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AbSTRACT

To measure economic profits generated by an insurance policy 

during its lifetime, we compare the terminal assets of the policy 

account with certain break-even value. The break-even value is 

an increasing function of the claims risk and the asset investment 

risk. It can be calculated with closed-form formulas. We study 

policies with multiyear loss payments and tax payments. Profits 

from underwriting and from capital investment are measured 

separately. Relationships between the cost of capital and the 

risk-adjusted discount rate of loss are derived. Methods devel-

oped in the paper are also useful for fair premium calculation.
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basis, and thus cannot answer the question whether 
a policy (or a policy year) is ultimately profitable.1 
The internal rate of return (IRR) of equity flows is 
a valid policy-year metric. Yet it cannot be called a 
risk-adjusted measure unless it is explicitly linked to 
the underwriting and investment risks. Such a link 
will be discussed in this paper. Further, the RAROC, 
IRR, and EVA all measure combined profits from 
both underwriting and investment operations. It is 
useful for the underwriting managers to know if the 
underwriting operation alone, for a particular policy 
or in a particular year, is successful. Our approach 
will address this issue directly.

Several researchers have studied performance mea-
surement for a multi-year property-casualty (P&C) 
policy. Bingham (1993) and Bender (1997) divide the 
balance sheet asset into an insurance product account 
and a surplus account, and study cash flows from one 
account to the other or to shareholders. Their insur-
ance product account is similar to our policy account. 
Schirmacher and Feldblum (2006) provide a detailed 
study on accounting issues. It examines how profits 
emerge over time and shows that calendar-year prof-
its depend on the accounting system. Our focus is on 
the ultimate economic profit, which is independent of 
the accounting system used. In computing the EVA, 
Schirmacher and Feldblum (2006) assumes that a 
cost of capital (COC) is given extraneously. As just 
mentioned, we will relate it to internal risk metrics.

Profit measurement is intertwined with fair pre-
mium determination. The break-even value of profit 
is derived by assuming that premium is at its fair 
level, and investment returns and loss and expense 
payments are all at their expected values. Conversely, 
the fair premium may be determined by setting to 
zero the market value of the policy account terminal 
asset. Our study thus may be found useful for pre-
mium calculation.

The paper is organized as follows. Section 2 starts 
with a discussion of the risk-adjusted loss discount 

1. Introduction

A typical property-casualty insurance policy cov-
ers one accident year, but its claims stay open for 
many years. The ultimate profitability of the policy 
cannot be determined until all claims are settled. In 
the interim, profits may be estimated by projecting 
future investment gains and claim and expense pay-
ments. At the moment the premium is collected, a 
policy account is established, of which its initial asset 
is the premium net of acquisition expenses. The value 
of the asset increases as investment incomes accumu-
late, and decreases as losses, expenses, and taxes are 
paid. At the end of the policy life, the terminal asset 
of the policy account is the ultimate profit generated 
by the policy. A policy is considered profitable if its 
terminal asset exceeds a certain break-even value. A 
main goal of the paper is to calculate this break-even 
value.

A number of favorable factors allow a policy to 
generate positive profits. These include higher pre-
miums collected, lower losses and expenses paid, 
payments made later rather than sooner, and extra-
ordinary investment gains. If all these factors are 
at their fair or expected values, the resulting termi-
nal asset is the break-even terminal asset. Modern 
finance teaches that the expected return of an asset 
investment is in direct proportion to the investment’s 
risk. Likewise, the break-even terminal asset will be 
shown to be directly related to the claims risk and the 
asset investment risk.

For investment portfolios, there are many risk-
adjusted performance measures, including the well-
known Sharpe ratio, the Treynor ratio (ratio-based 
tests) and Jensen’s alpha (a value-based test), all 
thoroughly discussed in Part 7 of Bodie, Kane, and 
Marcus (2002). In insurance, the risk-adjusted return 
on capital (RAROC) and the economic value added 
(EVA) have become popular. All these measures, 
however, are designed for testing performances in 
one time period. It is much harder to construct a per-
formance test for a real insurance policy, whose claim 
payments span across multiple years. The RAROC 
and the EVA are usually applied on the calendar-year 

1Some one-year tests have been adapted for use in a multi-year frame-
work and on the policy-year basis, see Goldfarb (2006). But these are 
only tentative solutions and lack solid theoretical support.
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policy, the greater the terminal assets need to be. The 
purpose of this paper is to derive a benchmark for 
terminal assets in the framework of modern finance.

2.1. discount rate for liabilities

Pricing actuaries use various “loadings” to quan-
tify risk embedded in claims. A loading may be 
additive (a dollar amount charge) or multiplicative 
(a percentage charge), or may be calculated by risk-
adjusted discounting (using lower discount rates 
to create a higher present value). The most conve-
nient way for presenting our results is risk-adjusted 
discounting.

The following example illustrates how the risk-
adjusted discount rate reflects the risk level of a pol-
icy. Assume a policy has only one loss, which will be 
paid in one year, and the expected payment is $100. 
The risk-free interest rate is 4 percent. As in Myers 
and Cohn (1987) and Taylor (1994), we define the 
fair premium for the policy to be the sum of market 
values of future claims, expenses, and capital costs. 
If the claim amount is $100 certain, its market value 
is the present value at the risk-free rate 100/1.04 = 
96.15. Market value of a claim increases with riski-
ness of the claim, whereas the risk-adjusted dis-
count rate decreases. Table 1 shows the relationship 
between the discount rate and the market value, cor-
responding to different levels of claims risk.

In general, let r
f
 be the risk-free rate, L the random 

claim amount, and r
l
 the claim’s risk-adjusted dis-

count rate. Then the risk-free present value is PV(L) 
= E[L]/(1 + r

f
), and the market value is MV(L) = E[L]/

(1 + r
l
). For a risky claim, MV(L) > PV(L), the dif-

ference being the claim’s risk margin.2 This implies 
r
l
 < r

f
. If risk is low, r

l
 is close to r

f
. For a highly risky 

policy, r
l
 can be negative.

rate. The discount rate is used to quantify a policy’s 
risk. Then, for a single-year model, the break-even 
value of terminal assets is derived. The break-even 
value is an increasing function of asset and claims 
risks. This result is generalized to a multiyear model 
in Section 3. Here a numerical example is introduced 
that will be used throughout the paper to illustrate 
calculations. The main results of the paper are stated 
in Section 4. Income tax is brought into the model. 
Closed-form formulas are derived for the fair pre-
mium and break-even terminal assets. To obtain trac-
table results, tax rules are simplified. In Section 5, we 
give equations linking the break-even terminal assets 
to the COC. A consequence of the relationship is that 
the COC is an increasing function of the claims risk, 
and a decreasing function of the initial capital. In 
Section 6, we show how to define the EVA for the 
policy account only, and separately measure profits 
from underwriting and from capital investment. Sec-
tion 7 further shows that, since the loss discount rate 
and the COC both characterize the internal risk of the 
company (assuming investments are risk-free), each 
can be derived from the other with simple equations. 
The fair premium for a policy may be calculated by 
selecting either a loss discount rate or a target COC. 
Section 8 concludes the paper.

2. benchmark of  
underwriting profit

Issuing an insurance policy establishes a mini-bank, 
which we will call a policy account. If we assume the 
acquisition expense is paid at the moment the pre-
mium is collected, then the starting asset of a policy 
account is premium minus acquisition expenses. The 
value of the asset changes over time. Investment 
gains increase the value, and loss and expense pay-
ments decrease it. The remaining assets right after the 
last payment is made are called the terminal assets. 
Actuaries who have done analysis on finite reinsur-
ance contracts should be familiar with the calcula-
tion of terminal assets. For a policy to be profitable 
over its lifetime, the terminal assets must be positive 
and sufficiently high. Intuitively, the more risky the 

2Although it is intuitively clear that if a claim is risky, its value should 
contain a positive risk margin, empirical evidence that supports the  
assertion is sparse. Most authors assume the risk margin is positive  
(Myers and Cohn 1987; Bingham 2000). But Feldblum (2006) suggests 
that most P&C liabilities have no systematic risk (i.e., uncorrelated with 
the market return), thus the risk margin equals zero. The disagreement 
can only be settled with further empirical research.
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are greater than a
1
, the company makes money on the 

policy. If the terminal assets are only slightly posi-
tive, but less than a

1
, the company appears to make 

money, but actually does not make enough to com-
pensate for risk. If the claim or the investment is very 
risky, the terminal assets need to be very high.

Comparing the actual terminal assets with a
1
 

gives us a value-based test for underwriting perfor-
mance.4 It is interesting to compare this with the com-
bined ratio, a ratio-based underwriting performance 
measure. The undiscounted combined ratio is used 
most often. But it has an obvious shortcoming—it 
does not reflect the time value of money. Two lines 
of business may have the same combined ratio, but 
the longer-tailed line pays out losses more slowly, 
generates more investment income along the way, 
and is more profitable. The economic combined 
ratio (ECR) is introduced to correct this problem. 
In the calculation of ECR, all underwriting cash 
flows are discounted at the risk-free rate to the time 
of policy inception. The ECR is strongly advocated 
in Swiss Re (2006), which claims that the ECR of 
100 percent “truly indicates the watershed between 
profit and loss” (p. 24). When investments and 
claims are risky, however, the risk-adjusted break-
even ECR is not 100 percent, but something lower. 
Table 2 gives the break-even ECR and the break-
even terminal assets for the three policies in Table 1,  
with the following additional assumptions: first, 
fair premium is charged and there is no expense, 
i.e., p = MV(L); and second, investment is riskless, 
i.e., r

a
 = r

f
 = 4%.

The ECRs in Table 2 are computed with the fair 
premium in the denominator. So they are the break-
even ECRs. The table shows that if claims risk is high, 
the break-even ECR is much lower than 100 percent, 
and a

1
 is very large compared to E[L].

2.2. break-even terminal assets

Let p be a policy premium net of acquisition 
expenses. Then p is the starting balance of the policy 
account. Assume the balance is invested in a finan-
cial security of which its annual return is a random 
variable R

a
; the policy losses L, paid one year later, 

has a risk-adjusted discount rate of r
l
. So the expected 

return of assets is r
a
 = E[R

a
], and the market value of 

loss is MV(L) = E[L]/(1 + r
l
). Capital cost is not con-

sidered in this section.
If p is the fair premium, then p = MV(L) = E[L]/(1 

+ r
l
). At the end of the year the assets grow to MV(L)

(1 + R
a
) = E[L](1 + R

a
)/(1 + r

l
). After loss L is paid, 

the terminal assets3 are

A L R La1 1= ( ) +( ) −MV .

The expected value of terminal assets is

a E A L r E L

L r r
E L

a

a l

1 1 1= [ ] = ( ) +( ) − [ ]

= ( ) −( ) = [ ]
MV

MV
11

2 1
+

−( )
r

r r
l

a l , ( . )

since r
a
 ≥ r

f
 and r

l
 ≤ r

f
, a

1
 ≥ 0. A more risky security has 

a greater r
a
, and a more risky liability has a smaller 

r
l
. So the spread r

a
 - r

l
 is a measure of total risk of the 

policy account. a
1
 is in proportion to the total risk.

The term a
1
 is the risk-adjusted break-even value of 

terminal assets. If the actual realized terminal assets 

Table 1. Risk-adjusted discount rate

Riskiness  
of Claim 
(1)

Expected 
Claim 

(2)

Risk-free 
Present 
Value 
(3)

Market Value 
(4)

Risk-Adjusted 
Discount 

Rate 
(5)

No Risk 100.00 96.15 96.15 4%

Low Risk 100.00 96.15 97.09 3%

High Risk 100.00 96.15 200.00 -50%

(5) = (2)/(4) - (1)

3Terminal assets are profits generated by the policy over its lifetime. 
I choose to use “assets” rather than “profits” because, for a multiyear 
model, I will keep track of values of assets from year to year.

4Note that if A
1
 < a

1
 (A

1
 > a

1
), then the policy loses (makes) money in this 

particular year. However, this may be the result of pure randomness and 
have nothing to do with the quality of the underwriting decision. To as-
sess the quality of underwriting decision, one needs to track profits over 
a long period or look at the aggregate profit of many policies.
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Then the expected terminal asset a
n
 = E[A

n
] is the 

benchmark value of terminal assets of the policy. 
Taking the expected value of the last formula and 
substituting Equation (3.1) for p, we get

a r E L r r

r

n f

n

i l

i

f

i

i

n

= +( ) [ ] +( ) − +( )( )
= +

− −

=
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1

1

ff

n

L L( ) ( ) − ( )( )MV PV0 0 3 2. ( . )

MV
0
(L) - PV

0
(L) is the risk margin of the policy losses, 

which is greater than 0 if r
l
 < r

f
. A less risky policy has a 

smaller spread r
f
 - r

l
, and a relatively smaller a

n
. A very 

risky policy can have a negative r
l
, and a very large a

n
.

The above a
n
 is computed from expected values of 

loss payments, investment returns, and discount rates. 
In practice, the expected loss payments are given by 
an actuarial payout pattern, and the expected invest-
ment returns are provided by the market (spot rates 
of bonds with suitable maturities). On the other hand, 
there is no consensus on the best approach of get-
ting the loss discount rates. Assuming this informa-
tion can be obtained in the pricing process, we may 
calculate a

n
 using (3.2). As the years go by, we trace 

the actual policy account assets A
i
 until the year n 

when all losses are paid.7 The actual terminal asset 

3. Multiyear underwriting  
profit measure

3.1. break-even terminal assets an

A typical P&C policy has a multiyear payout pat-
tern. Assume a policy is written at time 0, and the loss 
payments are random variables L

1
, . . . , L

n
, L

i
 paid at 

time i. The nominal total loss is L = L
1
 + . . . + L

n
. We 

will derive a break-even value for terminal assets 
at time n, after all losses are paid. Assume a loss 
discount rate r

l
, constant throughout the n years, can 

be found that correctly reflects the risk of the pay-
ments L

i
.5 Then the market value, at time 0, of the 

payment stream is

MV0 L
E L

r

E L

r

E L

r

l

n

l

n

i

l

( ) = [ ]
+

+ + [ ]
+( )

= [ ]
+

1

1 1

1

. . .

(( )=
∑ i
i

n

. ( . )
1

3 1

The fair premium of the policy, net of expenses, 
equals this market value: p = MV

0
(L). Let the pre-

mium be invested risk free, and r
f
 be the constant 

risk-free rate.6 The following formulas give the net 
assets at each time i, right after loss L

i
 is paid

Table 2. break-even ECR and break-even terminal assets

Riskiness  
of Claim 
(1)

E[L] 
(2)

rl 

(3)
p = MV(L) 

(4)
PV(L) 
(5)

Break-even  
ECR 
(6)

a1 

(7)

No Risk 100.00 4%  96.15 96.15 100.0% 0.00

Low Risk 100.00 3%  97.09 96.15  99.0% 0.97

High Risk 100.00 -50% 200.00 96.15  48.1% 108.00

(6) = (5)/(4)

(7) = (4) × (4% - (3))

5The constancy of r
l
 is a simplifying assumption. To accurately reflect 

the riskiness of each L
i
, the discount rate should be allowed to vary over 

time. In this more general scenario, similar equations can be derived for 
A

i
, but a closed-form solution for a

n
 would not be possible when tax en-

ters the calculation later in the paper.
6For simplicity, results on multiyear models in this paper are stated for 
a constant risk-free investment return. The same derivation works for 
random (risky) rates of return, too, but it would not be possible to obtain 
a closed-form formula for the expected terminal asset.

7The actual closing year may be longer or shorter. Here we assume it is 
exactly n for simplicity.
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of Table 3, last entry), greater than $38.80, the policy 
is profitable under the risk-adjusted measure.8

The economic value added by the policy is 84.86 
- 38.80 = 46.06. However, this assessment overstates 
the profitability of the policy, because taxes are omit-
ted so far. Taxes are a significant cost, which I will 
discuss in the following sections.

4. After-tax profit measures

Insurance companies have a greater tax burden 
than non-financial companies. In addition to taxes on 
profits from underwriting and premium investment, 
a company has to pay taxes on income from capital 
investment. This cost is dubbed double taxation—a 
shareholder’s capital investment is taxed twice, first 
at the corporate level and then at the personal level 
(when he sells the stock). Since an investor does not 
pay the corporate tax if he directly buys securities 
on the market, this tax must be covered by premium 
to guarantee that an insurance company shareholder 
does not have a cost disadvantage. This means that all 
tax payments, including that charged on income from 
capital investment, need to be deducted from policy 

A
n
 is then compared with a

n
 to assess the policy’s 

ultimate profitability. An interim projection of the 
ultimate profitability is possible, if loss payments 
and investment returns in the remaining years can 
be projected. A number of beneficial factors can ren-
der a policy more profitable: higher (than expected) 
premium, smaller losses, slower loss payments or 
higher investment returns. Among them the premium 
is what a company has the most control over.

3.2. A numerical example

I will use a multiyear numerical example to illus-
trate the calculations in this paper. The example is 
borrowed from Schirmacher and Feldblum (2006), 
so we can compare their methods with ours. Assume 
a policy is issued on Dec. 31, 20XX, for accident 
year 20XX+1. The underwriting cash flows are as 
follows. On Dec. 31, 20XX (time 0), a premium of 
$1,000 is collected and acquisition expenses of $275 
paid. General expenses of $150 are paid six months 
later (time 0.5). The policyholder has one accident 
in the year and will receive one payment of $650 on 
Dec. 31, 20XX+3 (time 3).

Schirmacher and Feldblum (2006) choose a sur-
plus requirement of 25 percent of the unearned pre-
mium reserve plus 15 percent of the loss reserve. The 
risk-free rate is 8 percent per year compounded semi-
annually (4 percent per half year). The policy account 
cash flows and balances are summarized in Table 3.

The nominal losses (L) and expenses (X) add up to 
$1,075, and the premium (p) is $1,000. The underwrit-
ing profit is -$75 and the combined ratio is 1,075/1,000 
= 107.5%. The risk-free present value of losses and 
expenses PV

0
(L + X) = 932.94, and the ECR equals 

PV
0
(L + X)/p = 93.29%. By the ECR standard (as pro-

posed in Swiss Re 2006) the policy is profitable, but 
the ECR standard incorrectly ignores risk.

To compute the risk-adjusted break-even value 
a

3.0
, we need a few more assumptions. Assume r

l
 = 

3% per half year, and the only loss payment of $650 
at time 3 is both the expected and the actual loss. 
By (3.2), the break-even net assets at time 3 are  
(1 + 0.04)6 • 650 • ((1 + 0.03)-6 - (1 + 0.04)-6) = 38.80. 
Since the actual terminal assets are $84.86 (column 6 

Table 3. Policy account assets—no tax

Time 
(1)

Premium 
(2)

Expense 
(3)

Loss 
(4)

Investment 
Income 

(5)

Policy 
Account 
Assets 

(6)

0.0 1000.00 275.00 0.00 0.00 725.00

0.5 0.00 150.00 0.00 29.00 604.00

1.0 0.00 0.00 0.00 24.16 628.16

1.5 0.00 0.00 0.00 25.13 653.29

2.0 0.00 0.00 0.00 26.13 679.42

2.5 0.00 0.00 0.00 27.18 706.59

3.0 0.00 0.00 650.00 28.26 84.86

Sum 1000.00 425.00 650.00 159.86

PV 1000.00 419.23 513.70

(6)0.0 = (2)0.0 - (3)0.0 - (4)0.0

For i > 0.0, (5)i = (6)i-0.5 × rf

For i > 0.0, (6)i = (6)i-0.5 + (2)i - (3)i - (4)i + (5)i

8In this illustration, for simplicity, I assume that the actual loss payments, 
investment returns and discount rates are identical to their expected val-
ues. But these two sets of values are usually different.
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mium and capital are invested. To derive the expected 
terminal assets for the policy, we substitute (4.2/4.1) 
into (4), and calculate the expected values

a t
L

tcr

t r

E R

f

f

a

1 1 1 1

1

= −( )
( ) +

−( ) +( )






+ [ ](

MV

)) − [ ]

















− [ ]

= −( ) ( ) −( )

E L

tcE R

t L r r

a

a l1 MV −−
+

−( )

= −( ) [ ]
+

−( ) −
+

tc

r
r r

t
E L

r
r r

tc

r

f

a f

l

a l

f

1

1
1 1

rr ra f−( ). ( . )4 3

This is the risk-adjusted break-even value for the after-
tax terminal assets. In (4.3) the first term is essentially 
the after-tax version of the break-even value (2.1), 
and the second term reflects tax on capital. A policy 
generates a profit if and only if its after-tax terminal 
assets are greater than a

1
.

Consider a special case where the investment is risk 
free, i.e., r

a
 = r

f
. Formula (4.3) reduces to

a t
E L

r
r r

l

f l1 1
1

4 4= −( )
 
+

−( ). ( . )

Remember r
l
 ≤ r

f
, and the riskier the policy, the smaller 

the r
l
. So a riskier policy has a greater break-even value 

(4.4). Note that capital c does not appear in (4.4). This 
is because, as the investment is risk free, the amount of 
tax on capital gain is certain, and is exactly covered by 
the second component of fair premium (4.2).

4.2. Multiyear model

The main goal of the paper is to derive the break-
even value of terminal assets in the most general  
setting—multiyear, with income tax, which I will do 
in the remainder of the paper. To obtain tractable 
results I will make simplified assumptions on the 
timing and amount of tax payments. Assume taxes 
are paid at time 1, 2, . . . . (The interval between i - 1 
and i need not be one year. In the example in Table 3, 
each time period is one half year.) Tax paid at time i  
equals tax rate (a constant) times taxable income earned 
between times i - 1 and i. For the purpose of income 
calculation, I assume loss reserves are discounted at 

account assets. Income taxes are generally a fixed 
percentage of the pre-tax income. But the precise 
IRS tax codes are complex. I will make simplifying  
assumptions to obtain closed-form, tractable results.

4.1. Single-year model

Let c be the initial capital contributed by share-
holders. The capital serves two purposes. First, the 
company invests the capital to earn income. Second, 
with the safety margin provided by the capital, the 
company is able to issue insurance policies. Assume 
the company issues policies and collects premium p 
(net of expenses), and invests the total cash c + p in 
securities. The policy loss L is paid one year later, 
and the remaining assets are returned to shareholders.

Assume there is a single tax rate, denoted by t, for 
both underwriting and investment profits. The pretax 
operating income, from both the policy account and 
the capital investment, is (p - L) + (p + c)R

a
 = p(1 + 

R
a
) - L + cR

a
. The total income tax, paid at time 1, 

is t(p(1 + R
a
) - L) + tcR

a
.9 The whole tax payment 

should be deducted from the policy account. The 
policy account’s after-tax net assets are

A p R L t p R L tcR

t p R

a a a

a

1 1 1

1 1

= +( ) − − +( ) −( ) −

= −( ) +( ) −− −
−







L

tc

t
Ra

1
4 1. ( . )

The policy premium p is fair, as defined in Section 2.1, 
if it makes the market value of terminal assets zero. 
In (4.1), we set MV(A

1
) = 0. Clearly, MV(1 + R

a
) = 1 

and MV(1) = 1/(1 + r
f
), which imply MV(R

a
) = r

f
/ 

(1 + r
f
). These formulas give

p L
tcr

t r
f

f

= ( ) +
−( ) +( )

MV
1 1

4 2. ( . )

The second term is the amount of premium needed 
to cover taxes on the investment income of capital, 
which is in direct proportion to c. So too much capital 
hurts the company in price competition. Also, note 
that the fair premium is not affected by how the pre-

9In practice, when taxable income is negative, the company may not be 
able to receive the full tax credit in the current year. But we ignore this 
complication here.
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The first term in the formula is the fair premium 
when there is no tax. The second term can be consid-
ered a present value of the tax payments on capital 
investments, where the discount rate is the after-tax 
interest rate (1 - t)r

f
. Premium calculation will be 

discussed in depth in Section 7. Next, to derive the 
break-even value for the after-tax terminal assets, 
we start from time 0 with premium (4.5), and suc-
cessively compute underwriting, investment and tax 
cash flows, and the net policy account assets A

i
. The 

result is also a simple closed-form formula.

Theorem 2. The break-even value for the after-tax 
terminal assets in the policy account is given by

a
t r r t r

t r r

E L

n

f l f

n

f l

i

=
−( ) −( ) + −( )( )

−( ) −

 

1 1 1

1


+( )

−
+ −( )( )











=
−( )

=
∑ 1

1

1

1 1

1

1 r t r

t

l

i

f

i
i

n

rr r t r

t r r

L

f l f

n

f l

−( ) + −( )( )
−( ) −

( ) −

1 1

1

MV PV0 0

tax LL( )( ) , ( . )4 6

where PV
0
tax(L) stands for the present value dis-

counted at the after-tax interest rate (1 - t)r
f
. Recall 

that r
l
 is the discount rate in MV

0
(L) and r

l
 usually is 

less than r
f
. Obviously, MV

0
(L) - PV

0
tax(L) and (1 - t)

r
f
 - r

l
 always have the same sign, which means (4.6) 

is always positive. Equation (4.6) reduces to (3.2) 
when there is no tax.

The fair premium p carries a charge for tax on the 
investment income of capital (second term in (4.5)), so 
p is a function of the capital amounts c

i
. Interestingly, 

calculation of the break-even value a
n
, Formula (4.6), 

does not involve c
i
. This is because the tax charge 

exactly covers all those taxes, under the condition that 
investment returns are deterministic.10 As in the case of 
single-year model (Equation (4.3)), if investments are 
risky, the break-even terminal assets will depend on c

i
.

the risk-adjusted rate (also a constant). The simpli-
fied tax rules are summarized below.

Tax Paid
Underwriting Gain

Investment G
i

it= ×
+ aain

Investment Gain Investible Ass

i

i fr







= × eets

Underwriting Gain Loss Reserve

U

i

p L

−

= − −

1

1 1 1

nnderwriting Gain Loss Reserve

Loss Rese
i i iL= − −

+ rrve

Loss Reserve MV Unpaid Loss

i

i i i

−

= ( )
1

where Unpaid Loss
i
 means the future payment 

stream L
i+1

, L
i+2

, . . . , and MV
i
(Unpaid Loss

i
) is the 

present value of the payment stream discounted at r
l
. 

These rules will be used to derive a break-even value 
for after-tax terminal assets. A test on profitability is 
to compare actual terminal assets, which follows the 
IRS tax rules, with this break-even value. Deviation 
of the simplified tax rules from the IRS rules would 
create some distortion, which I hope is not material.

Derivation of results in a multiyear model is inevi-
tably complicated. I will state the main results here, 
and present their proofs in appendices. Again, use A

i
, 

i = 0, 1, . . . , n - 1, to denote the (random) assets of 
the policy account at time i, after loss L

i
 is paid. (Note 

that A
0
 = p.) Let c

i
, i = 0, 1, . . . , n - 1, be the amount 

of capital held, so that A
i
 + c

i
 is the total investable 

assets of the company at time i. The term c
i
 might be an 

amount required by regulators (as assumed in Schirm-
acher and Feldblum 2006), or desired by the company 
management. Again we assume assets are invested risk 
free, and the risk-free rate r

f
 is constant for all years.

The fair premium (net of expenses) p satisfies the 
equation MV

0
(A

n
) = 0. The following theorem gives 

a concise, closed-form formula for the fair premium.

Theorem 1. The fair premium p is given by

p L
tr

t r
c

c

t r
f

f f

= ( ) +
−( ) +( ) +

+ −( )



+

MV0 1 1 1 10

1

. . .. . ( . )+
+ −( )( )






−
−

c

t r
n

f

n

1

1

1 1
4 5

10For example, if capitals are larger, then (1) income taxes on capital in-
vestments are greater; (2) the fair premium is higher based on (4.5). The 
additional tax expense is exactly funded by the additional premium, and 
the expected terminal assets remain the same.
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higher the COC. For the insurance models under 
consideration, risk of the shareholder return comes 
from two sources—the volatile investment returns 
and the volatile claim payments. In the preceding sec-
tions, I have shown that the expected values of claims 
and investment gains determine the expected value of 
terminal assets in the policy account. The total return 
to shareholders is the sum of policy account terminal 
assets and the investment return on capital. Therefore, 
the COC is a simple function of the break-even termi-
nal assets and the expected investment return on capi-
tal. This relationship may also be used in the reverse 
manner: if the COC is obtained through stock analy-
sis, a required level of terminal assets can be deduced, 
from which a fair premium may be calculated.

5.1. Single-year model

The expected value of policy account terminal 
assets is given in Equation (4.3). The expected value 
of capital investment at time 1 is c(1 + r

a
). Therefore, 

the total expected after-tax net assets at time 1 are

1
1

1

5

−( ) ( ) −( ) −
+

−( ) + +( )t L r r
tc

r
r r c ra l

f

a f aMV .

( .11)

These formulas are easy to apply. In Table 4, a tax 
column is added to Table 3, and the policy account 
assets at each time are recalculated by deducting taxes. 
(Note that the tax column contains all taxes, including 
that on capital investments.) The last entry of col-
umn 7 gives the policy’s after-tax terminal assets of 
$33.55. Given the rates r

f
 = 4%, r

l
 = 3% and t = 35%, 

we compute MV
0
(L) = 650/(1 + 0.03)6 = 544.36, and 

PV
0
tax(L) = 650/(1 + (1 - 0.35) × 0.04)6 = 557.22. Sub-

stituting these figures into (4.6), we get the break-even 
terminal assets a

3.0
 = 24.37. Since this is less than the 

actual terminal assets of $33.55, the policy is profitable. 
The value added by the policy is 33.55 - 24.37 = 9.18.

5. Linking break-even terminal 
assets to cost of capital

The cost of capital (COC) is the rate of return on 
capital required by shareholders. The rate of return 
is a random variable, and the COC is the expected 
value of this rate. According to the Capital Asset 
Pricing Model (see Bodie, Kane, and Marcus 2002), 
the COC is in direct proportion to the systematic risk. 
In more general settings, it is customary to expect 
that the higher the risk (however it is defined), the 

Table 4. Policy account assets—after tax

Time 
(1)

Premium 
(2)

Expense 
(3)

Loss 
(4)

Tax 
(5)

Investment 
Income 

(6)

Policy 
Account 
Assets 

(7)

0.0 1,000.00 275.00 0.00 -26.25 0.00 751.25

0.5 0.00 150.00 0.00 32.45 30.05 598.86

1.0 0.00 0.00 0.00 29.39 23.95 593.42

1.5 0.00 0.00 0.00 8.13 23.74 609.03

2.0 0.00 0.00 0.00 7.97 24.36 625.43

2.5 0.00 0.00 0.00 -3.57 25.02 654.01

3.0 0.00 0.00 650.00 -3.38 26.16 33.55

Sum 1,000.00 425.00 650.00 44.73 153.28

PV 1,000.00 419.23 513.70 40.55

Column (5) from Table 2 in Schirmacher and Feldblum (2006).

(7)0.0 = (2)0.0 - (3)0.0 - (4)0.0 - (5)0.0

For i > 0.0, (6)i = (7)i-0.05 × rf

For i > 0.0, (7)i = (7)i-0.5 + (2)i - (3)i - (4)i - (5)i + (6)i
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the c
i
 are known: the dividend at time i is c

i-1
 plus 

its investment income in the year minus c
i
. If each 

c
i
 is invested at the constant risk-free rate r

f
, then the  

dividend flows (out of the capital account) are -c
0
, c

0 

(1 + r
f
) - c

1
, c

1
(1 + r

f
) - c

2
, . . . , c

n-1
(1 + r

f
). Obviously, 

the internal rate of return (IRR) of these flows is r
f
.

The expected terminal assets a
n
 of the policy 

account is given in (4.6). Thus the expected total div-
idend flows, from the company to its shareholders, 
are -c

0
, c

0
(1 + r

f
) - c

1
, c

1
(1 + r

f
) - c

2
, . . . , c

n-1
(1 + r

f
)  

+ a
n
. The IRR of the total dividend flows is given by 

the equation

c
c r c

IRR

c r c

IRR

f f

0 =
+( ) −
+

+
+( ) −

+( )

+

0 1 1 2

2

1

1

1

1

. . . ++
+( ) +

+( )
−c r a

IRR

n f n

n

1 1

1
5 3. ( . )

This IRR is the average—over n years—cost of capi-
tal of the company. After a policy has run its course, 
we can compute the IRR of the actual capital flows. 
If the IRR is greater than (less than) the average 
COC given by (5.3), the company’s overall opera-
tion is profitable (unprofitable). It is worth noting 
that, since a

n
 > 0, the COC must be greater than the 

expected rate of return of asset investment. On the 
other hand, a greater claims risk implies a greater 
spread r

f
 - r

l
, thus a greater a

n
 and a greater COC.

Back to the example of Table 4. In their paper, 
Schirmacher and Feldblum (2006) assume the required 
capital is 25 percent of the unearned premium reserve 
plus 15 percent of the loss reserve. They then compute 
the required assets at each time i and the corresponding 
dividend flows. Table 5 shows the dividend flows out 
of the capital account (column 6), the total dividend 
flows (column 7), and the break-even flows (column 8).  
These three columns only differ in their last entry. The 
IRR for column 6 equals the asset rate of return of  
4 percent, as expected. The IRR for column 7 is 6.18% 
(obtained also in Schirmacher and Feldblum 2006). 
The IRR for column 8, 5.62%, is the COC. Since the 
IRR of the actual total dividend flows is greater than 
the COC, the company adds value for shareholders.

The expected rate of return on capital is

COC
MV

c
=

−( ) ( )
−( ) −

+
−( ) +

1

1

5 2

t L
r r

t

r
r r ra l

f

a f a .

( . ))

By (5.2), the COC is the sum of three components: 
the investment rate of return r

a
; the after-tax spread 

(1 - t)(r
a
 - r

l
) times the “leverage ratio” MV(L)/c; 

and a quantity related to taxes on capital investment, 
which vanishes if the investment is risk free. The 
following factors would cause the COC to increase 
(i.e., shareholders to require a greater return): risk-
ier investments (greater r

a
), more volatile claims 

(smaller r
l
), or a higher leverage ratio. Increasing the 

amount of capital would reduce the leverage ratio, 
hence reduce the COC.

In Appendix B, I will explain that Formula (5.2) 
is consistent with the Capital Asset Pricing Model 
(CAPM). In the CAPM world, an asset’s expected 
return is in direct proportion to its b, which is a mea-
sure of the asset’s systematic risk. I will use the given 
asset rate r

a
 and liability rate r

l
 to determine b of the 

shareholder return, and show the expected value of 
the return—the COC—is exactly given by (5.2).

5.2. Multiyear model

In a multiyear model, shareholders contribute 
an initial capital c

0
 and establish a capital account. 

The capital account then earns investment income 
and pays out dividends (releases capital). Let c

i
 be 

the amount of capital held at time i. Then the total 
assets at time i are A

i
 + c

i
.11 Assume dividends prior 

to the ending year are entirely deducted from the 
capital account; the policy account only releases its 
profit at time n.12 Dividends can be determined if 

11The asset in this paper corresponds to the income-producing asset in 
Schirmacher and Feldblum (2006). Non-income-producing assets are not 
considered.
12This distinction between the policy account and the capital account 
does not affect profit measurement of the company as a whole. But it 
is important for measuring the policy account profit separately from the 
capital account.
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last term, r
a
, is the hurdle rate for the capital account. 

If the actual return on capital is greater than r
a
, then 

the investment operation adds value. By Section 4.1, 
the first two terms of (5.2) give the hurdle rate of the 
policy account. This prompts us to define the EVA 
for the two accounts separately:

EVA Actual Investment Rate andc ac r= × −( ) , ( .6 1))

EVA Actual After-tax Terminal Assetsp

t

=

− −( )1 MMV L r r

tc

r
r r

a l

f

a f

( ) −( )

+
+

−( )
1

6 2. ( . )

In (6.2) the actual assets in the policy account are  
after all taxes, including those on capital gains. 
Readers familiar with investment portfolio analysis 
may recognize that the rate spread, Actual Investment 
Rate - r

a
, in (6.1) is Jensen’s alpha for the asset port-

folio. Obviously, EVA = EVA
c
 + EVA

p
. If an actuary 

wishes to review the past underwriting performance 
and determine price changes, EVA

p
 would provide 

more accurate information than the EVA.

6. decomposing the EVA

Shareholders expect to earn a rate of return equal 
to the cost of capital. If they earn more than (less 
than) the COC, then the investment adds (destroys) 
value. The economic value added is defined as (see, 
e.g., Schirmacher and Feldblum 2006)

EVA After-tax Net Income COC

Capital Held.

= −
×

The second term in the formula, COC × Capital Held, 
is the break-even value of the after-tax income. So 
this approach of measuring profits is similar to what 
we described in Sections 2 to 4. The difference is that 
the EVA measures the total profits, while our method 
addresses profitability of the policy account. How-
ever, it is straightforward to decompose the EVA into 
one measure for the policy account and another for 
the capital account.

6.1. Single-year model

For the single-year model, the COC is given in 
Formula (5.2), which can be split into two parts. The 

Table 5. dividend flows

Time 
(1)

Policy  
Account  
Assets 

(2)

Capital  
Held 
(3)

Total  
Assets 

(4)

Investment  
Income on  

Capital 
(5)

Capital  
Account  
Dividend  

Flow 
(6)

Total  
Dividend  

Flow 
(7)

Break-even  
Dividend  

Flow 
(8)

0.0 751.25 428.75 1,180.00 0.00 -428.75 -428.75 -428.75

0.5 598.86 362.62 961.48 17.15 83.28 83.28 83.28

1.0 593.42 149.53 742.95 14.50 227.60 227.60 227.60

1.5 609.03 122.54 731.58 5.98 32.97 32.97 32.97

2.0 625.43 94.77 720.20 4.90 32.67 32.67 32.67

2.5 654.01 79.84 733.85 3.79 18.73 18.73 18.73

3.0  33.55 0.00 33.55 3.19 83.03 116.58 107.40

IRR 4.00% 6.18% 5.62%

Column (2) is column (7) in Table 4.

Column (4) from Table 7 in Schirmacher and Feldblum (2006).

For i > 0.0, (5)i = (3)i-0.5 × rf

For i > 0.0, (6)i = (2)i-0.5 + (5)i - (2)i
For i < 3.0, (7)i = (6)i; (7)3.0 = (6)3.0 + (7)3.0 in Table 4

For i < 3.0, (8)i = (6)i; (8)3.0 = (6)3.0 + a3.0 (a3.0 calculated in Section 4.2)
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the IRR. I will not deal with accounting here, but only 
discuss the measurement of ultimate economic profits 
at the end of the policy life.

The IRR of the total dividend flows, denoted by 
IRR

tot
, is a standard profit measure of shareholders’ 

investment. The cost of capital is the break-even 
value of IRR

tot
. As shown in Section 5.2, the total 

dividend flows are the sum of two component flows: 
a single flow at time n—the terminal assets—from 
the policy account, and a stream of dividends from 
the capital account. Methods of evaluating the two 
component flows have essentially been derived in 
previous sections, which are summarized below.

For the policy account, we define EVA
p
 thus:

EVA Actual After-tax Terminal Assetsp na= − .
(6.. )3

EVA
p
 is the ultimate cash value added by the policy. 

For the example in Table 5, EVA
p
 = 33.55 - 24.37 = 

9.18. For the capital account, we use IRR
c
 to denote 

the IRR of the dividends that flow out of the capi-
tal account. The break-even value of IRR

c
 is the 

expected investment return r
a
 (or r

f
, if capitals are 

invested risk free). Clearly, if EVA
p
 > 0 and IRR

c
 > 

r
a
, then IRR

tot
 > COC; conversely, if EVA

p
 < 0 and 

IRR
c
 < r

a
, then IRR

tot
 < COC. Note that EVA

p
, IRR

c
, 

and IRR
tot

 are all independent of the accounting sys-
tem. EVA

p
 provides more useful information to an 

underwriting manager than IRR
tot

 does.
To illustrate the importance of measuring the 

underwriting performance separately from capital 
investment, we give an example in which a profitable 
company has a very unprofitable underwriting result. 
An unexpected large loss exhausts policy account 
assets before claims are settled. That is, A

i
 ≤ 0 for some 

i < n. The policy account assets thus stay negative for 
all later years. The negative EVA

p
 correctly indicates 

that the policy is unprofitable. On the other hand, the 
capital investment happens to generate large returns, 
which produces an IRR

tot
 exceeding the COC, indicat-

ing a profitable overall operation. IRR
tot

 here is no indi-
cation of the underwriting performance.

Other methods have been developed to separately 
measure underwriting and investment activities.  
Bingham (2004) proposes to allocate capital between 
underwriting and asset investment, find a cost of cap-
ital for each of the functions, and separately calculate 
their value creation. In practice, some companies 
build models to calculate the underwriting ROE, the 
investment ROE, and ROEs at various policy group 
or investment portfolio levels. Our method has some 
unique features. First, it emphasizes that income tax 
on capital investment should be covered by policy 
account profits. Second, it treats the capital account 
as an ordinary investment portfolio, and tests it with 
the established Jensen’s alpha. Third, it is consistent 
with the CAPM (see Appendix B), so is theoretically 
solid.

The policy account itself consists of two activities, 
underwriting (collecting premiums and paying losses) 
and investment of premium. These two activities are 
intertwined and cannot be measured separately. For 
example, an increase in premium is an achievement 
of the underwriting department. The resulting gain in 
profit should be credited entirely to underwriting, not 
to investment. But the additional premium generates 
an additional investment income, which cannot be 
cleanly attributed to either underwriting or investment. 
Also, the policy account covers income tax on capital 
investments. It is not clear whether this tax should 
be covered by underwriting profits or by investment 
income. Even in our method, performances of the cap-
ital account and the policy account are not completely 
independent. If capital investment generates a higher 
return, the corresponding income tax increases, which  
reduces EVA

p
.

6.2. Multiyear model

In a general, multiyear setting, the EVA is calcu-
lated annually based on each year’s income. A policy 
with an n-year payout pattern has a stream of n EVAs 
whose value depend on the valuation of loss reserves 
under selected accounting rules. Schirmacher and 
Feldblum (2006) compute the EVA stream in two 
accounting systems, the net present value (NPV) and 
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$650 at time 3, MV
0
(L) = 650/(1 + r

l
)6, where r

l
 is 

an unknown variable. Also PV
0
tax(L) = 557.22. Plug-

ging these and all known parameters into (4.6) and  
solving for r

l
, we have r

l
 = 3.39%. Using this r

l
 in (4.5) 

gives p = 556.98. Adding in $419.23 for expenses, 
we obtain the total policy premium of $976.21. To 
sum up, r

l
 = 3% corresponds to a COC of 5.62% (col-

umn 8 of Table 5), and r
l
 = 3.39% corresponds to a 

COC of 5 percent; the first scenario is more risky, 
and has a higher premium of $988.31 (vs. $976.21 
for the second scenario).

To use these approaches in a pricing project, it 
is imperative to determine the capitals (required or 
desired) c

0
, c

1
, . . . , c

n-1
. In a multiline company, the 

company-wide capital needs to be allocated at each 
time i. There are numerous research papers on capital 
allocation.

8. Conclusions

Risk-adjusted performance measures are studied  
in this paper. The focus is on the year-by-year change of 
assets in the policy account. A break-even value for the 
policy account terminal assets is found, which, when 
compared with the actual terminal assets, determines 
whether the policy has added value over its life time. 
The main results of the paper are the two theorems in 
Section 4.2. In contrast to most existing risk-adjusted 
performance measures, like the RAROC and the EVA, 
our approach addresses the underwriting profits sepa-
rately from capital investment results. Relationships 
between the break-even terminal assets, the cost of 
capital, and the EVA are also discussed.

A key input for calculating the break-even terminal 
assets and the fair premium, using Formulas (4.5) and 
(4.6), is the loss discount rate r

l
. It characterizes the 

claims risk of the policy. There is a straightforward link 
between r

l
 and the COC, the latter reflecting the com-

bined risk of claims and investments. If one is given, 
the other can be derived. How to select either r

l
 or the 

COC to correctly reflect risk is a challenge. The COC 
is computed relative to a sequence of capitals c

i
. Deter-

mination of the capitals also needs further research.

7. Comparing direct and indirect 
pricing methods

Insurance pricing methods are broadly divided 
into two types. The direct methods are exemplified 
by Myers and Cohn (1987), Equation (3.4). In these 
methods, risk of future claims is quantified by a risk 
loading—in this paper, the risk-adjusted discount 
rate. In an indirect method, a target return on capital 
is first chosen, which reflects the total risk of claims 
and investments. Then the premium is back-solved to 
achieve this target. If both methods correctly capture 
risk, they should produce identical fair premiums. 
The formulas derived in Sections 4 and 5 give us a 
mathematical relationship between the two methods.

Formula (4.5) is a direct method for computing p.  

The key parameter that captures the risk of claims is r
l
.13 

A corresponding indirect method works through the 
following steps: Choose a COC, substitute it into 
(5.3) for IRR to get a

n
, solve (4.6) (using a numerical 

method like Goal Seek or Solver in Excel) for r
l
, and 

then compute p with (4.5). This also shows how r
l
 

and the COC, the two parameters characterizing risk, 
uniquely determine each other.

I will demonstrate these calculations using the 
same familiar example. In Section 4.2, we selected r

l
 

= 3% and calculated MV
0
(L) = 544.36. Substituting 

this MV
0
(L) and the c

i
 in column 3 of Table 5 into 

(4.5), yields p = 569.08. Loading in the present value 
of expenses, $419.23, we get the full policy premium 
of $988.31. (This break-even value is less than the 
actual charge of $1,000. Thus the policy is a good 
deal to begin with.) To illustrate the steps leading 
from the COC to r

l
 and p, we adopt the assumption 

in Schirmacher and Feldblum (2006) that the COC is 
5 percent. Plugging this IRR into the denominators 
of (5.3), and the c

i
 in column 3 of Table 5 into the 

numerators, we obtain a
n
 = $14.76. Now use Equa-

tion (4.6). Since there is only one loss payment of 

13Although we have been addressing calculating MV
0
(L) with the risk-

adjusted discount rate, Formula (4.5) would still apply if MV
0
(L) can be 

obtained with another method.
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reserves are zero after time i. In the following deri-
vation, I start by calculating the net assets at time 1, 
move forward in time, and end up with terminal assets 
at time n. I then set the market value of the terminal 
assets to zero, and solve for the fair premium p.

At time 1, the underwriting gain is p - V
1
 and the 

investment gain is pr
f
. Then the tax is t(p(1 + r

f
) - V

1
). 

The net assets at time 1 are

A p r t p r V

p r t tV

f f

f

1 1

1

1 1

1 1

= +( ) − +( ) −( )
= +( ) −( ) + .

At time 2, the underwriting gain is V
1
 - V

2
 and the 

investment gain is A
1
r
f
. Then the tax is t(V

1
 - V

2
 + 

A
1
r
f
). The net assets at time 2 are

A A r t V V A r

p r t t

f f

f

2 1 1 2 11

1 1 1 1

= +( ) − − +( )
= +( ) −( ) + −(( )( ) + + −( )r tV r t t Vf f2 11 .

In general, the tax at any time j < i is t(V
j-1

 - V
j
 + 

A
j-1

r
f
), and it is not hard to prove by induction that 

the net assets at j are given by the formula

A p r t t r

tV r t t V

j f f

j

j f

= +( ) −( ) + −( )( )
+ + −( )

−
1 1 1 1

1

1

jj f j

f

j

t r V

t r V

− −

−

+ + −( )( )(
+ + + −( )( ) )

1 2

2

1

1 1

1 1. . . .. ( . )A 3

Now this formula holds for A
i-1

. At time i, there are 
two additional payments, loss L

i
 and tax on capital 

A. Proof of the theorems

A.1. Proof of Theorem 1

Formula (4.5) can be written as

p L
tr c

t r t r
i

f i

f f

i= ( ) +
−( ) +( ) + −( )( )


−

−MV0

1

1

1 1 1 1





=∑ i

n

1
.

( )A.1

We only need to prove the theorem for each i, that is, 
for a policy with a single loss payment L

i
 at time i, and 

with a single nonzero capital c
i-1

 at time i - 1 (consid-
ered beginning of year i). The fair premium is given by

p L
tr c

t r t r
i

f i

f f

i= ( ) +
−( ) +( ) + −( )( )

−
−MV0

1

1

1 1 1 1
. (( )A.2

If (A.2) holds for all i, then (A.1) is true simply by 
additivity.

If time i is the only time losses and capital account 
taxes are paid, then at all other times j, j = 1, . . . i - 1,  
i + 1, . . . n, the only payments are taxes on policy 
account profits. These profits need to be carefully cal-
culated according to the rules stated in Section 4.2.

Let MV
j
(L

i
) be the market value of L

i
 at time j < i. 

The value of MV
j
(L

i
) will not be known until time j.  

Therefore, viewed at time 0, MV
j
(L

i
) is a random vari-

able.14 To simplify notations, let MV
j
(L

i
) be denoted 

by V
j
. The loss reserve at time j < i is V

j
, and loss 

14Rigorously, the market values MV
0
(L

i
), MV

1
(L

i
), . . . , MV

i-1
(L

i
), L

i
, are 

a stochastic process adapted to a filtration indexed by time j.
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Setting MV
0
(A

i
) = 0 and solving for p, we get the for-

mula (A.2). This proves Theorem 1.
Note that in the derivation of (8) we do not need 

the assumption that there is a constant risk-adjusted 
discount rate r

l
. Therefore, (8) can be used to cal-

culate the fair premium whenever the market value 
MV

0
(L) can be reasonably estimated.

A.2. Proof of formula (A.6)

In formula (A.4), A
i
 is a random variable condi-

tioned on all information up to time i. This condi-
tioning statement is important when computing the 
market value of V

j
. V

j
 = MV

j
(L

i
) is a random variable 

viewed at any point j′ < j, but is nonrandom at any  
j′ > j. So it is easy to first discount V

j
 to time j,

MVj j j f

i j

V V r( ) = +( ) −
1 .

investment tr
f
c

i-1
, and no further loss reserves. So the 

total tax is t(V
i-1

 - L
i
 + A

i-1
r
f
) + tr

f
c

i-1
, and the net  

assets are

A A r t V L A r tr c

p

i i f i i i f f i= +( ) − − +( ) −

= +

− − − −1 1 1 11

1 rr t t r t L

r t t V

f f

i

i

f i

( ) −( ) + −( )( ) − −( )
+ −( )

−
1 1 1 1

1

1
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+ + + −( )( ) ) −

1 2
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1

1 1

1 1

t r V

t r V

f i

f

i. . . rr tcf i−1 4. ( . )A

After time i, every year the assets A
i
 are reinvested 

and taxes on the investment gains paid. The after-tax 
investment rate of return is (1 - t)r

f
. So, the terminal 

assets at time n are

A A t rn i f

n

= + −( )( ) −
1 1 5

1

. ( . )A

The fair premium p is so defined as to make the 
market value of A

n
 zero. By (A.5), MV

0
(A

n
) = 0 if 

and only if MV
0
(A

i
) = 0. So we need to calculate the 

market value of each term in (A.4).
The first and the last term in (A.4) are nonrandom 

constants. The market value, at time 0, of a constant 
is the constant divided by (1 + r

f
)i. The market val-

ues of other terms in (A.4) are obtained using the 
formula

MV MV A0 0 1 6V L rj i f

i j( ) = ( ) +( ) −
. ( . )

I will use this formula now to complete the proof. 
The formula itself will be proved later in the section.
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The assumption that there is a constant loss discount 
rate r

l
 implies that E[V

j
] = E[L

i
]/(1 + r

l
)i-j. Noting that 

the c
i-1

 terms cancel out, we have
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A
i
 is the net asset at time i. After time i, the asset 

grows at the after-tax investment yield (1 - t)r
f
. So the  

Then, further discounting the above to time 0, we get

MV MV MV

MV

0 0

0

1

1

V L r

L r

j j i f

i j

i f

( ) = ( )( ) +( )

= ( ) +( )

−

ii j−
,

which proves (A.6).15

A.3. Proof of Theorem 2

Theorem 2 says if a policy charges premium (4.5), 
then its expected terminal assets at time n have the 
form (4.6). I will again prove the theorem by split-
ting it into n simpler components. For any i < n, 
assume that a subpolicy i has premium (A.2), makes 
only one loss payment L

i
 at time i, and is supported 

by one nonzero capital c
i-1

 at time i - 1. I will prove 
that the expected terminal assets of the subpolicy,  
at time n, are given by the formula

a
t r r t r
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n i

f l f
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i
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. (A.7)

Obviously, the expected terminal assets of the origi-
nal policy is the sum of these a

n,i
. This will prove 

Theorem 2.
Substituting (A.2) into the right-hand side of (A.4), 

we have

A V
tr c
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15A rigorous proof of the formula may be stated with stochastic discount 
factors. The technique is standard in asset pricing theory.
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The return on capital, R
c
 = (C - c)/c, is

R
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Based on formula (B.4), the shareholder investment C 
can be replicated by the following three investments: 
short-selling an asset, whose return is R

l
, and receiv-

ing cash (1 - t)MV(L); lending an amount tc/(1 + r
f
) 

at the risk-free rate r
f
; and buying an asset, whose 

return is R
a
, with the net cash c + (1 - t)MV(L) - tc/

(1 + r
f
). Thus, the b of the investment C is given by the 

weighted average of b’s of the three investments
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If C satisfies the CAPM, then E[R
c
] - r

f
 = b

c
m. Using 

(B.1) and (B.2), we obtain
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(B.6)

This is exactly the COC in Formula (5.2).

terminal net assets at time n is A
n,i

 = A
i
(1 + (1 - t)r

f
)n-i. 

Therefore,
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This proves (A.7), and thus completes the proof of 
Theorem 2.

b. Formula (5.2) is consistent  
with the CAPM

Assume our insurance company exists in a CAPM 
world. That is, the invested assets, the claims and the 
shareholders’ capital all satisfy the CAPM. For the 
invested assets we have

E R r r r ma a a f a
  = − =, ,β (B.1)

where m is the market risk premium. For a policy with 
premium p (net of expenses) and future claim L, we 
define its “return” to be R

l
 = (L - p)/p, and assume that

E R r r r ml l l f l
  = − =, .β (B.2)

This liability CAPM is a natural extension of the stan-
dard (investment) CAPM, and has been proposed by 
many authors; see, for example, Sherris (2003). r

l
 ≤ r

f
 

implies b
l
 ≤ 0. An implicit assumption in this CAPM 

framework is that all assets are traded at the market 
value, and all policies are charged the fair premium, 
which equals the market value of claims.

Formula (4.2) provides a policy’s fair premium p. 
Substituting it into formula (4.1) gives the after-tax 
policy account net assets at time 1. Adding in the value 
of the capital amount we have the following total net 
assets:


