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ABSTRACT

This paper presents and compares different risk classification  

models for the frequency and severity of claims employing 

regression models for location, scale and shape. The differences 

between these models are analyzed through the mean and the 

variance of the annual number of claims and the costs of claims 

of the insureds who belong to different risk classes, and interest-

ing results about claiming behavior are obtained. Furthermore, 

the resulting a priori premiums rates are calculated via the 

expected value and standard deviation principles with indepen-

dence between the claim frequency and severity components 

assumed.
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1. Introduction

The idea behind a priori risk classification is to split 
an insurance portfolio into classes that consist of risks 
with all policyholders belonging to the same class pay-
ing the same premium. In view of the economic impor-
tance of motor third party liability (MTPL) insurance 
in developed countries, actuaries have made many 
attempts to find a probabilistic model for the distri-
bution of the number and costs of claims reported by 
policyholders.

Recent actuarial literature research assumes that 
the risks can be rated a priori using generalized linear 
models, GLM (Nelder and Wedderburn 1972) and gen-
eralized additive models, GAM (Hastie and Tibshirani 
1990). For motor insurance, typical response variables 
in these regression models are the number of claims 
(or claim frequency) and its corresponding severity. 
References for a priori risk classification include, for 
example, Dionne and Vanasse (1989, 1992), Dean, 
Lawless, and Willmot (1989), Denuit and Lang (2004), 
Yip and Yau (2005), and Boucher, Denuit, and Guillen  
(2007). Dionne and Vanasse used a negative binomial 
type I regression model. Dean, Lawless, and Willmot 
used a Poisson-inverse Gaussian regression model. 
Denuit and Lang used generalized additive models. 
Yip and Yau presented several parametric zero-inflated 
count distributions and Boucher, Denuit, and Guillen 
presented a comparison of various zero-inflated Mixed 
Poisson and Hurdle Models. Also, a review of actuarial 
models for risk classification and insurance ratemak-
ing can be found in Denuit et al. (2007).

The models briefly described above assume that 
only the mean is modeled as a function of risk factors. 
However, any model for the mean in terms of a priori 
rating variables indirectly yields a model for scale 
and/or shape. Also, even if the mean is the most com-
monly used measure of the expected claim frequency  
and of the expected claim severity it does not pro-
vide a good description of a distribution’s scale and 
shape. The scale and shape parameters are not ade-
quately described due to the unobserved heterogeneity 
changes with explanatory variables. In this study, we 
extend this setup by assuming that all the parameters  

of the claim frequency/severity distributions can be 
modeled as functions of explanatory variables with 
parametric linear functional forms. Joint modeling of 
all the parameters in terms of covariates improves rate 
making and estimation of the scale and shape of the 
claim frequency/severity distributions. In light of a  
priori ratemaking there is a substantial benefit in this 
approach, since by modeling all the parameters jointly, 
both mean and variance may be assessed by choos-
ing a marginal distribution and building a predictive 
model using all the available ratemaking factors as  
independent variables. In this respect, risk hetero-
geneity is modeled as the distribution of frequency 
and/or severity of claims changes between classes of 
policyholders by a function of the level of ratemaking  
factors underlying the analyzed classes. We model 
the claim frequency using the Poisson, negative bino-
mial type II, Delaporte, Sichel and zero-inflated Pois-
son models and the claim severity using the gamma, 
Weibull, Weibull type III, generalized gamma and 
generalized Pareto models. Our contribution puts 
focus on the comparison of these models through 
their variance values and not only the mean values 
as usually considered in risk classification literature. 
To the best of our knowledge, it is the first time that 
the variance of the claim frequency and severity is 
modeled in the context of ratemaking. Furthermore, 
the variance of the claim frequency and severity is 
an important risk measure of the specific class of 
policyholders, as it can provide a measure of the 
uncertainty regarding the mean claim frequency and 
the mean claim severity of the specific class, and the 
difference in the premium that it implies can act as a 
cushion against adverse experience.

The difference between the premium and the mean  
loss is the premium loading. Estimates of variance val-
ues are produced by employing a parametric regres-
sion for the scale and/or the shape parameters in  
addition to the mean parameter. However, the com-
monly used specification that only the mean claim 
frequency/severity is modeled in terms of risk factors 
was widely accepted for ratemaking. In this respect, a 
priori ratemaking is refined by taking in to account the 
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functions chosen to ensure a valid range for the distri-
bution parameters.1

2.1. Frequency component

Consider a policyholder i whose number of claims, 
denoted as Ki, are independent, for i = 1, . . . , n. The 
probability that the policyholder i has reported k 
claims to the insurer, k = 0, 1, 2, . . . , is denoted by  
P (Ki = k). In this study, besides the traditional Poisson  
regression model, we model the claim frequency using 
a negative binomial type II, Delaporte, Sichel and 
zero-inflated mixed Poisson regression model for 
location scale and shape.

• The probability density function (pdf) of the Pois-
son distribution is given by2
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variance values yielded by modeling jointly all the  
parameters in terms of risk factors. Furthermore, 
the differences in the variance values alter signifi-
cantly the premiums calculated through the standard 
deviation principle since it is understood that in this 
case the loading is related to the variability of the  
loss. Thus, joint modeling of location, scale and shape 
parameters is justified because it enables us to use all 
the available information in the estimation of these 
values through the use of the important explana-
tory variables for the claim frequency and severity, 
respectively.

The rest of this paper proceeds as follows. Section 2  
introduces the alternative distributions we employ 
for modeling claim frequency and severity. Section 3  
contains an application to a data set concerning car-
insurance claims at fault. These classification models 
are compared on the basis of a sample of the auto-
mobile portfolio of a major company operating in 
Greece employing the generalized Akaike informa-
tion criterion (GAIC) which is valid for both nested 
or non-nested model comparisons (as suggested by 
Rigby and Stasinopoulos, 2005 and 2009). The dif-
ferences between these models are analyzed through 
the mean and the variance of the annual number of 
claims and the costs of claims of the policyholders  
who belong to different risk classes, which are formed 
by dividing the portfolio into clusters defined by 
the relevant ratemaking factors. Finally, the result-
ing premium rates are calculated via the expected 
value and standard deviation principles with inde-
pendence between the claim frequency and severity 
components assumed.

2. Regression models for location, 
scale and shape

This section summarizes the characteristics of the 
various count and loss models used in this study. 
As we have mentioned, in the setup we extend the 
recent a priori risk classification research by assum-
ing that every parameter of the conditional response 
frequency/severity distribution is modeled in terms of 
covariates through the use of known monotonic link 

1For more details about the claim frequency/severity models and the 
associated link functions used in this paper, we refer the reader to Rigby 
and Stasinopoulos (2005 and 2009).
2The Poisson regression model has been widely used by insurance practi-
tioners for modeling claim count data. See, for example, Renshaw (1994).
3Equidispersion implied by the Poisson distribution is usually corrected 
by the introduction of a random variable into the regression component. 
Then the marginal distribution of the number of claims is a mixed Poisson  
distribution. For well-known results applied to the above situation, we refer 
the interested reader to Gourieroux, Montfort and Trognon (1984a, 1984b), 
Boyer, Dionne, and Vanesse (1992), Lemaire (1995), and Boucher, Denuit, 
and Guillen (2007, 2008).
4This parameterization was used by Evans (1953) as pointed out by 
Johnson, Kotz, and Balakrishnan (1994). Note also that a negative  
binomial type I distribution arises if s is reparameterized to s1m. A pri-
ori ratemaking using the NBI where regression is not only performed on 
the mean parameter has been recommended by, for example, Boucher, 
Denuit, and Guillen (2007, 2008).
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• The pdf of the Sichel distribution is given by6
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is the modified Bessel function of the third kind of 
order n with argument z and where a2 = s -2 + 2m(cs)-1.
Following Rigby, Stasinopoulos and Akantziliotou 
(2008) and Rigby and Stasinopoulos (2009), we 
assume that mi = ei exp (c1ib1), si = exp (c2ib2) and  
ni = c3ib3, where cji (cji,1, . . . , cji, J ′j ) and b T
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are the 1 × J ′j vectors of the a priori rating variables 
and the coefficients respectively, for j = 1, 2, 3. The 
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for m > 0 and s > 0. Following Rigby and  
Stasinopoulos (2005; 2009), we assume that mi = ei exp 
(c1ib1) and si = exp (c2ib2), where cji (cji,1, . . . , cji, J ′1) 
and b T

j (bj,1, . . . , bj, J ′1) are the 1 × J ′1 vectors of the 
a priori rating variables and the coefficients respec-
tively, for j = 1, 2. The mean and the variance of Ki 
are given by

bE K e ci i i( )=( ) exp (4)1 1

and
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• The pdf of the Delaporte distribution is given by5

s

ms n
mn

sP K k
e

Si [ ]( )= =
Γ





+ −
−

−( )
1

1 1 , (6)
1

where si > 0 and 0 ≤ n < 1 and where

m n m
s s

S k
m k k

m
m

k k k m m

∑ ( ) ( )
= +

−






Γ +



=

− −

!

1

1

1
. (7)

0

Following Rigby and Stasinopoulos (2008; 2009), 
we assume that mi = ei exp (c1ib1), si = exp (c2ib2)  

and n b
b

c

c
i

i

i

( )
( )

=
+
exp

1 exp
3 3

3 3

, where cji (cji,1, . . . , cji, J ′j) and 

b T
j (bj,1, . . . , bj, J ′j) are the 1 × J ′j vectors of the a priori 

rating variables and the coefficients respectively, for 
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5This parameterization of Delaporte was given by Rigby, Stasinopoulos 
and Akantziliotou (2008).

6Parameterization (10) was given by Rigby, Stasinopoulos, and Akantziliotou 
(2008). The use of the Sichel distribution for modeling claim frequency 
where regression is only performed on the mean parameter has been recom-
mended by Tzougas and Frangos (2014).
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• The pdf of the gamma distribution is given by8
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Stasinopoulos (2009), we assume that mi = exp (d1ig1)  
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• The pdf of the zero-inflated Poisson (ZIP) distri-
bution is given by7
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2.2. Severity component

In this section, we need to consider the claim 
severities. Let Xi,k be the cost of the kth claim 
reported by policyholder i, i = 1, . . . , n and assume 
that the individual claim costs Xi,1, Xi,2, . . . are inde-
pendent and identically distributed (i.i.d). Different 
models are used to describe the behavior of the costs 
of claims as a function of the explanatory variables 
including gamma, Weibull, Weibull type III, gen-
eralized gamma, and generalized Pareto regression 
models for location, scale and shape.

7This parameterization was used by Johnson, Kotz, and Balakrishnan 
(1994) and Lambert (1992). The ZIP model is a special case of a mixed 
Poisson distribution. However, if overdispersion in the Poisson part is 
still present then all the distributions seen before can be used since a 
heterogeneity term may be incorporated in the model. For instance, see 
Yip and Yau (2005) for an application to insurance claim count data. For 
more details about zero-inflated count models see Lambert (1992) and 
Green and Silverman (1994).

8We use the parameterization of the two parameter gamma distribu-
tion given by Rigby and Stasinopoulos (2009). Note also that a priori 
ratemaking using the gamma distribution where regression is not only 
performed on the mean parameter can be found in, for example, Denuit 
et al. (2007).
9The specific parameterization of the two parameter Weibull distribution 
used here was that used by Johnson, Kotz, and Balakrishnan (1994).
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where m > 0, s > 0, -∞ < n < ∞ and q
s n

= 1
.2 2  Follow-

ing Rigby, Stasinopoulos, and Akantziliotou (2008), 
we assume that mi = exp (d1ig1), si = exp (d2ig2) and  
ni = d3ig3, where dji (dji,1, . . . , dji, J ′j ) and g T

j (gj,1, . . . , gj, J ′j ) 
are the 1 × J ′j vectors of the exogenous variable and 
the coefficients respectively, for j = 1, 2, 3. The mean 
and the variance of Xi,k are given by
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given by12

f x
n t

n t

m x

x m

t n

n t , (29)
1

( ) ( )
( ) ( ) ( )

= Γ +
Γ Γ +

−

+

where m > 0, n > 0 and t > 0. Following Rigby,  
Stasinopoulos, and Akantziliotou (2008), we assume 
that mi = exp (d1ig1), ni = exp (d2ig2) and ti = exp (d3ig3), 
where dji (dji,1, . . . , dji, J ′j ) and g T

j (gj,1, . . . , gj, J ′j ) are the 
1 × J ′j vectors of the exogenous variables and the 

( )( ) ( )
= =1 1

exp
.2 2

2 2
2

3 3
2s n d d

i
i i i i

q
g g

g

g g

Var X d

d d

i k i

i i

( ) [ ]( )

( ) ( )

=

Γ +





− Γ +



















exp

2

exp
1

1

exp
1 .

(22)

, 1 1
2

2 2 2 2

2

• The pdf of the Weibull type III (WEI3) distribution 
is given by10
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where m > 0 and s > 0. Following Rigby and  
Stasinopolous (2009), we assume that mi = exp (d1ig1) 
and si = exp (d2ig2), where dji (dji,1, . . . , dji, J′j ) and 
g T

j (gj,1, . . . , gj, J′j ) are the 1 × J ′j vectors of the exog-
enous variables and the coefficients respectively, 
for j = 1, 2. The mean and the variance of Xi,k are 
given by
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• The pdf of the generalized gamma (GG) distribu-
tion is given by11
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10This is a parameterization of the Weibull distribution where m is the 
mean of the distribution.
11The parameterization of the generalized gamma distribution we use 
was that used by Lopatatzidis and Green (2000).

12The above parameterization of the generalized Pareto distribution can 
be found, for example, in Klugman, Panjer, and Willmot (2004). Note 
that if we let n = 1 in Eq. (29), the generalized Pareto distribution reduced 
to the Pareto distribution. The use of the Pareto distribution for model-
ing claim severity where regression is not only performed on the mean 
parameter can be found in Frangos and Vrontos (2001).
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variables were segmented into different categories 
for claim frequency and claim severity component. 
This will affect the a priori ratemaking, since the 
claim frequency and severity component will con-
tain a different number of homogeneous classes, 
generating a ratemaking structure that is fair to the 
policyholders. Claim counts are modeled for all 
15641 policies. The Bonus-Malus class consists of 
four categories: A, B, C and D, where: A = “driv-
ers who belong to BM classes 1 and 2,” B = “driv-
ers who belong to BM classes 3–5,” C = “drivers 
who belong to BM classes 6–9 & 11–20” and D = 
“drivers who belong to BM class 10.” The horse-
power of the car consists of three categories: A, B 
and C, where: A = “drivers who had a car with a 
HP between 0–33 & 100–132,” B = “drivers who 
had a car with a HP between 34–66” and C = “drivers  
who had a car with a HP between 67–99.” The gen-
der consists of two categories: M = “male” and F = 
“female” drivers. Regarding the amount paid for each 
claim, there were 5590 observations that met our  
criteria. The Bonus-Malus class consists of three  
categories: A, B and C, where: A = “drivers who belong 
to BM classes 1 and 2,” B = “drivers who belong to 
BM classes 3–5 & 6–9 & 11–20” and C = “drivers  
who belong to BM class 10.” The horsepower of the 
car consists of four categories A, B, C and D, where: 
A = “drivers who had a car with a HP between 
100–110 & 111–121 & 122–132,” B = “drivers 
who had a car with a HP between 0–33 & 34–44  
& 45–55 & 56–66,” C = “drivers who had a car with 
a HP between 67–74” and D = “drivers who had a 
car with a HP between 75–82 & 83–90 & 91–99.” 
Finally, the gender consists of three categories: M = 
“male,” F = “female” and B = “both,” since in this 
case, data for fleet vehicles used by either male or 
female drivers were also available, i.e., shared use.

The claim frequency and severity models presented 
in Sections 2 and 3 were estimated using the GAMLSS 
package in software R.15 The ratio of Bessel functions 

coefficients respectively for j = 1, 2, 3. The mean and 
variance of Xi,k are given by
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3. Application

The data were kindly provided by a Greek insur-
ance company and concern a motor third party lia-
bility insurance portfolio observed during 3.5 years. 
The data set comprises 15641 policies. Both private 
cars and fleet vehicles have been considered in this 
sample.13 The available a priori rating variables we 
employ are the Bonus Malus (BM) class,14 the horse-
power (HP) of the car and gender of the driver. Only 
policyholders with complete records, i.e., with avail-
ability of all the variables under consideration were 
considered. Records for fleet data were not available 
for the case of the claim frequency. Furthermore, in 
light of the heterogeneity which exists within the 
portfolio, consideration was given to grouping the 
levels of each explanatory variable with respect to 
risk profiles with similar number and costs of claims 
at fault reported to the company over the 3.5 years 
of observation. This was done in order to achieve 
ratemaking accuracy and homogeneity within rating 
cells, for the claim frequency and severity component 
respectively. Also, by balancing homogeneity and 
sufficiency of the volume of data in each cell credible 
patterns were provided. As a result of the aforemen-
tioned methodology, Bonus-Malus and horsepower 

13All the characteristics we consider are observable.
14A Bonus-Malus System (BMS) penalizes policyholders responsible 
for one or more claims by a premium surcharge (malus) and rewards the 
policyholders who had a claim-free year by awarding discount of the 
premium (bonus).

15Note that the same models can be fitted to larger data sets in order to study 
the effect of other rating factors such as age of driver, driving experience 
or driving zone, which have been traditionally used in MTPL insurance.
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Bayesian information criterion (BIC) values. Also, 
every explanatory variable they contain is statistically 
significant at a 5% threshold.

Tables 1 and 2 summarize our findings with respect 
to the aforementioned claim frequency and severity 
models respectively.17

From Table 1 we observe, for all frequency models, 
that BM category A, HP category A and male drivers 
are the reference categories of m. HP category A and 
male drivers are the reference categories for s in the 
case of the NBII model. HP category A is the reference 
category for s in the case of the Delaporte and Sichel 
models. BM category A and male drivers are the ref-
erence categories for s in the case of the ZIP model. 
Furthermore, we see that HP category appears in 
model equations for both m and s in the case of the 
NBII, Delaporte and Sichel models. Gender appears 
in model equations for both m and s in the case 
of the NBII and ZIP models. BM category appears  
in the models equation for both m and s in the case of  
the ZIP model. These a priori rating variables do 
not always have a similar effect (positive and/or 
negative) on m and s.

The results summarized in Table 2 show that BM 
category A, HP category A and fleet vehicles used 
by both male or female drivers are the reference cate-
gories for m and s in the case of gamma, Weibull, 
Weibull type III and generalized gamma models. BM 
category A, HP category A and fleet vehicles are the 
reference categories for m and n, and BM category A  
and HP category A are the reference categories for t 
in the case of the generalized Pareto model. Note also 
that BM category, HP category, and gender appear 
in the model equations for both m and s in the case of 
the gamma, Weibull and Weibull type III and gener-
alized gamma models. Furthermore, in the case of the 
generalized gamma model, BM category and gender 
are also in the model equations for n. Finally, in the 
case of the generalized Pareto model we observe that 

of the third kind whose orders are different was calcu-
lated using the HyperbolicDist package in software R.

3.1. Modeling results

This subsection describes the modeling results of 
the Poisson, negative binomial type II (NBII), Dela-
porte (DEL), Sichel and zero-inflated Poisson (ZIP), 
and gamma (GA), Weibull (WEI), Weibull type III 
(WEI3), generalized gamma (GG) and generalized 
Pareto (GP) regression models for location scale and 
shape that have been applied to model claim frequency 
and claim severity respectively.

Claim frequency and severity models have been cal-
ibrated with respect to GAIC goodness of fit index as 
suggested by Rigby and Stasinopoulos (2005, 2009).  
We followed a model selection technique similar to 
the one presented in Heller et al. (2007).16 Specifi-
cally, our variable selection started with the exami-
nation of the mean parameter of each frequency and 
severity model. This was achieved by adding all avail-
able explanatory variables and testing whether the 
exclusion of each one lowered the Global Deviance, 
AIC and SBC values. After having selected the best 
predictor for the mean parameter, we continued in 
determining the remaining predictors by testing which 
rating variable between those used in the mean param-
eter would lead to a further decrease of the GAIC 
when inserted in the scale and shape parameters of 
the claim frequency and severity models respectively. 
Furthermore, if between the same frequency/severity 
distributions with different parameter specifications 
several models have similar AIC and SBC values, we 
preferred the simpler model in order to avoid over-
fitting. Therefore, the scale and shape parameters 
of the models have fewer predictors than the mean 
parameter (see Tables 1 and 2). In the above respect, 
the final claim frequency and severity models we 
selected are those that yield the lowest Global devi-
ance (DEV), Akaike information criterion (AIC), and 

16Heller et al. (2007) used generalized additive models for location scale 
and shape (GAMLSS) for the statistical analysis of the total amount of 
insurance paid out on a policy.

17Note that in Tables 1 and 2 the significant at a probability level of 5% 
p-values are included in parentheses.
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3.2. Models comparison

So far, we have several competing models for 
the claim frequency and severity components. The 
differences between models produce different pre-
miums. Consequently, to distinguish between these 
models, this section compares them so as to select 
the best for each case. As suggested by Rigby and 
Stasinopoulos (2005; 2009) the models have been 
calibrated with respect to generalized Akaike infor-
mation criterion (GAIC) which is valid for both 
nested or non-nested model comparisons. The gen-
eralized Akaike information criterion (GAIC) is 
defined as

= + ×ˆ , (32)GAIC D dfk

where D̂ = -2 l̂  is the fitted (global) deviance, l̂  is 
the fitted log-likelihood, df is the degrees of free-
dom used in the model (i.e., the sum of the degrees 
of freedom used for the location, scale and shape 
parameters) and k is a constant. The Akaike infor-
mation criterion (AIC) and the Schwartz Bayesian 
criterion (SBC) are special cases of the GAIC. Spe-
cifically, if we let k = 2 we have the AIC, while if 
we let k = log (n) we have the SBC.

The resulting Global Deviance, AIC and SBC are 
given in Table 3 for the different claim frequency 
(Panel A) and claim severity (Panel B) fitted models.

BM category, HP category and gender appear in the 
model equations for both m and n, and BM category 
and HP category are in the model equations for t.  
These explanatory variables do not always have the 
same effect (positive and/or negative) on the param-
eters m, s, n and t.

Most of the models presented in Tables 1 and 2, 
their reparameterizations and special cases have 
already been employed for modeling claim frequency/ 
severity data. However, as we have already mentioned, 
the commonly used specification that only the mean 
claim frequency/severity is modeled in terms of risk 
factors was widely accepted for ratemaking. Also, 
the results for the location parameter of the claim 
frequency/severity models are in line with the existing 
results, based on the examination of the relative data 
sets, in recent actuarial literature research. Specifi-
cally, as expected, the values of the estimated regres-
sion coefficients of the explanatory variables for this 
parameter will lead to mean claim frequency/severity  
values which will not differ much under different 
distributional assumptions. Within the framework 
we adopted, the systematic part of these models was 
expanded to allow modeling of all the parameters of 
the claim frequency/severity distribution as functions 
of a priori rating variables. This approach is especially 
suited to modeling insurance response data which 
often exhibit heterogeneity, i.e., a situation where the 
scale or shape of the distribution of the response vari-
able changes with explanatory variables. Furthermore, 
joint modeling of all the parameters in an a priori rate-
making scheme breaks the nexus between the mean 
and variance implied by the standard procedure using 
GLM models, leading to a more complete compari-
son of these models through their variance values. 
Finally, in this way we will be able to use all the 
available information in the estimation of the claim 
frequency/severity distribution in order to group risks 
with similar risk characteristics and to establish fair 
premium rates. Furthermore, our analysis shows that 
the employment of more advanced models that cap-
ture the stylized characteristics of the data is beneficial 
for the insurance company.

Table 3. Models comparison

Panel A: Claim Frequency Models

Model df
Global 

Deviance AIC SBC

Poisson  7 29115.29 29129.29 29182.90

NBII 11 28323.32 28345.32 28429.55

Delaporte 11 28357.99 28379.99 28464.23

Sichel 11 28348.97 28370.97 28455.20

ZIP 12 28503.22 28527.22 28619.11

Panel B: Claim Severity Models

Gamma 16 69665.05 69697.05 69803.11

WEI 16 70794.96 70826.96 70933.02

WEI3 16 70793.02 70825.02 70931.08

GG 21 69427.16 69469.16 69608.37

GP 22 69582.12 69526.12 69771.96
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The final a priori ratemaking for the claim severity 
models contains 36 classes. Table 5 gives the estimated 
expected claim severity and the variance for each risk 
class obtained from the gamma (GA), Weibull (WEI), 
Weibull type III (WEI3), generalized gamma (GG) 
and generalized Pareto (GP) model according to the 
Eqs (18, 21, 24, 27 and 30) and the Eqs (19, 22, 25, 28 
and 31) respectively. As expected, similarly to the case 
of the claim frequency models, we see that the biggest 
differences between the claim severity models lie in 
their variance values. For instance, the variance of the 
expected claim costs for a fleet vehicle that belongs 
to HP category A, used by both a man and a woman, 
and belongs to BM category A, i.e., for the reference 
class, is equal to 135347.30, 169637.36, 168267.90, 
148196.45 and 142078.20, while the variance of the 
expected claim costs for a private car that belongs 
to HP category A and is used by a man who belongs 
to BM category A is equal to 78621.46, 110315.30, 
111018.27, 72875.39 and 89891.64 in the case of the 
gamma, WEI, WEI3, generalized gamma and gener-
alized Pareto model.

Overall, the results summarized in Tables 4 and 
5 show the following trends by type of frequency/
severity model as to which the lowest/highest vari-
ances are observed. First, from Table 4 we see that the 
NBII model has the highest variance values among all 
models in eleven risk classes. The Delaporte model 
has the highest variance values among all models in 
six risk classes, while it has the lowest variance value 
among all mixed Poisson models18 in one risk class. 
The Sichel model has the highest variance values 
among all models in five risk classes, while it has 
the lowest variance values among all mixed Poisson 
models in eight risk classes. The ZIP model has  
the highest variance values among all models in two 
risk classes, while it has the lowest variance values 
among all mixed Poisson models in fifteen risk 
classes. Second, from Table 5 we observe that the 
gamma model has the highest variance value among 

Overall, with respect to the Global Deviance, AIC 
and SBC indices, from Panel A we observe the best 
fitted claim frequency model is the negative binomial 
type II model, followed closely by the Sichel and 
Delaporte models. From the claim severity models 
in Panel B we see that the best fitting performances 
are provided by the generalized gamma model fol-
lowed by the generalized Pareto and gamma models. 
Negative binomial type II and generalized gamma 
capture more efficiently the stylized characteristics 
of the data, such as overdispersion of the number of 
claims and the tail behavior of losses and performed 
better than the other distributions.

3.3. A priori risk classification

In this subsection differences between the claim fre-
quency and severity models, presented in Sections 2  
and 3 respectively, are analyzed through the mean 
and the variance of the number and costs of claims of 
the policyholders who belong to different risk classes, 
which are determined by the availability of the rel-
evant a priori characteristics.

The final a priori ratemaking for the claim frequency 
models contains 24 classes. The estimated expected 
annual claim frequency and the variance for each risk 
class are obtained by Eqs (2, 4, 8, 12 and 15) and the 
Eqs (2, 5, 9, 13 and 16) for the case of the Poisson, neg-
ative binomial type II (NBII), Delaporte (DEL), Sichel 
and zero-inflated Poisson (ZIP) model respectively. 
The results are summarized in Table 4. As expected, 
the variance of the NBII, Delaporte, Sichel and ZIP 
model exceeds the mean and these models allow for 
overdispersion. Furthermore, we observe that the big-
gest differences lie in the variance values of these mod-
els. For example, the variance of the expected number 
of claims for a man who belongs to BM category A and 
has a car that belongs to HP category A, i.e., for the ref-
erence class, is equal to 0.1264, 0.2140, 0.1868, 0.1884 
and 0.1391 while the variance of the expected number 
of claims for a woman who shares common character-
istics is equal to 0.1354, 0.1964, 0.2100, 0.2128 and 
0.1507 in the case of the Poisson, NBII, Delaporte, 
Sichel and ZIP model, respectively.

18The Poisson regression model has the lowest variance values among all 
models since they are equal to its mean values.
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modeling jointly the location, scale and shape param-
eters in terms of a priori rating variables is justified 
because it enables us to use all the available informa-
tion in the estimation of these values through the use 
of the important a priori rating variables for the num-
ber and the costs of claims respectively.

3.4. Calculation of the premiums 
according to the expected value  
and standard deviation principles

Consider a policyholder i who belongs to a group 
of policyholders, whose number of claims, denoted 
as Ki, are independent, for i = 1, . . . , n. Let Xi,k be the 
cost of the kth claim reported by the policyholder i  
and assume that the individual claim costs Xi,1, 

all models in one risk class, while it has the lowest 
variance values among all models in fourteen risk 
classes. The Weibull model has the highest variance 
values among all models in five risk classes. The 
Weibull type III model has the highest variance val-
ues among all models in ten risk classes. The gener-
alized gamma model has the lowest variance values 
among all models in nineteen risk classes. The gen-
eralized Pareto model has the highest variance value 
among all models in twenty risk classes, while it 
has the lowest variance values among all models in 
three risk classes.

The claim frequency and severity models are better  
compared through their variance values, leading to 
a better classification of the policyholders and thus 

Table 4. A priori risk classification using claim frequency models

Risk Class

Poisson NBII DEL Sichel ZIP

Mean Var Mean Var Mean Var Mean Var Mean Var

1 BMA, HP A, M 0.1264 0.1264 0.1267 0.2140 0.1255 0.1868 0.1258 0.1884 0.1261 0.1391

2 BMA, HP A, W 0.1354 0.1354 0.1357 0.1964 0.1371 0.2100 0.1377 0.2128 0.1414 0.1507

3 BMA, HP B, M 0.0997 0.0997 0.1001 0.1318 0.0984 0.1127 0.0984 0.1046 0.0983 0.1062

4 BMA, HP B, W 0.1068 0.1068 0.1072 0.1293 0.1075 0.1245 0.1078 0.1152 0.1102 0.1158

5 BMA, HP C, M 0.1176 0.1176 0.1178 0.1592 0.1165 0.1381 0.1166 0.1260 0.1148 0.1256

6 BMA, HP C, W 0.1259 0.1259 0.1261 0.1550 0.1273 0.1529 0.1277 0.1390 0.1288 0.1365

7 BMB, HP A, M 0.2323 0.2323 0.2385 0.4029 0.2388 0.4602 0.2383 0.4629 0.2742 0.2777

8 BMB, HP A, W 0.2486 0.2486 0.2555 0.3699 0.2608 0.5247 0.2610 0.5302 0.2527 0.2543

9 BMB, HP B, M 0.1832 0.1832 0.1885 0.2483 0.1872 0.2388 0.1863 0.2089 0.2136 0.2158

10 BMB, HP B, W 0.1961 0.1961 0.2020 0.2435 0.2044 0.2659 0.2040 0.2311 0.1969 0.1980

11 BMB, HP C, M 0.2160 0.2160 0.2217 0.2998 0.2217 0.2995 0.2208 0.2548 0.2496 0.2524

12 BMB, HP C, W 0.2312 0.2312 0.2375 0.2918 0.2422 0.3349 0.2418 0.2825 0.2300 0.2314

13 BMC, HP A, M 0.3059 0.3059 0.2931 0.4950 0.2991 0.6462 0.3001 0.6564 0.3127 0.3616

14 BMC, HP A, W 0.3276 0.3276 0.3140 0.4545 0.3266 0.7406 0.3286 0.7559 0.3301 0.3610

15 BMC, HP B, M 0.2413 0.2413 0.2317 0.3050 0.2344 0.3153 0.2347 0.2705 0.2438 0.2734

16 BMC, HP B, W 0.2584 0.2584 0.2482 0.2992 0.2560 0.3525 0.2571 0.2999 0.2573 0.2761

17 BMC, HP C, M 0.2845 0.2845 0.2725 0.3684 0.2777 0.3997 0.2782 0.3320 0.2847 0.3252

18 BMC, HP C, W 0.3047 0.3047 0.2919 0.3586 0.3032 0.4487 0.3047 0.3692 0.3005 0.3261

19 BMD, HP A, M 0.0493 0.0493 0.0478 0.0808 0.0482 0.0573 0.0486 0.0579 0.0476 0.0542

20 BMD, HP A, W 0.0527 0.0527 0.0512 0.0742 0.0527 0.0634 0.0532 0.0645 0.0634 0.0701

21 BMD, HP B, M 0.0388 0.0388 0.0378 0.0498 0.0378 0.0399 0.0380 0.0389 0.0371 0.0411

22 BMD, HP B, W 0.0416 0.0416 0.0405 0.0489 0.0413 0.0438 0.0417 0.0427 0.0494 0.0534

23 BMD, HP C, M 0.0458 0.0458 0.0444 0.0601 0.0448 0.0480 0.0450 0.0465 0.0433 0.0488

24 BMD, HP C, W 0.0490 0.0490 0.0476 0.0585 0.0489 0.0527 0.0493 0.0510 0.0577 0.0632
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Table 5. A priori risk classification using claim severity models

Risk Class

GA WEI WEI3 GG GP

Mean Var Mean Var Mean Var Mean Var Mean Var

1 BMA, HP A, B 584.00 135347.30 597.96 169637.36 594.66 168267.90 591.62 148196.45 583.03 142078.20

2 BMA, HP A, M 521.75 78621.46 526.73 110315.30 528.26 111018.27 504.93 72875.39 514.78 89891.64

3 BMA, HP A, W 543.92 82108.76 546.89 118812.19 549.06 119033.67 516.38 72022.76 536.75 95624.76

4 BMA, HP B, B 294.89 18453.33 295.51 19539.26 296.25 19714.32 310.72 24073.97 300.72 26138.91

5 BMA, HP B, M 263.46 10719.29 263.36 13061.64 263.17 13063.90 262.37 11431.24 265.51 16207.29

6 BMA, HP B, W 274.65 11194.75 273.45 14069.47 273.53 14009.16 268.44 11300.70 276.84 17199.88

7 BMA, HP C, B 326.75 19827.00 326.18 23575.68 327.07 23782.38 344.55 25257.37 333.03 29934.69

8 BMA, HP C, M 291.93 11517.24 290.72 15762.85 290.55 15759.88 290.30 11905.58 294.05 18551.62

9 BMA, HP C, W 304.32 12028.09 301.85 16979.11 301.99 16900.22 297.05 11770.71 306.59 19686.62

10 BMA, HP D, B 388.27 36033.34 390.33 43363.58 390.41 43561.39 404.41 43421.71 394.23 46566.35

11 BMA, HP D, M 346.88 20931.28 346.96 28820.08 346.82 28847.75 341.83 20685.10 348.08 29009.46

12 BMA, HP D, W 361.62 21859.70 360.26 31043.01 360.47 30934.51 349.72 20448.12 362.94 30803.37

13 BMB, HP A, B 296.28 114416.43 352.27 172055.65 305.85 130297.57 265.02 129671.66 250.44 178704.02

14 BMB, HP A, M 264.70 66462.96 297.20 100325.75 271.70 84002.18 164.63 25281.89 221.13 121573.35

15 BMB, HP A, W 275.95 69410.96 308.51 107997.62 282.39 89988.87 165.62 23924.98 230.56 130384.50

16 BMB, HP B, B 149.60 15599.59 151.45 13989.85 152.36 14234.31 119.36 13878.38 108.56 11957.62

17 BMB, HP B, M 133.66 9061.59 132.51 8946.20 135.36 9359.92 83.06 3737.71 95.85 7832.20

18 BMB, HP B, W 139.34 9463.52 137.58 9634.51 140.68 10034.46 84.12 3595.64 99.94 8364.86

19 BMB, HP C, B 165.77 16760.83 166.98 16833.12 168.23 17162.40 127.92 13265.26 118.52 12850.63

20 BMB, HP C, M 148.10 9736.14 146.14 10772.70 149.44 11287.22 91.28 3837.95 104.64 8402.63

21 BMB, HP C, W 154.39 10167.99 151.73 11601.59 155.32 12100.73 92.58 3705.93 109.11 8972.35

22 BMB, HP D, B 196.98 30460.93 206.75 33670.27 200.79 31936.98 157.66 26065.04 145.27 23671.24

23 BMB, HP D, M 175.98 17694.34 179.31 21059.67 178.37 20903.82 108.54 6804.49 128.26 15622.57

24 BMB, HP D, W 183.46 18479.18 186.15 22677.63 185.39 22406.46 109.84 6535.28 133.74 16699.22

25 BMC, HP A, B 601.42 131373.54 613.31 164111.60 613.51 165097.24 591.91 131860.30 618.24 151126.30

26 BMD, HP A, M 537.32 76313.11 541.27 107216.06 545.01 109018.66 511.81 65142.30 545.87 95523.00

27 BMD, HP A, W 560.14 79698.02 561.99 115476.70 566.45 116893.25 524.41 64612.06 569.17 101603.68

28 BMD, HP B, B 303.69 17911.53 304.87 19167.52 305.64 19385.37 317.57 22467.66 319.63 28068.18

29 BMD, HP B, M 271.32 10404.57 271.88 12831.92 271.51 12847.07 270.40 10712.80 282.22 17391.14

30 BMD, HP B, W 282.84 10866.07 282.31 13822.11 282.20 13776.66 276.98 10614.65 294.27 18454.66

31 BMD, HP C, B 336.50 19244.87 336.52 23129.37 337.44 23385.76 353.80 23820.14 354.06 32168.91

32 BMD, HP C, M 300.64 11179.09 300.14 15486.68 299.76 15498.33 300.25 11270.97 312.61 19922.38

33 BMD, HP C, W 313.40 11674.94 311.64 16681.73 311.56 16619.75 307.55 11165.35 325.96 21139.48

34 BMD, HP D, B 399.85 34975.39 402.16 42412.94 402.78 42819.65 412.50 40339.87 418.90 49941.43

35 BMD, HP D, M 357.23 20316.73 357.83 28251.56 357.81 28364.50 351.74 19299.08 369.87 31088.48

36 BMD, HP D, W 372.41 21217.89 371.54 30430.94 371.89 30416.57 360.31 19124.05 385.65 33007.98
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w1 = w2 = w1 = = 1

10
.2w  The premiums P1 and P2 are 

obtained in Table 7 by substituting into Eqs (33 and 34)  
the corresponding E(Ki) and Var(Ki), and E(Xi,k) and 
Var(Xi,k) values to these six different groups of policy-
holders, which were displayed in Tables 4 and 5 for 
the case of the Poisson, NBII, Delaporte, Sichel and 
ZIP, and the gamma, Weibull, Weibull type III, gen-
eralized gamma and generalized Pareto regression 
models for location scale and shape respectively.

From Table 7 consider, for instance, a man who 
belongs to BM category A and has a car with a HP 
between 34–66. In the case of the Poisson model and 
the corresponding claim severity models, P1 is equal 
to 31.78, 31.77, 31.75, 31.65 and 32.03 euros, while 
P2 equals 35.95, 36.07, 36.05, 35.85 and 36.5 euros. 
In the case of the NBII model and the correspond-
ing claim severity models, P1 is equal to 31.91, 31.90, 
31.88, 31.78 and 32.16 euros, while P2 equals 37.35, 
37.48, 37.46, 37.25 and 37.95 euros. In the case of the 
Delaporte model and the corresponding claim sever-
ity models, P1 is equal to 31.37, 31.36, 31.33, 31.24 
and 31.61 euros, while P2 equals 36.14, 36.26, 36.24, 
36.04 and 36.72 euros. In the case of the Sichel model 
and the corresponding severity models, P1 is equal to 
31.37, 31.36, 31.33, 31.24 and 31.61 euros, while P2 
equals 35.80, 35.93, 35.90, 35.70 and 36.38 euros. In 
the case of the ZIP model and the corresponding claim 
severity models, P1 is equal to 31.34, 31.33, 31.30, 
31.20 and 31.58 euros, while P2 equals 35.84, 35.97, 
35.94, 35.74 and 36.42 euros. Overall, we observe that 
all the claim frequency models which were combined 
with the generalized gamma model for assessing claim 
severity have the lowest P1 and P2 values among their 

Xi,2, . . . , Xi,n are independent. It is assumed that the 
number of claims of each policyholder that belongs 
to a certain group is independent of the severity of 
each claim in order to deal with the frequency and 
the severity components separately.

A premium principle is a rule for assigning a premium  
to an insurance risk. In this section the premiums rates 
will be calculated via two well-known premium prin-
ciples, the expected value and the standard deviation 
premium principles. More details about the use of the 
expected value premium principle in MTPL insurance 
can be found in Lemaire (1995). Furthermore, regard-
ing the use of the standard deviation premium principle 
one can refer to Bühlmann (1970) and Lemaire (1995) 
who used the variance principle in MTPL insurance, 
which is closely related to the standard deviation prin-
ciple. The standard deviation principle can be used 
as an alternative and complementary of the expected 
value principle. It provides a more complete picture 
to the actuary since it takes into account an additional 
characteristic of the distribution, i.e., the standard devi-
ation of the number of claims and of losses.

• The premium rates calculated according to the 
expected value principle are given by

P w E K w E Xi i k1 1 , (33)1 1 2 ,( )( ) ( )( )= + +

where w1 > 0 and w2 > 0 are risk loads.

• The premium rates calculated according to the 
standard deviation principle are given by

( ) ( )

( ) ( )= + 

+  , (34)

2 1

, 2 ,

P E K Var K

E X Var X

i i

i k i k

w

w

where w1 > 0 and w2 > 0 are risk loads.
In the following example (Table 6), six different 

groups of policyholders have been considered. In 
Table 6 a YES indicates the presence of the charac-
teristic corresponding to the column.

We will calculate the premiums P1 and P2 that must 
be paid by a specific group of policyholders based on 
the alternative models for assessing claim frequency 
and the various claim severity models. We assume that 

Table 6. The six different groups of policyholders  
to be compared

Group
BM 

Category A
HP 

0-33
HP 

34-66
HP 

100-132 Male Female

1 YES YES NO NO YES NO

2 YES YES NO NO NO YES

3 YES NO YES NO YES NO

4 YES NO YES NO NO YES

5 YES NO NO YES YES NO

6 YES NO NO YES NO YES
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Table 7. Premium rates calculated via the expected value and standard deviation principles

Group

PO-GA PO-WEI PO-WEI3 PO-GG PO-GP

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

1 40.2946 44.3448 40.2793 44.5028 40.2503 44.4722 40.1279 44.2231 40.6082 45.0619

2 44.9970 49.1158 44.8004 49.1297 44.8135 49.1391 43.9796 48.0550 45.3558 49.9293

3 31.7830 35.9450 31.7710 36.0730 31.7480 36.0482 31.6515 35.8463 32.0303 36.5261

4 35.4925 39.7840 35.3374 39.7953 35.3477 39.8030 34.6900 38.9248 35.7755 40.4430

5 79.7985 89.0400 80.5602 90.6845 80.7942 90.9493 77.2260 86.1468 78.7325 88.2257

6 89.1126 98.5955 89.5992 100.1082 89.9547 100.4874 84.6006 93.5402 87.9379 97.7515

NBII-GA NBII-WEI NBII-WEI3 NBII-GG NBII-GP

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

1 40.3903 47.3588 40.3750 47.5275 40.3458 47.4948 40.2232 47.2290 40.7045 48.1246

2 45.0967 51.3464 44.9000 51.3610 44.9128 51.3708 44.0770 50.2374 45.4563 52.1968

3 31.9105 37.3493 31.8984 37.4824 31.8754 37.4566 31.7785 37.2468 32.1588 37.9532

4 35.6254 40.8331 35.4700 40.8447 35.4801 40.8525 34.8200 39.9513 35.9095 41.5094

5 79.9880 95.0917 80.7514 96.8480 80.9860 97.1309 77.4093 92.0020 78.9194 94.2221

6 89.3100 103.0732 89.7977 104.6550 90.1540 105.0510 84.7881 97.7883 88.1327 102.1909

DEL-GA DEL-WEI DEL-WEI3 DEL-GG DEL-GP

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

1 40.0077 46.1980 39.9925 46.3625 39.9637 46.3306 39.8422 46.0711 40.3190 46.9449

2 45.5620 52.1760 45.3630 52.1908 45.3762 52.2008 44.5318 51.0492 45.9253 53.0402

3 31.3686 36.1354 31.3567 36.2641 31.3341 36.2392 31.2388 36.0362 31.6127 36.7197

4 35.7251 40.7265 35.5690 40.7381 35.5794 40.7459 34.9173 39.8470 36.0100 41.4011

5 79.2304 92.7607 79.9866 94.4740 80.2190 94.7500 76.6762 89.7467 78.1720 91.9124

6 90.2314 104.7387 90.7241 106.3456 91.0841 106.7484 85.6628 99.3684 89.0420 103.8421

SI-GA SI-WEI SI-WEI3 SI-GG SI-GP

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

1 40.1034 46.3306 40.0881 46.4957 40.0592 46.4637 39.9374 46.2034 40.4154 47.0800

2 45.7614 52.4340 45.5614 52.4489 45.5748 52.4590 44.7267 51.3016 46.1263 53.3025

3 31.3686 35.7989 31.3567 35.9264 31.3341 35.9017 31.2388 35.7006 31.6127 36.3777

4 35.8248 40.4289 35.6683 40.4404 35.6787 40.4481 35.0148 39.5558 36.1105 41.0985

5 79.4197 93.0272 80.1778 94.7453 80.4107 95.0221 76.8594 90.0045 78.3588 92.1765

6 90.6263 105.2565 91.1212 106.8714 91.4827 107.2762 86.0377 99.8600 89.4317 104.3555

ZIP-GA ZIP-WEI ZIP-WEI3 ZIP-GG ZIP-GP

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

1 40.1990 44.7401 40.1837 44.8994 40.1547 44.8685 40.0327 44.6172 40.5118 45.4635

2 46.9910 51.4043 46.7857 51.4189 46.7993 51.4287 45.9285 50.2941 47.3657 52.2557

3 31.3367 35.8390 31.3248 35.9666 31.3022 35.9420 31.2071 35.7406 31.5806 36.4185

4 36.6224 41.1386 36.4624 41.1503 36.4730 41.1582 35.7943 40.2502 36.9144 41.8200

5 79.6091 89.8335 80.3690 91.4926 80.6024 91.7600 77.0427 86.9146 78.5457 89.0120

6 93.0615 103.1895 93.5696 104.7726 93.9409 105.1700 88.3495 97.8986 91.8347 102.3061
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Extensions to other frequency/severity regression 
models for location scale and shape can be obtained 
in a similar straightforward way. Moreover, these 
models are parametric and a possible line of further 
research is to explore the semiparametric approach 
and go through the ratemaking exercise when func-
tional forms other than the linear are included, based 
on the generalized additive models for location 
scale and shape (GAMLSS) approach of Rigby and  
Stasinopoulos (2001; 2005; 2009). Also see, for 
example, a recent paper by Klein et al. (2014) in 
which Bayesian GAMLSS models are employed for 
nonlife ratemaking and risk management.
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