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The Optimal Number of Quantiles 
for Predictive Performance Testing 

of the NCCI Experience Rating Plan
by Jon Evans and Curtis Gary Dean

ABSTRACT

Quantile testing is a key technique for fitting parameters and test-

ing performance in workers compensation experience rating and 

the number of quantile intervals must be specified for such a test. 

A model is developed to compare the error in the quantile test 

empirical estimates of relative pure loss ratios to the interquantile 

differences between expected pure loss ratios. Theoretical model 

predictions are compared to empirical results from bootstrap 

quintile tests of the National Council on Compensation Insur-

ance (NCCI) Experience Rating Plan (ERP). The model predicts 

that the noise-to-signal ratio grows in proportion to the 1.5 power 

of the number of quantiles and in inverse proportion to the 0.5 

power of the sample size of risks. Empirical quintile and decile 

tests of NCCI’s Experience Rating Plan are consistent with model 

predictions. Increasing the number of quantiles requires a much 

greater proportional increase in data volume to maintain a con-

stant noise-to-signal ratio. This explains the use of few quantiles, 

specifically quintiles, for testing NCCI’s Experience Rating Plan.
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Quantile test, quintile test, experience rating, workers compensation,  
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1.2. Outline

The remainder of the paper proceeds as follows. 
Section 2 will describe a noise-to-signal (N/S) model 
for the resolution of a quantile test. Section 3 shows 
how the properties of this model are consistently 
demonstrated in both empirical data and hypotheti-
cal examples. Appendix A will show a connection 
between the N/S ratio model and credibility.

2. Background and methods

The purpose of experience rating is to improve the 
estimate of future expected losses for an individual risk 
using previous actual loss experience for that risk. The 
basic underlying formula for the workers compen-
sation experience rating modification factor is (2.1).
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 Ap =  actual primary ratable loss from the experience 
period

 Ae = actual excess ratable loss from experience period
 Ep =  expected primary ratable loss from the experi-

ence period
 Ee =  expected excess ratable loss from experience 

period
 Zp = primary credibility
 Ze = excess credibility

Although there are many other refinements to this 
basic formula as used in the ERP, the mod essentially 
compares actual loss experience to manual expected 
losses. The Zp and Ze values, which vary by size of risk, 
determine the credibility assigned to experience. The 
prospective manual premium for a policy is multi plied 
by this mod value, which is always positive but may be 
greater or less than 1.0, as part of premium calculation.

2.1. Quintile testing the experience 
rating plan

Risks are sorted by mod value and based on this 
order split into five quintiles, each containing an 
equal number of risks. The performance of the ERP 
is tested by comparing relative pure loss ratios—the 
ratio of actual losses to expected losses—across the 

1. Introduction

The National Council on Compensation Insur-
ance (NCCI) Experience Rating Plan (ERP) is rou-
tinely tested by sorting risks based on experience 
modification factor (mod) values into quintiles, each 
containing an equal number of risks. A natural ques-
tion is why quintiles, that is five quantiles, are used 
to test the ERP. Naïve intuition would suggest that 
more quantiles would reveal more details about per-
formance. However, like virtually all statistical tests, 
quantile testing attempts to uncover underlying sys-
tematic or signal information by filtering out random 
or noisy information. Using more quantiles affects 
both the signal and noise properties of each quantile. 
This paper will explain how a constraint on the rela-
tive size of noise to signal in the quantile test suggests 
criteria for selecting an optimal number of quantiles.

The content of this paper is primarily related to indi-
vidual risk rating, predictive testing, and credibility. 
Although the application is to workers compensa-
tion specifically, the methods shown are generally 
applicable to predictive models of losses for individ-
ual risks in all lines of property and casualty insur-
ance. The predictive testing of individual risk rating 
plans has been discussed previously in Dorweiler 
(1934), Gillam (1992), Meyers (1985), and Venter 
(1987). Specifics of the NCCI Experience Rating 
Plan can be found in the latest NCCI manual (updated 
annually).

1.1. Objective

This paper will provide a justification for select-
ing a given number of quantiles, or comparing dif-
ferent possible numbers of quantiles for testing the 
ERP. No pretense is made of meeting the standards 
of mathematical rigor or rock-solid logical deriva-
tion, but the model will follow from a sensible line 
of reasoning and whatever specific parameter values 
selected are intended for application with empirical 
data. Some model results will be shown to be reason-
ably consistent with patterns seen in some empirical 
quintile and decile tests, providing validation to the 
extent of practical use.
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ferentiation between them. If risks were rated only 
on manual rates, then risks in the quintiles to the left 
would produce more favorable underwriting results.

The second set of bars in Figure 1 demonstrates 
that the combination of manual rates and the mod is 
equitable. The underwriting results are equal across 
the quintiles. Hence underwriting results are the 
same for risks with different mod values.

Figure 2 displays a hypothetical ERP with consider-
able lift, as seen by the bars on the left side. The five 
bars on the right side demonstrate that the mod has not 
fully corrected for predictable differences in manual 
loss ratios. The rating plan does not charge risks with 
high mods enough and overcharges risks with lower 
mods. This inequity is generally the result of not 
assigning enough credibility to individual risk expe-
rience. In contrast, Figure 3 displays a hypothetical 
ERP that over-corrects for predictable differences—
this generally results from assigning too much cred-
ibility to individual risk experience.

In cases where specific measures are needed to 
quantify how effectively the ERP is finding lift and 
achieving equity, the NCCI considers two statistics. 
The older quintile test statistic is B*/A*, where A* 
is the variance of the unmodified quintile pure loss 
ratios and B* is the variance of the modified quintile 
pure loss ratios: the variance in the pure loss ratios 
after application of the modification factors is divided 
by the variance in the pure loss ratios at manual rates. 
This traditional statistic measures equity or, perhaps 

quintiles for the policy year to which the experience 
mod applies both before and after the mod is applied 
to manual expected losses. Several adjustments are 
made to reported actual losses and NCCI manual rates 
so that losses are on an ultimate basis and exclude 
both underwriting and loss adjustment expenses. A 
scale factor is also used to set total modified expected 
losses equal to total actual losses by risk hazard group 
within each state. This equalization isolates relative 
differences between risks, which the mod is designed 
to address, from issues of aggregate rate adequacy, 
which are addressed by manual rates levels.

2.2. Lift and equity

If the ERP can actually differentiate between risks 
then pure loss ratios calculated from manual rates 
should increase when moving from lower quintiles 
to higher quintiles. This increasing slope is called lift. 
The steeper the lift, the more value the mod offers in 
differentiating risks.

Including the mod in the calculation of expected 
losses should result in nearly equal pure loss ratios, 
or equity, across quintiles if the ERP is working well 
and there is sufficient data in each quintile. This flat-
ness of the relative modified pure loss ratios reveals 
how well the mod achieves equity between risks.

Figure 1 displays an idealized hypothetical exam-
ple. The bars on the left side of the chart demonstrate 
the concept of lift. The mod is able to differentiate 
between risks and the slope shows the degree of dif-
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Figure 1. Experience Rating Plan displaying lift 
and equity
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undercompensates for experience
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risk has the same expected loss. σ2/n is the variance 
and nσ  is the standard deviation in the overall 
pure loss ratio for a bin containing n homogeneous 
risks. As can be seen in Figure 4, the decreasing vari-
ance as n increases results in a tighter curve clustered 
around the expected value.

The practical implication of this is that we expect 
for both manual and modified pure loss ratios the ran-
dom observation error will be proportional to 1 n.  
Although the assumptions about homogeneity of 
risks are far from perfectly met in the real world, the 
departure will generally not cause this 1 n  relation-
ship to lose its practical value.

2.4. Systematic differences versus 
random variation

Individual quantiles should contain enough data so 
that the random variation of the manual pure loss ratios 
within quantiles is small compared to systematic dif-
ferences in the underlying expected manual pure loss 
ratios between quantiles. As another hypothetical exam-
ple, suppose that risks with mods uniformly distributed 
on the interval [0.80, 1.00) are compared to risks with 
mods uniformly distributed on the interval [1.00, 1.20). 
Figures 5a and 5b show, for interval sample sizes 1 and 
100, respectively, hypothetical distributions for manual 
loss ratios for risks uniformly distributed across these 
two intervals, assuming individual risk loss ratios are 
lognormally distributed with mean equal to the mod 
value and 0.50 standard deviation.

more correctly, the movement towards equity with 
the ERP. Ideally it should be as close to zero as pos-
sible. Note that B*/A* would be zero for Figure 1 
because B*, the variance in the modified quintile loss 
ratios, is zero for this hypothetical example.

The newer quintile test statistic is sign(A-B) | A-B | 0.5, 
where A and B are equivalent to A* and B*, but may be 
calculated to include some extra variance due to boot-
strapping the test, as will be discussed in section 3.1 
This newer statistic measures how effectively the 
ERP is at finding lift and achieving equitable workers 
compensation rating. Ideally, it should be as large as 
possible. Using this new test statistic, Figure 1 trumps 
Figures 2 and 3 because all three have the same value 
for A but B takes on the smallest possible value of zero 
for Figure 1.

2.3. Sample size and the central  
limit theorem

The central limit theorem says that the sum or aver-
age of a large number of independent random vari-
ables will be approximately normal. Even a highly 
skewed distribution such as the pure loss ratio for an 
individual risk will tend towards a normal distribu-
tion if an average is computed over many risks. Fig-
ure 4 illustrates this concept.

To simplify the discussion, assume that pure loss 
ratios for risks are independently and identically dis-
tributed with mean µ and variance σ2 and that each 
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Figure 3. Experience Rating Plan that 
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Figure 4. The central limit theorem in action
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Figure 6 shows an idealized view of the dilemma. 
Here, we revisit the example from Figure 5b, break-
ing up the two intervals, each with 100 sampled risks 
into four intervals, each with 50 sampled risks. First, 
note that we can safely ignore the contribution of 
variance of the mod within an interval to the variance 
of the loss ratio. The variance of the mod within the 
original two intervals of width 0.20 was 0.003 and 
for the split intervals of width 0.10 was 0.0008, triv-
ial compared to the conditional variance of 0.25 for 
the loss ratio. So, there will be an increase of about 
41% in the standard deviation of the overall loss ratio 
due to smaller sample size. Simultaneously, the dis-
tance between the midpoints of the adjacent intervals 
has been cut in half. Consequently, the ratio of ran-
dom variation to systematic variation in Figure 6 is 
about 282% of what it was in Figure 5b.

Note the substantial overlap in the distributions of 
actual pure loss ratios in the Figure 5a. There is a 
fair chance that the actual ratio for a risk from [0.80, 
1.00) will exceed that for a risk from [1.00, 1.20), 
which would give misleading results about mod per-
formance. One might conclude that the mod cannot 
effectively distinguish the loss potential of individ-
ual risks. If there are more risks in each interval, as 
in Figure 5b, then the distinction is almost certainly 
shown in the observed loss ratios.

The systematic difference between the two previous 
intervals can be quantified as the differences between 
their midpoints of 0.90 and 1.10. Assuming that there 
are enough risks in the intervals so that the resulting 
distributions are approximately normal, standard devi-
ations of manual loss ratios are a good way to charac-
terize random variation. The choice of how small the 
random variation must be compared to the systematic 
difference is fairly subjective but not impractically 
ambiguous, as will be demonstrated in the next sections.

2.5. Tradeoffs in determining  
the number of quantiles

More quantiles provide a more detailed look at how 
the plan is performing all along the range of mod val-
ues. However, more quantiles will increase the random 
variation within each quantile because a fixed number 
of risks will be split into fewer risks per quantile. Worse 
still, more quantiles will simultaneously decrease the 
systematic differences between adjacent quantiles.

Probability Density of Sample Average
(lognormal distribu�on, SD = 0.50, sample size 1)

Mod on [1.00, 1.20)

Mod on [0.80, 1.00)

0% 50% 100% 150% 200% 250% 300% 350% 400% 450% 500% 50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150%

Probability Density of Sample Average
(lognormal distribu�on, SD = 0.50, sample size 100)

Mod on [1.00, 1.20)

Mod on [0.80, 1.00)

Figures 5a and 5b. Random outcomes versus systematic differences
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Figure 6. Splitting into more intervals
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nificance of noise-to-signal ratios using a normal 
distribution model. Note that this example shows the 
result of reducing the numerator, i.e., the noise, in 
the N/S ratio. The standard deviations of the normal 
curves become smaller moving from left to right and 
top to bottom in the figure. The distance between the 
means, i.e., the signal, is unchanged.

Table 1 shows the probabilities of reversals for a 
normal distribution model. By reversal we mean that 
the observed loss ratio for the higher interval is actu-
ally lower than the observed loss ratio for the lower 
interval.

There is no precise objective standard for selecting 
a specific tolerance level for the N/S ratio. However, 
with consideration of Figure 7 and Table 1, a selec-
tion of 0.25 for the N/S ratio tolerance level might 

2.6. Noise-to-signal ratio

It is conceptually useful to think of random vari-
ation in observed loss ratios as noise and the sys-
tematic difference between the means of adjacent 
bins as signal. The ratio of random to systematic 
variation that we previously alluded to is explicitly 
defined and referred to as the noise-to-signal ratio
(N/S) in (2.2).1

= = Noise

Signal
N S

Standard deviation of
random variations for
an interval loss ratio

Difference in expected 
loss ratios between 

intervals

(2.2)

All other things equal, this ratio should be as small 
as possible. Figure 7 graphically illustrates the sig-

Noise-to-Signal = 1.00 Noise-to-Signal = 0.50

Noise-to-Signal = 0.25 Noise-to-Signal = 0.10

Figure 7. Noise-to-signal for normal distributions

1A formal mathematical definition of the N/S ratio could be:

N/S = {(1/b)∑b
i=1(Var[LRi])

1/2}/{(1/(b − 1)) ∑b−1 
i=1  | E [LRi+1] − E[LRi] |}

where LRi is the actual loss ratio for the ith quantile and b is the number 
of quantiles. The numerator is simply the average of the standard devia-
tions of the individual quantile loss ratios. The denominator measures the 
average “distance” between expected loss ratios of adjacent quantiles. 
Other definitions for N/S may be possible.

Table 1. Noise-to-signal ratios and ordering 
of pure loss ratios

Noise-to-Signal Ratio Probability of Reversal

1.00 0.2398

0.50 0.0786

0.25 0.0023

0.10 7.69 × 10−13
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Solving for sample size n leads to (2.4).

N S
(2.4)

2

2

3n
R

b
( )
( )

= σ

Equation (2.4) shows, among other relations, that 
the amount of data needed increases as the cube of 
the number of quantiles: n ∝ b3. The ERP is cur-
rently tested using a quintile test. A decile test would 
require eight times as much data for a comparable 
N/S ratio. Similarly, a test with 20 quantiles would 
require 64 times as much data.

3. Results and Discussion

3.1. Bootstrapping empirical data 
demonstrates effects of number  
of quantiles

To measure the noise associated with the relative 
pure loss ratios in a quintile test, NCCI bootstraps the 
underlying data. The data set of risks used for a par-
ticular test is resampled with replacement 100 times. 
Each time, the quintile test loss ratios are recalculated. 
A candlestick chart illustrates the 5th, 25th, 75th, and 
95th percentiles of the bootstrapped relative pure loss 
ratios. The vertical spread of the quintile bars is indica-
tive of the noise in the test, and the difference in the 
vertical location between adjacent candles is indica-
tive of the signal in the test. Consider the following 
bootstrap quintile and decile tests for policy year 2010:

• Figures 8a and 8b are countrywide, which includes 
886,976 individual risks.

• Figures 9a and 9b are countrywide for risks whose 
policy period expected pure loss ranges from 1k to 
10k, which includes 467,887 individual risks.

• Figures 10a and 10b are countrywide for risks whose 
policy period expected pure loss ranges from 100k 
to 1m, which includes 18,692 individual risks.

• Figures 11a and 11b are for a large state, which 
includes 62,629 individual risks.

• Figures 12a and 12b are for a small state, which 
includes 10,943 individual risks.

Comparison between the quintile and decile tests 
illustrates an increasing N/S ratio as the number of 

be judged reasonable to provide clarity of distinc-
tion in loss ratios between adjacent quantiles and a 
low probability of reversals between adjacent quan-
tile intervals. So, the “optimal” number of quantiles 
is beginning to emerge. If we can estimate the N/S 
ratio as a function of the number of quantiles, then 
the maximum number of quantiles within our N/S 
tolerance will be that “optimal” number.

2.7. The number of quantiles  
and data requirements

To address the question of the number of quantiles, 
the N/S signal ratio can be estimated by a formula in 
terms of the following quantities:

b = number of quantiles
 σ2 = variance of the manual pure loss ratio for a single 

risk
n = number of risks tested

 R = a constant corresponding to the “spread” or “vari-
ation” of mods

We will assume risks are all the same size. This is 
a reasonable simplifying starting assumption, but in 
reality risk sizes and the variances of their loss ratios 
span across orders of magnitude for the ERP. The 
resulting formula will be validated, or invalidated, for 
the general context using empirical data.

The standard deviation for the loss ratio in a single 
quantile will be n b b n( )σ = σ . Again, we will 
ignore variation in the loss ratio due to mod differ-
ence within quantiles, as this usually contributes a very 
small part of the total random variation.

If there are more quantiles, then the differences 
between the expected values for the mods of adjacent 
quantiles is smaller. If the number of bins is doubled, 
then these differences should be approximately cut 
in half. A reasonable rule of thumb is that the typi-
cal difference is inversely proportional to b, that is, 
equal to R/b.

Putting the pieces above together, the N/S ratio for-
mula leads to (2.3).

N S (2.3)
3b n

R b R

b

n

( )
( )

=
σ

= σ 
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Policy Year 2010: Countrywide Quintile Analysis
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Figure 8a. Countrywide quintile test

R
el

at
iv

e 
P

u
re

 L
o

ss
 R

at
io

Policy Year 2010: Countrywide Decile Analysis
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Figure 8b. Countrywide decile test
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Policy Year 2010: Prospective Period Pure Expected Losses 1K - 10K Quintile Analysis
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Figures 9a. Countrywide small risk quintile test

Policy Year 2010: Prospective Period Pure Expected Losses 1K - 10K Decile Analysis
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Figure 9b. Countrywide small risk decile test
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Policy Year 2010: Prospective Period Pure Expected Losses 100K - 1M Quintile Analysis
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Figure 10a. Countrywide large risk quintile test

Policy Year 2010: Prospective Period Pure Expected Losses 100K - 1M Decile Analysis
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Figure 10b. Countrywide large risk decile test
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Policy Year 2010: Large State Quintile Analysis
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Figure 11a. Large state quintile test
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Policy Year 2010: Large State Decile Analysis
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Figure 11b. Large state decile test
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Policy Year 2010: Small State Quintile Analysis
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Figure 12a. Small state quintile test

R
el

at
iv

e 
P

u
re

 L
o

ss
 R

at
io

Policy Year 2010: Small State Decile Analysis
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bins increases. Since the N/S ratio should also change 
in proportion to 1 n, where n is the number of risks, 
all other things equal (which they are not), we would 
expect the N/S to increase going from Figures 8a and 
8b to Figures 12a and 12b. In fact, such a pattern is 
clearly evident. However, between tests using the same 
number of quantiles but different data, the random vari-
ation in the loss ratio per individual risk may vary, and 
will certainly decrease going from the small risks in 
Figures 9 to the large risks in Figures 10. Another thing 
that can change as the underlying data set changes is 
the typical signal difference between the quantiles.

The general consistency between the patterns 
observed in these charts and what we expect from the 
N/S ratio model provides a reasonable validation of 
the model as a practical tool. The next section shows 
bootstrapped estimates of the N/S ratios for the ten 
charts.

3.2. Noise-to-signal ratio

The noise-to-signal ratio (N/S) was introduced in 
equation (2.2) of section 2.6.

= = Noise

Signal
N S

Standard deviation of 
random variations for 
an interval loss ratio

Difference in expected 
loss ratios between 

intervals

(2.2)

Although an explicit formula for calculating noise-
to-signal ratios was presented in equation (2.3), the 
ratios can also be estimated by bootstrapping empiri-
cal data. Noise-to-signal ratios corresponding to the 
bootstrapping results used to create the charts in 
section 3.1 are displayed in Table 2. As expected, 

Table 2. Bootstrapped estimates of noise-to-signal ratios

Noise-to-Signal N/S Decile/ 
N/S QuintileQuintile Decile

Countrywide (C/W) 0.086 0.229 2.67

C/W $1K–$10K 0.203 0.499 2.46

C/W $100K–$1,000K 0.128 0.354 2.75

Large State 0.192 0.482 2.51

Small State 0.748 1.973 2.64

the noise-to-signal ratios are significantly higher for 
deciles than quintiles. The last column of the table 
displays the ratio of noise-to-signal ratios for deciles 
to those of quintiles.

Equation (2.3) shows that N S 3b∝  where b is  
the number of quantiles. Comparing deciles and quin-
tiles with this proportionality yields a value not too 
far from those in the last column of Table 2.

÷
= ÷ = =

N S Deciles N S Quintiles

10 5 2 2.83.3 3 3

The theoretical value 2.83 is somewhat greater 
than values in the table because the experience modi-
fication factors spread out in the two tails of the mod 
distribution. This would not happen if the mods were 
uniformly distributed over a range.

3.3. Measuring lift and equity

At the end of section 2.2 two statistics were intro-
duced: (1) B*/A* (smaller is better) is a measure 
of how effectively the ERP achieves equity, and 
(2) sign(A-B) | A-B | 0.5 (larger is better) is a combina-
tion measure that increases with more lift, A is larger, 
and increases with more equity, B is smaller. A* is the 
variance of the unmodified pure loss ratios and B* is 
the variance of the modified pure loss ratios across 
the quantile groups. The quantities without the * are 
similar quantities but may include some additional 
variance from bootstrapping.

Table 3 displays these statistics for the 2010 pol-
icy year data that was used to create the prior ten 
bootstrapping charts. The first column of numbers, 
B*/A*, shows that the ERP makes considerable prog-
ress towards achieving equity because the variance in 
pure loss ratios is much smaller for the modified pure 
loss ratios than the unmodified pure loss ratios. For 
example, the variance in the countrywide modified 
pure loss ratio quintiles is only 14.9% of the vari-
ance in the unmodified quintiles. The second column 
shows that the ERP is finding lift and moving towards 
more equitable rating.

The slight positive slopes seen in most of the 
empirical quintile and decile tests in Figures 8 to 12 
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for PY 2010 highlight the need for increased effec-
tive credibility that prompted NCCI’s increases in the 
split point beginning in 2013, from $5,000 to $10,000 
in year one, $13,500 in year two, and $15,000 plus 
two years of inflation adjustment in year three. Fur-
ther routine increases based on severity indexation 
will follow.

3.4. Some hypothetical examples

Appendix A develops the rule of thumb, shown in 
(3.1), to estimate σ/R in terms of the credibility Z for 
an individual risk loss ratio. This is potentially par-
ticularly useful, as Z can act as a reasonable measure 
of risk size, though not on a proportional scale.

1 1

12
(3.1)

2

R

Zσ = −

However, before progressing too far we must recall 
that in principle a Z credibility value such as this, 
although it includes useful information about σ/R, is 
qualitatively very different from the Zp and Ze values 
found in the experience rating. This Z value would:

1. Estimate the true underlying mean for a single pol-
icy year using that policy year’s losses, rather than 
using prior policy years’ experience to predict the 
true mean for a future policy year.

2. Cover all losses unlimited.
3. Use only one year of losses.

So, much caution must be used in attempting to 
apply it to the very different situation of the ERP. 
Unfortunately, there is no clear way to relate Z to 
the readily available, but fundamentally very differ-
ent, Zp and Ze. More generally, there is probably no 
good way to determine such a Z that would directly 
apply to the context of the NCCI ERP. Statement 
1 suggests Z should be higher than Zp, but 2 and 3 
suggest Z should be lower than Zp. Since higher Z 
implies lower σ/R and hence lower N/S, it is pru-
dent to err on the side of a lower Z. So, on balance, 
it is not unreasonable to speculate that Z should be 
on the same order as Zp, but somewhat lower, per-
haps Z ≈ Zp/2. Ultimately, any N/S model resulting 
from whatever relationship we may assume can be 
validated or invalidated using empirical data along 
the lines we followed in section 3.1. Table 4 explores 
what different values for Z, n, and b imply for the N/S 
ratio. The N/S ratios in the table can be computed 
by substituting the right-hand side of equation 3.1 
for σ/R in equation 2.3.

The formulas for Ze and Zp vary by state and over 
time, according to a fairly complicated formula that 
is a function of experience period expected losses 
rather than policy period pure expected losses. How-
ever, the values in Table 4 would be roughly in the 
ballpark for recent years.

The conjecture Z ≈ Zp/2 together with Table 5 
suggest that Z would be around 3% to 20% for Fig-
ures 9a and 9b and around 40% to 45% for Fig-
ures 10a and 10b.

Next, recall that Figure 9 had a sample size 
approaching half a million risks and Figure 10 had 
a sample size a bit under 20,000. From Table 4  
we can see that both Figures 9 and 10 would be 
expected to be well within the acceptable N/S for 
the quintile. The deciles test would be expected to 
be around the maximum N/S ratio. This is roughly 
the situation we see in the charts and therefore  
Z ≈ Zp/2, although not founded in any sort of solid 
mathematics or logic, is still empirically validated 
to be in the ballpark and therefore practically use-
ful within broad limits.

Table 3. Statistical measures of lift and equity

Statistics

B*/A* sign(A-B) | A-B | 0.5

Countrywide Quintile 0.149 0.261

Countrywide Decile 0.140 0.265

Countrywide Small Risks Quintile 0.265 0.272

Countrywide Small Risks Decile 0.259 0.284

Countrywide Large Risks Quintile 0.105 0.296

Countrywide Large Risks Decile 0.107 0.309

Large State Quintile 0.144 0.232

Large State Decile 0.150 0.239

Small State Quintile 0.044 0.157

Small State Decile 0.474 0.155



The Optimal Number of Quantiles for Predictive Performance Testing of the NCCI Experience Rating Plan

VOLUME 8/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 103

4. Conclusions

The number of quantiles selected for a meaningful 
test of predictive performance of the NCCI Experi-
ence Rating Plan is constrained by the ratio of noise-
to-signal. If this ratio is not kept below a reasonable 
threshold, which is subjective but can be sensibly 
selected somewhere in the neighborhood of 0.25, the 
results of the quantile test will be unclear. In a sense, 
the “optimal” number of quantiles is the largest num-
ber that produces a N/S ratio under this threshold. 
The N/S ratio is proportional to the standard devia-
tion of observed loss ratios for individual risks and 
the 1.5 power of the number of quantiles. The N/S 

ratio is inversely proportional to the variation in mod 
values and the square root of the number of risks in 
the data. Consequently, the data required to maintain 
a given N/S ratio is proportional to the cubic power 
of the number of quantiles. This huge data penalty 
in test resolution for increasing the number of quan-
tiles explains the use of a relatively small number of 
quantiles, exactly five in the quintile test, for testing 
the NCCI Experience Rating Plan. These and other 
implications of this N/S ratio can be demonstrated 
consistently for both empirical tests of the ERP and 
hypothetical examples.

Appendix A. A Connection  
Between Noise-to-Signal Ratio  
and Credibility

Suppose a single credibility Z value, which can be 
any value in (0%, 100%) not necessarily based on any 
sound credibility model, is used on the total unlimited 
policy year loss ratio L to estimate a non predictive 
individual risk modification factor. That is, a risk’s 
actual loss ratio in a single year is used to estimate 

Table 5. Approximate recent ERP 
credibility by risk size

Policy Period
Approximate Recent 

ERP Credibility

Pure Premium Zp Ze

1,000 5% 0%

10,000 40% 2%

100,000 80% 10%

1,000,000 90% 40%

Table 4. Noise-to-signal by Z credibility

Noise to Signal <= 0.25 Shaded

Z Credibility = 50%

Sample Size—>

Quantiles 100 1,000 10,000 100,000 1,000,000

2 0.14 0.04 0.01 0.00 0.00

5 0.56 0.18 0.06 0.02 0.01

10 1.58 0.50 0.16 0.05 0.02

20 4.47 1.41 0.45 0.14 0.04

100 50.00 15.81 5.00 1.58 0.50

Z Credibility = 10%

Sample Size—>

Quantiles 100 1,000 10,000 100,000 1,000,000

2 0.81 0.26 0.08 0.03 0.01

5 3.21 1.02 0.32 0.10 0.03

10 9.08 2.87 0.91 0.29 0.09

20 25.69 8.12 2.57 0.81 0.26

100 287.23 90.83 28.72 9.08 2.87

Z Credibility = 25%

Sample Size—>

Quantiles 100 1,000 10,000 100,000 1,000,000

2 0.32 0.10 0.03 0.01 0.00

5 1.25 0.40 0.13 0.04 0.01

10 3.54 1.12 0.35 0.11 0.04

20 10.00 3.16 1.00 0.32 0.10

100 111.80 35.36 11.18 3.54 1.12

Z Credibility =  5%

Sample Size—>

Quantiles 100 1,000 10,000 100,000 1,000,000

2 1.63 0.52 0.16 0.05 0.02

5 6.45 2.04 0.64 0.20 0.06

10 18.23 5.77 1.82 0.58 0.18

20 51.58 16.31 5.16 1.63 0.52

100 576.63 182.35 57.66 18.23 5.77
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the difference between adjacent quantiles would be 
0.035 in this situation.
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Abbreviations and Notations
ERP—experience rating plan
NCCI—National Council on Compensation Insurance
N/S—noise-to-signal ratio
A, A*—variance of un-modified quintile pure loss ratios
B, B*—variance of modified quintile pure loss ratios
b—number of quantiles
L—unlimited policy year loss ratio for a risk
n—number of risks
R—spread in modification factor values
σ2—variance in pure loss ratio for one risk
σ̂2

L—actual sample variance of observed loss ratios
Zp—primary credibility for an experience rated risk
Ze—excess credibility for an experience rated risk
Z—credibility for an individual risk

Table A1. Differences between decile 
means for a lognormal distribution with 
mean 1.00 and standard deviation 0.10

Decile Mean Difference

1st 0.836

2nd 0.897 0.061

3rd 0.930 0.033

4th 0.957 0.027

5th 0.983 0.025

6th 1.008 0.025

7th 1.034 0.027

8th 1.065 0.030

9th 1.104 0.040

10th 1.186 0.082

its own true mean loss ratio for that same year. The 
sample variance in such a mod would be (A.1).
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where σ̂2
L is the actual sample variance of the observed 

loss ratios. The remaining or “random” part of the sam-
ple variance is (A.2).

1 ˆ (A.2)2 2Z L( )− σ

Although a quantile test would be meaningless in 
this non-predictive situation, we can estimate a ratio 
σ/R in the N/S formula (2.3). (A.2) can be used as an 
estimate of σ2 and (A.1) can be used to derive an esti-
mate for R. As a simplification, assume that mods are 
effectively uniformly distributed across an interval 
of width R. For a uniform distribution the difference 
between the means of mods in adjacent quantiles, or 
signal, where mods are split into b quantiles would 
be R/b. This is the key property of R as used in (2.3). 
Equating the variance expression for a uniform dis-
tribution with (A.1) leads to (A.3).

12
ˆ (A.3)

2

2 2R
Z L= σ

This would lead to (A.4).
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Assuming a uniform distribution of mods (A.4) 
corresponds implicitly to (A.5).

12 (A.5)R Mod= σ

(A.5) will certainly not hold true in general, but 
it is worth noting how it compares to a decile test 
of hypothetical mods lognormally distributed around 
mean 1.00 with standard deviation 0.10, as shown in 
Table A1. (A.5) predicts that R would be 0.346 and 




