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ABSTRACT

Insurers purchase catastrophe reinsurance primarily to re-

duce underwriting risk in any one experience period and

thus enhance the stability of their income stream over time.

Reinsurance comes at a cost and therefore it is important to

maintain a balance between the perceived benefit of buying

catastrophe reinsurance and its cost. This study presents a

methodology for determining the optimal catastrophe rein-

surance layer by maximizing the risk-adjusted underwrit-

ing profit within a classical mean-variance framework.

From the perspective of enterprise risk management, this

paper improves the existing literature in two ways. First, it

considers catastrophe and noncatastrophe losses simultane-

ously. Previous studies focused on catastrophe losses only.

Second, risk is measured by lower partial moment which

we believe is a more reasonable and flexible measure of

risk compared to the traditional variance and Value at Risk

(VaR) approaches.
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1. Introduction1

Catastrophe reinsurance serves to shield an in-

surer’s surplus against severe fluctuations aris-

ing from large catastrophe losses. By purchas-

ing catastrophe reinsurance, the reinsured trades

part of its profit to gain stability in its under-

writing and financial results.2 If catastrophe risks

are independent of other sources of risk and di-

versifiable in equilibrium, Froot (2001) argued

that, under the assumption of a perfect financial

market, the reinsurance premium for catastrophe

protection should equal the expected reinsurance

cost and that a risk-averse insurer would seek

the protection against large events over hedging

low-retention layers. Gajek and Zagrodny (2004)

concluded that if a reinsured has enough money

to buy full protection against bankruptcy (ruin),

the optimal reinsurance arrangement is the aggre-

gate stop-loss contract with the largest possible

deductible.

In practice, financial markets are not perfect,

reinsurance prices are significantly higher than

those indicated by the theory noted above, and

it does not make economic sense for insurers

to buy full protection against ruin. Froot (2001)

showed that the ratios of the catastrophe reinsur-

ance premium to the expected catastrophe loss

can be as high as 20 for certain high-retention

layers that have low penetration probabilities.3

Facing the reality of relatively high reinsurance

prices and the practical economic constraints on

the catastrophe reinsurance buyer, primary insur-

ers are reluctant to surrender a large portion of

their profit for limited catastrophe reinsurance

protections. Thus the reinsured often purchases

1This study is jointly sponsored by the Actuarial Foundation and

Casualty Actuarial Society.
2While it is a minor point, if these concepts are extended to a line of

business that is not expected to be profitable (for whatever reason)

during the prospective reinsurance exposure period, the reduction

in profit referenced here becomes an increase in the projected loss.

The ideas are still the same.
3Froot (2001), Figure 4, p. 540.

low reinsurance layers that are subject to a high

probability of being penetrated.

Economists have offered many explanations

for the inefficiency of the reinsurance market.

Borch (1962) investigated the equilibrium of the

reinsurance market and found that the reinsur-

ance market will, in general, not reach a Pareto

Optimum if each participant seeks to maximize

his utility. Froot (2001) identified eight theoreti-

cal reasons to explain why insurers buy relatively

little reinsurance against large catastrophe events.

He found the supply restrictions associated with

capital market imperfections (insufficient capital

in reinsurance, market power of reinsurers, and

inefficient corporate forms for reinsurance) pro-

vide the most powerful explanation. As practic-

ing actuaries, the authors believe there are signif-

icant limitations on reinsurers’ ability to diversify

risk. In the context of catastrophe reinsurance, no

reinsurer is big enough to fully diversify away

catastrophe risk. To support the risk, a reinsurer

needs to hold a prohibitively large amount of ad-

ditional capital and will, in turn, need to realize

an adequate return on such capital.

Froot (2007) found that product-market sen-

sitivity to risk and exposure asymmetry tend to

make insurers more conservative in accepting un-

systematic risks, more eager to diversify under-

writing exposures, and more aggressive in hedg-

ing. Even though reinsurance prices are high rel-

ative to expected loss, insurers are still willing to

seek reinsurance protections.

In this study, the authors do not explore the

level of reinsurance price and its reasonableness.

We also do not investigate why insurance firms

are risk averse to catastrophe losses which are

unsystematic and uncorrelated with aggregate

market return. Instead, we treat reinsurance price

as a predetermined variable in the overall strate-

gic decision-making process and develop an opti-

mal reinsurance strategy for insurers conditioned

by their risk appetite, prevailing reinsurance
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prices at the time a decision is made, and the

overall profitability of the enterprise.

This introductory discussion would not be

complete if we did not explicitly point out that

a reinsurance arrangement, in fact, is a combina-

tion of art and science. It often depends on gen-

eral economic conditions in the state or coun-

try of the reinsured and worldwide, the recent

history of catastrophe reinsurance in the state or

country of the reinsured and worldwide, and the

risk characteristics of the reinsured. Both rein-

surer and reinsured usually are well informed

and are free to negotiate in the spirit of open

competition. In the negotiation, it is quite com-

mon that certain terms of the treaties would be

modified, such as changing the retention level

and the size of the layer. In pursuing the opti-

mization process outlined in this paper, we are

not attempting to deny or ignore this general

art/science characteristic of the reinsurance ar-

rangement. Instead our hope is that knowledge

of the optimal balance between profit and risk,

as measured using the process outlined in this pa-

per, in the particular circumstances of a reinsured

vis-à-vis the then-prevailing market prices, will

serve to enhance the quality of the reinsurance

decision, ceteris paribus.

Reinsurance arrangements have been studied

extensively because of their strategic importance

to the financial condition of insurance compa-

nies. However, previous studies on optimal catas-

trophe reinsurance only utilized partial informa-

tion in the reinsurance decision-making process.

Gajek and Zagrodny (2000) and Kaluszka (2001)

investigated the optimal reinsurance arrangement

by way of minimizing the consequential variance

of an insurer’s portfolio. Gajek and Zagrodny

(2004) discussed the optimal aggregate stop-loss

contract from the perspective of minimizing the

probability of ruin. Those studies focus on the

risk component, but ignore the profit side of the

equation. Bu (2005) developed the optimal rein-

surance layer within a mean-variance framework.

Insurers are assumed to minimize the sum of the

price of reinsurance, the catastrophe loss net of

reinsurance recoveries, and the risk penalty. Bu

used both the profit and risk components in the

optimization. However, his method focused on

the catastrophe loss only and ignored the concur-

rent effect of noncatastrophe underwriting per-

formance on the financial results of the reinsured.

In practice, the overall profitability is an impor-

tant factor impacting the reinsurance strategy be-

cause, among other things, it can enhance an in-

surer’s capability to assume risk.

Lampaert and Walhin (2005) studied the opti-

mal proportional reinsurance that maximizes

RORAC (return on risk-adjusted capital). The ap-

proach requires the estimation of economic cap-

ital based on VaR or TVaR (tail value at risk)

at a small predetermined probability. VaR and

TVaR are popular in insurance generally and in

actuarial circles specifically. VaR is the point at

which a “bad” outcome can occur at a prede-

termined probability, say 1%. TVaR is the mean

of all outcomes that are “worse” than the pre-

determined “bad” outcome. VaR, and especially

TVaR, has some convenient features as a risk

measure.4 TVaR only contemplates severe losses

having a probability at or lower than a given

probability as the central risk drivers, and it treats

those losses linearly. For example, if an insurer

has a 5% probability of a loss of $3 million, a 4%

probability of a loss of $5 million, a 0.9% proba-

bility of a loss of $10 million, and a 0.1% proba-

bility of a loss of $100 million, VaR at 1% is $10

million and TVaR is $19 million (10 ¤ 0:9%+
100 ¤ 0:1%)=1%. VaR and TVaR are not consis-
tent with common risk perception from two per-

spectives: (1) fear is not just of severe losses, it is

also of smaller losses (Bodoff 2009). In the case

above, $3- and $5-million losses will not con-

tribute to VaR because VaR only considers 1%

probability at which risk is generated; (2) risk-

4For example, Meyers (2001) discussed that TVaR satisfies the four

criteria of coherent risk measures.
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bearing entities do not weigh the risk of loss in

a linear manner and are more concerned about

the incidence of large losses than smaller ones.

In other words, risk perception is exponentially,

not linearly, increased with the size of loss.

In practice, the RORAC method has been pop-

ular in calculating the optimal catastrophe rein-

surance layer. In this study, we improve the pop-

ular mean-variance approach advocated in aca-

demic studies by using lower partial moment

(LPM) as the measure of risk, and provide an

alternative method for determining optimal rein-

surance layers. Compared with the RORAC ap-

proach, our method has three advantages. First, it

does not involve the calculation of the necessary

economic capital, which has no universally ac-

cepted definition. Second, by VaR or TVaR, true

risk exists only at the tail of the distribution. By

LPM, on the other hand, all the losses are con-

sidered as generating risk to the risk-bearer, but

severe losses contribute to LPM disproportion-

ately. Third, the estimation of variance and semi-

variance is relatively robust compared to VaR

and TVaR in the context of catastrophe losses.

The tail estimation of remote catastrophe losses

generally is not robust, and is very sensitive to

the assumptions about the underlying distribu-

tion, especially at high significance levels. The

limitations of the proposed method are the limita-

tions inherent to the mean-variance framework. It

can be difficult to estimate the risk-penalty coef-

ficient, as the parameter is often time-dependent

and subject to management’s specific risk

appetite.

This paper improves the previous mean-var-

iance optimal reinsurance studies from two per-

spectives. First, it considers noncatastrophe and

catastrophe losses simultaneously. Second, the

risk is measured by LPM (semivariance), which

is a more reasonable and appropriate risk mea-

sure than the traditional risk measures, such as

total variance, used in previous studies (i.e.,

Borch 1982; Lane 2000; Kaluszka 2001; Bu

2005). Even though the authors investigate the

optimal layers in the context of catastrophe rein-

surance, the proposed method can be easily ap-

plied to aggregate excess-of-loss (XOL) treaties

and occurrence XOL treaties that cover shock

losses at individual occurrence/claim levels.

2. Risk-adjusted profit model
Insurance companies buy catastrophe reinsur-

ance to reduce potential volatility in earnings and

to provide balance sheet protection from catas-

trophic events. However, reinsurance comes at a

cost, and therefore attaining an optimal balance

between profit levels after the effect of catastro-

phe reinsurance and the reduction in their risk

exposure is important. Buying unnecessary or

“excessive” reinsurance coverage would give up

more of the reinsured’s underwriting profit than

is necessary or desirable. Buying inadequate rein-

surance coverage would still expose the reinsured

to the volatility engendered by the risk of large

catastrophe events, the reinsurance cover not-

withstanding. The value of reinsurance is the sta-

bility gained or the risk reduced and the cost

is the premium paid less the loss recovered. As

Venter (2001) pointed out, the analysis of a rein-

surance arrangement is the process of quantify-

ing this cost/benefit relationship. It is self-evident

that in an insurance company’s decision-making

process, a relatively certain, but maximal, profit

is preferable over other, perhaps higher profit po-

tentials that are also exposed to the risk of large

catastrophic losses. Following the classic mean-

variance framework in financial economics, a

reinsured will buy reinsurance to maximize its

risk-adjusted profit, defined as

RAP = E(r)¡ μ ¤Var(r) (1)5

where r is the net underwriting profit rate, E(r) is

the mean of r and Var(r) is its variance. μ ¤Var(r)

5In financial economics, it is often referred to as the expected util-

ity function with the formula E(r)¡ 0:5A ¤Var(r), where A is the
so-called risk aversion coefficient. In this paper, the risk-penalty

coefficient μ = 0:5A.
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is the penalty on risk. μ is the risk-penalty coef-

ficient: the higher the risk-penalty μ, the greater

is the reinsured’s risk aversion. If μ = 0, the rein-

sured is risk-neutral. It will try to maximize profit

and not care about risk. In this scenario, it will

not give up any profit to purchase reinsurance.

The most common measurement of risk is the

variance associated with a particular outcome.

Variance reflects the magnitude of uncertainty

(variability) in underwriting results, and how

widely spread the values of the profit rate are

likely to be around the mean. Therefore, within

a variance framework, all the variations, both de-

sirable and undesirable, are viewed as manifes-

tations of risk. Large favorable swings will lead

to a large variance, but insurers certainly have

no problem with such favorable underwriting re-

sults. Markowitz (1959) pointed out the draw-

backs of using total variance as a measure of risk,

as there is implicitly and directly a cost to both

upside and downside movements.

Fishburn (1977) argued that risk should be

measured in terms of only below-target returns.

Hogan and Warren (1974) and Bawa and Lin-

denberg (1977) suggested using LPM to replace

total variance as the risk measure:

LPM(T,k) =

Z T

¡1
(T¡ r)kdF(r) (2)

where T is the minimum acceptable profit rate, k

is the moment parameter which measures one’s

risk perception sensitivity to large loss, and F(r)

is the probability function of r. Unlike total vari-

ance, LPM only measures the unfavorable vari-

ation (e.g., when r < T) as risk. Because LPM

does not change with favorable deviations, it

would seem to be a superior measure of risk.

When T is triggered at the 1% probability level

and k = 1, LPM is equal to 0:01 ¤TVaR. When
the distribution is symmetric, T is the mean, and

k = 2, it is equal to 0:5 ¤ variance. LPM com-

bines the advantages of variance and TVaR. It

is superior to variance by not treating the favor-

able outcomes as risks. It is superior to TVaR be-

cause (1) it considers small and medium losses

as risk components, and (2) it provides nonlin-

ear increasing penalties on larger losses when

k > 1. In the example above, suppose a $100 mil-

lion loss will cause a financial rating downgrade

while a $10 million loss merely causes a bad

quarter. Management inevitably will perceive a

$100 million loss to be more than 10 times as

bad as a $10 million loss. By VaR, a $100 mil-

lion loss is 10 times as bad as a 10 million loss.

By LPM with k = 1:5, the risk of a $100 million

loss is 31.6 times that of a $10 million loss; and

by LPMwith k = 2, it is 100 times. The k value is

a direct measure of risk aversion to large losses.

When k = 2, LPM is often called “semivari-

ance” (it excludes the effects of variance associ-

ated with desirable outcomes in the measurement

of risk) and has been gaining greater acceptance.

By formula, semivariance is defined as

SV(T) =

Z T

¡1
(T¡ r)2dF(r): (3)

A growing number of researchers and practi-

tioners are applying semivariance in various fi-

nancial applications. For example, Price, Price,

and Nantell (1982) showed that semivariance

helps to explain the puzzle of Black, Jensen, and

Scholes (1972) and Fama and MacBeth (1973)

that low-beta stocks appear systematically un-

derpriced and high-beta stocks appear systemat-

ically overpriced. However, to date, the casualty

actuarial literature has seldom used the semivari-

ance as a risk management tool and neither does

it appear much in practice.6

Generally, a decision-maker can be expected

to be more concerned with the semivariance than

with the total variance. Using downside risk in-

stead of total variance, the downside-risk-adjust-

ed profit (DRAP) becomes

DRAP =Mean(r)¡ μ ¤LPM(T,k), (4)

6Berliner (1977) studied a special case of semivariance with the

mean as the minimum acceptable value, against variance as risk

measures. He concluded that although the semi-variance is more

theoretically sound, variance provides a better risk measure.
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where μ is the penalty coefficient on downside

risk.

Three parameters T, k, μ in the DRAP for-

mula interactively reflect risk perception and risk

aversion. With these three parameters, the DRAP

method provides a comprehensive and flexible

capacity to capture risk tolerance and appetite.

T is the benchmark point of profit below which

the performance would be considered as “down-

side” (lower than is minimally unacceptable). T

can be a target profit rate, the risk-free rate, zero,

or even negative, depending on one’s risk per-

ception. When T is at the very right tail of r,

only large losses contribute to the downside risk.

T can vary by the mix of lines of business. For

example, for long tail lines, negative underwrit-

ing profits may be tolerable because of antici-

pated investment income on loss reserves.

The moment parameter k reflects one’s risk

perception as the size of loss grows: k > 1 im-

plies exponentially increasing loss perception to

large losses; 0< k < 1 represents concavely in-

creasing loss perception to large losses; k = 1 im-

plies linearly increasing loss perception. In gen-

eral, k is larger than 1 since fear of extreme

events that can lead to a financial downgrade is

greater than the fear of multiple smaller losses.

Because semivariance is the most popular LPM,

we choose k = 2 to illustrate our approach in the

case study presented below.

The risk aversion level is represented by μ,

which is a function of T and varies according to

its values. For example, when T = 0, all the un-

derwriting losses contribute to LPM(0,k); when

T =¡10%, only losses exceeding the 10% loss

rate contribute to LPM(¡0:1,k). LPM(¡0:1,k)
represents a much more severe risk than

LPM(0,k). μ is also a function of k. For example,

LPM(T,1) and LPM(T,2) are at different scales

because the former is at the first moment and the

latter is at the second moment. μ should vary with

k because k changes the scale of risk measure.

Note that μ may not be constant across loss

layers. For example, when k = 1, LPM is a lin-

ear function of loss. For a run of smaller losses

that cause a “bad” quarter, μ may be very small.

For losses that cause a “bad” year or eliminate

management’s annual bonus, μ may be larger.

For losses that lead to a financial downgrade or

the replacement of management, μ will be even

larger. Interested readers can expand the models

in this paper by adding a series of risk-penalties

upon predetermined loss layers with various

risk aversion coefficients. When k ¸ 2, because
LPM increases exponentially with extreme

losses, it may not be necessary to impose higher

risk-penalty coefficients on higher layers.

In addition, k may not be constant across loss

layers. The scale of loss impacts the value of k.

If k is constant, say k = 2, it implies that $100

million loss is 100 times worse than $10 million

loss. It also indicates that $100 loss is 100 times

worse of $10 loss. The latter, in general, is not

true because of linear risk perception when view-

ing a smaller nonmaterial loss. In the context of

reinsurance, k might be closer to one at a working

layer (low retention with high probability of pen-

etration) and would increase for higher excess

layers. Interested readers can expand the models

in this paper by adding a series of risk-penalties

upon predetermined loss layers with various mo-

ment parameters.

The academic tradition in financial economics

has been to set μ as a constant and k = 2.7 Assum-

ing an individual has a negative exponential util-

ity function u(r) =¡exp(¡A ¤ r), where A > 0.
If r is normally distributed, the expected utility

is E[u(r)] =¡exp[¡A ¤E(r) +0:5A2 ¤Var(r)].
Maximizing E[u(r)] is equivalent to maximizing

E(r)¡ 0:5A ¤Var(r). Also, ¡u00(r)=u0(r), which is
equal to A in this specific case, is often referred

as the “Arrow-Pratt measure of absolute risk

7In recent years, academics have found increasing evidences of

higher moments of risk aversion. For example, Harvey (2000)

showed that skewness (3rd moment) and kurtosis (4th moment)

are priced in emerging stock markets but not in developed markets.
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aversion.” Constant μ and k = 2 are built-in fea-

tures under the assumptions of negative expo-

nential utility function and normality. Alterna-

tively, interested readers can use negative expo-

nential utility, logarithmic utility, or define their

own concavely increasing utility curves, and se-

lect the optimal reinsurance layer to maximize

the expected utility function.8 To simplify the il-

lustration and to be consistent with academic tra-

dition, we use a constant μ and k = 2 in the case

study.

An inherent difficulty in mean-variance type of

analysis is the need to estimate the risk-penalty

coefficient empirically. The key is to measure

how much risk premium one is willing to pay

for hedging risk. The flip counter-party ques-

tion is how much investors would require for

assuming that risk. For overall market risk pre-

mium, one can obtain the market risk premium

by subtracting the risk-free treasury rate from

market index return. For example, if the market

return is 10%9 and the risk-free rate is 5.5%, the

risk premium is 4.5%, or 45% of total “profit.”

For the risk premium in the insurance/reinsur-

ance market, one can use the market index for in-

surance/reinsurance companies. For the risk pre-

mium in catastrophe reinsurance, one can com-

pare catastrophe bond rates to the risk-free rate.

For example, if the catastrophe bond yield is

12%,10 the treasury rate yield is 5.5%, and the

expected loss from default is 0.5%, then the risk

premium11 is 6%, consisting of 50% of total

yield.

The methods above provide objective estima-

tion of μ assuming that management’s risk ap-

8Insurance profit is generally not normally distributed. It can be

positive or negative, but has a fatter tail on left side. Reinsurance

layers complicate the distribution of r. It may be very difficult

to derive an analytical solution for E[u(r)]. However, a numerical

solution maximizing E[u(r)] can be obtained easily.
9According to Vanguard, its S&P 500 index returns 10.34% annu-

ally from its inception (08/31/1976) to 01/31/2010.
10In 1997, USAA issued its one-year catastrophe bond at LIBOR

plus 576 basis points, which was close to 12%.
11Risk premium is equal to cat bond yield¡risk-free rate¡expected
loss. For details, please refer to Bodoff and Gan (2009).

petite is consistent with the market. In reality, μ

varies by risk-bearing entity. Each risk-bearing

entity has its own risk perception and tolerance.

To measure management’s risk aversion, one can

obtain μ by asking senior executives, “In order to

reduce downside risks, how much of the other-

wise available underwriting profit per unit of risk

are you willing to pay?” The answer to a single

question may not be sufficient to pin down the

value of theta. Most likely management would

require information about expected results under

optimal reinsurance programs at various values

of theta to fully understand the implications of

the final theta value selected. To replicate the sen-

sitivity tests that management may perform when

determining the utility function, the case study

provides optimal insurance solutions at various

values of theta.

For the same management within the same in-

stitution, μ often is time-variant12 as the risk ap-

petite often changes to reflect macro economic

conditions or micro financial conditions. For ex-

ample, after a financial crisis, insurance compa-

nies may become more risk averse. μ also varies

by the mix of business. For lines with little catas-

trophe potential, such as personal auto, the tol-

erance on downside risk might be higher and μ

would be smaller. For lines with higher catas-

trophe potential, such as homeowners, μ can be

larger. μ is difficult to estimate because of its sub-

jective nature. Actuarial judgment plays an im-

portant role when determining the risk-penalty

coefficient.

In the context of catastrophe reinsurance, the

layers are bands of protection associated with

catastrophe-triggered loss amounts. Outside of

price, the main parameters of a catastrophe layer

are the retention, the coverage limit, and the ces-

sion percentage within the layer of protection.

Retention is the amount that the total loss from

12The authors tried to estimate a constant risk penalty coefficient

based on management past reinsurance decisions. The result clearly

indicates that the risk coefficient is time-variant.
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a catastrophe event must exceed before reinsur-

ance coverage attaches. The limit is the size of

the band above the retention that is protected by

reinsurance. The cession percentage is the per-

centage of the catastrophe loss within the rein-

surance layer that will be covered by the rein-

surer. The limit multiplied by the cession per-

centage is the maximum reinsurance recovery

from a catastrophe event within that particular

band of loss. The coverage period of catastro-

phe reinsurance contracts is typically one year.

Let xi denote the gross incurred loss from the

ith catastrophe event within a year, and Y be the

total gross non-catastrophe loss of the year. Let

R be the retention level of the reinsurance, L be

the coverage layer of the reinsurance immedi-

ately above R,13 and Á be the coverage percent-

age within the layer.

The loss recovery from reinsurance for the ith

catastrophe event is

G(xi,R,L) =

8>><>>:
0 if xi · R

(xi¡R) ¤Á if R < xi · R+L
L ¤Á if xi > R+L

:

(5)

Let EP be the gross earned premium, EXP be

the expense of the reinsured, N be the total num-

ber of catastrophe events in the reinsurance con-

tract year, RP(R,L) be the reinsurance premium,

which is a decreasing function of R and an in-

creasing function of L, and RI be the reinstate-

ment premium.

The underwriting profit gross of reinsurance is

¼ = EP¡EXP¡Y¡
NX
i=1

xi: (6)

Reinstatement premium is a pro rata reinsur-

ance premium charged for the reinstatement of

the amount of reinsurance coverage that was

“consumed” as the result of a reinsurance loss

13In general, reinsurance is structured in multiple layers. The for-

mulation works for continuous layers. For disruptive layers, one

needs to introduce additional retentions and limits.

payment under a catastrophe cover. The stan-

dard practice is one or two reinstatements. The

number of reinstatements imposes an aggregate

limit on catastrophe reinsurance. The reinstate-

ment premium after the ith catastrophe event is

RI(xi,R,L) = RP(R,L) ¤G(xi,R,L)=L: (7)

The underwriting profit net of reinsurance is

¼ = EP¡EXP¡Y¡
NX
i=1

xi¡RP(R,L)

+
NX
i=1

G(xi,R,L)¡
NX
i=1

RI(xi,R,L): (8)

The underwriting profit rate net of reinsurance

is

r = 1¡ EXP+Y+RP(R,L)
EP

¡
PN
i=1 xi¡G(xi,R,L) +RI(xi,R,L)

EP
:

(9)

Thus the optimal layer is that combination of

R and L which maximizes DRAP:

Max
R,L

Mean(r)¡ μ ¤ r), subject to C:14

(10)

Capital asset pricing model suggests that firms in

a perfect market are risk neutral to unsystematic

risks. If reinsurers are adequately diversified and

price as though they are risk neutral, the reinsur-

ance premium would be equal to the expected

reinsurance cost.15 That is, the total premium

paid by reinsured, RP(R,L)+
PN
i=1RI(xi,R,L),

is equal to the expected reinsurer’s loss cost,

14C is the constraint for the optimization, which can be (a) a budget

constraint on reinsurance premium; (b) a risk tolerance constraint

such as the probability of downgrade is less than 1%, or the PML

will reduce surplus by 15% no more than 1 in 100 years; or (c) any

number of other possible constraints that are relevant to the partic-

ular reinsured. In the case study, to simplify the analysis, we do not

impose constraints on the optimization. The same framework can

be applied to optimal aggregate reinsurance strategies. Actuaries

would select four parameters: event deductible, event cap, aggre-

gate retention, and limit to maximize the risk-adjusted profit.
15According to financial economics theory, risk premium only ap-

plies to nondiversifiable systematic risk. Catastrophe risk is diver-

sifiable in theory so that the risk premium of assuming catastrophe

risk is zero. The theory is extensively discussed in Froot (2001).
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PN
i=1G(xi,R,L) plus reinsurer’s expense. In this

case, reinsurancewill significantly reduce the vol-

atility of the underlying results of the insured

over time, but slightly reduce the expected profit

by the reinsurance expense over the same period

of time. Figure 1 shows reinsurance optimiza-

tion under the assumption of perfect market di-

versification. A is the combination of profit and

downside risk without any reinsurance. B is the

profit and risk with full reinsurance. B is not

downside-risk-free because noncatastrophe loss

could cause the profit to fall below the minimum

acceptable level. Line AB is the efficient frontier

with all possible reinsurance layers. Closer to B,

it represents buying a great deal of reinsurance

coverage. Closer to A, it represents buying mini-

mal reinsurance coverage. Under the assumption,

the reinsurance premium only covers reinsurer’s

costs, and the line is relatively flat.16 U1, U2, and

U3 are the utility curves. The slope of those lines

is the risk-penalty coefficient μ. The steeper the

curve, the more risk-averse. All the points on a

given curve provide the exact same utility. The

higher utility curve represents the higher utility.

The utilities on line U1 are higher than those on

lines U2 and U3. An insurance company gains

the highest utility at point B. Thus maximizing

the risk-adjusted profit is equivalent to minimiz-

ing the downside risk. The optimal solution oc-

curs when R = 0 and L=+1. A retention equal
to zero coupled with an unlimited reinsurance

layer will completely remove the volatility from

catastrophe events with a low cost (reinsurance

premium-recovery). Under the perfect market di-

versification assumption, the proposed method

yields a solution consistent with Froot (2001).

In practice, however, because of the need to

reward reinsurers for taking risk, the reinsurance

price RP(R,L) is always larger than the expected

reinsurer’s loss cost. The expected loss/premium

ratio is generally a decreasing function of reten-

tion R. The higher the retention R, the lower the

16Line AB would be flat assuming zero reinsurer’s expense.

Figure 1. Reinsurance optimization under the
assumption of perfect diversification

Figure 2. Reinsurance optimization in reality

expected reinsurance loss ratio. From the rela-

tionship between risk transfer and reinsurance

premium, a higher layer implies a higher level

of risk being transferred to the reinsurer. To sup-

port the risk associated with higher layers, the

reinsurer needs more capital and thus requires a

higher underwriting margin. Therefore, a rein-

sured has to pay a larger risk premium on higher

layers to hedge its catastrophe risk. In practice,

E(
PN
i=1G(xi,R,L))=RP(R,L) is often less than

40%, and even below 10% for high retention

treaties. The relatively high prices associated with

high retentions often deter the reinsured from

purchasing coverage at those levels. Subject to

the constraints imposed by reinsurance prices and

the willingness of the reinsured to pay, as Froot

(2001) discussed, the optimal solutions are of-

ten low reinsurance retentions at a relatively low

price and a high probability of being penetrated.

Figure 2 shows reinsurance optimization in real-
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ity. As in Figure 1, curve AB represents the ef-

ficient frontier. Because reinsurance companies

cannot fully diversify catastrophe risk and re-

quire higher returns to assume the risk on higher

layers, AB is a concave curve: from A to B, the

slope becomes steeper to reflect higher risk pre-

miums associated with higher layers. Close to

point B, the slope is very steep to reflect the ex-

tra capital surcharge at the top layers. Of all the

possible reinsurance layers, point C provides the

highest utility (or downside-risk-adjusted profit)

to the reinsured.

3. A case study

3.1. Key parameters

Suppose an insurance company with $10 bil-

lion17 gross earned premium plans to purchase

catastrophe reinsurance. Within one year, the

number of covered catastrophe events is normally

distributed18 with a mean of 39.731 and a stan-

dard deviation of 4.450; and the gross loss from a

single catastrophe event is assumed to be lognor-

mally distributed. The logarithm of the catastro-

phe loss has a mean of 14.478 and a standard de-

viation of 1.812,19 which imply a mean of $10.02

million and a standard deviation of $50.77 mil-

lion for the catastrophe loss from one event. The

mean of the aggregate gross loss from all the

catastrophe events within a year is $397.94 mil-

17The premium is for all lines of business. The catastrophe losses

are from property lines. All the catastrophe loss parameters in this

case study are estimates drawn from Applied Insurance Research

(AIR) data simulated based on the property exposures of an insur-

ance company and are scaled accordingly to be consistent with $10

billion earned premium.
18The number of catastrophe events (severe storm and hurricane)

at state level generally fits Poisson distributions better than normal.

At aggregate company level, the number of catastrophe events is

asymptotically normal by AIR data.
19The frequency and severity are estimated using the data from

AIR. In this study we randomly generate the loss data to avoid

revealing proprietary information. The AIR data has a longer tail

than the fitted lognormal distribution. In practice, actuaries can use

catastrophe data directly from AIR, RMS (Risk Management So-

lutions), or EQECAT, or generate loss data based on proprietary

catastrophe models.

lion and the standard deviation is $322.92 mil-

lion. The expense ratio of the insurance company

is assumed to be 33.0%. The aggregate gross

noncatastrophe loss is also assumed to be log-

normally distributed with a logarithm of non-

catastrophe loss mean of 22.497 and standard de-

viation of 0.068. This implies that the mean of

gross noncatastrophe loss is $5.91 billion and the

standard deviation is $402.10 million. Assum-

ing catastrophe and noncatastrophe losses are in-

dependent,20 the mean of the aggregate gross

loss is $6.30 billion and the standard deviation

is $515.72 million. The mean underwriting profit

rate is 3.93% and the standard deviation is 5.16%.

The numerical study is based on this hypothetical

company using the simulated noncatastrophe and

catastrophe loss data. The simulation is repeated

10,000 times. In each simulation, the noncatas-

trophe loss and catastrophe losses within a year

are generated, the losses covered by the reinsur-

ance treaty are calculated by Equation (5), and

the total profit rate is calculated by Equation (9)

assuming two reinstatements. Let rm be the profit

rate from the mth round of simulation. The semi-

variance is

R,L) =
1

10000

10000X
m=1

(min(rm¡T, 0))2:

(11)

Equation (11) is a discrete formula of semi-

variance, which is an approximation of Equa-

tion (3).

Let us assume that reinsurance will cover 95%

of the layer (R,L) and UL is the upper limit of

the covered reinsurance layer (R,L), UL = R+L.

For reinsurance prices, we fit a nonlinear curve

using actual reinsurance price quotes.21 The fit-

20This is a simplifying assumption for the case study. In practice,

the correlation is weakly positive from the perspective of the pri-

mary insurer because catastrophe events cause claims that are oc-

casionally categorized as noncatastrophe losses.
21The reinsurance prices are proportionally scaled by the premium

adjustment.
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Table 1. Distributional summaries of loss covered from reinsurance in a year for quoted reinsurance layers

Retention Upper Limit Recovery/reinsurance Penetration
(million) (million) Mean Standard Deviation Premium Probability

305 420 8,859,074 29,491,239 42.59% 10.18%
420 610 8,045,968 35,917,439 37.08% 6.04%
610 915 6,496,494 41,009,356 32.81% 3.15%
610 1,030 7,923,052 51,899,244 31.44% 3.15%

1,030 1,800 4,858,545 55,432,115 16.93% 1.11%
1,800 3,050 2,573,573 48,827,021 6.58% 0.40%

ted reinsurance price of layer (R,L) is22

RP(R,L) = 1:2300 ¤ (UL¡R)+ 1:2978 ¤ 10¡4

¤ (UL2¡R2)¡ 1:3077 ¤ 10¡8

¤ (UL3¡R3)¡ 0:1835
¤ (UL ¤ log(UL)¡R ¤ log(R))
+45:4067 ¤ (log(UL)¡ log(R)):

Appendix contains both the quoted reinsur-

ance prices and the fitted reinsurance prices. The

actual prices below layer ($1,800 million, $3,050

million) are derived by combining the six lay-

ers with known quotes. Simon (1972) and Khury

(1973) discussed the importance of maintaining

the logical consistency among various alter-

natives, especially on pricing. The fitted price

curve is logically consistent in two ways: (1) the

rate-on-line is strictly decreasing with reten-

tion and consistent with actual observations; (2)

for two adjacent layers, the sum of prices is

equal to the price of the combined layer, that is,

RP(R,L1 +L2) = RP(R,L1)+RP(R+L1,L2).

The minimum acceptable profit rate T and risk-

penalty coefficient μ vary by business mix and

by risk-bearing entity. In this case study, 0% is

selected as the minimum acceptable profit rate

for illustrative purposes. So, only underwriting

losses contribute to the risk calculation. For μ, we

use three values, 16.71, 22.28, and 27.85. Those

coefficients represent management’s willingness

22The curve fitting of reinsurance price quotes is discussed in Ap-

pendix. In practice, actuaries can select rate-on-line by judgment,

or fit their own curves by regression or use interpolation. In the

case study included in this paper, the three options do not produce

significantly different results.

to pay 30%,23 40%, and 50% of underwriting

profits to hedge downside risk, respectively. The

risk-penalty coefficients in the case study are se-

lected solely for illustrative purposes.

3.2. Numerical results

In the simulation, we generate catastrophe loss

and noncatastrophe loss for 10,000 years. In the

instant case, 397,257 catastrophe events are gen-

erated. Table 1 summarizes the losses covered by

reinsurance for quoted layers; Table 2 reports the

distribution summary of underwriting profit rates

net of reinsurance and the risk-adjusted profit

rates for quoted layers and their continuous com-

binations.

As illustrated in Table 1, a catastrophe loss has

a 10.18% chance to penetrate the retention level

of $305 million within one year. So, roughly in 1

of 10 years, the reinsured will obtain recoveries

by purchasing the reinsurance for this layer. The

higher the retention level, the lower the prob-

ability that the catastrophe loss penetrates the

layer. For example, the catastrophe loss has only

a 0.40% chance of penetrating a retention level

of $1,800 million.24 This is expected because the

frequency of a very large catastrophe loss is rel-

atively small. For the layer ($305 million, $420

million), the reinsurance price is $20.8 million,

while the mean of loss recovered from the rein-

23The mean profit and semivariance without any reinsurance are

3.93% and 0.07%, respectively. If a primary insurer would like to

use 30% of its gross profit to hedge downside risk, the risk penalty

coefficient is 16:71 = 3:93% ¤ 0:3=0:07%.
24By using the catastrophe losses from AIR, the probability is

higher because the AIR models produce catastrophe losses with

larger tails than the fitted lognormal distribution.
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Table 2. Distributional summary of underwriting profit rates for selected reinsurance layers when μ = 22:28

Retention Upper Limit Risk-adjusted
(million) (million) Probr < 0% Probr <¡15% Mean Variance Semivariance25 Profit

No Reinsurance 18.41% 0.48% 3.916% 0.263% 0.070% 2.350%
305 420 19.02% 0.42% 3.781% 0.253% 0.067% 2.291%
420 610 19.17% 0.35% 3.771% 0.249% 0.064% 2.341%
610 915 19.31% 0.30% 3.779% 0.247% 0.061% 2.412%
610 1030 19.53% 0.27% 3.739% 0.243% 0.059% 2.428%

1030 1800 19.95% 0.26% 3.676% 0.243% 0.057% 2.397%
1800 3050 20.44% 0.41% 3.551% 0.247% 0.061% 2.186%

305 610 19.63% 0.33% 3.637% 0.241% 0.061% 2.268%
305 915 20.50% 0.25% 3.503% 0.228% 0.055% 2.287%
305 1,030 20.76% 0.22% 3.465% 0.224% 0.053% 2.293%
305 1,800 22.31% 0.13% 3.231% 0.210% 0.045% 2.231%
305 3,050 24.77% 0.04% 2.869% 0.200% 0.042% 1.934%
420 915 19.85% 0.25% 3.634% 0.235% 0.057% 2.373%
420 1,030 20.06% 0.22% 3.595% 0.232% 0.054% 2.382%
420 1,800 21.79% 0.14% 3.358% 0.216% 0.046% 2.330%
420 3,050 24.25% 0.05% 2.995% 0.206% 0.043% 2.038%
610 1,800 21.05% 0.16% 3.500% 0.226% 0.049% 2.402%
610 3,050 23.35% 0.11% 3.135% 0.215% 0.045% 2.124%
915 1,030 18.63% 0.40% 3.877% 0.258% 0.067% 2.380%
915 1,800 20.14% 0.21% 3.637% 0.239% 0.055% 2.407%
915 3,050 22.44% 0.17% 3.272% 0.226% 0.050% 2.155%

1030 3,050 22.15% 0.20% 3.311% 0.230% 0.052% 2.156%

680 1,390 20.00% 0.21% 3.667% 0.237% 0.055% 2.451%

Layers are rounded to 5 million.
Layers below (1800, 3050) and above (680, 1390) are all the continuous combinations of quoted layers.

Figure 3. Reinsurance efficient frontier

25Semivariance using the original AIR catastrophe losses are larger

because the AIR models produce catastrophe losses with larger tails

than the lognormal distribution.

surance is $8.9 million. The ratio of reinsurance

recovery to reinsurance premium is 42.59%. The

reinsurance is costly, especially for the higher
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Table 3. Optimal reinsurance layers when μ = 16:71, 22.28, 27.85

Theta Retention Upper Limit Risk-Adjusted Profit Risk-Adjusted Profit Risk-Adjusted Profit
Theta (million) (million) Mean Semivariance theta = 16:71 theta = 22:28 theta = 27:85

16.71 795 1220 3.771% 0.060% 2:768% 2.434% 2.100%
22.28 680 1390 3.667% 0.055% 2.755% 2:451% 2.147%
27.85 615 1460 3.610% 0.052% 2.736% 2.445% 2:154%

The optimal layers are rounded to 5 million.

layers. For the top layer ($1,800 million, $3,050

million), the reinsurance price is $39.1 million

while the mean of loss recovered by reinsurance

is $2.6 million. The ratio of recovery to premium

is 6.58%. So, the capital charge on the top layer

of reinsurance tower is very high.

Table 2 reports the probability of net under-

writing loss, the probability of severe loss (de-

fined as more than 15% of net underwriting loss),

mean of profit, variance of profit, semivariance

of profit, and risk-adjusted profits at μ =

22:28. The scattered dots (except for A, C, D, and

E) in Figure 3 represent the quoted reinsurance

layers and all possible continuous combinations

of those layers. A represents the no reinsurance

scenario and B represents the maximal reinsur-

ance scenario of stacking all quoted layers. The

slope from A to B becomes steeper and reflects

the reality of reinsurance pricing. The concave

curve in Figure 3 represents the efficient frontier.

Not unexpectedly, some of the quoted reinsur-

ance layers are not at the frontier: one can find

another layer to produce a higher return at the

same downside risk or a lower risk at the same

return. For example, layer ($305 million, $1,030

million) is not efficient with a mean profit and a

semivariance 3.465% and 0.053%, respectively.

Layer ($610 million, $1,800 million) is clearly

superior because it increases average return

(3.500%) while reducing risk (0.049%).

As shown in Table 2, the reinsured will maxi-

mize its downside-risk-adjusted profit by select-

ing the layer ($680 million, $1,390 million) as-

suming a 22.28 risk-penalty coefficient, which

implies that the management would be willing

to pay 1.567% of gross premium (40% of gross

underwriting profit) to hedge downside risk. For

a lower layer, even though the layer has a greater

chance to be penetrated, the potential risk of

catastrophe loss is tolerable by the reinsured. For

a higher layer, the reinsurance price is too high

compared to the risk mitigation it provides. Point

C in Figure 3 represents this optimization op-

tion. The straight tangent line represents the util-

ity curve at μ = 22:28. All other possible layers

are below the line and therefore have lower util-

ity values.

It is also clear from Table 2 that catastrophe

reinsurance does not increase the probability of

being profitable in the instant case. Without rein-

surance, the probability of underwriting loss is

18.41%. With reinsurance of various layers, the

probabilities of underwriting loss are over 19%.

The purpose of reinsurance is to buy protections

against large events. Without reinsurance, the

chance of severe loss is 0.48%, or roughly one

in 200 years. With a minimal reinsurance layer

($305 million, 420 million), it reduces to 0.42%,

or roughly one in 250 years. With the optimal

reinsurance layer ($680 million, $1,390 million),

the chance of severe loss reduces to 0.21%, or

roughly one in 500 years.

If the reinsured is less risk-averse, the opti-

mal layer will be narrower and the retention level

will be higher. As shown in Table 3, when μ =

16:71, or when the management would like to

pay 1.175% of gross premium (30% of total un-

derwriting profit) to hedge its downside risk, the

optimal layer is ($795 million, $1,220 million).

On the contrary, if the reinsured is more risk-

averse, the optimal layer will be wider and the

retention level will be lower. For example, when

μ = 27:85, or the management would like to pay

1.958% of gross premium (50% of total under-

writing profit) to hedge its downside risk, the
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optimal layer is ($615 million, $1,460 million).

Point D in Figure 3 represents the optimization

at reduced risk aversion while Point E represents

the optimization at higher risk aversion.

In practice, actuaries may not be able to choose

reinsurance layers from an unlimited pool of op-

tions. They often need to select a layer or a com-

bination of layers from a limited number of op-

tions. A simple method is to calculate the risk-

adjusted profit for the candidate layers using

Equation (9) and select a layer associated with

the highest score. Layer ($610 million, $1,030

million) is the best of the six quoted options. In

this case, actuaries do not need to fit a nonlin-

ear curve on reinsurance prices and to solve the

complicated optimization problem.

The underwriting performance may impact the

reinsurance selection from two perspectives: (1)

the more profitable the business, the more risk

the insurer can retain, and the less reinsurance the

insurer may be willing to buy; (2) the more prof-

itable the business, the more capital can be de-

ployed for reinsurance, and the more reinsurance

the insurer is able to buy. The optimal reinsur-

ance layer, assuming a 3.93% gross underwrit-

ing profit rate with μ = 22:28, is ($680 million,

$1,390 million). If the company could make 2%

more underwriting profit by lowering its non-

catastrophe loss ratio, the reinsurance optimiza-

tions could be formularized by the following pa-

rameters:26

1. The benchmark point for minimum accept-

able profit may increase to 2%. In this case, the

semivariance will not be impacted by a profitabil-

ity change; the optimal layer remains the same as

($680 million, $1,390 million).

2. The minimum acceptable profit rate re-

mains at 0%. In this case, the semivariance re-

duces with improved profitability. The semivari-

ance decreases from 0.07% to 0.05% and down-

side deviation from 2.652% to 2.240%. This is

26None of the three parameterizations (1, 2a, or 2b) can fully re-

flect risk perception and risk aversion associated with improved

profitability. The true parameters are probably somewhere among

1, 2a, and 2b.

because smaller catastrophe events no longer

produce underwriting losses, and larger events

would produce 2% less loss.

(a) If the penalty on the semivariance remains

at 22.28, the optimal layer becomes ($740 mil-

lion, $1,420 million). The insurer would max-

imize its risk-adjusted profit by retaining more

loss from relatively small events (higher reten-

tion). This is because the reinsured has more

underwriting profit to cover smaller catastrophe

events. And by increasing the retention level, it

could have additional capital to buy more protec-

tion from a higher layer ($1,390 million, $1,420

million). The limit is reduced from $710 mil-

lion to $680 million because the downside risk

is smaller.

(b) If the reinsured would like to use the same

level of profit, or 1.567% of gross premium, to

fully hedge downside risk, μ would be 31.22. In

this scenario, the optimal layer is ($630 million,

$1,555 million). The reinsured would like to buy

a wider layer with a lower retention due to in-

creased risk-aversion (willing to pay the same

amount of price to hedge a semivariance that is

28.6% smaller than before).

4. Conclusions
When selecting reinsurance layers for catastro-

phe loss, the reinsured weighs two dimensions

in the decision making process: profit and risk.

The reinsured would give up too much of its

underwriting profit if purchasing excessive rein-

surance. On the other hand, the reinsured would

still be under the risk of large catastrophe losses

if carrying little reinsurance. This study explores

the determination of the optimal reinsurance

layer for catastrophe loss. The reinsured is as-

sumed to be risk-averse and chooses the rein-

surance layer that maximizes the underwriting

profit net of reinsurance adjusted for downside

risk. It provides a theoretical and practical model

under classical mean-variance framework to esti-

mate the optimal reinsurance layer. Theoretically,
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the paper improves previous studies by utilizing

both catastrophe and noncatastrophe loss infor-

mation simultaneously and using the lower par-

tial moment to measure risk. Practically, the op-

timal layer is determined numerically by the risk

appetite of the reinsured, the reinsurance price

quotes by layer, and the loss (frequency and

severity) distributions of the business written by

the reinsured. The proposed approach uses three

parameters to reflect the insurer’s risk percep-

tion and risk aversion. T is the minimum accept-

able profit and the benchmark point to define

“downside.” The moment that represents one’s

risk perception of larger losses is k; the higher

the k, the greater the fear of severe losses. μ

is the risk-penalty coefficient which represents

one’s risk aversion. The higher the μ, the greater

the risk aversion to downside risks. The DRAP

(downside-risk-adjusted profit) framework pro-

vides a flexible approach to capture the insurer’s

risk appetite comprehensively and precisely. All

the information required by the model should be

readily available from catastrophe modeling ven-

dors and the actuarial database of an insurance

company.

Additionally, we would like to make the fol-

lowing concluding remarks:

1. From the perspective of enterprise risk

management (ERM), catastrophe insurance is a

risk management tool to mitigate one of many

risks faced by insurance companies. Catastro-

phe reinsurance should not be arranged or eval-

uated solely upon the information of catastrophe

losses. Instead, its arrangement should be viewed

concurrently with other types of risks, such as

noncatastrophe underwriting risk and various in-

vestment risks. In this paper we consider both

catastrophe and noncatastrophe losses and the

analysis (simulation) is carried out with both sets

of variables operating concurrently. This particu-

lar path views the catastrophe reinsurance cover

as a part of the ERM process. We believe the

decision reached by viewing the transaction as a

step in the ERM process to be a superior deci-

sion. This idea may be extended to all other el-

ements of reinsurance considered and/or utilized

by an insurer. In effect, our suggestion is that

the reinsurance decision, for catastrophe reinsur-

ance and otherwise, is an important element of

the total ERM process.

2. The reinsurance purchase decision is sel-

dom, if ever, guided solely by the dry mechanics

of pricing a layer above a particular attachment

point to pay a certain percentage of the covered

layer. An aspect of the transaction that goes be-

yond the mechanical factors deals with “who”

the prospective reinsurer is. This is an important

input item, but it is always an intangible. The size

of the reinsurer, the size of its surplus, the finan-

cial rating of the reinsurer, the length and quality

of the relationship with the reinsurer, how much

of the reinsurance is retained for its own account,

and so forth form important intangibles that are

impossible to factor into any simulation. All the

same, these factors do operate and they can in-

fluence the final decision.

3. Another aspect of the reinsurance decision

is the way the ultimate decision maker may be

able to use the outputs of modeling such as those

proposed in this paper. The models and their out-

put in effect provide the ultimate decision maker

with some absolute points of reference that can

be factored into the final decision. For exam-

ple, if the model results show a clearly economi-

cally advantageous reinsurance proposition is be-

ing offered, the ultimate decision maker now has

some “elbow room” to fully capitalize on the ad-

vantage that is being offered: he may seek to ex-

pand layers of coverage, extend the terms of cov-

erage, add additional reinstatement provisions,

and so on. On the other hand, if the proposed

reinsurance is particularly disadvantageous, the

ultimate decision maker also is well-armed to

seek alternatives that are consistent with his ap-

petite for risk: change the point of attachment,

change the size of the reinsured layer, seek out-
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Table 4. Regression statistics

Variable Coefficients Standard Error t Stat

x2¡ x1 1.2300 0.0995 12.37
x2

2¡ x2
1 1:2978 ¤10¡4 6:6023 ¤10¡6 19.66

x3
2¡ x3

1 ¡1:3077 ¤10¡8 6:0976 ¤10¡10 ¡21:45
x2 log(x2)¡ x1 log(x1) ¡0:1835 0.0135 ¡13:56
log(x2)¡ log(x1) 45.4067 3.935 11.54

side bids for the same coverage, and so on. In

all cases, the knowledge that is imparted from

these simulations to the ultimate decision maker

enhances his level of comfort with what is being

offered as well as with any final decision.

4. The downside risk measure and utility func-

tion (downside-risk-adjusted profit) in this study

can be adapted to analyze whether an insurance

company should write catastrophe exposures and

the design of the catastrophe reinsurance pro-

gram would be one component of such an analy-

sis. For example, if the profit in a property line is

not high enough to cover reasonable reinsurance

costs, or even negative, it is better to not write

that property line. The risk-adjusted profit of

Table 5. Fitted vs. actual prices¤

Upper Bound of
Retention Layer Reinsurance Limit Reinsurance Price Rate-on-line Fitted Price Fitted Rate-on-line

305 420 115 20.8 18.09% 20.84 18.12%
420 610 190 21.7 11.42% 21.69 11.41%
610 915 305 19.8 6.50% 19.87 6.51%
610 1,030 420 25.2 5.99% 25.18 6.00%

1,030 1,800 770 28.7 3.72% 28.73 3.73%
1,800 3,050 1,250 39.1 3.13% 39.10 3.13%

305 610 305 42.5 13.93% 42.52 13.94%
305 915 610 62.3 10.22% 62.39 10.23%
305 1,030 725 67.7 9.33% 67.70 9.34%
305 1,800 1,495 96.5 6.45% 96.43 6.45%
305 3,050 2,745 135.6 4.94% 135.53 4.94%
420 915 495 41.5 8.39% 41.55 8.39%
420 1,030 610 46.9 7.68% 46.87 7.68%
420 1,800 1,380 75.6 5.47% 75.60 5.48%
420 3,050 2,630 114.7 4.36% 114.69 4.36%
610 1,800 1,190 53.9 4.53% 53.91 4.53%
610 3,050 2,440 93.0 3.81% 93.01 3.81%
915 1,030 115 5.3 4.64% 5.32 4.62%
915 1,800 885 34.0 3.85% 34.04 3.85%
915 3,050 2,135 73.1 3.42% 73.14 3.43%

1,030 3,050 2,020 67.8 3.36% 67.83 3.36%

*The actual prices below layer (1800, 3050) are derived by combining the six layers with known prices.

the primary insurer without the property line will

be higher than that by adding the line and buy-

ing the optimal catastrophe reinsurance cover. In

reality, a property line may not be profitable and

it may not be a viable option to completely exit

or even shrink the line. Under the scenario of un-

profitable property lines with predetermined ex-

posures, the proposed method can still help the

primary insurer to find an optimal reinsurance

solution and to mitigate severe downside pains

from property lines by giving up a portion of

profit from other profitable lines.

5. Uncertainty in modeling and estimating net

underwriting profit is an important consideration.

Model and parameter risks inherent in catastro-

phe loss simulations can influence actual vs. per-

ceived costs as well as the optimal amount of

capacity companies choose to buy.

Finally, there is no question that, when all is

said and done, the ultimate decision maker has to

weigh many things, both objective and subject-

ive, on the way to finalizing the reinsurance de-
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cision. Having the results of the simulations pre-

sented in this paper serves to improve the quality

of decision making.

Appendix: Fitting the Reinsurance
Price Curve
In calculating catastrophe reinsurance rates,

the premium and rate-on-line are associated with

two values: the starting and end points of a layer.

When the layer is infinitesimal, rate-on-line can

be thought as a function of the midpoint of the

layer. In other words, rate-on-line in a continu-

ous setting is f(x), a function with a single vari-

able. Let p(x1,x2) be the reinsurance rate with

retention at x1 and upper limit of the layer at x2,

then

p(x1,x2) =

Z x2

x1
f(x)dx: (A.1)

Because the reinsurance rate is expressed as

the integral, it meets the addable requirement

of reinsurance pricing: p(x1,x3) = p(x1,x2)+

p(x2,x3). From actual quotes, it is clear that f(x)

is a decreasing nonlinear function of x. To cap-

ture the nonlinearity, we assume that f(x) con-

tains a quadratic term x2, and logarithm log(x),

and inverse term 1=x in addition to a linear

term x.

f(x) = ¯0 +¯1x+¯2x
2 +¯3 log(x)+¯4x

¡1:

(A.2)27

Combining A.1 and A.2, the reinsurance rate is

p(x1,x2) = ¯0(x2¡ x1)+ 1
2
¯1(x

2
2¡ x21)

+ 1
3
¯2(x

3
2¡ x31)

+¯3(x2 log(x2)¡ x1 log(x1))

+¯4(log(x2)¡ log(x1)): (A.3)

By Equation (A.3), one could fit a linear re-

gression with quotes as observations of the de-

pendent variable, p, and x2¡ x1, x22¡ x21, x32¡
x31, x2 log(x2)¡ x1 log(x1), and log(x2)¡ log(x1)

27One could also consider adding other polynomial terms.

as corresponding observations of the indepen-

dent variables.28 There are 21 observations in Ta-

ble 5 and five possible variables in the regression.

To avoid over-fitting problem associated with re-

gression, we selected the model with the lowest

value of BIC (Bayesian information criterion).

Another way to minimize over-fitting is to obtain

more quotes to increase the number of observa-

tions. Finally, actuaries should review the shape

of fitted reinsurance curve to check its reason-

ableness. The regression results are reported in

Table 4.
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