficult to jus-
tify and interpret the inferences made from the
data. However, in a purely practical context, it is
useful to note that the estimation does not break
down in the presence of some negative values.
Another way of writing the over-dispersed

Poisson model for the chain-ladder technique is
as follows:

Cij j x,y,'» independent over-dispersed
Poisson, with mean xiyj , and

Xn

k=1
yk = 1:

Here x= fx1,x2, : : : ,xng and y = fy1,y2, : : : ,yng
are parameter vectors relating to the rows (acci-
dent years) and columns (development years), re-
spectively, of the run-off triangle. The parameter
xi = E[Din], and so represents expected ultimate
cumulative losses (up to the latest development
year so far observed, n) for the ith accident year.
The column parameters, yj , can be interpreted as
the proportions of ultimate losses that emerge in
each development year.
Although the over-dispersed Poisson models

give the same reserve estimates as the chain-
ladder technique (as long as the row and col-

umn sums of incremental claims are positive),
the connection with the chain-ladder technique is
not immediately apparent from this formulation
of the model. For this reason, the negative bino-
mial model was developed by Verrall [20], build-
ing on the over-dispersed Poisson model. Verrall
showed that the same predictive distribution can
be obtained from a negative binomial model (also
with the inclusion of an over-dispersion param-
eter). In this recursive approach, the incremental
claims have an over-dispersed negative binomial
distribution, with mean and variance

(¸j ¡ 1)Di,j¡1 and '¸j(¸j ¡ 1)Di,j¡1,
respectively.

Again, the reserve estimates are the same as
the chain-ladder technique, and the same posi-
tivity constraints apply as for the over-dispersed
Poisson model. It is clear from this that the col-
umn sums must be positive, since a negative sum
would result in a development factor less than 1
(¸j < 1), causing the variance to be negative. It
is important to note that exactly the same pre-
dictive distribution can be obtained from either
the Poisson or negative binomial models. Verrall
[20] also argued that the model could be speci-
fied either for incremental or cumulative losses,
with no difference in the results. The negative bi-
nomial model has the advantage that the form of
the mean is exactly the same as that which nat-
urally arises from the chain-ladder technique. In
fact, by adding the previous cumulative losses,
an equivalent model for Dij jDi,j¡1,¸j ,' has an
over-dispersed negative binomial distribution,
with mean and variance

¸jDi,j¡1 and '¸j(¸j ¡ 1)Di,j¡1, respectively.

Here the connection with the chain-ladder
technique is immediately apparent because of the
format of the mean.
Another model, which is not considered fur-

ther in this paper, is closely connected with
Mack’s model, and deals with the problem of
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negative incremental claims. This model replaces
the negative binomial by a normal distribution,
whose mean is unchanged, but whose variance
is altered to accommodate the case when ¸j < 1.
Preserving as much of ¸j(¸j ¡ 1)Di,j¡1 as pos-
sible, the variance is still proportional to Di,j¡1,
with the constant of proportionality depending
on j, but a normal approximation is used for
the distribution of incremental claims. Thus, Cij j
Di,j¡1,¸j ,'j is approximately normally distribut-
ed, with mean and variance

Di,j¡1(¸j ¡ 1) and 'jDi,j¡1, respectively,

or Dij jDi,j¡1,¸j ,'j is approximately normally
distributed, with mean and variance

¸jDi,j¡1 and 'jDi,j¡1, respectively.

As for Mack’s model, there is now another set
of parameters in the variance that needs to be
estimated.
For each of these models, the mean square er-

ror of prediction can be obtained, allowing the
construction of prediction intervals, for exam-
ple. Loss reserving is a predictive process: given
the data, we try to predict future loss emergence.
These models apply to all the data, both observed
and future observations. The estimation is based
on the observed data, and we require predictive
distributions for the future observation.
We use the expected value of the distribution

of future losses as the prediction. When con-
sidering variability, attention is focused on the
root mean squared error of prediction (RMSEP),
also known as the prediction error. To explain
what this is, we consider, for simplicity, a random
variable, y, and a predicted value ŷ. The mean
squared error of prediction (MSEP) is the ex-
pected square difference between the actual out-
come and the predicted value, E[(y¡ ŷ)2], and
can be written as follows:

E[(y¡ ŷ)2] = E[((y¡E[y])¡ (ŷ¡E[y]))2]:
(3.1)

In order to obtain an estimate of this, it is nec-
essary to plug in ŷ instead of y in the final ex-
pectation. Then the MSEP can be expanded as
follows:

E[(y¡ ŷ)2]¼ E[(y¡E[y])2]
¡ 2E[(y¡E[y])(ŷ¡E[ŷ])]
+E[(ŷ¡E[ŷ])2]: (3.2)

Assuming future observations are independent of
past observations, the middle term is zero, and

E[(y¡ ŷ)2]¼ E[(y¡E[y])2]+E[(ŷ¡E[ŷ])2]:
(3.3)

In words, this is

prediction variance= process variance
+ estimation variance.

It is important to understand the difference be-
tween the prediction error and the standard error.
Strictly, the standard error is the square root of
the estimation variance. The prediction error is
concerned with the variability of a forecast, tak-
ing account of uncertainty in parameter estima-
tion and also of the inherent variability in the
data being forecast. Further details of this can be
found in England and Verrall [8].
Using non-Bayesian methods, these two com-

ponents–the process variance and the estima-
tion variance–are estimated separately, and Sec-
tion 7 of England and Verrall [8] goes into detail
about this. The direct calculation of these quan-
tities can be a tricky process, and this is one of
the reasons for the popularity of the bootstrap.
The bootstrap uses a fairly simple simulation ap-
proach to obtain simulated estimates of the pre-
diction variance in a spreadsheet. Fortunately, the
same advantages apply to the Bayesian methods:
the full predictive distribution can be found us-
ing simulation methods, and the RMSEP can be
obtained directly by calculating its standard de-
viation. In addition, it is preferable to have the
full predictive distribution, rather than just the
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first two moments, which is another advantage
of Bayesian methods.
The purpose of this paper is to show how ex-

pert opinion, from sources other than the spe-
cific data set under consideration, can be incor-
porated into the predictive distributions of the re-
serves. We use the approach of generalized lin-
ear models outlined in this section, concentrating
on the over-dispersed Poisson and negative bino-
mial models. We begin with considering how it is
possible to intervene in the development factors
for the chain-ladder technique in Section 4, and
then consider the Bornhuetter-Ferguson method
in Section 5.

4. Incorporating expert opinion
about the development factors

In this section, the approach of Verrall and
England [21] is used to show how to specify a
Bayesian model that allows the practitioner to in-
tervene in the estimation of the development fac-
tors for the chain-ladder technique. There are a
number of ways in which this could be used, and
we describe some possibilities in this section. It
is expected that a practitioner would be able to
extend these to cover situations that, although not
specifically covered here, would also be useful.
The cases considered here are the intervention in
a development factor in a particular row, and the
choice of how many years of data to use in the
estimation. The reasons for intervening in these
ways could be that there is information that the
settlement pattern has changed, making it inap-
propriate to use the same development factor for
each row.
For the first case, what may happen in prac-

tice is that a development factor in a particular
row is simply changed. Thus, although the same
development parameters (and hence run-off pat-
tern) are usually applied for all accident years, if
there is some exogenous information that indi-
cates that this is not appropriate, the practitioner

may decide to apply a different development fac-
tor (or set of factors) in some, or all, rows.
In the second case, it is common to look at, say,

five-year volume weighted averages in calculat-
ing the development factors, rather than using all
the available data in the triangle. The Bayesian
methods make this particularly easy to do and
are flexible enough to allow many possibilities.
We use the negative binomial model described

in Section 3, with different development factors
in each row. This is the model for the data, and
we then specify prior distributions for the devel-
opment factors. In this way, we can choose prior
distributions that reproduce the chain-ladder re-
sults, or we can intervene and use prior distribu-
tions based on external knowledge. The model
for incremental claims, Cij jDi,j¡1,¸i,j ,', is an
over-dispersed negative binomial distribution,
with mean and variance

(¸i,j ¡ 1)Di,j¡1 and '¸i,j(¸i,j ¡ 1)Di,j¡1, respectively.

We next need to define prior distributions for
the development factors, ¸i,j . It is possible to set
some of these equal to each other (within each
column) in order to revert to the standard chain-
ladder model. This is done by setting

¸i,j = ¸j for i = 1,2, : : : ,n¡ j+1;
j = 2,3, : : : ,n

and defining vague prior distributions for ¸j
(j = 2,3, : : : ,n). This was the approach taken in
Section 8.4 of England and Verrall [8] and is
very similar to that taken by de Alba [4]. This
can provide a very straightforward method to ob-
tain prediction errors and predictive distributions
for the chain-ladder technique.
However, we really want to move away from

the basic chain-ladder technique, and construct
Bayesian prior distributions that encompass the
expert opinion about the development parame-
ters. Suppose, for example, that we have a 10£
10 triangle. We consider the two possibilities for
incorporating expert knowledge described above.

60 CASUALTY ACTUARIAL SOCIETY VOLUME 01/ISSUE 01



Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinion

To illustrate the first case, suppose that there
is information that implies that the second de-
velopment factor (from Column 2 to Column 3)
should be given the value 1.5, for rows 8, 9, and
10, and that there is no indication that the other
parameters should be treated differently from the
standard chain-ladder technique. An appropriate
way to treat this would be to specify

¸i,j = ¸j for i = 1,2, : : : ,n¡ j+1;
j = 2,4,5, : : : ,n

¸i,3 = ¸3 for i = 1,2, : : : ,7

¸8,3 = ¸9,3 = ¸10,3:

The means and variances of the prior distribu-
tions of the parameters are chosen to reflect the
expert opinion:
¸8,3 has a prior distribution with mean 1.5 and

varianceW, whereW is set to reflect the strength
of the prior information.
¸j have prior distributions with large variances.
For the second case, we divide the data into

two parts using the prior distributions. To do this,
we set

¸i,j = ¸j for i= n¡ j¡ 3,n¡ j¡2,n¡ j¡ 1,
n¡ j,n¡ j+1

¸i,j = ¸
¤
j for i= 1,2, : : : ,n¡ j¡4

and give both ¸j and ¸
¤
j prior distributions with

large variances so that they are estimated from
the data. Adjustments to the specification are
made in the later development years, where there
are less than five rows. For these columns there
is just one development parameter, ¸j .
The specific form of the prior distribution

(gamma, log-normal, etc.) is usually chosen so
that the numerical procedures in winBUGS work
as well as possible.
These models are used as illustrations of

the possibilities for incorporating expert knowl-
edge about the development pattern, but it is (of
course) possible to specify many other prior dis-
tributions. In the Appendix, the winBUGS code
is supplied, which can be cut and pasted directly

Table 1. Parameters, mean and variance of a gamma
distribution

®i ¯i Mi Mi=¯i

10000 10 1000 100
1000 1 1000 1000
100 0.1 1000 10000

in order to examine these methods. Section 6
contains a number of examples, including the
ones described in this section.

5. A Bayesian model for the
Bornhuetter-Ferguson method

In this section, we show how the Bornhuetter-
Ferguson method can be considered in a Bayes-
ian context, using the approach of Verrall [19].
For further background on the Bornhuetter-
Ferguson method, see Mack [10].
In Section 3, the over-dispersed Poisson model

was defined as follows.

Cij j x,y,'» independent over-dispersed
Poisson, with mean xiyj , and

Xn

k=1
yk = 1:

In the Bayesian context, we also require prior
distributions for the parameters. The Bornhuet-
ter-Ferguson method assumes that there is ex-
pert opinion about the level of each row, and we
therefore concentrate first on the specification of
prior distributions for these. The most convenient
form to use is gamma distributions:

xi j ®i,¯i » independent ¡ (®i,¯i): (5.1)

There is a wide range of possible choices for
the parameters of these prior distributions, ®i and
¯i. It is easiest to consider the mean and variance
of the gamma distribution, ®i=¯i and ®i=¯

2
i , re-

spectively. These can be written as Mi and Mi=¯i,
from which it can be seen that, for a given choice
ofMi, the variance can be altered by changing the
value of ¯i. To consider a simple example, sup-
pose it has been decided that Mi = 1000. Table 1
shows how the value of ¯i affects the variance of
the prior distribution, while Mi is kept constant.
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Clearly, choosing a larger value of ¯i implies
we are more sure about the value of Mi, and
choosing a smaller value means we are less sure.
We now consider the effect of using these prior

distributions on the model for the data. Recall
that, for the chain-ladder technique, the mean
of the distribution of incremental claims may be
written as (¸j ¡ 1)Di,j¡1.
Using a similar approach, Verrall [20] and Ver-

rall [19] derive the distribution of Cij , given the
past data, after the row parameters have been es-
timated. In a Bayesian context, this means first
deriving the posterior distribution of the row pa-
rameters given the data using a standard prior-
posterior analysis:

f(xi j y;data)/ f(data j x,y)f(xi j ®i,¯i):
(5.2)

Note that, if we are considering Cij , the data
used here is Ci1,Ci2, : : : ,Ci,j¡1. Having obtained
this distribution, the distribution of the next ob-
servation can be found as follows:

f(Cij j y;data) =
Z
f(Cij j xi,y)f(xi j y;data)dxi:

(5.3)

This result is derived in detail in Verrall [19],
where it is shown that it is possible to rewrite it in
terms of the usual chain-ladder development fac-
tors, ¸j , rather than using the column parameters
yj . For full details of the derivation, the reader is
referred to Verrall [19]. For the purposes of this
paper, the important point is that the mean of Cij
for the Bayesian model is

Zij(¸j ¡ 1)Di,j¡1 + (1¡Zij)(¸j ¡ 1)Mi
1

¸j¸j+1 : : :¸n
,

where

Zij =
Pj¡1
k=1 yk

¯i'+
Pj¡1
k=1 yk

:

This can be seen to be in the form of a credibil-
ity formula, and is a trade-off between the chain-
ladder ((¸j ¡ 1)Di,j¡1) and the Bornhuetter-
Ferguson ((¸j ¡ 1)Mi(1=(¸j¸j+1 : : :¸n))). The
credibility factor, Zij , governs the trade-off be-

tween the prior mean and the data. We can in-
fluence the balance of this trade-off through the
choice of ¯i. In line with the discussion above,
the larger the value of ¯i the closer we get to the
Bornhuetter-Ferguson method, and the smaller
the value of ¯i, the closer we get to the chain-
ladder technique. In this way, we can use differ-
ent specifications of the prior distributions for the
row parameters in order to use the chain-ladder
technique, the Bornhuetter-Ferguson method, or
a complete spectrum of methods between these
two extremes. If we choose to use prior distribu-
tions with large variances, we do not influence
the parameter estimates and the result will be the
same as (or extremely close to) the chain-ladder
technique. If we use very small variances, we are
saying that we are very sure what the parameter
values should be and the results will be the same
as (or very close to) the Bornhuetter-Ferguson
method. Thus, we can use these methods within
a stochastic framework, and we can also consider
using the whole range of models that lie between
these two.
We have yet to consider the estimation of the

column parameters, other than to point out that
the Bornhuetter-Ferguson method, being deter-
ministic, simply plugs in the chain-ladder pa-
rameter estimates. We now consider this issue
in more detail and define a Bayesian approach
to the Bornhuetter-Ferguson method. One option
is to simply use plug-in estimates, obtained, for
example, from the straightforward chain-ladder
technique. This is the approach used in the deter-
ministic application of the Bornhuetter-Ferguson
method, but it is not suitable here since we would
prefer a stochastic approach. A better option is
to define improper prior distributions for the col-
umn parameters, and estimate the column param-
eters first, before applying prior distributions for
the row parameters and estimating these. This
second option allows us to take into account the
fact that the column parameters have been es-
timated when calculating the prediction errors,
predictive distribution, etc. It is not required to
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include any information about the column pa-
rameters, and hence we use improper gamma dis-
tributions for the column parameters, and derive
the posterior distributions of these using a stan-
dard Bayesian prior-posterior analysis. The re-
sult of this is a distribution that looks similar to
the negative binomial model for the chain-ladder
technique, but which is recursive in i instead
of j:

Cij j C1,j ,C2,j , : : : ,Ci¡1,j ,x,'» over-dispersed
negative binomial, with mean (°i¡ 1)

Pi¡1
m=1Cm,j :

Comparing this to the mean of the chain-ladder
model, (¸j ¡ 1)Di,j¡1 = (¸j ¡ 1)

Pj¡1
m=1Ci,m, it can

be seen that they are identical in form, with the
recursion either being across the rows or down
the columns.
In the context of the Bornhuetter-Ferguson

method, we now have the stochastic version of
this model. The Bornhuetter-Ferguson method
inserts values for the expected ultimate claims in
each row, xi, in the form of the values Mi. In the
Bayesian context, prior distributions will be de-
fined for the parameters xi, as discussed above.
However, the model has been reparameterized,
with a new set of parameters, °i. Hence, it is
necessary to define the relationship between the
new parameters, °i, and the original parameters,
xi. This is given in the equations below, which
can be used to find values of °i from the values
of xi given in the prior distributions. Note that
there was an error in the equation given in Ver-
rall [19], and I am grateful to Peter England for
pointing this out.

°1 = 1

°2 = 1+
x2

µ
1¡ 1

¸n

¶
C1n

°i = 1+

xi

Ã
1¡ 1Pn

k=n¡i+2¸k

!
Pi¡1
m=1Cm,n+

Pn
k=n¡i+3

h³Qi¡1
l=n¡k+2 °l

´Pn¡k+1
m=1 Cm,k

i i = 3, : : : ,n:

(5.4)

The Bornhuetter-Ferguson technique can be
reproduced by using strong prior information for
the row parameters, x, and the chain-ladder tech-
nique can be reproduced by using improper pri-
ors for the row parameters. In other words, the
Bornhuetter-Ferguson technique assumes that we
are completely sure about the values of the row
parameters, and their prior distributions have
very small variances, while the chain-ladder tech-
nique assumes there is no information and has
very large variances.
The preceding equations have now defined a

stochastic version of the Bornhuetter-Ferguson
technique. Since the column parameters (the de-
velopment factors) are dealt with first, using im-
proper prior distributions, their estimates will be
those implied by the chain-ladder technique.
Prior information can be defined in terms of dis-
tributions for the parameters xi, which can then
be converted into values for the parameters °i,
and this is implemented in Section 6.

6. Implementation

This section explains how the Bayesian models
can be implemented, using the software package
winBUGS [16] which is available from http://
www.mrc-bsu.cam.ac.uk/bugs. The programs
used in these illustrations are contained in the
Appendix.
The data set used in this section is taken from

Taylor and Ashe [18], and has also been used in a
number of previous papers on stochastic reserv-
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Table 2. Data from Taylor and Ashe [18] with the chain-ladder estimates

Development Year
Accident
Year 1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046
3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405
4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286
5 443,160 693,190 991,983 769,488 504,851 470,639
6 396,132 937,085 847,498 805,037 705,960
7 440,832 847,631 1,131,398 1,063,269
8 359,480 1,061,648 1,443,370
9 376,686 986,608

10 344,014

Chain-ladder development factors:

3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177

Chain-ladder reserve estimates:

2 94,634
3 469,511
4 709,638
5 984,889
6 1,419,459
7 2,177,641
8 3,920,301
9 4,278,972

10 4,625,811

Overall 18,680,856

ing. The incremental loss data is given in Table
2, together with the chain-ladder results for com-
parison purposes.
Before looking at the uses of the Bayesian

models, we should discuss the nuisance param-
eter '. In a full Bayesian analysis, we should
also give this a prior distribution and estimate
it along with the other parameters. However, for
ease of implementation we instead use a plug-in
estimate, in line with the approach taken in clas-
sical methods (in England and Verrall [8], for ex-
ample). The value used is that obtained from the
straightforward application of the over-dispersed
Poisson model, estimating the row and column
parameters using maximum likelihood estima-
tion (it is possible to use S-Plus or Excel for
this).

6.1. Using the software

Before considering the results from the pro-
grams in any detail, we first describe how to

set up the software and run one of the programs
from scratch. An excellent reference in the con-
text of actuarial modeling is Skollnik [15]. Table
2 shows the standard chain-ladder results, and
in this section we will implement the model de-
scribed in Section 5, but use the assumptions of
the chain-ladder technique, rather than the Born-
huetter-Ferguson method. This means that we
will use large variances for the prior distributions
for the ultimate claims in each row, implying
that there is no prior knowledge about them, and
hence the results we obtain should be close to
the chain-ladder results. Thus, we will first repro-
duce the results that can also be obtained using
non-Bayesian methods (see England and Verrall
[8] for more details of the non-Bayesian meth-
ods). After going through this example in de-
tail, the remainder of this section will show how
the Bayesian models incorporating prior knowl-
edge described in Sections 4 and 5 can be imple-
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mented, and illustrate the effect that the choice
of prior distributions can have.
The steps necessary for implementing the

chain-ladder technique in winBUGS are listed
below.

1. Go to the web site, download the latest ver-
sion of the software and install.

2. Go back to the web site and register, and
you will be sent a copy of the key to unlock
the software. Follow the instructions in the
email for unlocking the software.

3. Once you have a fully functioning version
of winBUGS, you can run the programs in
the Appendix. Open winBUGS and click on
“File” in the top toolbar, and then “New”
in the pop-down list. This will open a new
window.

4. Copy the program in (i) of the Appendix,
including the word “model” at the top and all
the data at the bottom, right down to where
the next subsection begins at (ii). The last
line is 0,0,0,0,0,0,0,0,0)). Paste all of this into
the new window in winBUGS.

5. In winBUGS, select “Model” in the toolbar
at the top and “Specification” in the pop-
down list. This opens a new window called
“Specification Tool.”

6. Highlight the word “model” at the top of the
program, and then click “check model” in
the Specification Tool window. If all is well,
it will say “model is syntactically correct” in
the bottom left corner.

7. Now move down in the window containing
the program until you get to #DATA. High-
light the word “list” immediately below that,
and click “load data” in the Specification
Tool window. It should say “data loaded” in
the bottom left corner.

8. Click “compile” in the Specification Tool
window. After a few seconds, it should say
“model compiled” in the bottom left corner.

9. Now move down in the window contain-
ing the program until you get to #INITIAL
VALUES. Highlight the word “list” imme-
diately below that, and click “load inits” in
the Specification Tool window. It should say
“model is initialised” in the bottom left cor-
ner.

10. Select “Model” in the toolbar at the top and
“Update” in the pop-down list. This opens
a new window called “Update Tool.” The
number of iterations in the simulation pro-
cess can be changed in this window by
changing the figure next to “updates.” Just at
the moment, 1,000 is sufficient, so click on
“update.” This runs 1,000 simulations with-
out storing the results. This may take a few
minutes: don’t be concerned if nothing ap-
pears to be happening! When it is complete,
a message appears in the bottom left corner
saying how long the updates took (for my
laptop it was 221 seconds).

11. Select “Inference” in the toolbar at the top
and “Samples” in the pop-down list. This
opens a new window called “Sample Moni-
tor Tool.” We want to look at the row totals
and overall total, which have been defined
as a vector R and Total in the program. In
the Sample Monitor Tool window, click in
the box to the right of the word “node” and
type R. Then click on “set.” Repeat for Total,
noting that it is case sensitive.

12. Return to the Update Tool Window and click
on Update to perform 1,000 simulations.
This should be quicker (6 seconds for my
laptop). This time the values of R and Total
will be stored.

13. Return to the Sample Monitor Tool window,
type * in the box to the right of the word
“node,” and click “stats.” This will give a
new window with something like the results
below. This completes the steps necessary
for fitting the Bayesian model.
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Table 3. Results

Node Mean sd MC Error 2.5% Median 97.5% Start Sample

R[2] 92750.0 110600.0 2963.0 779.2 56320.0 412800.0 1001 1000
R[3] 473900.0 223100.0 6424.0 1.52E+5 4.4E+5 1.011E+6 1001 1000
R[4] 7.05E+5 2.58E+5 9085.0 307600.0 674500.0 1.288E+6 1001 1000
R[5] 985800.0 304600.0 8127.0 467600.0 960600.0 1.667E+6 1001 1000
R[6] 1.417E+6 378300.0 13430.0 768500.0 1.399E+6 2.217E+6 1001 1000
R[7] 2.174E+6 5.19E+5 16850.0 1.271E+6 2.132E+6 3.233E+6 1001 1000
R[8] 3.925E+6 776900.0 28100.0 2.585E+6 3.885E+6 5.555E+6 1001 1000
R[9] 4.284E+6 1.066E+6 36840.0 2.464E+6 4.207E+6 6.731E+6 1001 1000
R[10] 4.641E+6 2.002E+6 61630.0 1.73E+6 4.407E+6 9.345E+6 1001 1000

Total 1.87E+7 3.056E+6 101600.0 1.314E+7 1.861E+7 2.554E+7 1001 1000

The columns of Table 3 headed “mean” and
“sd” give the predicted reserves and prediction
errors, and these values can be compared with
the chain-ladder results in Table 2. Since this is
a simulation process, the results will depend on
the prior distributions, the initial values, and the
number of iterations carried out. The prior dis-
tributions in the program had reasonably large
variances, so the results should be close to the
chain-ladder results. More simulations should be
used in steps 10 and 12 (we use 10,000 in the il-
lustrations below), and the prior variances could
be increased. Using this number of simulations
gives the results shown in Table 4.
The results certainly confirm that we can re-

produce the chain-ladder results, and produce
the prediction errors. It is also possible to
obtain other information about the model from
winBUGS. For example, it is possible to pro-
duce full predictive distributions, using “density”
in the Sample Monitor Tool window.
We have now described one implementation of

a Bayesian model using winBUGS. In the rest of
this section, we consider the Bayesian models de-
scribed in Sections 4 and 5 in order to consider
how expert opinion can be incorporated into the
predictive distribution of reserves. In each case,
the programs are available in the Appendix, and
the results can be reproduced using steps 3 to 13,
above. It should be noted that this is a simulation-
based program, so the results obtained may not

Table 4. Chain-ladder results. the prediction error is equal to
the Bayesian standard deviation

Chain- Bayesian Prediction
Ladder Bayesian Standard Error
Reserve Mean Deviation (%)

Year 2 94,634 94,440 111,100 118%
Year 3 469,511 471,400 219,400 47%
Year 4 709,638 716,300 263,600 37%
Year 5 984,889 991,600 308,100 31%
Year 6 1,419,459 1,424,000 374,700 26%
Year 7 2,177,641 2,186,000 497,200 23%
Year 8 3,920,301 3,935,000 791,000 20%
Year 9 4,278,972 4,315,000 1,068,000 25%
Year 10 4,625,811 4,671,000 2,013,000 43%

Overall 18,680,856 18,800,000 2,975,000 16%

exactly match the results given below. However,
there should be no significant differences, with
the differences that there are being due to simu-
lation error.

6.2. Intervention in the chain-ladder
technique

We now consider using a prior distribution to
intervene in some of the parameters of the chain-
ladder model, instead of using prior distributions
with large variances that just reproduce the chain-
ladder estimates. The implementation is set up
in Section (ii) of the Appendix, and the program
can be cut and pasted into winBUGS and run
following steps 3 onwards, above.
We consider two cases, as discussed in Sec-

tion 4. For the first case, we assume that there is
information that implies that the second develop-
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Table 5. Individual development factors

Development Year
Accident
Year 2 3 4 5 6 7 8 9 10

1 3.143 1.543 1.278 1.238 1.209 1.044 1.04 1.063 1.018
2 3.511 1.755 1.545 1.133 1.084 1.128 1.057 1.086
3 4.448 1.717 1.458 1.232 1.037 1.12 1.061
4 4.568 1.547 1.712 1.073 1.087 1.047
5 2.564 1.873 1.362 1.174 1.138
6 3.366 1.636 1.369 1.236
7 2.923 1.878 1.439
8 3.953 2.016
9 3.619

ment factor (from Column 2 to Column 3) should
be given the value 1.5 for rows 7, 8, 9, and 10,
and that there is no indication that the other pa-
rameters should be treated differently from the
standard chain-ladder technique. In order to im-
plement this, the parameter for the second de-
velopment factor for rows 7—10 is given a prior
distribution with mean 1.5. We then look at two
different choices for the prior variance for this
parameter. Using a large variance means that the
parameter is estimated separately from the other
rows, but using the data without letting the prior
mean influence it too greatly. We then use a stan-
dard deviation of 0.1 for the prior distribution, so
that the prior mean has a greater influence.
We consider first the estimate of the second

development factor. The chain ladder estimate is
1.7473 and the individual development factors
for the triangle are shown in Table 5. The rows
for the second development factor that are mod-
eled separately are shown in italics. The estimate
using the Bayesian models is 1.68 for rows 1—6.
When a large variance is used for the prior distri-
bution of the development factor for rows 7—10,
the estimate using the Bayesian model is 1.971.
With the smaller variance for this prior distribu-
tion, the estimate is 1.673, and has been drawn
down towards the prior mean of 1.5. This clearly
shows how the prior distributions can be used to
influence the parameter estimates.
The effect on the reserve estimates is shown in

Table 6, which compares the reserves and predic-

tion errors for the two cases outlined above with
the results for the chain-ladder model (which
could be produced using the program in Section
6.1 on this set of data). The chain-ladder figures
are slightly different from those given in Table 4
because this is a simulation method.
It is interesting to note that, in this case, the

intervention has not had a marked effect on the
prediction errors (in percentage terms). However,
the prediction errors themselves have changed
considerably, and this indicates that it is impor-
tant to think of the prediction error as a percent-
age of the prediction. Other prior distributions
could have a greater effect on the percentage pre-
diction error.
The second case we consider is when we use

only the most recent data for the estimation of
each development factor. For the last three devel-
opment factors, all the data is used because there
is no more than three years for each. For the other
development factors, only the three most recent
years are used. The estimates of the development
factors are shown in Table 7. The estimates of
the first development factor are not affected by
the change in the model (the small differences
could be due to simulation error or the changes
elsewhere). For the other development factors,
the estimates can be seen to be affected by the
model assumptions.
The effect of using only the latest three years

in the estimation of the development factors in
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Table 6. Reserves and prediction errors for the chain-ladder and Bayesian models

Chain-Ladder Large Variance Small Variance

Prediction Prediction Prediction
Reserve Error Reserve Error Reserve Error

Year 2 97,910 115% 95,920 116% 95,380 117%
Year 3 471,200 46% 475,700 46% 470,500 47%
Year 4 711,100 38% 721,700 37% 714,400 37%
Year 5 989,200 31% 996,800 31% 994,700 31%
Year 6 1,424,000 27% 1,429,000 26% 1,428,000 27%
Year 7 2,187,000 23% 2,196,000 23% 2,185,000 23%
Year 8 3,930,000 20% 3,937,000 20% 3,932,000 20%
Year 9 4,307,000 24% 4,998,000 27% 4,044,000 25%
Year 10 4,674,000 43% 5,337,000 44% 4,496,000 43%

Overall 18,790,000 16% 20,190,000 17% 18,360,000 16%

Table 7. Development factors using three most recent years’ data separately

Development Year
Accident
Year 2 3 4 5 6 7 8 9 10

1 3.143 1.543 1.278 1.238 1.209 1.044 1.04 1.063 1.018
2 3.511 1.755 1.545 1.133 1.084 1.128 1.057 1.086
3 4.448 1.717 1.458 1.232 1.037 1.12 1.061
4 4.568 1.547 1.712 1.073 1.087 1.047
5 2.564 1.873 1.362 1.174 1.138
6 3.366 1.636 1.369 1.236
7 2.923 1.878 1.439
8 3.953 2.016
9 3.619
Earlier rows 3.575 1.688 1.513 1.197 1.139 1.045
Recent rows 3.579 1.852 1.393 1.155 1.085 1.099 1.054 1.076 1.018

All rows 3.527 1.751 1.46 1.175 1.104 1.087 1.054 1.076 1.018

the forecasting of outstanding claims can be seen
in Table 8.
In this case, the effect on the reserves is not

particularly great. The prediction errors have in-
creased for most years, although the effect is
not great on these either. The importance of the
Bayesian method is to actually be able to assess
the effect of using different sets of data on the
uncertainty of the outcome.

6.3. The Bornhuetter-Ferguson method

In this section, we consider intervention on the
level of each row, using the Bornhuetter-Ferg-
uson method. We consider two examples. The
first uses small variances for the prior distribu-
tions of the row parameters, thus reproducing
the Bornhuetter-Ferguson method. The second
example uses less strong prior information, and

Table 8. Reserve estimates using three most recent years’
data

Chain-Ladder Bayesian Model

Reserve Prediction Reserve Prediction
Error Error

Year 2 97,910 115% 94,860 115%
Year 3 471,200 46% 469,300 46%
Year 4 711,100 38% 712,900 37%
Year 5 989,200 31% 1,042,000 30%
Year 6 1,424,000 27% 1,393,000 27%
Year 7 2,187,000 23% 2,058,000 24%
Year 8 3,930,000 20% 3,468,000 22%
Year 9 4,307,000 24% 4,230,000 27%
Year 10 4,674,000 43% 4,711,000 47%

Overall 18,790,000 16% 18,180,000 18%

produces results that lie between the Bornhuetter-
Ferguson method and the chain-ladder technique.
We use the negative binomial model for the data
that was described in Section 5, and the win-
BUGS code for this is given in the Appendix,
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Table 9. Negative binomial model: Bayesian model with
precise priors for all rows: mean and prediction error of
reserves

Bayesian Bayesian Bayesian Bornhuetter-
Mean Prediction Prediction Ferguson

Reserve Error Error % Reserve

Year 2 95,680 111,100 116% 95,788
Year 3 482,500 211,900 44% 480,088
Year 4 736,400 250,100 34% 736,708
Year 5 1,118,000 296,500 27% 1,114,999
Year 6 1,533,000 339,700 22% 1,527,444
Year 7 2,305,000 410,300 18% 2,308,139
Year 8 3,474,000 497,500 14% 3,466,839
Year 9 4,547,000 555,000 12% 4,550,270
Year 10 5,587,000 610,900 11% 5,584,677

Overall 19,880,000 1,854,000 9% 19,864,951

section (i). Section 6.1 used this method with
large variances for the prior, thereby reproduc-
ing the chain-ladder technique.
First we consider the Bornhuetter-Ferguson

method, exactly as it is usually applied. For this,
we begin by using prior distributions for the row
parameters, which all have standard deviation
1,000 (which is small compared with the means),
and whose means are:

x2 x3 x4 x5

5,500,000 5,500,000 5,500,000 5,500,000

x6 x7 x8 x9

5,500,000 6,000,000 6,000,000 6,000,000

x10

6,000,000

In order to implement this, using the code
in the Appendix, it is necessary to change the
“DATA” section of the program (just before the
“INITIAL VALUES” section). It is explained in
the program exactly what changes to make.
The Bornhuetter-Ferguson estimates of out-

standing losses, and the results from the Bayesian
model are shown in Table 9.
In this case, it can be seen that the results are

very close to those of the Bornhuetter-Ferguson
technique. Thus, if it is desired to use the Born-
huetter-Ferguson method within this stochastic

framework, this is the approach that should be
used. The added information available is the pre-
diction errors. Further, it is possible to generate
predictive distributions rather than just the mean
and prediction error.
The Bornhuetter-Ferguson technique assumes

that there is strong prior information about
the row parameters, so that the standard devia-
tions of the prior distributions used in this exam-
ple are small. The other end of the spectrum is
constituted by the chain-ladder technique, when
large standard deviations are used for the prior
distributions. Between these two extremes is a
whole range of possible models, which can be
specified by using different standard deviations.
We now illustrate the results when less strongly
informative prior distributions are used for the
row parameters. We use the same prior means
as above, but this time use a standard devia-
tion of 1,000,000. We are incorporating prior
belief about the ultimate losses for each year,
but allowing for uncertainty in this information.
The associated reserve results are shown in
Table 10. Notice that the reserves are between the
chain-ladder and Bornhuetter-Ferguson results.
Notice also that the precision of the prior has
influenced the prediction errors, but to a lesser
extent. This provides an extra level of flexibility,
allowing for the choice of a range of models in
a continuous spectrum between the chain-ladder
technique and Bornhuetter-Ferguson.

7. Conclusions

This paper has shown how expert opinion, sep-
arate from the reserving data, can be incorpo-
rated into the prediction intervals for a stochastic
model. The advantages of a stochastic approach
are that statistics associated with the predictive
distribution are also available, rather than just a
point estimate. In fact, it is possible to produce
the full predictive distribution, rather than just
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Table 10. Negative binomial model: Bayesian model with informative priors: mean and prediction error of reserves

Bayesian Bayesian Bayesian Bornhuetter- Chain-
Mean Prediction Prediction Ferguson Ladder

Reserve Error Error Reserve Reserve

Year 2 94,660 111,500 118% 95,788 94,634
Year 3 470,400 218,800 47% 480,088 469,511
Year 4 717,100 265,900 37% 736,708 709,638
Year 5 994,900 308,900 31% 1,114,999 984,889
Year 6 1,431,000 376,800 26% 1,527,444 1,419,459
Year 7 2,198,000 488,900 22% 2,308,139 2,177,641
Year 8 3,839,000 727,200 19% 3,466,839 3,920,301
Year 9 4,417,000 865,500 20% 4,550,270 4,278,972
Year 10 5,390,000 1,080,000 20% 5,584,677 4,625,811

Overall 19,550,000 2,252,000 12% 19,864,951 18,680,856

Figure 1. Distribution of reserve for Bornhuetter-
Ferguson estimation

the first two moments. As was emphasized by
England and Verrall [8], the full predictive distri-
bution contains a lot more information than just
its mean and standard deviation, and it is a great
advantage to be able to look at this distribution.
As an illustration of this, Figure 1 shows the pre-
dictive distribution of outstanding losses for the
final example considered above, in Section 6.3,
Table 10.
A further possibility for including expert

knowledge within a stochastic framework applies
when the Bornhuetter-Ferguson technique is
used. This is an adaptation of the method used in
Sections 5 and 6.3, whereby the reserve is spec-
ified rather than the ultimate losses, ui. The re-
serve value can be used to infer a value for ui,
from which the stochastic version of the Born-
hetter-Ferguson method can be applied.
We have concentrated on two important situ-

ations that we believe are most common when

expert opinion is used. However, the same ap-
proach could also be taken in other situations
and for other modeling methods, such as the Ho-
erl curve. This would allow us to add tail factors
to the models considered in this paper. This pa-
per has been more concerned with the general
approach rather than specific reserving methods.
However, we acknowledge that methods based
on the chain-ladder setup are very commonly
used and we hope that, by using this framework,
we enable actuaries to appreciate the suggestions
made in this paper, and to experiment with the
programs supplied.
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Appendix

The code for winBUGS is shown below for the
models used in Section 6. This is available from
the author on request and can be cut and pasted
directly into winBUGS. Anything to the right of
“#” is ignored, so the code can be changed by
adding and removing this at the start of a line.
(i) This section contains the code for the Born-

huetter-Ferguson method in Section 5, which was
used for the illustrations in Sections 6.1 and 6.3.
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for( i in 1 : 5 ) fDD[16+i]<-DD[16+i-6]+Y[61+i-6]g
for( i in 1 : 6 ) fDD[22+i]<-DD[22+i-7]+Y[67+i-7]g
for( i in 1 : 7 ) fDD[29+i]<-DD[29+i-8]+Y[74+i-8]g
for( i in 1 : 8 ) fDD[37+i]<-DD[37+i-9]+Y[82+i-9]g

#Needed for the denominator in definition of gammas
E[3]<-E[1]*gamma[1]
for( i in 1 : 2 ) fE[4+i]<-E[4+i-3]*gamma[2]g
for( i in 1 : 3 ) fE[7+i]<-E[7+i-4]*gamma[3]g
for( i in 1 : 4 ) fE[11+i]<-E[11+i-5]*gamma[4]g
for( i in 1 : 5 ) fE[16+i]<-E[16+i-6]*gamma[5]g
for( i in 1 : 6 ) fE[22+i]<-E[22+i-7]*gamma[6]g
for( i in 1 : 7 ) fE[29+i]<-E[29+i-8]*gamma[7]g
for( i in 1 : 8 ) fE[37+i]<-E[37+i-9]*gamma[8]g

EC[1]<-E[1]/1000
EC[2]<-sum(E[2:3])/1000
EC[3]<-sum(E[4:6])/1000
EC[4]<-sum(E[7:10])/1000
EC[5]<-sum(E[11:15])/1000
EC[6]<-sum(E[16:21])/1000
EC[7]<-sum(E[22:28])/1000
EC[8]<-sum(E[29:36])/1000
EC[9]<-sum(E[37:45])/1000

#Model for future observations
for( i in 46 : 90 ) f

a1[i]<-max(0.01,a[row[i]]*DD[i-45]/(1000*scale))
b1[i]<-1/(gamma[row[i]]*1000*scale)
Z[i]»dgamma(a1[i],b1[i])
Y[i]<-Z[i]
fit[i]<-Y[i]

g
scale<-52.8615
#Convert row parameters to gamma using (5.6)

for (k in 1:9) f
gamma[k]<-1+g[k]
g[k]<-u[k]/EC[k]
a[k]<-g[k]/gamma[k]

g
#Prior distributions for row parameters.

for (k in 1:9) f
u[k]»dgamma(au[k],bu[k])
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au[k]<-bu[k]*(ultm[k+1]*(1-1/f[k]))
bu[k]<-(ultm[k+1]*(1-1/f[k]))/pow(ultsd[k+1],2)

g
#The prior distribution can be changed by changing the data input values for the
#vectors ultm and ultsd

#Row totals and overall reserve
R[1]<-0
R[2]<-fit[46]
R[3]<-sum(fit[47:48])
R[4]<-sum(fit[49:51])
R[5]<-sum(fit[52:55])
R[6]<-sum(fit[56:60])
R[7]<-sum(fit[61:66])
R[8]<-sum(fit[67:73])
R[9]<-sum(fit[74:81])
R[10]<-sum(fit[82:90])
Total<-sum(R[2:10])
g

#DATA
list(
row=c(1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,4,4,
4,4,4,4,5,5,5,5,5,
6,6,6,6,7,7,7,8,
8,9,1,2,2,3,3,3,4,4,4,
4,5,5,5,5,5,6,6,6,6,6,6,
7,7,7,7,7,7,7,8,8,8,8,8,
8,8,8,9,9,9,9,9,9,9,9,
9),
Y=c(352118,884021,933894,1183289,445745,320996,527804,266172,425046,
290507,1001799,926219,1016654,750816,146923,495992,280405,
310608,1108250,776189,1562400,272482,352053,206286,
443160,693190,991983,769488,504851,470639,
396132,937085,847498,805037,705960,
440832,847631,1131398,1063269,
359480,1061648,1443370,
376686,986608,
344014,
NA,
NA,NA,
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NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),

D=c(357848,766940,610542,482940,527326,574398,146342,139950,227229,
709966,1650961,1544436,1666229,973071,895394,674146,406122,
1000473,2652760,2470655,2682883,1723887,1042317,1170138,
1311081,3761010,3246844,4245283,1996369,1394370,
1754241,4454200,4238827,5014771,2501220,
2150373,5391285,5086325,5819808,
2591205,6238916,6217723,
2950685,7300564,
3327371,
NA,
NA,NA,
NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),

DD=c(67948,
652275,NA,
686527,NA,NA,
1376424,NA,NA,NA,
1865009,NA,NA,NA,NA,
3207180,NA,NA,NA,NA,NA,
6883077,NA,NA,NA,NA,NA,NA,
7661093,NA,NA,NA,NA,NA,NA,NA,
8287172,NA,NA,NA,NA,NA,NA,NA,NA),

E=c(67948,
652275,NA,
686527,NA,NA,
1376424,NA,NA,NA,
1865009,NA,NA,NA,NA,
3207180,NA,NA,NA,NA,NA,
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6883077,NA,NA,NA,NA,NA,NA,
7661093,NA,NA,NA,NA,NA,NA,NA,
8287172,NA,NA,NA,NA,NA,NA,NA,NA),

f=c(1.017724725, 1.095636823, 1.154663551, 1.254275641, 1.384498969,
1.625196481, 2.368582213, 4.138701016, 14.44657687),
ultm=c(NA,5500, 5500, 5500, 5500, 5500, 6000, 6000, 6000, 6000),
ultsd=c(NA,10000,10000,10000,10000,10000,10000,10000,10000,10000))

These values for the ultsd will give the chain-ladder results. To obtain the Bornhuetter-Ferguson re-
sults, replace the last line with the following line:
ultsd=c(NA,1,1,1,1,1,1,1,1,1))
The other illustration in section 6.3 uses:
ultsd=c(NA,1000,1000,1000,1000,1000,1000,1000,1000,1000))

#INITIAL VALUES
list(u=c(5500, 5500, 5500, 5500, 5500, 6000, 6000, 6000, 6000),
Z=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,
NA,NA,
NA,
0,
0,0,
0,0,0,
0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0))

(ii) Code for the model in section 4, which was used for the illustrations in section 6.2.

model
f
#Model for data:

for( i in 1 : 45 ) f
Z[i]<-Y[i]/(scale*1000)

VOLUME 01/ISSUE 01 CASUALTY ACTUARIAL SOCIETY 75



Variance Advancing the Science of Risk

pC[i]<-D[i]/(scale*1000)
C[i]<-Z[i]+pC[i]

zeros[i]<-0
zeros[i]»dpois(phi[i])
phi[i]<-(loggam(Z[i]+1)+loggam(pC[i])-loggam(C[i])-

pC[i]*log(p1[row[i],col[i]])-Z[i]*log(1-p1[row[i],col[i]]))
g

DD[3]<-DD[2]+Y[47]
for( i in 1 : 2 ) fDD[4+i]<-DD[4+i-1]+Y[49+i-1]g
for( i in 1 : 3 ) fDD[7+i]<-DD[7+i-1]+Y[52+i-1]g
for( i in 1 : 4 ) fDD[11+i]<-DD[11+i-1]+Y[56+i-1]g
for( i in 1 : 5 ) fDD[16+i]<-DD[16+i-1]+Y[61+i-1]g
for( i in 1 : 6 ) fDD[22+i]<-DD[22+i-1]+Y[67+i-1]g
for( i in 1 : 7 ) fDD[29+i]<-DD[29+i-1]+Y[74+i-1]g
for( i in 1 : 8 ) fDD[37+i]<-DD[37+i-1]+Y[82+i-1]g

#Model for future observations
for( i in 46 : 90 ) f

a1[i]<-max(0.01,(1-p1[row[i],col[i]])*DD[i-45]/(1000*scale))
b1[i]<-p1[row[i],col[i]]/(1000*scale)
Z[i]»dgamma(a1[i],b1[i])
Y[i]<-Z[i]

g
scale<-52.8615

#Set up the parameters of the negative binomial model.
for (k in 1:9) f

p[k]<-1/lambda[k]
lambda[k]<-exp(g[k])+1
g[k]»dnorm(0.5,1.0E-6)

g
#Choose one of the folllowing (1,2 or 3) and delete the “#” at the start of each line before running.

#1. Vague Priors: Chain-ladder model
# for (j in 1:9) f
# for (i in 1:10) fp1[i,j]<-p[j]g
# g

#2. Intervention in second development factor.
# for (i in 1:10) fp1[i,1]<-p[1]g
# for (i in 1:6) fp1[i,2]<-p[2]g
# p1[7,2]<-p82
# p1[8,2]<-p82
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# p1[9,2]<-p82
# p1[10,2]<-p82
# for (j in 3:9) f
# for (i in 1:10) fp1[i,j]<-p[j]g
# g
# lambda82<-g82+1
# p82<-1/lambda82
#Use one of the following 2 lines:
# g82»dgamma(0.005,0.01) #This is a prior with a large variance
# g82»dgamma(25,50) #This is a prior with a small variance

#3. Using latest 3 years for estimation of development factors.
# for (j in 1:6) f
# for (i in 1:(7-j)) fp1[i,j]<-op[j]g
# for (i in (8-j):10) fp1[i,j]<-p[j]g
# g
# for (j in 7:9) f
# for (i in 1:10) fp1[i,j]<-p[j]g
# g
# for (k in 1:6) f
# op[k]<-1/olambda[k]
# olambda[k]<-exp(og[k])+1
# og[k]»dnorm(0.5,1.0E-6)
# g

#Row totals and overall reserve
R[1]<-0
R[2]<-Y[46]
R[3]<-sum(Y[47:48])
R[4]<-sum(Y[49:51])
R[5]<-sum(Y[52:55])
R[6]<-sum(Y[56:60])
R[7]<-sum(Y[61:66])
R[8]<-sum(Y[67:73])
R[9]<-sum(Y[74:81])
R[10]<-sum(Y[82:90])
Total<-sum(R[2:10])

g
#DATA
list(
row=c(1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,4,4,
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4,4,4,4,5,5,5,5,5,
6,6,6,6,7,7,7,8,
8,9,2,3,3,4,4,
4,5,5,5,5,6,6,6,6,6,
7,7,7,7,7,7,8,8,8,8,
8,8,8,9,9,9,9,9,9,9,
9,10,10,10,10,10,10,10,10,10),
col=c(1,2,3,4,5,6,7,8,9,
1,2,3,4,5,6,7,8,
1,2,3,4,5,6,7,1,2,3,
4,5,6,1,2,3,4,5,1,
2,3,4,1,2,3,1,
2,1,9,8,9,7,8,9,
6,7,8,9,5,6,7,8,9,4,
5,6,7,8,9,3,4,5,6,7,
8,9,2,3,4,5,6,7,8,9,
1,2,3,4,5,6,7,8,9),
Y=c(
766940,610542,482940,527326,574398,146342,139950,227229,67948,
884021,933894,1183289,445745,320996,527804,266172,425046,
1001799,926219,1016654,750816,146923,495992,280405,
1108250,776189,1562400,272482,352053,206286,
693190,991983,769488,504851,470639,
937085,847498,805037,705960,
847631,1131398,1063269,
1061648,1443370,
986608,
NA,
NA,NA,
NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),
D=c(
357848,1124788,1735330,2218270,2745596,3319994,3466336,3606286,3833515,
352118,1236139,2170033,3353322,3799067,4120063,4647867,4914039,
290507,1292306,2218525,3235179,3985995,4132918,4628910,
310608,1418858,2195047,3757447,4029929,4381982,
443160,1136350,2128333,2897821,3402672,
396132,1333217,2180715,2985752,
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440832,1288463,2419861,
359480,1421128,
376686,
NA,
NA,NA,
NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA),
DD=c(5339085,
4909315,NA,
4588268,NA,NA,
3873311,NA,NA,NA,
3691712,NA,NA,NA,NA,
3483130,NA,NA,NA,NA,NA,
2864498,NA,NA,NA,NA,NA,NA,
1363294,NA,NA,NA,NA,NA,NA,NA,
344014,NA,NA,NA,NA,NA,NA,NA,NA))

#INITIAL VALUES
This is what is used for 1.

For 2, replace the first line by
list(g=c(0,0,0,0,0,0,0,0,0), g82=0.5,

For 3, replace the first line by
list(g=c(0,0,0,0,0,0,0,0,0), og=c(0,0,0,0,0,0),

list(g=c(0,0,0,0,0,0,0,0,0),
Z=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,
NA,NA,NA,NA,
NA,NA,NA,
NA,NA,
NA,
0,
0,0,
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0,0,0,
0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0))
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