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AbSTRACT

This paper studies an insurance model under the regulation that 

the insurance company has to reserve sufficient initial capital to 

ensure that ruin probability does not exceed the given quantity 

a. We prove the existence of the minimum initial capital. To 

illustrate our results, we give an example in approximating the 

minimum initial capital for exponential claims.
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2. Main results

Let {Un, n ≥ 0} be a surplus process (as in Sec-
tion 1) that is driven by the claim process {Xn, n ≥ 1}. 
We consider the finite-time ruin probabilities of the 
discrete-time surplus process in Equation (1.2) with 
the independent and identically distributed (i.i.d.) 
claim process {Xn, n ≥ 1}. We let FX1

 (x) be the  
distribution function of X1, i.e.,

F x X xX { })( = ≤Pr . (2.1)11

The premium rate c is calculated by the expected 

value principle, i.e.,

c E X)( [ ]= + θ1 (2.2)1

where q > 0 which is the safety loading of insurer.

Let u ≥ 0 be an initial capital. For each n = 1, 2, 
3, . . . , we let

u U U U U U un n{ }( )ϕ = ≥ ≥ ≥ ≥ =: Pr 0, 0, 0, . . . , 0
(2.3)

1 2 3 0

denote the survival probability at the times n. 
Thus, the ruin probability at one of the time 1, 2,  
3, . . . , n is denoted by

u un n) )( (Φ = − ϕ1 . (2.4)

Definition 2.1. Let {Un, n ≥ 0} be a surplus process 
which is driven by the claim process {Xn, n ≥ 1} and  
c > 0 be a premium rate. Given a ∈ (0, 1) and N ∈ {1, 
2, 3, . . .}. Let an initial capital u ≥ 0, if FN(u) ≤ a then 
u is called an acceptable initial capital corresponding 
to (a, N, c, {Xn, n ≥ 1}). Particularly, if

u u u
u

N{ }( )= Φ ≤ α
≥

* min : (2.5)
0

exists, u* is called the minimum initial capital cor-
responding to (a, N, c, {Xn, n ≥ 1}) and is written as

* : MIC , , , , 1 . (2.6)u N c X nn ){ }(= α ≥

1. Introduction

In recent years, risk models have attracted much 
attention in the insurance business, in connection with 
the possible insolvency and the capital reserves of 
insurance companies. The main interest from the point 
of view of an insurance company is claim arrival and 
claim size, which affect the capital of the company.

In this paper, we assume that all the processes are 
defined in a probability space (W, F, Pr). Claims hap-
pen at the times Ti, satisfying 0 = T0 ≤ T1 ≤ T2 ≤ . . . . 
The nth claim arriving at time Tn causes the claim size 
Xn. Now let the constant c represent the premium rate 
for one unit time; the random variable cTn describes 
the inflow of capital into the business by time Tn, and 
∑n

i = 1 Xi describes the outflow of capital due to pay-
ments for claims occurring in [0, Tn]. Therefore, the 
quantity

U u U u cT Xn n i
i

n

∑= = +
=

, – (1.1)0
1

is the insurer’s balance (or surplus) at time Tn, n = 1, 
2, 3, . . . , with the constant U0 = u ≥ 0 as the initial 
capital.

We consider the discrete-time surplus process 
(1.1) in the situation that the possible insolvency 
(ruin) can occur only at claim arrival times Tn = n,  

n = 1, 2, 3, . . . . Thus, the model 1.1 becomes

U u U u cn Xn i
i

n

∑= = +
=

, – (1.2)0
1

for all n = 1, 2, 3, . . . .
The general approach for studying ruin probabil-

ity in the discrete-time surplus process is through the 
so-called Gerber-Shiu discounted penalty function; 
for example, Pavlova and Willmot (2004), Dickson 
(2005), and Li (2005a, 2005b). All of these articles 
study (or calculate) the ruin probability as a func-
tion the initial capital u ≥ 0. In this paper, we shall 
work in the opposite direction, i.e., we study the ini-
tial capital for the discrete-time surplus process as a 
function of ruin probabilities.
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ak ∈ R, k = 1, 2, 3, . . . , N. Therefore, by the mono-
tone convergence theorem, we have

lim lim
v u

N
v u

k
k

N

v E S kc v
→ →

−( 
=

+ +( ) = − −( )∏ϕ I ∞, 0
1







= − −( )



→

−( 
=

+
∏E S kc v

v u
k

k

N

lim I ∞, 0
1



= − −( )





= ( )
−( 

=
∏E S kc u

u

k
k

N

N

I ∞,

. ( .

0
1

2 1ϕ 00)

Therefore, ϕN(u) is increasing and right continu-
ous. Moreover, we can conclude that FN(u) = 1 - 
ϕN(u) is decreasing and also right continuous.

Theorem 2.2. Let N ∈ {1, 2, 3, . . .} and c > 0 be 
given. If {Xn, n ≥ 1} is an i.i.d. claim process, then

u u
u

N
u

N( ) ( )ϕ = Φ =
→ ∞ → ∞

lim 1 and lim 0. (2.11)

Proof. First, we will show the following properties

∩ ∩X u c S Nu ici
i

N

i
i

N

{ } { }≤ + ⊂ ≤ +
= =

. (2.12)
1 1

Let w ∩
i

N

∈
=1

{Xi ≤ u + c} be given. For each i ∈ {1, 2, 

3, . . . , N}, we have Xi(w) ≤ u + c and

S X iu ic Nu ici k
k

i

∑( ) ( )ω = ω ≤ + ≤ +
=

. (2.13)
1

That is, w ∈ {Si ≤ Nu + ic}. Therefore, (2.12) fol-
lows. Next, since the process {Xn, n ≥ 1} is i.i.d., then

∩ X u c X u c F u ci
i

N

i
N

i

N

∏{ } { } ( )( )≤ +



 = ≤ + = +

= =
Pr Pr .

(2.14)
1 1

By Equation (2.8), we have

∩Nu S Nu icN i
i

N

{ }( )ϕ = ≤ +



=

Pr . (2.15)
1

By (2.12), (2.14) and (2.15), we obtain

F u c NuN
N 1. (2.16)( )( ) ( )+ ≤ ϕ ≤

2.1. Ruin and survival probability

We define the total claim process by

S X X Xn n= + + +: . . . (2.7)1 2

for all n = 1, 2, 3, . . . .

Lemma 2.1. Let N ∈ {1, 2, 3, . . .} and c > 0 be 
given. If {Xn, n ≥ 1} is an i.i.d. claim process, then 
ϕN(u) is increasing and right continuous and FN(u) is 
decreasing and right continuous in u.

Proof. The survival probability at the time N as 
mentioned in (2.3) can be expressed as follows.

∩

∩
I

I

u S u c S u

c S u Nc

S kc u

E

E

N

N

k
k

N

S kc u

S kc u
k

N

k

k

N

k∏

{
}

{ }

( )ϕ = ≤ + ≤
+ ≤ +

= − − ≤





= 





= 



{ }

=

− − ≤

− − ≤
=

=

Pr ,

2 , . . . ,

Pr 0

(2.8)

1 2

1

{ 0}

0
1

1

where

I x
x A

x A
A

1,

0,
( ) =

∈
∉





for all SinceA SS kc u kk
⊂ ( ) =− − ≤{ } −( 

�. I I0 ω ω∞,0 (( ) −(
− ) Ω

( ) = −−( 

kc

u

u E S kcN k

for all ω ∈

∞

,

,ϕ I 0 −−( )



=

∏ u
k

N

1

2 9. ( . )

For each a ∈ R and u ≥ 0, we obtain

I a u
u a

u a

1,

0, ,
,0 ( )− =

≥
<





](− ∞

then (-∞, 0](a - u) is increasing and right continu-
ous in u. This implies that PN

i = 1 (-∞, 0](ai - u) is also 
increasing and right continuous in u, moreover, this 
bounding function is identically equal to 1, where 
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This proves (2.18) for n = 1. Now assume that 
(2.18) holds for n = k ≥ 1. Then

u X cn u

X c u

X X cn u X u c

u x X cn u

dF x

u X c n

u c x dF x

u X c n

u c x dF x

u X cn

u c x dF x

u u c x dF x

k
n k

i
i

n

n k
i

i

n

n k
i

i

nu c

X

n k
i

i

nu c

X

n k
i

i

nu c

X

n k
i

i

nu c

X

k X

u c

∑

∑

∑∫

∑∫

∑∫

∑∫

∫

)

)

)

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

Φ = −



 >





= − >

+ + −



 > ≤ +





= Φ + + −



 >





= Φ + − −








> + −

= Φ + − −








> + −

= Φ + −








> + −

= Φ + Φ + −

+
≤ ≤ + =

≤ ≤ + =

≤ ≤ =− ∞

+

≤ ≤ + =− ∞

+

≤ ≤ + =

−

− ∞

+

≤ ≤ =− ∞

+

− ∞

+

Pr max

Pr

Pr max ,
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1
1 1

1

1

2 1
1
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1
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1
2 1

2

1
2 1

1

1

1
1

1

1

1

1

1

1
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which proves (2.18) for n = k + 1 and concludes the 
proof.

Corollary 2.5. Let N ∈ {1, 2, 3, . . .}, c > 0 and u ≥ 0 
be given. If {Xn, n ≥ 1} is an i.i.d. claim process, then 
the ruin probability at one of the times 1, 2, 3, . . . , N 
satisfies the following equation:

u u X u c u

u u
N

N N

( )( ) ( ) ( )

( ) ( )
Φ = Φ = − ≤ + Φ

= Φ + Θ−

0, 1 Pr ,

(2.20)
0 1

1

where

u u c x v dF v dF xN N X

u c x

X

u c

∫∫ ( )( ) ( ) ( )Θ = Φ + − −



−

− ∞

+ −

− ∞

+

22 1 1

for all n = 2, 3, 4, . . . .

Since (F(u + c))N → 1 as u → ∞, then ϕN(Nu) 
→ 1 as u → ∞. Thus, we conclude that ϕN(u) → 1, 
and FN(u) = 1 - ϕN(u) → 0 as u → ∞. This is the  
proof.

Corollary 2.3. Let a ∈ (0, 1), N ∈ {1, 2, 3, . . .} and  
c > 0 be given. If {Xn, n ≥ 1} is an i.i.d. claim process, 
then there exists ũ ≥ 0 such that, for all u ≥ ũ, u is an 
acceptable initial capital corresponding to (a, N, c, 
{Xn, n ≥ 1}).

Proof. We consider by case. Case 1: FN(0) ≤ a. Since 
FN(u) is decreasing, then FN(u) ≤ FN(0) ≤ 0 for all  
u ≥ 0. Case 2: FN(0) > a. By Theorem 2.2, we have 
FN(u) → 0 as u → ∞. Thus, there exists ũ > 0 such 
that FN(ũ) < a. Since FN(u) is decreasing, we con-
clude that FN(u) ≤ FN(ũ) < a for all u ≥ ũ.

2.2. Recursive formula of 
ruin probabilities

From Theorem 2.2 and Corollary 2.3, we know that 
the small ruin probability can be controlled by a large 
initial capital. In this part, we shall describe the upper 
bound of ruin probability with negative exponential. 
In order to prove the following lemma, we shall use 
an equivalent definition of the ruin probability which 
is given as follows:

u X ck un
k n

i
i

k

∑( )Φ = −



 >



≤ ≤ =

Pr max . (2.17)
1

1

Theorem 2.4. Let N ∈ {1, 2, 3, . . .}, c > 0 and u ≥ 0 
be given. If {Xn, n ≥ 1} is an i.i.d. claim process, then 
the ruin probability at one of the times 1, 2, 3, . . . , N 
satisfies the following equation

u u u c x dF xN N X

u c

∫ ( )( ) ( ) ( )Φ = Φ + Φ + −−
− ∞

+

(2.18)1 1 1

where F0(u) = 0.

Proof. We will prove (2.18) by induction. We start 
with n = 1. Since F0(u) = 0 for all u ≥ 0, then

u c x dF xX

u c

∫ ( ) ( )Φ + − =
− ∞

+

0. (2.19)0 1
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u
u c x u k c x
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which proves (2.21) for n = k + 1 and completes the 
proof.

2.3. Existence of minimum initial capital

A quantity a, which was discussed in the previ-
ous section, can be described as the most acceptable 
probability that the insurance company will become 
insolvent. As a result of Corollary 2.3, we obtain that 
{u ≥ 0 : FN(u) ≤ a} is a non-empty set. This means 
that we can always choose an initial capital which 
makes the value of ruin probability not exceed a. 
Since the set {u ≥ 0 : FN(u) ≤ a} is an infinite set, 
then there are many acceptable initial capital corre-
sponding to (a, N, c, {Xn, n ≥ 1}). In this section, we 
will prove the existence of

N c X n u un
u

N( ){ } { }( )α ≥ = Φ ≤ α
≥

MIC , , , , 1 min : .

(2.23)
0

Lemma 2.2. Let a, b and a be real numbers such that a 
≤ b. If f is decreasing and right continuous on [a, b] and 
a ∈ [ f(b), f (a)], then there exists d ∈ [a, b] such that

d x a b f x[ ]{ }( )= ∈ ≤ αmin , : . (2.24)

Proof. Let N ≥ 2, by Theorem 2.4, we obtain

u u u c x dF x
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This completes the proof.

Corollary 2.6. Let N ∈ {1, 2, 3, . . .} and u ≥ 0. 
Assume that {Xn, n ≥ 1} is a sequence of exponential 
distribution with intensity l > 0, i.e., X1 has the prob-
ability density function f(x) = le-lx. The obtained 
ruin probability is in the following recursive form

u u u

u c u nc

n
e

n n

n n

u nc

( )

( ) ( ) ( )

( ) ( )

Φ = Φ = Φ

+ + λ +
−

( )

−

− −
− λ +

0,

1 !
(2.21)

0 1

1 2

for all n = 1, 2, 3, . . . , where the initial capital u ≥ 0 
and premium rate c > E[X1] = 1/l.

Proof. We will prove (2.21) by induction. We start with 
n = 1, F1(u) = 1 - Pr {X ≤ u + c} = 1 - (1 - e-l(u+c)) = 
e-l(u+c).

This proves (2.21) for n = 1. Next we assume 
that (2.21) holds for n = k ≥ 1. From Theorem 2.2,  
we have

u u u c x dF x

u u c x

u c x u k c x
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e dF x

k k X

u c

k

u c

k k

u k c x
X

∫

∫

( )( ) ( )
( )

( ) ( ) ( )

( ) ( )

( )

Φ = Φ + Φ + −

= Φ + Φ + −


+ + − λ + + −
−




( )( )

+

+

−

+

− −

− λ + + −

( )

2 1

1 !

1 1

0

1 1

0

1 2

1

1

1



Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process

VOLUME 7/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 79

Case 2: FN(0) > a, by Corollary 2.3, there exists  
ũ > 0 such that FN(ũ) < a, i.e., a ∈ [FN(ũ), FN(0)]. 
Since FN(u) is decreasing and right continuous, by 
Lemma 2.2 there exists u* ∈ [0, ũ] such that

u u u u u
u u

N
u

N�
min : min : .

0, 0 ,
{ }{ }( ) ( )∗ = Φ ≤ α = Φ ≤ α

[ ] [ )∈ ∈ ∞

That is,

u N c X nnMIC , , , , 1 .( ){ }∗ = α ≥

Next, we will approximate the minimum initial 
capital MIC(a, N, c, {Xn, n ≥ 1}) by applying the 
bisection technique for the decreasing and right con-
tinuous function.

Theorem 2.8. Let a ∈ (0, 1), N ∈ {1, 2, 3, . . .}, and 
v0, u0 ≥ 0 such that v0 < u0. Let {un}

∞
n = 1 and {vn}

∞
n = 1 be 

a real sequence defined by

v v u
u v

u v

v
v u

u u

u v

k k k

k k

N

k k

k

k k

k k

N

k k

( )

( )

= = +
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= + =
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















−
− −

− −

− −
−

− −
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2

,

if
2

2
and ,

if
2

1

1 1

1 1

1 1

1

1 1

for all k = 1, 2, 3, . . . . If FN(u0) ≤ a < FN(v0), then

u N c X n
k

k n( ){ }= α ≥
→ ∞

lim MIC , , , , 1 (2.25)

and

u N c X n
u v

k n k
( ){ }≤ − α ≥ ≤ −

0 MIC , , , , 1
2

(2.26)0 0

for all k = 1, 2, 3, . . . .

Proof. Obviously, {un}
∞
n = 1 is decreasing and {vn}

∞
n = 1 

is increasing, moreover, vk ≤ uk for all k = 1, 2,  

Proof. Let

S x a b f x[ ]{ }( )= ∈ ≤ α: , : .

Since a ∈ [ f (b), f (a)], i.e., f (b) ∈ a ≤ f (a), then 
b ∈ S. That is, S is a non-empty set. Since S is a sub-
set of closed and bounded interval [a, b], then there 
exists d ∈ [a, b] such that d = inf S. Next, we consider 
by case.

Case 1: d = b. We know that b ∈ S, thus b = min S.

Case 2: a ≤ d < b. Since d = inf S, then there exists 
dn ∈ S such that

d d d nn 1≤ < +

for all n ∈ N. For each n > 2/(b - d), we have

d d n d
b d b d

b< + < + − = + <1
2 2

.

This means that d + 1/n ∈ (d, b) ⊂ [a, b] for all n 
> 2/(b - d). Since f is decreasing and dn ∈ S, we get

f d n f dn1 ,( ) ( )+ ≤ ≤ α

i.e., d + 1/n ∈ S for all n > 2/(b - d). Since f is right 
continuous at d, we have

f d f d n
n

( )( ) = + ≤ α
→ ∞

lim 1 .

Therefore, d ∈ S, i.e., d = min S. This completes 
the proof.

Theorem 2.7. Let a ∈ (0, 1), N ∈ {1, 2, 3, . . .}, and 
c > 0. Then there exist u* ≥ 0 such that

u N c X nnMIC , , , , 1 .( ){ }∗ = α ≥

Proof. We consider by case. Case 1: FN(0) ≤ a,  
we have

N c X nn( ){ }α ≥ =MIC , , , , 1 0.
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u u u u u v

u v
u v

k k k

k k
k

≤ − ≤ − + −

= − = −
0 * * *

2
. (2.30)0 0

This completes the proof.

2.4. Numerical results

We provide numerical illustrations of the main 
results. We approximate the minimum initial capital 
of the discrete-time surplus process (1.2) by using 
Theorem 2.8 in the case of {Xn, n ≥ 1} a sequence 
of i.i.d. exponential distribution with intensity l = 1, 
by choosing model parameter combinations q = 0.10 
and 0.25, i.e., c = 1.10 and c = 1.25, respectively; and 
a = 0.1, 0.2, and 0.3.

Table 1 shows the approximation of MIC(a, N, c, 
{Xn, n ≥ 1}) with u25 as mentioned in Theorem 2.8, 
choosing v0 = 0 and u0 = 20, and FN(u) is computed 
from the recursive form (2.21).

Figure 1 shows the approximation of MIC(a, N, 

c, {Xn, n ≥ 1}) for the various values of a with u25 as 
mentioned in Theorem 2.8. Here we choose v0 = 0, u0 
= 20, and parameter combinations q = 0.10, q = 0.25, 
i.e., c = 1.10 and c = 1.25, respectively.

3, . . . . Thus, {un}
∞
n = 1 and {vn}

∞
n = 1 are convergent. 

Since

u v u v kk k
k( )≤ − = − → → ∞0 2 0 as ,0 0

then there exists u* ∈ [v0, u0] such that

u v u
k

k
k

k= = ∗
→ ∞ → ∞

lim lim : . (2.27)

Since FN(u) is decreasing and FN(vk) > a for all  
k = 1, 2, 3, . . . , then FN(u) > a for all u < u*. Since 
FN(u) is right continuous and FN(uk) ≤ a for all k = 1, 
2, 3, . . . , then

u uN
k

N k( ) ( )Φ = Φ ≤ α
→ ∞

* lim . (2.28)

Therefore,

u N c X nn( ){ }= α ≥* MIC , , , , 1 . (2.29)

For each k = 0, 1, 2, . . . , we have vk ≤ u* ≤ uk. This 
implies that

Table 1. Minimum initial capital MIC (a, N, c, {Xn, n >– 1}) in the discrete-time surplus process with exponential claims (l = 1)

a = 0.1 a = 0.2 a = 0.3

N q = 0.10 q = 0.25 q = 0.10 q = 0.25 q = 0.10 q = 0.25

10 4.31979 3.39733 2.89299 2.09364 1.99866 1.29821

20 5.80757 4.13270 3.98629 2.58739 2.84099 1.65474

30 6.79110 4.47565 4.69130 2.80479 3.37378 1.80597

40 7.52286 4.66050 5.20540 2.91736 3.75643 1.88242

50 8.09889 4.76749 5.60309 2.98061 4.04866 1.92467

100 9.81693 4.92644 6.74520 3.07093 4.86621 1.98377

200 11.13546 4.94953 7.56253 3.08341 5.42576 1.99174

300 11.60284 4.95021 7.83409 3.08377 5.60493 1.99197

400 11.79769 4.95024 7.94308 3.08378 5.67545 1.99197

500 11.88611 4.95024 7.99136 3.08378 5.70634 1.99197

1,000 11.96919 4.95024 8.03565 3.08378 5.73435 1.99197

5,000 11.97291 4.95024 8.03757 3.08378 5.73554 1.99197

10,000 11.97291 4.95024 8.03757 3.08378 5.73554 1.99197
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Figure 1. Minimum initial capital MIC(a, N, c, 
{Xn, n >– 1}) in the discrete-time surplus process 
with exponential claims (l = 1, N = 100)
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