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Recursive Credibility: Using Credibility 
to Blend Reserve Assumptions

by Marcus M. Yamashiro

ABSTRACT

When estimating loss reserves, actuaries usually give varying 

weights to multiple indications to arrive at their final selected 

indication. The common practice is to give weight to indications 

that have been developed to their ultimate expected amount. Alter-

natively, weight could be given to each recursive indication of 

paid and incurred losses, essentially averaging assumptions itera-

tively rather than waiting until the final estimate before select-

ing weights. The Munich chain ladder (MCL) is closely related 

to such an approach; in fact, each of the paid and incurred esti-

mates is essentially equivalent to the recursively weighted sum of 

two indications, the chain ladder and a second indication, coined 

in this paper, the “cross link.” However, the Munich chain ladder 

can at times be unstable, so a different approach may be more 

appropriate. The framework described in this paper is a direct 

recursive credibility approach. By contemplating the variance of 

credibility weights themselves, it is an improvement in stability 

compared to the MCL. It also offers the possibility of recursive 

application of credibility to other pairs of model assumptions, and 

it may be generalizable to more than two pairs of assumptions.
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MCL formulas come so close to the recursive appli-
cation of credibility, some questions arise, such as:

1. Would recursive credibility of the CL and XL give 
more stable results than the MCL?

2. Can recursive credibility be applied to other loss 
development assumptions?

3. Can recursive credibility be applied to more than 
two loss development assumptions?

Recursive credibility-weighting of development 
assumptions can have certain unique advantages. Faced 
with a limited quantity of data and volatile loss devel-
opment history, we often reach for multi variate tools 
to enhance the predictive power of our models. As a 
multi-assumptional tool, recursive credibility can help 
us to reduce the error in our model selection. Not only 
can it show how much weight to give each model, it 
can also show us when to do so. For instance, workers 
compensation loss development may be consistent with 
CL assumptions in early development ages, gradually 
switching over to behave more like annuity payments 
in later ages as indemnity and medical costs become 
routine, and as a greater percent of remaining claimants 
have lifelong catastrophic injuries. Recursive credibil-
ity can give varying weight over the loss development 
period to different model assumptions based on these 
changing drivers of loss development.

Recursive credibility could also have drawbacks, 
such as the potential instability caused by an iterative 
process. One approach to mitigating this instability is 
utilizing the error caused by the credibility weights 
themselves. To understand why this is, consider the 
weighted sum, Z × f + (1 − Z) × g of two estimates, 
f and g, of the same quantity. Measurement error in 
this weighted sum is caused by error in all three vari-
ables, f, g and Z. Often, in determining least squares 
credibility, only error in f and g are considered.2 But 
error in the estimation of the variance and covariance 
of f and g will result in error in Z as well. Including 
credibility weight error in a minimization procedure 

1. Introduction

A recent contribution to reserving methodologies is 
the Munich chain ladder (MCL) of Quarg and Mack 
(2008), which recursively adjusts paid and reported 
loss development patterns based on the relative size of 
case reserves. It is designed to reduce the gap between 
paid and incurred ultimate loss indications. Performed 
via regression on conditional residuals, this aspect of 
the MCL is of seminal value to the actuarial commu-
nity. Jedlicka (2007) has described multivariate exten-
sions of the MCL that demonstrate the flexibility of 
regression on conditional residuals.

This paper branches off from the MCL in a dif-
ferent direction. It may be surprising that the MCL 
can be interpreted as the recursive weighting of chain 
ladder (CL) paid and incurred indications ( f P

s→tPi,s, 
f I

s→tIi,s) with cross link1 (XL) paid and incurred indi-
cations (Ii,sg

P
s→t, Pi,sg

I
s→t) respectively. For example, a 

paid MCL indication, shown to the left of the approx-
imation sign in equation (1.1) is approximately the 
paid CL indication weighted with the Paid XL indi-
cation, to the right of the approximation sign in equa-
tion (1.1), i.e.:
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See Appendix A for a proof of equation (1.1).
This interpretation sheds some light on a source 

of instability in the MCL. Basing paid development 
on incurred losses and incurred development on paid 
losses often results in zigzagging indications. If sig-
nificant weight happens to be given to this zigzagging 
indication, it could result in some instability.

In fact, the MCL is not a strict credibility approach. 
The MCL formulas do not appear to have been designed 
to weight the CL with the XL, but rather to adjust for 
correlation between paid and incurred loss develop-
ment using regression. Recognizing, however, that the 

1In a cross link indication, paid losses are developed as a factor times 
incurred losses and incurred losses are developed as a factor times paid 
losses. See Appendix A.3 for a description of the cross link indication.

2For example, Venter (1990) describes least squares credibility in which 
the solution for least squares credibility only contemplates variance in 
the underlying indications.
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stable with respect to one another, self-correcting after 
crossing, then converging.

A simulation documented in section 5 shows that 
this is not an isolated example. Rather, the MCL has 
occasional volatility problems, while RC( f, g) is sig-
nificantly more stable, resulting in paid and incurred 
indications that converge quite consistently.

The credibility framework described in this paper 
has two distinct elements. First, it illustrates a means of 
recursively defining credibility. It builds a framework 
that borrows its structure from Thomas Mack’s (1994) 
chain ladder variance estimate. Second, it shows a 
method for determining credibility that includes cred-
ibility weight error. This method relies on a twist on 
credibility, thinking of it as the relative distance from 
a straight average. In doing so, zero-sum weights and 
zero-sum constants are defined. This paper combines 
those two elements into a single recursive credibility 
framework. While this paper focuses on the CL and 
XL assumptions, the framework has the flexibility to 
be used with other models as well.

Section 2 lays basic groundwork with definitions 
to be used throughout the paper, including model and 
submodel notation. Large negative credibility weights 
are described as motivation for measurement of cred-
ibility weight error, and error in credibility weights is 
shown to be equivalent to error in zero-sum weights (to 
be defined). Then, three key credibility assumptions 

results in a more stable credibility-weighted estimate 
than a procedure that does not recognize this source 
of volatility.

This paper presents a recursive credibility (RC) 
framework which, when using the CL and XL sub-
indications (i.e., RC( f, g)3), can often develop rea-
sonable converging paid and incurred indications 
where the MCL fails. This RC framework borrows 
part of its structure from Mack’s (1994) well-known 
chain ladder variance estimate, which structures 
variance in a manner that can be mirrored by other 
paid and incurred model pairs, allowing recursive 
credibility to be used amongst these different model 
assumptions.

Figure 1 depicts the MCL and RC( f, g) estimates 
for accident year 6 using the MCL dataset (see 
Appen dix C), where accident year 4 paid losses 
have been modified to be 2,286 for development 
years 1 through 3.

This simple modification of the data results in MCL 
indications that provide unrealistic loss develop-
ment patterns that cross and remain divergent, with 
paid losses much greater than reported losses. The 
RC( f, g) incurred and paid indications are more 

Figure 1. RC(f, g) and MCL Accident Year 6 indications based on modified MCL dataset

3We denote recursive credibility with chain ladder and cross-link sub-
indications, RC( f, g).
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dent year loss processes is assumed, and definitions of 
proportionality constants as defined in the MCL paper 
also apply. Where possible, MCL notational conven-
tions have been followed. All n × n paid and incurred 
development triangles described herein are assumed 
to have no missing data. The following terminology 
and general assumptions will be used throughout 
the paper.

2.1. Paid and incurred loss processes

Let: n ∈ N be the number of accident years, and T 
be development time (T ⊂ N; T = {1, . . . , n}).

For i = 1, . . . , n, let Pi = (Pi,t)t∈T and Ii = (Ii,t)t∈T

denote the paid and incurred processes of accident 
year i, given t development years respectively. The 
random variables Pi,t and Ii,t denote the paid and 
incurred losses for accident year i after t develop-
ment years.

2.2. Zero-sum weights

Given credibility weights Zi with i = 1, . . . , n, the 
set of Wi = Zi − 1/n will be referred to as “zero-sum 
weights,” since Σn

i=1 Wi = 0. Consider a credibility-
weighted sum of n indications. Letting I

–
 be the mean 

of those indications, we can restate the credibility-
weighted sum of n indications as the mean indication 
plus the zero-sum weighted indications, or the mean 
indication plus the zero-sum weighted deviations 
from the mean.

(2.1)
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Since these zero-sum weights are simply standard 
credibility weights minus a constant, it is clear that 
they have the same variance as standard credibility 
weights. Therefore, determining the variance of zero-
sum weights is equivalent to determining the variance 
of credibility weights. The second line of equation 2.1 
will be used as the basis for determining the variance of 

are made that define a variance of zero-sum weights 
as an expression based on a single parameter, coined 
the zero-sum constant. The parameterization of the 
zero-sum constant is described in Appendix A.2.

In section 3, each term in Mack’s (2008) recursive 
variance formula4 for the CL is shown to be the sum 
of two conditional variance terms. This framework 
is a general variance structure that can be used with 
other recursive estimates. In Appendix A.3, the CL 
and XL are described, and similar recursive vari-
ance estimates for the XL are specified as the sum of 
two conditional variance terms that are analogous to 
the terms in Mack’s (2008) formula. Proportionality 
constants as well as conditional covariance terms are 
also defined.

Section 4 gives an estimate of the variance of a 
credibility-weighted indication based on two sub-
models in a manner that contemplates the variance 
of the credibility weight itself using Assumptions 1  
and 2 from Section 2. Least squares regression is used 
to determine equations for the two weights. Appen-
dix A.4 contains derivations of the variance and cred-
ibility equations for two sub-indications.

Section 5 demonstrates how to combine the results 
of Sections 3 and 4 with calculations for RC based on 
CL and XL sub-indications—i.e., RC( f, g). It con-
tains results of a simulation comparing the MCL with 
RC( f, g). Then it ends with a comparison of the same 
methods using over 300 paid and reported grid pairs 
of industry data.

Section 6 contains concluding remarks, including 
commentary on strengths and weaknesses of the RC 
framework, and future research.

2. Loss processes, notation,  
and credibility weight error

This paper depends upon and builds on structures 
and assumptions of the MCL and Mack’s (1994) chain 
ladder variance equations. Thus, independence of acci-

4Mack’s recursive chain ladder variance formula is mathematically equiv-
alent to the version in his “Distribution-free Calculation of the Standard 
Error of Chain Ladder Reserve Estimates.” The recursive version is pub-
lished by Mack as “Mack Made Easy” (2008).
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and the loss type and subscripts denoting the age-to-
age values. For instance, σ̂ fP

6→7 is the paid CL propor-
tionality constant for development from age 6 to 7. 
Zero-sum constants will be denoted similarly, except 
with a subscripted W. For example, σ̂W

fP denotes the 
zero-sum constant for the paid CL.

2.4. Negative credibility weights

Least squares credibility that contemplates covari-
ance of indications can result in negative credibility 
weights. A question that may arise is “What do neg-
ative credibility weights mean?” As an illustration, 
assume that indication A always deviates from Actual 
by twice the deviation of indication B. Then

A − Actual = 2(B − Actual). Thus, Actual = 2B + 
(−1) A. In this instance, Actual can be determined 
using solution credibility weights −1 and 2. In gen-
eral, for two indications A and B, when the quantities 
(A − Actual) and (B − Actual) are highly correlated, 
negative credibility weights can result.

As a second illustration, assume that A histori-
cally deviates from Actual by .99 times the deviation 
of B. Then A − Actual = .99(B − Actual), and Actual = 
100A − 99B. Clearly, the parameter error contribution 
to total estimation error associated with credibility 
weights of 100 and −99 could be significant.

This parameter error could cause significant distor-
tions to least squares credibility-weighted indications. 
Recognizing error in the credibility weights can help 
to mitigate these distortions without adding prohibi-
tively to the complexity of a credibility framework.

2.5. Zero-sum weight error

In addition to assumptions regarding loss devel-
opment, variance and independence, RC depends on 
the following key assumptions concerning zero-sum 
weight error.

Assumption 1: Given an RC indication based 
on two sub-indications, parameter variance of the 
zero-sum weights is inversely proportional to the 
squared difference between the sub-indications.

Appendix A.2 shows that this assumption is based 
on actual process error patterns.

the credibility-weighted sum of indications. Express-
ing credibility in this way will help us to manage the 
heteroscedasticity problem associated with credibil-
ity weight error − credibility weight error grows as dis-
tance from the average grows − while still allowing for 
a simple linear error minimization procedure.

2.3. Model and submodel notation

Since this paper concerns the interrelationship of 
models, notational conventions used in this paper are 
stated here for clarity. The letters f and g will refer 
to the CL and XL models respectively. Loss indi-
cations, denoted P and I for paid and case incurred 
losses respectively, will have subscripts denoting 
time values, and superscripts denoting the model. 
Development factors will be denoted by model let-
ter, with subscripts denoting age-to-age values and 
superscripts denoting the loss type. For example, the 
paid loss chain ladder indication for accident year 3 
at maturity 7 is calculated and denoted f P

6→7P
f
3,6 = P f

3,7.
The term “submodel” refers to a model and related 

assumptions that is being recursively credibility-
weighted with other model assumptions to deter-
mine a final best estimate. Conversely, the term “solo  
model” is used to distinguish a model that is imple-
mented as a stand-alone model.

An RC indication will be notated with a capital R 
superscript. Thus the RC paid loss indication for acci-
dent year 3 at maturity 7 is denoted PR

3,7. This means 
that one or more submodels have been credibility-
weighted to give this indication. An RC indication 
could conceivably refer to a single model credibility 
indication, in which the single model would always 
receive full credibility. Thus, RC notation is a gener-
alization of independent model notation.

Functions, such as variance or correlation, will be 
named followed by parentheses. A hat (ˆ) symbol 
specifies an estimate rather than an actual or theoreti-
cal value. For instance, Vâr(Pf

3,7) = σ̂2(Pf
3,7) is the esti-

mate of the variance of the CL paid loss indication for 
accident year 3, at maturity 7.

Proportionality constants will be denoted with a 
sigma, with superscripts denoting both the model 
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weights in the total variance. The large weights that 
might have been caused by small ratios should not 
occur.

3. Submodel recursive variance 
and covariance expressions

To define least-squares credibility of loss indications 
recursively, the variance of those indications must also 
be defined recursively. To see how to accomplish this, 
consider the following two examples.

First, if I1 is actual incurred losses at time 1 and a 
function applied to incurred losses at time 1 is f I

1→2, 
then the resulting indication, Î2 = f̂ I

1→2 (I1). The sec-
ond function f I

2→3 is then applied not to actual data, 
but to the prior indication. That is Î3 = f̂ I

2→3(Î 2) =  
f̂ I

2→3( f̂ I
1→2(I1)).

As a second example, if I2 is actual incurred losses 
at time two, then Î3 = f̂ I

2→3(I2).
Even if Î2 from the first example equals I2 from 

the second example, the variance of Î3 from the first 
should not equal the variance of Î3 from the second. 
The variance of a function performed on a known 
amount should be different than the variance of the 
same function performed on an estimate. The vari-
ance of Î3 from the first example must contemplate 
the error due to f̂ I

2→3 as well as the error due to Î2. The 
variance of Î3 from the second example only needs to 
contemplate the error due to f̂ I

2→3.
This suggests that the variance of a recursive esti-

mate can be considered in two parts, the variance due 
to error in the function given the prior indication, and 
the variance due to error in the prior indication given 
the function. Thomas Mack (2008) has presented his 
well-known chain ladder variance equations recur-
sively, yielding a variance estimate for each recursive 
loss indication. Thus, the chain ladder ( f ) model can 
be used as one element in an RC relationship.

The conditional structure of Mack’s (2008) CL vari-
ance formula can also serve as a general framework 
for the variance of some other indications, and this 
framework facilitates RC relationships. More specifi-
cally, each recursive element of Mack’s CL variance 
formula is the sum of two conditional variance terms, 

Assumption 2: Given an RC indication based 
on two sub-indications, parameter variance 
of the zero-sum weights is proportional with 
Ŵf 2Var(I f � I g).

This assumption forces the error in the credibility 
weight to equal zero when the weights are equivalent 
(when zero-sum weights equal zero). The error then 
increases as the magnitude of the zero-sum weight 
increases. This assumption also recognizes that error 
in the weight is proportional to error in the under-
lying sub-indications. Appendix A.2 gives a more 
detailed explanation of this assumption.

Assumptions 1 and 2 Combined: The parameter 
variance of a two-indication zero-sum weight is 
proportional with a scaling expression.

Given the weighted average of two sub-indications 
{I f, I g}, based on assumptions 1 and 2, there exists a 
zero-sum constant σ I

W, such that:

(2.2)
2

2

2Var W
W Var I I

I I
f

W
I

f f g

f g
( ) ( )

( )
= σ

−
−

Based on this assumption, the variance of the zero- 
sum weights (and thus the credibility weights) increases 
with the magnitude of the zero-sum weights them-
selves. This mitigates the possibility of massive cred-
ibility weights being output in an error minimization 
procedure.

Assumption 3: Two-indication zero-sum weights 
are independent of sub-indication differences and 
sub-indication sums as well as the ratios of the sub-
indication difference over the sub-indication sum.

This assumption is made to simplify the deriva-
tion of the variance of a credibility-weighted sum of 
indications. It makes zero-sum weights behave as 
constants in sub-indication covariance expressions. 
Although this is not a perfect assumption, it is rea-
sonable because:

1. The absolute magnitude of indications should 
clearly be independent of the credibility weights.

2. The impact of the scaled sub-indication difference 
on the credibility weights will be largely miti-
gated by accounting for variance of the credibility 
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KDF, i.e., the variance of the prior indication times the 
squared development factor:

(3.2), ,
2Var I D Var I fi t

f
s t i s

R
s t
I( ) ( )=→ →

Reducing the set Ds→t = { f I
s→t, f

P
s→t} and changing 

R to f would make equation (3.2) the second sum-
mand from Mack’s recursive variance calculation for 
incurred losses.

3.3. Mack’s recursive chain ladder 
variance term

For incurred and paid losses, the recursive version 
of Mack’s chain ladder variance expression is thus the 
sum of the variance given known development factors 
from development year s to t and the variance given 
known losses through development year s.

(3.3)
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Converting from the submodel recursive variance for-
mulas of equations 3.3 and 3.4 to solo model formu-
las by allowing R to equal f, would precisely make 
these equations Mack’s recursive variance formulas 
for incurred and paid losses for a single accident year 
(2008).

In Appendix A.3, CL and XL submodel indica-
tions are defined, and recursive variance equations 
are described as the sum of variance given KPL and 
variance given KDF. Additionally, proportionality con-
stants are defined, as well as KPL correlation and KDF 
covariance for the given submodels.

where the two conditions are the known prior losses 
(KPL) condition, and the known development factors 
(KDF) condition. The KPL and KDF conditions will 
be used throughout the paper for different models, 
with the same meaning as defined below.

For this framework to remain simple, it will be 
assumed that volatility given KPL and volatility given 
KDF are independent of one another across indica-
tions, and this will allow the sum of the covariance 
given KPL and the covariance given KDF to equal the 
total covariance.

3.1. The known prior losses 
(KPL) condition

Being given the set, Bi(s) = {Pi,1, . . . , Pi,s; Ii,1, . . . , 
Ii,s}, of paid and incurred development for accident 
year i until the end of development year s, implies 
that loss development through development year s is 
known and constant. This condition is key to Mack’s 
recursive variance calculation, since it allows the 
variance to be separated into the variance given KPL 
through age s (expressed as the total expression in 
equation (3.1)) and the remaining variance, stated next.
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Recalling that RC notation is a generalization of inde-
pendent model notation, where R is allowed to equal 
f, equation (3.1) is a summand from Mack’s recursive 
variance formula for incurred losses.

3.2. The known development factors 
(KDF) condition

The variance that remains, excluding the KPL vari-
ance is the KDF variance, described here. Suppose we 
have three pairs of loss development assumptions f, 
g, and h. Being given the set Ds→t = { f I

s→t, f
P
s→t; g

I
s→t, 

gP
s→t; h

I
s→t, h

P
s→t} of factors based on these assumptions, 

where s, t ∈ T and t = s + 1 implies that the factors that 
develop losses from time s to time t are known and 
constant. Equation (3.2) expresses this variance given 
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Both sets of conditional covariance terms can be 
fully expressed using equations (A.23) to (A.27).

We now have all the necessary elements to square a 
triangle with a recursive credibility indication. Below, 
the steps are listed sequentially and they are dem-
onstrated with a numerical example in the next section.

Parameter Steps: We use the data in the upper tri-
angular matrix to calculate parameters needed for the 
sub-indication models and for implementing recursive 
credibility.

Step P1: We calculate submodel parameters and values 
associated with the upper triangular matrix.
Step P1a: Development factors (based on volume-

weighted averages)
Step P1b: Indications (using equations (A.14), 

(A.15), (A.18), and (A.19))
Step P1c: Proportionality constants (using equa-

tion (A.22))
Step P1d: Variances (using equations (A.16), (A.17), 

(A.20), and (A.21))
Step P2: We calculate RC parameters associated with 

the upper triangular matrix.
Step P2a: Correlations given known prior losses 

(using equations (A.23) and (A.24)).
Step P2b: Zero-sum constants σ I

W and σP
W (using 

equation (A.12)).

Development Steps: We use the values calculated 
from the upper triangular matrix in Steps P1 and P2 to 
iteratively add diagonals to the development triangle, 
“squaring” the triangle.

Step D1: Using parameters from Step P1, we calculate 
the incurred and paid sub-indications I f

i,t, I
g
i,t, P

f
i,t and 

Pg
i,t, and the submodel variance terms.

Step D2: Relying on equation (4.3), we use KPL cor-
relations from step P2 and KDF covariance terms 
from equations (A.25) and (A.26) to determine the 
total covariance of the underlying sub-indications.

Step D3: Using equation (4.2) and zero-sum constants 
from Step P2, we calculate the zero-sum weights 
W fI

i,t and WgI
i,t (and likewise WfP

i,t and WgP
i,t ).

Step D4: Using the zero-sum weights calculated in 
Step D3 and equation (2.1), we calculate the RC 
indication IR

i,t (and likewise PR
i,t).

4. Credibility procedure: 
Contemplating error in the weights

By considering the variance of the credibility-
weighted sum of two indications (equation (2.1)) and 
contemplating error in the credibility weights (equa-
tion (2.2)) the variance of the credibility-weighted 
estimate can be determined (equation (4.1)). The der-
ivation of this estimate, which depends on Assump-
tion 3 that credibility weights are constant in the 
covariance terms, and W fI

i,t selected to minimize the 
variance, is shown in Appendix A.4.
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Equation (4.2) is the theoretical zero-sum weight as 
derived in Appendix A.4.
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Following are descriptions of a few final details needed 
to complete a recursive credibility indication.

First, in addition to individual loss indications, 
variance terms, and a zero-sum parameter, equations 
(4.1) and (4.2) contain the expressions Var(I f

i,t − Ig
i,t) 

and Var(I f
i,t + Ig

i,t), which can be expanded to Var(I f
i,t) +  

Var(Ig
i,t) − 2Cov(I f

i,t, I
g
i,t) and Var(I f

i,t) + Var(Ig
i,t) + 

2Cov(I f
i,t, I

g
i,t) respectively.

Next, by the assumption from Section 3 that vola-
tility given KPL and volatility given KDF are inde-
pendent of one another across sub-indications, the 
covariance term can be expressed as follows:

, , ,

(4.3)

, , , , , ,Cov I I Cov I I D Cov I I B si t
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1.0214 5
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= = + +
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=→

Step P1b: Indications (using equations (A.14), 
(A.15), (A.18), and (A.19))

Tables C.1, C.2, C.3, and C.4 contain upper triangu-
lar matrix indications, calculated by multiplying losses 
from Tables B.1 and B.2 by development factors from 
Table 1. Each indication in the upper triangular matrix 
is calculated as the actual loss times the development 
factor. For example:

ˆ ˆ .945 4882 46135,3 2 3 5,2P g Ig P= = × =→

Step P1c: Proportionality constants (using equa-
tion (A.22))

Based on equation (A.22), the proportionality con-
stant for each submodel by loss development maturity 
is the square root of the sum of the squared, scaled 
loss indication residuals divided by their degrees of 
freedom (where the residuals are scaled by prior his-
torical losses). As an example, we use the indications 
from Table C.4 and the losses from Table B.1 to illus-
trate the incurred XL proportionality constant from 
age 3 to 4.
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The paid and incurred CL and XL proportionality 
constants by age are listed in Table 2.
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Step D5: Using equation (4.1) and the weights calcu-
lated in Step D3, we calculate the variance of the RC 
indication at time t, Var(IR

i,t) (and likewise Var(PR
i,t)).

5. Numerical example

To demonstrate recursive credibility with a numer-
ical example, we will first calculate parameters, and 
then two years of development for the fifth accident 
year of the MCL dataset (tables B.1 and B.2). We will 
follow the (P)arameter and (D)evelopment steps out-
lined above. Then we will compare RC( f, g) paid and 
incurred loss development patterns to those implied 
by the CL and XL models.

At the end of this section, some statistics are doc-
umented from a simulation directly comparing the 
MCL with RC( f, g). These statistics demonstrate that 
the RC( f, g) indications are more stable than the MCL 
derived indications.

5.1. Parameter steps

Step P1: We calculate submodel parameters and indi-
cations based on the upper triangular matrix
Step P1a: Development factors (based on volume-

weighted averages)
Table 1 contains all-year weighted average devel-

opment factors, calculated using historical data from 
tables B.1 and B.2. As an example, the 3-4 factor for 
the Paid XL and the 4-5 factor for the Paid CL are cal-
culated as follows:

ˆ 2024 2232 4416 5850

2134 2466 4698 6070
0.9453 4

,4

,3

g
P

I
P ii

ii

∑
∑

= = + + +
+ + +

=→

Table 1. All-year weighted average development factors

1–2 2–3 3–4 4–5 5–6 6–7

Paid Chain Ladder 2.437 1.131 1.029 1.021 1.021 1.014

Incurred Chain Ladder 1.652 1.019 1.000 1.011 0.990 0.996

Paid Cross Link 1.402 0.945 0.945 0.960 0.950 0.977

Incurred Cross Link 2.871 1.220 1.089 1.075 1.064 1.034
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A conditional residual (defined by equation (A.23)) 
is a scaled residual divided by the proportional-
ity constant (where the scaling term is the square 
root of the prior age losses). Thus, a paid XL con-
ditional residual for accident year 2 at age 4 is 

( )− = −2232 2330

2162
1.52 1.39. Based on the condi-

tional residuals shown below in Tables 3 and 4, we 
can now calculate the correlation given KPL as

ˆ ,

1.27 1.24 0.14 0.45
. . . .18 1.66 .57 .97

6 5 2

0.0765

P P KPLf g( )
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( )( )
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+ − −
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





= −

Step P1d: Variances (using equations (A.16), 
(A.17), (A.20), and (A.21))

Variances for the upper triangular matrix of indica-
tions are calculated using data from Tables B.1 and 
B.2, and proportionality constants from Table 2. Since 
each entry in the upper triangular matrix of indica-
tions is calculated using only historical losses multi-
plied by a single factor, the KDF variance terms are 
always equal to zero, which simplifies all the upper 
triangular matrix variance terms to be only KPL vari-
ance terms. For example:

Var P P
P P

g
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The upper triangular matrix variances are presented 
in Tables C.5, C.6, C.7, and C.8.
Step P2: We calculate RC parameters associated with 

the upper triangular matrix.
In Step P1, we calculated values associated with 

each of the individual submodels. In Step P2, we cal-
culate parameters necessary to combine the informa-
tion from the submodels.

Step P2a: Correlation given known prior losses 
(using equations (A.23) and (A.24)).

The correlation between loss indications given 
KPL is calculated across the upper triangular matrix 
(using equation (A.24)) as the sum of the product 
of conditional residual pairs divided by the degrees 
of freedom. Thus, to calculate the correlation given 
KPL, we first need conditional residuals.

Table 2. Proportionality constants

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7*

Paid Chain Ladder 13.46 3.67 0.48 0.21 0.48 0.24

Incurred Chain Ladder 9.73 2.54 1.00 0.12 0.86 0.43

Paid Cross Link 14.19 3.13 1.52 1.69 1.08 0.54

Incurred Cross Link 9.53 3.36 1.63 1.88 0.71 0.36

*Half of the prior age proportionality constant is used here, but other assumptions could be appropriate

Table 3. Paid CL conditional residuals

2 3 4 5 6

AY1 1.24 −0.45 −0.18 0.85 −0.72

AY2 −0.41 −0.26 0.29 0.57 0.69

AY3 0.63 0.00 1.25 −0.98

AY4 −0.43 −0.98 −1.15

AY5 −1.33 1.66

AY6 0.97

Table 4. Paid XL conditional residuals

2 3 4 5 6

AY1 1.27 −0.14 0.11 0.22 0.72

AY2 −1.53 −1.81 −1.39 −1.20 −0.69

AY3 −0.59 0.72 −0.24 0.71

AY4 0.56 0.41 1.00

AY5 −0.27 0.18

AY6 0.57
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To scale the paid zero-sum residual, the scaling factor 
for accident year 5 at time 2 is

ˆ
ˆ ˆ

0.52 412993 0.48 459556

2 .0765 0.52 0.48) 412993 459556
4552 3944

0.7370

5,2 5,2 5,2 5,2

5,2 5,2

2

2 2

2

Var Z P Z P

P P

fP f gP g

f g( )
( )

( )
( ) ( )

( )( ) ( )( )
( )

+
−

=

+ +
−







−

=

Thus, the scaled residual is −0.80 / 0.7370 = −1.08. 
Table 7 contains for the upper triangular matrix, the 
set of scaled residuals for the paid CL (which are 
the negative scaled residuals for the Paid XL).

Based on these paid scaled zero-sum residuals, the 
paid zero-sum constant is calculated based on equa-
tion (A.12) as follows:
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The incurred zero-sum constant can be likewise calcu-
lated to be σ̂ I

W = 0.2015. The purpose of these param-
eters is to serve as a measure of the uncertainty in the 

An incurred CL conditional residual for accident 

year 5 at age 3 is ( )− = −4852 4973

4882
2.54 0.68. Based 

on the conditional residuals shown below in Tables 5  
and 6, we can calculate the correlation given KPL  
as ρ̂(If, Ig | KPL) = 0.0355.
Step P2b: Zero-sum constants (using equation (A.12))

Zero-sum constants can be thought of as a portion 
of the standardized deviation of zero-sum weights 
from actual weights that would produce a correct solu-
tion (zero-sum residuals). To calculate a single paid 
zero-sum residual, take the difference between a solu-
tion weight W fP

i,t such that (W f P
i,t − 0.5) P̂ f

i,t + (W fP
i,t + 0.5)  

P̂g
i,t = Pi,t, calculated W

P P
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 and an esti-

mated weight, based on equation (4.2), and setting 
the zero-sum constant equal to zero, calculated  
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 Using paid indica-

tions from Tables C.1 and C.2, paid variances from 
Tables C.5 and C.6 and the KPL correlation calcu-
lated in Step P2a, the zero-sum weight residual for 
accident year 5, at time 2 is calculated.

Table 5. Inc’d CL conditional residuals

2 3 4 5 6

AY1 1.61 −0.08 0.22 1.13 0.73

AY2 −1.18 −1.04 0.29 0.10 −0.68

AY3 −0.85 1.57 −1.42 −0.84

AY4 0.30 0.00 0.93

AY5 0.46 −0.68

AY6 0.08

Table 6. Inc’d XL conditional residuals

2 3 4 5 6

AY1 1.51 −0.43 −0.02 −0.03 −0.73

AY2 0.16 0.53 1.55 1.15 0.68

AY3 0.59 0.52 −0.28 −0.82

AY4 −1.07 −1.48 −0.73

AY5 −0.95 1.04

AY6 0.54
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These submodel variances can be found on Tables C.5, 
C.6, C.7, and C.8.

credibility weights due to the magnitude of the weight 
itself, which will help to mitigate error due to unrea-
sonably large weights.

We have completed the initial parameter steps of 
the RC framework. Steps 3 through 9 are recursive 
development steps, which we will calculate for acci-
dent year 5.

5.2. Development steps

Step D1 (1st new diagonal): We calculate submodel 
indications and submodel variance terms
For the first new diagonal, we use historical losses 

from Tables B.1 and B.2 and development factors 
from Table 1.

ˆ ˆ .945 4852 4585,

ˆ ˆ 1.029 4648 4784
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P g I

P f P

g P
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I g P

I f I

g I
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= = × =

= = × =

→

→

These submodels can be found on Tables C.1, C.2, 
C.3, and C.4.

To calculate the submodel variance terms for the 
first new diagonal, since the prior diagonal is actual 
historical losses, equations (A.16), (A.17), (A.20) 
and (A.21) can be simplified. The variance given KDF 
is equal to zero, and we use historical losses from 
Tables B.1 and B.2 and proportionality constants from 
Table 2.

Table 7. Paid CL (–XL) scaled zero-sum residuals

1 2 3 4 5 6 7

AY1 1.79 −0.40 −0.12 0.80 −0.27

AY2 1.34 1.50 0.22 −0.29 −0.26

AY3 −0.04 0.51 −0.97 −0.68

AY4 0.07 −0.30 −0.62

AY5 −1.08 −1.15

AY6 −1.05

AY7
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For incurred indications, the zero-sum weight is cal-
culated as follows:

W
Var I Var I I I

Var I I
I I I I

Var I I

W

fI

g f f g

f g

f g
W
I f g

W
I f g

gI

( )
( ) ( )

( )

( )( ) ( )

( )
( )

( )( )
( )

( ) ( )
( )

=
− −

−
− + σ −

+ σ −











= − −
+ −

×
− + −

+
+ −







































= = −

ˆ 0.5 ˆ ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

0.5 6436 16965 4851 5062

16965 6436 2 .0355 16965 6436

4851 5062 .2015 4851 5062

.2015
16965 6436 2 .0355

16965 6436

0.219 ˆ

5,4

5,4 5,4 5,4 5,4

2

5,4 5,4

5,4 5,4

2 2

5,4 5,4

2

2
5,4 5,4

2

2 2 2

2

5,4

These zero-sum weights can be found on Tables D.1 
and D.2.
Step D4 (1st new diagonal): We calculate the RC 

indications
Using equation (2.1), the submodel indications 

from Step D1 and the zero-sum weights calculated 
in Step D3, we calculate the RC indications Î R

i,t (and 
likewise P̂R

i,t) at time t.
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These RC indications can be found on Tables D.3 
and D.4.

Step D2 (1st new diagonal): We calculate the total 
covariance of the underlying indications
For the first new diagonal, since variance given 

KDF is equal to zero, the total covariance is equal 
to covariance given KPL. The correlation given KPL 
was calculated in step P2, and the submodel variance 
terms were calculated in step D1.
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Step D3 (1st new diagonal): We calculate the zero-
sum weights
Using equation (4.2), we calculate the zero-sum 

weights Ŵ fI
i,t and Ŵ gI

i,t (and likewise Ŵ fP
i,t and Ŵ gP

i,t ). We 
utilize the zero-sum constants from Step P2b, the sub-
model indications and submodel variance terms from 
Step D1 and the covariance terms from Step D2. For 
paid indications, the zero-sum weight is calculated 
as follows:

W
Var P Var P P P

Var P P
P P P P

Var P P

W

fP

g f f g

f g

f g
W
P f g

W
P f g

gP

( )
( ) ( )

( )

( )( ) ( )

( )
( )

( )( )
( )

( ) ( )

=
− −

−
− + σ −

+ σ −











= − −
+ − −

×
− + −

+
+ − −







































= = −

ˆ 0.5 ˆ ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

0.5 14208 1435 4784 4585

1435 14208 2 .0765 1435 14208

4784 4585 .2167 4784 4585

.2167
1435 14208 2( .0765)

1435 14208

0.367 ˆ

5,4

5,4 5,4 5,4 5,4

2

5,4 5,4

5,4 5,4

2 2

5,4 5,4

2

2

5,4 5,4

2

2 2 2

2

5,4



Variance Advancing the Science of Risk

118 CASUALTY ACTUARIAL SOCIETY VOLUME 8/ISSUE 2

tors and proportionality constants come from Step P1, 
the RC indication and variance come from Steps D4 
and D5, and historical losses come from Tables B.1 
and B.2.

∑

( ) ( ) ( )

( )

( )

( )

= +

= + σ + σ






= + +
+ +







= + =

→

→
→ →

=

Var I Var I D Var I B

Var I f I
I I

f f f

R I R

fI

R

fI

jj

ˆ ˆ ˆ 4

ˆ ˆ ˆ ˆ
ˆ

ˆ

4883 1.011 4911
.12

4911

.12

2144 2480 4600

4992 109 5100

5,5 5,5 4 5 5,5 5

5,4 4 5

2

5,4

2 4 5

2

5,4

4 5

2

,41

3

2 2

2 2

∑

( ) ( ) ( )

( )

( )

( )

= +

= + σ + σ






= + +
+ +







= + =

→

→
→ →

=

Var P Var P D Var P B

Var P f P
P P

f f f

R P R

fP

R

fP

jj

ˆ ˆ ˆ 4

ˆ ˆ ˆ ˆ
ˆ

ˆ

1396 1.021 4758
.21

4758

.21

2024 2232 4416

1455 325 1780

5,5 5,5 4 5 5,5 5

5,4 4 5

2

5,4

2 4 5

2

5,4

4 5

2

,41

3

2 2

2 2

∑

( ) ( ) ( )

( )

( )

( )

= +

= + σ + σ






= + +
+ +







= + =

→

→
→ →

=

Var I Var I D Var I B

Var P g I
I I

g g g

R I R

gI

R

gI

jj

ˆ ˆ ˆ 4

ˆ ˆ ˆ ˆ
ˆ

ˆ

1396 1.075 4911
1.88

4911

1.88

2144 2480 4600

1615 26625 28240

5,5 5,5 4 5 5,5 5

5,4 4 5

2

5,4

2 4 5

2

5,4

4 5

2

,41

3

2 2

2 2

∑

( ) ( ) ( )

( )

( )

( )

= +

= + σ + σ






= + +
+ +







= + =

→

→
→ →

=

Var P Var P D Var P B

Var I g P
P P

g g g

R P R

gP

R

gP

jj

ˆ ˆ ˆ 4

ˆ ˆ ˆ ˆ
ˆ

ˆ

4883 .960 4758
1.69

4758

1.69

2024 2232 4416

4497 20974 25472

5,5 5,5 4 5 5,5 5

5,4 4 5

2

5,4

2 4 5

2

5,4

4 5

2

,41

3

2 2

2 2

These submodel variances can be found on Tables C.5, 
C.6, C.7, and C.8.

Step D5 (1st new diagonal): We calculate the variance 
of the RC indications
Using equation (A.34), the submodel variance from 

Step D1, the covariance terms from Step D2, and the 
zero-sum weights from Step D3, we calculate the RC 
variance.
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These RC variances can be found on Tables D.5 
and D.6.

Step D1 (2nd iteration): We calculate submodel indi-
cations and submodel variance terms
To derive submodel indications for the 2nd new 

diagonal, we use development factors from Table 1, 
and instead of historical data, we start with indications 
from Step D4 (first new diagonal).
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These sub-indications can be found on sub-indication 
Tables C.1, C.2, C.3 and C.4.

To derive submodel variance terms for the 2nd new 
diagonal, we use equations (A.16), (A.17), (A.20), 
and (A.21) without simplification. Development fac-
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For incurred indications, the zero-sum weight is 
calculated as follows:
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These zero-sum weights can be found on Tables D.1 
and D.2.
Step D4 (2nd iteration): We calculate the RC 

indications
Using equation (2.1), the indications from Step D1, 

and the zero-sum weights calculated in Step D3, we 
calculate the RC indications Î R

i,t (and likewise P̂ R
i,t).
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These RC Indications can be found on Tables D.3 
and D.4.
Step D5 (2nd iteration): We calculate the variance of 

the RC indications
Using equation (A.34), the submodel variance from 

Step D1, the covariance terms from Step D2 and the 
zero-sum weights from Step D3, we calculate the 
RC variance.

Step D2 (2nd iteration): We calculate the total covari-
ance of the underlying indications
For the 2nd new diagonal, we rely on equation (4.3), 

applying correlations from step P2 and equation (A.27) 
and covariance terms from equations (A.25) and 
(A.26) to determine the total covariance of the under-
lying submodels.
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Step D3 (2nd iteration): We calculate the zero-sum 
weights
Using equation (4.2), we calculate the zero-sum 

weights Ŵ fI
i,t and ŴgI

i,t (and likewise Ŵ fP
i,t and ŴgP

i,t ). We 
utilize the zero-sum constants from Step P2b, the sub-
model indications and the submodel variance terms 
from Step D1, and the covariance terms calculated as 
in Step D2. For paid indications, the zero-sum weight 
is calculated as follows:
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for a definition of a solo model) of the CL and XL for 
Accident Year 7.

Incurred and paid XL indications crisscross with 
neither indication converging. On the other hand, the 
incurred and paid CL indications do not converge 
but appear separately asymptotic, with the paid well 
below the incurred indication. The incurred and paid 
RC indications converge between the indications, as 
would be expected.

Figure 3 illustrates how the incurred CL and XL 
submodels give very similar indications after the first 
indication at age 2. This is because the age 3 CL sub-
model indication is calculated by multiplying the RC 
losses at age 2 by the CL factor, and the age 3 XL 
submodel indication is likewise calculated based on 
RC losses at age 2. Thus, the maturity 3 indications 
for both submodels begin from a single pair of RC 
indications, rather than two pairs of indications—a 
CL pair and a XL pair.

This practice is consistent with the KPL assump-
tion, i.e., that prior to application of a development 
factor, loss development up until that point is known. 
Rather than using a submodel’s prior indication as the 
input for the next loss indication, the RC indication 
is assumed to be more accurate, thus the next matu-
rity’s loss development assumptions apply to the more 
accurate intermediate indication rather than divergent 
indications.

Var Z I Z I

Var I I

Var I Var I W

fI f gI g

f g

g f fI

( )

( )

( ) ( )( )

( )

( )( )

+

= +

− −

= + + ×

− −

=

ˆ

0.25 ˆ

0.5 ˆ ˆ ˆ

0.25 5100 28240 2 2190

0.5 28240 5100 0.366

5196

5,5 5,5 5,5 5,5

5,5 5,5

5,5 5,5 5,5

Var Z P Z P

Var P P

Var P Var P W

fP f gP g

f g

g f fP

( )

( )

( ) ( )( )

( )

( )( )

+

= +

− −

= + + ×

− −

=

ˆ

0.25 ˆ

0.5 ˆ ˆ ˆ

0.25 1780 25472 2 1719

0.5 25472 1780 0.452

2320

5,5 5,5 5,5 5,5

5,5 5,5

5,5 5,5 5,5

These RC variances can be found on Tables D.5 
and D.6.

5.3. Final RC indications with  
CL and XL submodels

Figure 2 shows how the RC( f, g) paid and incurred 
indications compare to the solo versions (see section 2 

Figure 2. RC(f, g) with CL and XL solo-indications for Accident Year 7
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prior diagonals of the triangle, based on the implied 
mu and sigma of actual development ratios by age.

3. Ratios of incremental paid losses as a percentage 
of hindsight case reserves5 were assumed to be nor-
mally distributed with mean and standard deviation 
of the actual ratios by age.
a. This amount was capped at 0 and 1.
b.  An additional cap of the minimum future 

incurred loss was set so that historical paid 
losses would never decrease.

c.  These assumptions were used to fill out the paid 
loss triangle starting from the earliest calendar 
period (the upper left corner of the triangle).

Table 8 contains RC indications as well as the CL 
and XL solo indications at age 7 by accident year.

5.4. Comparison of the performance  
of the MCL with the RC(f, g)

Recalling that the MCL is the weighted sum of the 
CL and XL indications, an interesting comparison 
would then be between the MCL and the RC( f, g) indi-
cations. To do this comparison, a 10,000 iteration sim-
ulation was performed that changed values within the 
MCL dataset based on the actual triangle distribution.

The simulation design was as follows:

1. The final paid and incurred diagonal of the MCL 
dataset was unchanged in each iteration.

2. Incurred loss development ratios were assumed to 
be normally distributed, and used to back into the 

Figure 3. RC(f, g) with CL and XL sub-indications for Accident Year 7

Table 8. RC(f, g), and CL and XL solo indications at age 7

Accident Year Paid RC Incurred RC Paid CL Incurred CL Paid XL Incurred XL

1 2,131 2,174 2,131 2,174 2,131 2,174

2 2,385 2,435 2,380 2,445 2,397 2,428

3 4,610 4,701 4,652 4,582 4,669 4,565

4 6,126 6,250 6,182 6,126 6,124 6,184

5 4,976 5,075 5,056 4,839 5,047 4,847

6 4,620 4,714 4,934 4,476 4,521 4,885

7 7,180 7,325 6,128 8,429 6,020 8,580

Total 32,028 32,674 31,463 33,071 30,909 33,664

5The hindsight case reserve at time n + 1 equals incurred losses at time 
n + 1 minus paid losses at time n.
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Note that RC( f, g) behaves as desired with incurred 
and paid averages, minimums and maximums being 
relatively near those of the CL and XL indications. 
Furthermore, the average incurred minus paid losses 
are only $692 with a low standard deviation of only 
$153. By comparison, the MCL paid, incurred, and 
incurred minus paid standard deviations are all the 
highest of the group, with the incurred minus paid stan-
dard deviation being higher than either the incurred or 
the paid standard deviation. The minimums and maxi-
mum demonstrate that additional volatility.

Within the simulation detail (not shown) many 
MCL indications are very close to the RC( f, g) indi-
cations, but a number of them also displayed vola-
tility. This limited robustness can limit the MCL’s 
usefulness with volatile data.

Another point to notice is that the median MCL 
indications are higher than those of RC( f, g). The 
average of the median paid and incurred MCL of 
32,652 is clearly closer to the CL incurred indica-
tion of 33,050 than the paid indication of 30,930. 
The average of the median paid and incurred RC( f, g) 
indications is 32,252, closer to the average of the 
median paid and incurred CL indications of 31,990. 
Whether this indicates systematic bias of one or 
both of the indications has not been determined. 
However, this difference should be duly noted in 

The intention was to build triangles that have 
“normal” development (paid losses monotonically 
increase, and incurred losses are non-negative) that 
could have led to the final diagonal on the MCL tri-
angle from the same set of exposures. Ten thousand 
such “normal” triangles were generated, using Excel’s 
random number generator. Eight values were recorded 
for each iteration, one for each paid and incurred indi-
cation for each of the RC( f, g), the MCL, the solo CL 
and the solo XL models. All the statistics in Table 9 
refer to these values.

For both the RC( f, g) and MCL indications, which 
depend on non-zero proportionality constants, when 
a constant was calculated as zero, half the constant 
for the prior age was selected instead.

Table 9 provides summary results of that simula-
tion for the total of all accident year paid and incurred 
indications at age 7, for the RC( f, g), as well as the 
MCL, the solo CL, and the solo XL models.

One point that should be made is that the Munich 
chain ladder development assumptions were not 
explicitly used to construct these triangles. However, 
normal paid and incurred loss development will nec-
essarily have paid and incurred losses that converge 
to the same ultimate. Therefore, in a general sense, 
we should still expect the Munich chain ladder to 
result in converging indications.

Table 9. RC, CL and CRDM indications at age 7

Iterations

Average 
Losses At 

Age 7 Median
Standard 
Deviation Maximum Minimum

Paid RC 10,000 31,907 31,908 1,082 37,085 27,794

Incd RC 10,000 32,599 32,597 1,063 36,692 28,473

I - P RC 10,000 692 671 153 1,670 (1,585)

Paid MCL 10,000 32,201 32,228 2,231 55,962 (99,621)

Incd MCL 10,000 33,104 33,076 1,573 133,405 14,789

I - P MCL 10,000 903 844 3,062 233,026 (16,352)

Paid CL 10,000 31,009 30,930 1,421 38,389 26,734

Incurred CL 10,000 33,055 33,050 841 36,285 29,649

I - P CL 10,000 2,046 2,140 1,101 5,199 (4,495)

Paid XL 10,000 30,802 30,766 1,003 34,978 27,557

Incurred XL 10,000 33,270 33,242 1,178 38,076 29,208

I - P XL 10,000 2,468 2,465 667 5,298 (443)
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losses in the original grid (actual losses). To allow 
for differences in loss volume, scaled residuals were 
calculated as (modeled − actual)/actual1/2. For com-
parison of the models, the average scaled residual 
(ASR) and the root-mean-squared error (RMSE) were 
calculated. The results are displayed in Table 10.

RC( f, g) appears in most cases to have relatively 
low magnitude ASRs (a measure of bias) and low 
RMSE (a measure of uncertainty) for both paid and 
reported indications for all lines of business when 
compared to the other models. There are notable par-
allels between this industry data comparison and the 
simulation results in section 5.4. For instance, in both 
the simulation and the industry comparison, RC( f, g) 
presents a better improvement over the paid indica-
tions than the incurred. Furthermore, the incurred 
CL is a more consistent indicator in the simulation, 
and appears to have smaller errors in the industry 
comparison.

On the other hand, the MCL appears to perform 
slightly better on workers compensation data. Remov-
ing a single grid pair (#23108 from the CAS loss 
reserves data) would make the RMSE for both Paid 
and Incurred RC( f, g) appear slightly better than 
Paid and Incurred MCL; however, the ASR for both 
Paid and Incurred MCL is still smaller than for Paid 
and Incurred RC( f, g). It is significant that the Paid 
and Incurred RC( f, g) ASR lies within the range of  
solo model ASR values for all lines of business. How-
ever, for the MCL, either the Paid or the Incurred  
ASR lies outside the range of the four solo model 
ASR values for three of the four lines of business. The 

utilizing both recursive credibility and the Munich 
Chain Ladder.

5.5. Comparison of the accuracy  
of the RC(f, g), MCL, CL and XL  
on industry data

Based on the CAS’s “Loss Reserving Data Pulled 
from NAIC Schedule P” (Meyers 2011) the accu-
racy of RC( f, g), MCL, CL and XL models on actual 
data was compared. For each line of business and 
company, a paid and incurred pair of 7 × 7 grids of 
loss development data was used. The accident years 
selected were from 1990 to 1996, and the develop-
ment lags selected were 1 to 7. Grid pairs that had 
zero or negative losses in any of these cells were not 
used. Grid pairs where development had stopped 
prior to age 7 were also not used. This resulted in an 
adequate number of grid pairs to consider the follow-
ing four lines of business.6

1. Private Passenger Auto (PPA)—95 grid pairs

2. Commercial Auto (CmA)—82 grid pairs

3. Workers Compensation (WC)—65 grid pairs

4. Other Liability (OL)—95 grid pairs

For each grid (for a given model and line of busi-
ness), the upper triangular matrix was developed 
(completing the square) and the total losses in col-
umn 7 (modeled losses) were compared to the total 

6Medical Malpractice and Products Liability each resulted in only 13 
usable grid pairs, so those results are excluded.

Table 10. ASR and RMSE by line of business and model

Paid 
RC(f, g)

Incurred 
RC(f, g)

Paid 
MCL

Incurred 
MCL

Paid 
Solo CL

Incurred 
Solo CL

Paid 
Solo XL

Incurred 
Solo XL

ASR PPA 0.2 −0.1 2.6 −4.2 9.5 −4.1 3.0 2.7

ASR CmA 1.7 1.5 6.4 −3.9 10.5 −0.8 9.2 0.9

ASR WC 9.4 7.7 6.5 5.2 10.4 10.0 12.3 7.2

ASR OL 2.6 2.4 7.9 3.0 10.2 2.2 8.1 3.6

RMSE PPA 13.1 17.5 15.5 46.2 23.7 27.0 20.0 15.6

RMSE CmA 21.6 20.3 37.4 50.3 40.5 22.0 48.2 18.9

RMSE WC 24.0 26.9 22.2 28.4 46.8 26.7 31.8 24.7

RMSE OL 20.6 23.3 31.5 24.2 34.4 27.4 26.8 20.9
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3. RC includes a framework for the calculation of the 
variance of the overall indication, as long as the 
recursive variance of the underlying submodels 
is given.

Weaknesses and uncertainties of the RC frame-
work include:

1. The RC framework contains invariant correlation 
terms.

2. The variance in this framework ignores the fact 
that when two sets of assumptions reach identi-
cal indications, those indications could be seen 
as having identical variance, and correlation 
of 1 because their differences from “actual” is 
identical.

3. The submodels presented here utilize only paid 
and incurred data. Will the variance of models that 
utilize exposures, claim counts, or premiums be 
directly comparable?

Additional research could attempt to address the first 
two issues. It could seek a more responsive framework 
to estimate indication-specific variance and covari-
ance terms. It could also seek to allow variance terms 
to converge when indications converge, and correla-
tion to converge to 1, and it could allow variance to be 
impacted by clustering.

A follow-up to this paper will attempt to answer 
the third question by illustrating the use of other 
loss development and variance assumptions. It will 
also generalize the recursive credibility framework 
to N models, and it will give a three-dimensional 
example.

In conclusion, RC(f, g) offers a significant im-
provement in stability over the MCL, while still 
bringing paid and incurred indications closer together. 
As an outgrowth of the MCL, the recursive cred-
ibility framework recognizes the value of recursive 
credibility-weighting of sub-indications, as opposed 
to the application of credibility to fully realized solo 
indications. It is a step towards reserving models 
that continuously measure the marginal impacts of 
changes of inter-dependent variables on one another.

Incurred MCL PPA ASR = −4.2 < −4.1 < 2.7 < 3.0  
< 9.5. The Incurred MCL CmA ASR = −3.9 < −0.8  
< 0.9 < 9.2 < 10.5. For Workers Compensation, both 
the Paid and Incurred ASR lie outside the range of 
the solo models. Incurred MCL WC ASR < Paid 
MCL WC ASR = 6.5 < 7.2 < 10 < 10.4 < 12.3. This 
freedom to “color outside the lines,” which can 
reduce the stability of the final MCL indications, 
also allows the MCL to account for downward trend 
in the development patterns that RC( f, g) by design 
cannot account for. This demonstrates that RC ( f, g)  
will be more effective with sub-indications having 
bias of opposite signs, while MCL may provide infor-
mation when there is unidirectional trend in all devel-
opment patterns.

The combined simulation results and the industry 
data results suggest that RC( f, g) does a good job 
of estimating reasonable paid losses, incurred losses 
and case reserves. This may, for certain lines of busi-
ness, result in a less biased estimate than the MCL. 
However, RC( f, g) will not correct for bias when all 
submodels are biased in the same direction. In other 
words, it will not correct for a unidirectional trend 
in all development patterns (that can be caused by 
statutory changes in damage awards). For this rea-
son, care must be used in selecting appropriate sub-
models when using recursive credibility or adjusting 
triangles to at least remove known shifts and trends 
in development patterns.

6. Concluding remarks

Some advantages of the recursive credibility frame-
work include:

1. RC allows different assumptions to be weighted 
by their relevance at different maturities.

2. RC allows a set of assumptions to be considered 
that would otherwise be summarily dismissed from 
the actuary’s consideration. Volatile assumptions 
such as the cross link method may give no clear 
final ultimate loss indication, but may provide 
valuable additional information within a recursive 
credibility framework.



Recursive Credibility: Using Credibility to Blend Reserve Assumptions

VOLUME 8/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 125

Appendix A: Proofs, derivations 
and other submodels

A.1. Proof that MCL is a weighted sum 
of CL and XL indications

Notation here is consistent with notation used by 
Quarg and Mack (2008) in their description of the 
MCL. The MCL paid loss estimate is given by the 
equation

(A.1)

, , ,
1 1 1

E P B s P f Q qi t i i s s t
P
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P

s
Q( )( )( )( ) = + − λ σ σ→

− −
→

−

where

Pi,t represents paid losses for accident year i at maturity 
t = s +1

Bi(s) = {Pi,1, . . . , Pi,s; Ii,1, . . . , Ii,s} is the condition 
that the incurred and paid development of accident 
year i is given until the end of development year s.
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is the paid loss development factor 

from maturity s to t, where n is the number of 
accident years.

Q −1
i,s =
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P
i s
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,

 is the incurred-to-paid ratio for accident 

year i at maturity s, where Ii,s represents incurred 
losses for accident year i at maturity s.
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P
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i si

n s
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1

is the average incurred-to-paid ratio at maturity s.
λP is the slope of the regression of conditional paid 

development ratio residuals against conditional 
incurred-to-paid ratio residuals.

σP
s→t/ Pi s,  is the standard deviation of the paid devel-

opment ratio for accident year i at maturity s.
σ s

Q–1
/ Pi s,  is the standard deviation of incurred-to-paid 

ratio for accident year i at maturity s.

The indication, which is weighted against the paid 
chain ladder (CL) indication, Pi,s f̂ P

s→t ≈ Pi,t is coined 

The RC framework significantly reduces the occur-
rence of unreasonable indications by recognizing and 
adjusting for the error that credibility weights add to 
a credibility-weighted indication. To accomplish this, 
a means of measuring a portion of the parameter error 
of credibility weights for two sub-indications has been 
presented.

RC can be used with any sub-indications whose 
variance can be structured in a manner similar to 
Mack’s recursive variance structure, where the vari-
ance is the sum of two conditional variance terms, 
the KPL variance and the KDF variance. As the 
actuarial profession continues to define the vari-
ance of its numerous models, recursive credibility 
can help to reduce model error by allowing more 
assumptions to enter our estimates, and by ensuring 
that the timing of application of those assumptions 
is appropriate.
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Thus, the MCL is the recursively applied, credibility-
weighted average of the CL and the unstable XL indi-
cations, where the weights are as follows.

W gs t
g P

s t
P

s
Q

s t
PP ( )= λ σ σ→ → →

−

(A.6)
1

Since none of the input parameters for equation (A.6) 
is defined by accident year, the weight itself does not 
vary by accident year. As noted in section 1, and con-
firmed in section 5, this definition of these weights 
is not specific enough to ensure that a zigzagging 
XL indication will not receive too much weight for 
a particular accident year and become the dominant 
indication.

A.2. Approximating zero-sum constants

To complete the variance of a credibility-weighted 
estimate and the calculation of the credibility weight, 
the zero-sum constant σ̂ I

W must be determined. To do 
this, a distinction must first be made. We want to deter-
mine parameter error, but to do so, we will first mea-
sure process error, then derive a measure of parameter 
error based on elements of that process error. Now, 
let’s recall Assumptions 1 and 2 from Section 2.5.

ASSUMPTION 1:

Assumption 1 states that the parameter variance 
of the zero-sum weights is inversely proportional to 
the squared difference between the underlying indi-
cations. That assumption is based on the following 
observation about the process variance.

Process Variance Observation 1: The process 
variance of zero-sum weights (their difference 
from solution weights) is inversely proportional 
to the squared difference between the underlying 
indications.

To understand the impact of a change in the dif-
ference between sub-indications on the process vari-
ance, we consider two examples.

Example 1: Given two sub-indications and an RC 
indication {I f, Ig, IR}, letting indication I f = 105 and 
Ig = 115 with respective weights of 0.5 and 0.5, the 
resulting credibility-weighted indication IR is equal to 

here the paid cross link (XL) Indication. The paid XL 
indication is the volume-weighted expected value 
of next year’s paid over this year’s incurred losses 
times current incurred losses, denoted:
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For the algebra to work out, one approximation must 
be recognized. At a given age, the volume-weighted 
average of all incurred to paid ratios is approximately 
equal to the volume-weighted average of all but one 
incurred to paid ratios.
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As proof, we start with equation (A.1) and show 
that the terms (1 − WgP

s→t) and WgP
s→t for the paid CL 

and paid XL indications are expressions of variables 
and parameters defined by Quarg and Mack (2008). 
In the fourth line, the approximation in equation (A.4)  
is used. In the seventh line, Pi,s is distributed and by 
definition, its product with Q−1

i,s equals Ii,s.
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when the weight itself is zero. To achieve that goal, 
we could assume the parameter variance is propor-
tional to an expression containing only the squared 
zero-sum weight. Based on a result we will derive 
later as equation (A.31), and assuming no error in 
the weights, we can expand the variance of the cred-
ibility weighted estimate as:

0.25

(A.7)2

Var Z I Z I Var I I

W Var I Var I

W Var I I

f f g g f g

f f g

f f g

( ) ( )
( ) ( )( )

( )

+ = +
+ −

+ −

Considering equation (A.7) we find such an expres-
sion by removing the constant expression and the  
linear term (with respect to the zero-sum weights) 
from equation (A.7). Assumption 2 states that param-
eter error in the zero-sum weights is proportional to 
the quadratic term in equation (A.7).

In section 2.5, we combined assumptions 1 and 2, 
to determine that there exists a zero-sum constant that 
defines the parameter error variance of a zero-sum 
weight. This mirrors the combination of process vari-
ance assumptions 1 and 2, to determine the process 
error around a zero-sum weight.

Process Variance Assumptions 1 and 2 Combined:  
The process variance of a zero-sum weight is pro-
portional with a scaling expression.

First note that given the weighted average of two 
sub-indications {I f, Ig}, based on Process Variance 
Assumptions 1 and 2, there exists a zero-sum process 
error constant σ I

WPROC
, such that:

(A.8)2

2Var W
Var Z I Z I

I I
PROC

f
W
I

fI f gI g

f gPROC( ) ( )
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= σ
+
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By these assumptions, process error in the zero-sum 
weight is a function of error in the credibility weighted 
indication and inversely related to the difference 
between the indications. If we know the following:

1. the value of the zero-sum process error constant

2. the variance of the credibility-weighted indication

3. the difference between the indications being 
weighted together

110, and the difference between the indications is 10. If 
the standard deviation of the credibility-weighted indi-
cation is 10, and actual losses are 10 greater than the 
mean or 120, the actual solution weights are −0.5 and 
1.5 (since 105 ∗ −0.5 + 115 ∗ 1.5 = 120). Note that the 
error in the original weights of 0.5 is 1 and −1, which is 
0.1 and −0.1 times the standard deviation of 10.

Example 2: Given two sub-indications and an RC 
indication {I f, Ig, IR}, letting indication I f = 109 and  
Ig = 111 with respective credibility weights of 0.5 and  
0.5, then the resulting credibility-weighted indication 
IR is equal to 110, and the difference between the indi-
cations is 2. If the standard deviation of the credibility- 
weighted indication is 10 and actual losses are again 
one standard deviation greater than the mean or 120, 
the actual solution weights are −4.5 and 5.5 (since 
109 ∗ −4.5 + 111 ∗ 5.5 = 120). Note that the error in 
the original weights of 0.5 is 5 and −5, which is 0.5 
and −0.5 times the standard deviation.

Thus, when the difference between sub-indications 
changed from 10 (Example 1) to 2 (Example 2), 
decreasing 5-fold, all else being equal the standard 
error in the credibility weights increased five fold. This 
example demonstrates that given two sub-indications, 
the variance of credibility weights should be inversely 
proportional to the squared difference between the 
sub-indications.

ASSUMPTION 2:

Assumption 2 from section 2.5 states that the 
parameter variance of the zero-sum weights is pro-
portional to Ŵ f 2

Var (I f − Ig). This is actually a modi-
fication of a process variance assumption.

Process Variance Assumption 2: The process 
variance of the zero-sum weights (their difference 
from solution weights) is proportional to the vari-
ance of a credibility-weighted estimate, Var(ZfI f � 
ZgIg), where credibility weights are assumed to be 
error-free.

Assumption 2 is stating that the greater the indica-
tion variance assuming no error in the weights, the 
greater the actual error in those weights.

Recall from section 2.5 that we decided to force 
the parameter error of the zero-sum weight to be zero 
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(To contemplate its error an iterative procedure 
would be needed, with little predictive benefit.)

The squared zero-sum constant (reflecting para m-
eter error), is calculated as simply the squared pro-
cess error constant divided by the residuals in its 
calculation.
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Now recall that parameter error equation 2.2 states 

that Var (Wf) = σI
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The variance described by equation 2.2 defines 
credibility weight error to be zero when the zero-sum 
weight is equal to zero. Thus, equation 2.2 does not 
account for all error in credibility weights, since a 
straight average of indications is not always the best 
solution. However, it does account for essentially all 
the error when the credibility weights become large, 
since the numerator is the quadratic term in the scal-
ing expression given by equation (A.7).

This is an appropriate measure of error since its 
purpose is to mitigate large credibility weights, and 
credibility weight error should be a small portion of 
the total variance of a credibility-weighted average. 
For a given credibility weight (not contemplating 
its own error) if its parameter error would be large 
relative to the total variance of a weighted average, 
then credibility that contemplates this error would 
result in a different weight with an optimally lower 
variance. This somewhat cyclical logic allows the 
variance from equation 2.2 to behave as a “func-
tional” variance, where its function within this 
model is to avoid the possibility of large credibility 
weight error.

then, using Process Variance Assumption 1 and Pro-
cess Variance Assumption 2 we can calculate the pro-
cess error of the zero-sum weights (thus the credibility 
weights themselves). Isolating the squared constant, 

gives us the equation, σ I
WPROC

2
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2

is the scaling term 

for the zero-sum weight process variance. Therefore, 
to parameterize the process error constant, we use the 
standard method of summing squared scaled residu-
als and dividing by degrees of freedom in that sum.7

Thus, the squared process error constant is calculated 
as follows:
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In equation (A.9), the residuals terms are calculated 
as the difference between the “actual” weight and 
the “expected” weight, WfI

i,t − Ŵ fI
i,t, where the “actual” 

weight WfI
i,t is the zero-sum weight that would result 

in a solution to the zero-sum weight expression of a 
credibility-weighted average.
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and the “expected” weight Ŵ fI
i,t is a zero-sum weight 

solved using equation (A.33), where the credibility 
weight does not contemplate its own error, i.e.:
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7The practice of dividing by degrees of freedom is generally used to elimi-
nate bias in a parameter estimate. While we use this practice, we realize 
that credibility weight variance estimates using this parameter will tend 
to be biased low.
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The MCL derived “Cross Link” indication  
and variance estimate

As illustrated in equation (1.1), the XL (g) indica-
tion, like the CL ( f ) indication, is also the product of 
a development factor and a prior loss indication. In 
contrast to the CL, reported losses are estimated with 
a factor times paid losses, and vice versa,

I g Pi t
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R= → (A.18), ,

P g Ii t
g

s t
P

i s
R= → (A.19), ,

Because of its straightforward multiplicative form, 
the recursive variance of the cross link sub-indication 
can be expressed similarly to the recursive variance 
of the chain ladder.
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A.3 Submodel indications  
and variance estimates

Three different submodel indication pairs are given 
below along with variance estimates based on the 
KPL/KDF structure described in section 4. While the 
KPL variance is easily generalized to all submodels, 
the KDF variance differs amongst the different sub-
models and depends on each submodel’s particular 
assumptions.

Variance given known prior losses
Equation (3.1) showed the variance given known 

prior losses for the incurred chain ladder indication 
as the sum of a process error term and a parameter 
error term. Generalizing the incurred loss term (I ) 
to equal liabilities (denoted L) and generalizing the f 
submodel to any submodel (denoted a), equation (3.1) 
becomes equation (A.13).
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As a direct consequence of the proportionality 
constant (see equation (A.22)), variance given known 
prior losses in all cases can be calculated as the sum 
of a process error and parameter error term. Thus the 
variance given KPL for each of the submodels below 
is based on equation (A.13).

The chain ladder indication  
and variance estimate

Note that for the submodel version of the CL, paid 
and incurred losses are estimated with a factor times 
prior RC paid and incurred loss indications,

I f Ii t
f

s t
I

i s
R= → (A.14), ,

P f Pi t
f

s t
P

i s
R= → (A.15), ,

For completeness, we are restating equations (3.3) 
and (3.4) here.
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Using conditional residuals for submodels a and 
b, the correlation of submodel indications given KPL 
through time s, is defined as a single parameter that 
applies to all points on the triangle:
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KDF covariance
Unlike KPL covariance, KDF covariance can-

not be so easily generalized. Thus, the covariance 
given KDF for each submodel and loss type pair is 
as follows:
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If RC behaves like the MCL with paid and incurred 
recursive indications converging (but not quite per-
fectly), it is reasonable to assume their correlation 
converges somewhere near (but not quite) unity. Thus 
for equations (A.25) to (A.26), we make the simplify-
ing assumption that

P IR R( )ρ =, 0.75. (A.27)

In practice, a different value could be used, or the 
correlation could be measured directly based on the 
upper triangular matrix of paid and incurred losses.

A.4. Credibility-weighted sum  
of two indications

Without loss of generality, consider indications 
If

i,t and Ig
i,t and their credibility weights Z fI

i,t = 1 − ZgI
i,t, 

To justify this, first note that for a single iteration, 
the incurred cross link indication has exactly the same 
form as the paid chain ladder indication; that is, it is a 
factor multiplied by paid losses. Assuming indepen-
dence between the prior diagonal’s paid indication and 
the development factor (which is reasonable since the 
prior diagonal is an RC indication rather than a cross 
link Indication), the variance can be structured in the 
same manner, as the sum of the KDF variance and the 
KPL variance. The Var(Ig

i,t | Ds→t), which is the KDF 
variance, is simply the variance of a constant times 
a variable, and the equation is straightforward. The 
Var(Ig

i,t | Bi(s)), which is the KPL variance, accounts 
for both process and parameter error of the develop-
ment factor. The expression for this is a direct result 
of the definition of the proportionality constant in 
equation (A.22).

Justification for the paid cross link indication is 
entirely analogous.

Proportionality constants, KPL residuals  
and KPL correlation

Proportionality constants, KPL residuals and KPL 
correlation for both paid and incurred losses are nec-
essary elements in an RC estimate. Since they are 
calculated in the same manner for submodels f and g 
and for paid and incurred losses, for brevity, a and b 
will generalize submodels, and L will generalize paid 
and incurred losses.

Given submodel a, there exist proportionality con-
stants σ̂aL

s→t for loss indications at time t = s + 1, where

estimated

ˆ
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1
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Now that proportionality constants have been 
defined for submodel a, conditional residuals at time t 
(where t = s + 1) are defined as:
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Using credibility weight assumptions 3 and 4, 
expressed as equation (2.2), the variance of the 
credibility-weighted estimate can be stated as:
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Setting the derivative with respect to the zero-sum 
weights equal to zero, minimizes the equation (A.32) 
variance, resulting in the following solution equation 
for the zero-sum weight.
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Based on equation (A.33), equation (A.32) can be 
restated as follows:
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Equations (A.33) and (A.34) are always defined 
unless the variance of the difference between indi-
cations is equal to zero. Thus, recalling that W fI

i,t = 
Z fI

i,t − 0.5, equations (A.34) and (A.33) are formulas 
defining the variance of a credibility-weighted esti-
mate and the value of the credibility weights, where 
the weights are selected to minimize the variance.

whose variance is a function of its squared distance 
from 0.5. Substituting WfI

i,t = Z fI
i,t − 0.5,
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Using Assumption 3, allowing WfI
i,t to be treated 

like a constant in covariance terms, equation (A.28) 
becomes
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The covariance term from equation (A.29) can 
now be reduced further as follows:
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Substituting equation (A.30), equation (A.29) 
becomes:
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Appendix B: Loss development history

This loss development dataset is the same set presented in the Munich chain ladder.

Table B.1. Historical paid losses

1 2 3 4 5 6 7

AY1 576 1,804 1,970 2,024 2,074 2,102 2,131

AY2 866 1,948 2,162 2,232 2,284 2,348

AY3 1,412 3,758 4,252 4,416 4,494

AY4 2,286 5,292 5,724 5,850

AY5 1,868 3,778 4,648

AY6 1,442 4,010

AY7 2,044

Table B.2. Historical incurred losses

1 2 3 4 5 6 7

AY1 978 2,104 2,134 2,144 2,174 2,182 2,174

AY2 1,844 2,552 2,466 2,480 2,508 2,454

AY3 2,904 4,354 4,698 4,600 4,644

AY4 3,502 5,958 6,070 6,142

AY5 2,812 4,882 4,852

AY6 2,642 4,406

AY7 5,022

Appendix C: Underlying submodels

Table C.1. Paid chain ladder submodel indications

1 2 3 4 5 6 7

AY1 1,404 2,041 2,028 2,066 2,118 2,131

AY2 2,110 2,204 2,225 2,278 2,332 2,380

AY3 3,441 4,251 4,377 4,508 4,589 4,616

AY4 5,570 5,987 5,892 5,971 6,088 6,132

AY5 4,552 4,274 4,784 4,857 4,952 4,983

AY6 3,514 4,536 4,452 4,512 4,593 4,618

AY7 4,981 6,746 6,903 7,010 7,139 7,169

Table C.2. Paid cross-link submodel indications

1 2 3 4 5 6 7

AY1 1,372 1,988 2,017 2,058 2,066 2,131

AY2 2,586 2,411 2,330 2,380 2,384 2,397

AY3 4,073 4,114 4,439 4,414 4,414 4,596

AY4 4,911 5,630 5,736 5,894 5,910 6,119

AY5 3,944 4,613 4,585 4,713 4,738 4,964

AY6 3,705 4,163 4,381 4,470 4,490 4,623

AY7 7,043 6,669 6,831 6,971 6,999 7,191
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Table C.3. Incurred chain ladder submodel indications

1 2 3 4 5 6 7

AY1 1,616 2,143 2,134 2,168 2,153 2,174

AY2 3,046 2,600 2,466 2,507 2,483 2,445

AY3 4,798 4,435 4,697 4,651 4,598 4,689

AY4 5,786 6,069 6,069 6,210 6,157 6,242

AY5 4,646 4,973 4,851 4,965 4,936 5,064

AY6 4,365 4,488 4,635 4,710 4,678 4,717

AY7 8,297 7,189 7,228 7,344 7,292 7,336

Table C.4. Incurred cross-link submodel indications

1 2 3 4 5 6 7

AY1 1,653 2,200 2,146 2,177 2,206 2,174

AY2 2,486 2,376 2,355 2,400 2,430 2,428

AY3 4,053 4,583 4,631 4,749 4,781 4,710

AY4 6,562 6,454 6,234 6,291 6,342 6,256

AY5 5,362 4,607 5,062 5,117 5,159 5,083

AY6 4,139 4,890 4,710 4,754 4,785 4,711

AY7 5,867 7,273 7,305 7,386 7,437 7,314

Table C.5. Paid chain ladder submodel variance indications

1 2 3 4 5 6 7

AY1 111,401 26,878 521 110 702 241

AY2 172,869 29,250 579 124 798 285

AY3 298,381 61,941 1,285 294 2,092 2,608

AY4 525,883 93,805 1,869 432 5,136 5,906

AY5 412,993 62,332 1,435 1,780 4,767 5,552

AY6 305,647 66,914 28,995 25,599 28,632 26,993

AY7 459,613 395,096 314,785 285,882 273,204 245,876

Table C.6. Paid cross-link submodel variance indications

1 2 3 4 5 6 7

AY1 123,961 19,588 5,162 7,106 3,594 1,234

AY2 192,359 21,318 5,733 7,989 4,087 1,459

AY3 332,021 45,143 12,723 18,972 10,718 6,985

AY4 585,174 68,365 18,501 27,887 18,399 12,896

AY5 459,556 45,428 14,208 25,472 16,725 10,766

AY6 340,107 48,767 33,567 44,310 36,658 30,896

AY7 511,432 368,194 322,663 320,088 281,661 254,577
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Table C.7. Incurred chain ladder submodel variance indications

1 2 3 4 5 6 7

AY1 98,705 15,066 2,450 38 2,356 808

AY2 196,398 18,647 2,885 45 2,851 965

AY3 329,133 34,373 6,184 99 6,847 5,614

AY4 410,406 50,153 8,536 148 12,695 10,744

AY5 317,039 39,382 6,436 5,100 12,714 9,324

AY6 294,978 34,858 29,119 28,195 35,164 30,525

AY7 637,734 397,573 346,502 316,587 296,521 261,485

Table C.8. Incurred cross-link submodel variance indication

1 2 3 4 5 6 7

AY1 94,761 26,344 6,459 9,349 1,614 553

AY2 188,551 32,606 7,605 11,134 1,953 661

AY3 315,982 60,104 16,302 24,392 4,691 3,739

AY4 394,008 87,696 22,503 36,202 9,405 7,823

AY5 304,371 68,863 16,965 28,240 7,846 6,945

AY6 283,191 60,952 47,030 52,891 33,615 29,136

AY7 612,252 440,866 378,113 362,657 301,600 258,142

Table C.9. Paid chain ladder solo model indications

1 2 3 4 5 6 7

AY1

AY2 2,380

AY3 4,589 4,652

AY4 5,971 6,097 6,182

AY5 4,784 4,884 4,987 5,056

AY6 4,536 4,669 4,766 4,867 4,934

AY7 4,981 5,634 5,800 5,920 6,045 6,128

Table C.10. Paid cross-link solo model indications

1 2 3 4 5 6 7

AY1

AY2 2,397

AY3 4,414 4,669

AY4 5,894 5,979 6,124

AY5 4,585 4,858 4,686 5,047

AY6 4,163 4,621 4,352 4,723 4,521

AY7 7,043 5,544 8,116 5,795 8,296 6,020
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Table C.11. Incurred chain ladder solo model indications

1 2 3 4 5 6 7

AY1

AY2 2,445

AY3 4,598 4,582

AY4 6,210 6,149 6,126

AY5 4,851 4,905 4,857 4,839

AY6 4,488 4,488 4,537 4,493 4,476

AY7 8,297 8,451 8,450 8,544 8,460 8,429

Table C.12. Incurred cross-link solo model indications

1 2 3 4 5 6 7

AY1

AY2 2,428

AY3 4,781 4,565

AY4 6,291 6,270 6,184

AY5 5,062 4,931 5,168 4,847

AY6 4,890 4,534 4,970 4,629 4,885

AY7 5,867 8,589 6,038 8,728 6,164 8,580

Appendix D: Recursive credibility of CL and XL submodels

Table D.1. Paid RC(f, g) zero-sum weights

1 2 3 4 5 6 7

AY1

AY2 0.232

AY3 0.298 0.185

AY4 0.373 0.281 0.076

AY5 0.367 0.452 0.326 0.131

AY6 −0.067 0.064 0.152 0.129 0.004

AY7 0.023 −0.010 0.008 0.015 0.019 0.002

Table D.2. Incurred RC(f, g) zero-sum weights

1 2 3 4 5 6 7

AY1

AY2 −0.076

AY3 −0.092 −0.103

AY4 0.394 −0.084 −0.045

AY5 0.219 0.366 −0.158 −0.077

AY6 0.133 0.195 0.173 −0.027 −0.002

AY7 −0.010 0.022 0.030 0.019 0.011 −0.001
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Table D.3. Paid RC(f, g) indications

1 2 3 4 5 6 7

AY1 576 1,804 1,970 2,024 2,074 2,102 2,131

AY2 866 1,948 2,162 2,232 2,284 2,348 2,385

AY3 1,412 3,758 4,252 4,416 4,494 4,554 4,610

AY4 2,286 5,292 5,724 5,850 5,962 6,049 6,126

AY5 1,868 3,778 4,648 4,758 4,850 4,915 4,976

AY6 1,442 4,010 4,325 4,421 4,498 4,555 4,620

AY7 2,044 5,963 6,707 6,868 6,991 7,072 7,180

Table D.4. Incurred RC(f, g) indications

1 2 3 4 5 6 7

AY1 978 2,104 2,134 2,144 2,174 2,182 2,174

AY2 1,844 2,552 2,466 2,480 2,508 2,454 2,435

AY3 2,904 4,354 4,698 4,600 4,644 4,706 4,701

AY4 3,502 5,958 6,070 6,142 6,219 6,265 6,250

AY5 2,812 4,882 4,852 4,911 4,985 5,083 5,075

AY6 2,642 4,406 4,636 4,658 4,724 4,734 4,714

AY7 5,022 7,058 7,229 7,264 7,364 7,363 7,325

Table D.5. Paid RC(f, g) variance indications

1 2 3 4 5 6 7

AY1

AY2 275

AY3 1,734 2,753

AY4 1,823 4,438 6,282

AY5 1,396 2,320 4,487 5,620

AY6 26,126 24,286 25,451 25,459 24,297

AY7 223,601 294,923 273,853 258,022 237,509 216,755

Table D.6. Incurred RC(f, g) variance indications

1 2 3 4 5 6 7

AY1

AY2 409

AY3 2,886 3,147

AY4 2,019 6,302 6,686

AY5 4,883 5,196 6,238 6,066

AY6 23,042 27,483 28,700 27,953 25,263

AY7 323,462 335,873 309,516 288,130 257,409 225,540
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For the MCL data set, final loss development pat-
terns from Tables D.3 and D.4 were all well-behaved, 
with paid losses increasing monotonically, and no neg-
ative case reserves. The variance terms in tables D.5 
and D.6 appear to sometimes shrink in magnitude 
between periods. This reduction is due to covariance 
impacts, and whether this reduction is merited depends 
on the accuracy of the variance and correlation of the 
submodel indications.
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