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ABSTRACT

This paper introduces sequential statistical methods in actuarial

science. As an example of sequential decision making that is

based on the data accrued in real time, it focuses on sequen-

tial testing for full credibility. Classical statistical tools are used

to determine the stopping time and the terminal decision that

controls the overall error rate and power of the procedure. As

a result, a set of conditions is obtained under which an insured

cohort becomes fully credible.
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are deemed sufficient for decision making, without
referring to other sources of information. When
the real data are not sufficient, partial credibility is
used according to (1.1). Compromise estimators of
type (1.1) are widely used for the estimation of pure

premium, a part of the total premium, the expected
amount that the insurer will have to pay to cover the
policyholder’s losses during the next insured period.
The resulting estimator is also called credibility pre-

mium. Let us further refer to Bühlmann (1970),
Bühlmann and Gisler (2005), and Herzog (2004) for
foundations of credibility; and Klugman, Panjer, and
Willmot (2012) and Venter (1990) for the current sta-
tus of credibility theory and practice.

When does a cohort deserve full credibility? This
can be determined, among other methods, by the
classical limited fluctuation credibility approach.
According to that approach, the cohort is fully cred-
ible if its total loss S is likely to fall within a desired
margin from its expected value E(S), the pure pre-
mium, namely,

P S S c S q{ }( ) ( )− ≤ ≥ −E E 1 . (1.2)

Under the aggregate loss frequency-severity model
(Klugman, Panjer, and Willmot 2012), widely used
in actuarial science, condition (1.2) for full credibil-
ity can take a simple form of hypothesis testing. The
model assumes X losses during the insured period,
and thus the total loss amount S is the sum of a ran-
dom number X of losses with severities Y1, . . . , YX,

.
1

∑=
=

S Yi
i

X

Assumptions. We assume a Poisson number of losses
X with the frequency parameter l = E(X ). For the
Poisson distribution, l also equals Var (X). The loss
amounts are assumed independent of each other and
independent of the number of losses, with expected
value and variance E(Yi) = µ and Var(Yi) = s2. Under
this model, E(S) = lµ, Var(S) = l(s2 + µ2), and the
standardized total loss (S – E(S))/Std(S) has approxi-
mately standard normal distribution, provided that

1. Introduction

Sequential statistical methods refer to data that are
collected in real time. The sample size is not fixed in
advance. At any moment, either a decision is taken,
or it is deferred until more data become available.
For example, when a statistical hypothesis is tested
sequentially, after each new observation, either the
null hypothesis is rejected, or it is accepted, or no
decision is made at this point and sampling continues
(e.g., Wald 1947; Govindarajulu 2004; Tartakovsky,
Nikiforov, and Basseville 2014).

Actuaries routinely make decisions that are sequen-

tial in nature (e.g., Tse 2009). During each insured
period, the new claims and losses data are collected,
and together with the new economic and financial situ-
ation and other factors, they are taken into account
for the calculation of revised premiums and risks. For
all the policyholders, several decisions are made regu-
larly, at least once per each insured period: whether
the coverage should continue, whether the coverage
should be changed, and what premium should be
charged.

Conventional methods tend to ignore the facts of
sequentially developing data and recurrence of actu-
arial decisions. They use nonsequential statistical
procedures that are based on the assumption of only
one statistical inference that will not be repeated.
This leads to lower than nominal confidence levels
and higher than nominal probabilities of Type I and
Type II errors. That is, the probability of committing
an error at least once during repeated tests is substan-
tially higher than the nominal level of each test. Con-
trolling these errors at the specified levels is one of
the benefits of the proposed sequential methodology.

One important sequential problem is testing an
insured cohort for full credibility. Credibility estima-
tion combines the real data R and the hypothetical
prior information H and uses a compromise estimator

(1 ) , (1.1)= + −C ZR Z H

where Z is the credibility factor. Assigning full cred-

ibility, Z = 1, means that the real data about a cohort
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methods to credibility theory. Examples of using the
new tool under the popular loss models are shown in
Section 3. Proposed methods are then applied to the
data generated by the Actuarial Loss Simulator in Sec-
tion 4. Section 5 contains summary and conclusions,
and all the lengthy proofs are found in Section 6.

2. Derivation of the sequential test

In this section, a level α sequential test for full cred-
ibility is derived. As shown in Section 1, the limited
fluctuation condition for full credibility is equivalent
to inequality (1.3), and thus, when deciding between
the full and partial credibility, an actuary needs to
conduct a test of

H c z vs H c zq A qη ≤ − δ η ≥: : , (2.1)0 /2 /2

where
1 2

η = λ
+ γ

 is the tested parameter of interest,

and a region of indifference of length d separates the
null and alternative hypotheses. An insured cohort is
considered fully credible when there is sufficient evi-
dence in the data that condition (1.3), equivalent to
HA, is satisfied.

The sequential test of (2.1) is derived through a
series of steps. First, parameter h is estimated by a
statistic Tn that is based on the first n time periods of
observation. This statistic is shown to have an asymp-
totically normal distribution for any n. For most of the
loss models, the distribution of Tn contains unknown
nuisance parameters which affect its variance only.
In this case, the problem reduces to testing the loca-
tion parameter of a normal distribution with unknown
variance, and the sequential t-test (Govindarajulu
2004, sec. 3.2; Tartakovsky, Nikiforov, and Basseville
2014, sec. 3.6.2) is applied.

2.1. Test statistic and its distribution

We assume that the claim and loss data are col-
lected for a large insured cohort over a sequence of
days (weeks, months). During day k, a random number
of claims Xk is observed, with random loss amounts
Y1, . . . , YkXk

. The typical actuarial frequency-severity

the number of losses is sufficient for normal approxi-
mation (Herzog 2004; Klugman, Panjer, and Willmot
2012; also see Hossak, Pollard, and Zehnwirth 1983;
Longley-Cook 1962).

In view of this standardization, condition (1.2)
becomes equivalent to inequality

1
, (1.3)

2 /2
λ

+ γ
≥c

zq

where γ = s/µ is the coefficient of variation of indi-
vidual losses (severity parameter), and zq/2 is the
(1 – q/2)th standard normal quantile.

Condition (1.3) is a statistical hypothesis that is
being tested every insured period in order to decide on
the full credibility. Conducting this test each time at a
nominal level of 5% does not guarantee that the prob-
ability of at least one wrong decision is within 5%.
For example, there is a probability of 1 – (1 – 0.05)10

≈ 40% that a Type I error is made at least once during
the course of 10 independent periods, when the prob-
ability of Type I error during each period is only 5%.

For this reason, we develop a sequential method
for testing for full credibility. It specifies a stop-
ping time, when full credibility can be awarded to a
cohort, simultaneously controlling for the probability
of Type I error (assigning full credibility to a cohort
that does not deserve it) and the probability of Type II
error (assigning only a partial credibility whereas the
full credibility should be given). As a practical result,
precise criteria are derived under which an insured
cohort becomes fully credible.

For some cohorts, full credibility can be granted at
an early stage; for others, at a later stage. But regard-
less of the time, the proposed sequential tests control
the probability of Type I error at a specified level
α and the probability of Type II error at a specified
level β. In other words, the probability that a cohort
with insufficient credentials is (by a sampling error)
considered fully credible is controlled at the desired
level throughout the entire time of data collection
and decision making.

A sequential test for full credibility is developed
in Section 2 as an application of classical sequential
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and µm = E(Ym
kj) are non-central moments of the

severity distribution for m = 2, 3, 4.
The proof of this result is deferred to the Appendix.
Two important conclusions follow from the form

of Tn and its asymptotic variance.

Corollary 1. The distribution of Tn is free of a scale
parameter of the loss distribution.

One can see that by noticing that each fraction in
(2.3) has its numerator and denominator of the same
dimension. This is expected because parameter h,
estimated by Tn, depends on the loss distribution only
through its coefficient of variation γ. In particular,
Corollary 1 implies that our decision on full credibil-
ity is independent of the currency in which the losses
Ykj are valuated.

The second conclusion is important for the prac-
tical implementation of the proposed sequential
scheme. In typical actuarial data, a large portion
of loss amounts are entered as zeros (Sect. 8.6 of
Klugman, Panjer, and Willmot 2012). In particular,
this phenomenon is observed in the data obtained
from the Actuarial Loss Simulator in Section 4.
Zero payments are often caused by the claims
exceeding policy limits or not meeting deductibles,
and also by wrong coding or repeatedly submitted
claims.

Allowing for a considerable probability of a zero
loss clearly affects the modeling of both severities
and frequencies. None of the common actuarial loss
models (gamma, Pareto, log-gamma, log-normal,
Burr, etc.) accounts for such a large number of
zeros. Fortunately, the introduced test statistic Tn is
independent of the inclusion of zero losses. Accord-
ing to the next corollary, these losses can simply be
deleted from the data when the test for full credibility
is conducted.

Corollary 2. Let X̃k be the actual number of claims
during the k-th time period and Xk be the number of
claims excluding zero losses (Ykj = 0) for all k. Consider

statistics T Xn n n1 2( )= + γ� � � and T Xn n n1 ˆ 2( )= + γ ,
where γ̃n and γ̂n are the sample coefficients of variation

model assumes that the claims occur at random times,
according to a Poisson process with intensity l = E(Xk)
claims per day, whereas the losses Ykj are independent
variables that follow distribution FY(y) with expected
value µ = E(Ykj), variance s2 = Var(Ykj), and coefficient
of variation γ = s/µ, independently of claim times.

Based on the observed claim frequencies X1, . . . , Xn

and severities Y11, . . . , Y1X1
; . . . ; Yn1, . . . , YnXn

 over
n days, parameter h is estimated by

T
X

s Y
n

n

n

n

n n

ˆ

1 ˆ 1
. (2.2)

2 2 2
= λ

+ γ
=

+

Here parameters l, µ, and s are estimated at time n
by the corresponding sample statistics available by
that time, namely, X–n, the average frequency or the
average number of claims per time period; Y–n and
sn, the sample mean and sample standard deviation
of severity.

This yields a sequence of statistics T1, T2. . . . Besides
their main purpose of testing (2.1), they can also
be used for estimating the partial credibility factor
Z = ch/zq/2 by Ẑn = cTn/zq/2. This factor is applied to
the compromise estimation of the pure premium
when H0 is not rejected, and only partial credibility
is assigned.

Next, we show that statistic Tn has asymptotically
normal distribution under mild assumptions on the
frequency and severity distributions.

Theorem 1. Suppose that the frequency variables Xk

and the severity variables Ykj are not degenerate for
k = 1, . . . , n and j = 1, . . . , Xk; Ykj is not a multiple of a
Bernoulli random variable; E(Xk

2) < ∞; and E(Ykj
4) < ∞.

Then, as n → ∞, statistic Tn is asymptotically nor-
mal, and

n T Normal V as nn

d

T( ) ( )− η → → ∞0, , ,

where

VT
4

( )

4
, (2.3)

2

2

2
2

3

2
2

2
4 2

2

2
3= µ

µ
+ µ − µµ

µ
+ µ µ − µ

µ
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as Ln ≤ (b, a). When Ln ≥ a, sampling stops, and H0 is
rejected in favor of HA. When Ln ≤ b, sampling stops,
and H0 is not rejected. For a test of simple hypotheses,
when Ln does not contain unknown parameters, this
SPRT guarantees the Type I and Type II error prob-
abilities of α and β.

Suppose for a moment that the distribution of Tn is
free of nuisance parameters. It happens, for example,
when the loss model is parameterized only by a scale
parameter, according to Corollary 1. In this case, the
SPRT statistic for testing (2.1) is

n t
f t H

f t H

n

V
t

z

c
t

z

c

n
Tn A

Tn

T

q q

, , ln

2
, (2.5)

0

/2
2

/2
2( )

( )
( )
( )

Λ = Λ δ =

= −
− δ



 − −









where t is the value of Tn observed at time n.
Now turn to the general case of an arbitrary loss dis-

tribution. As seen in Theorem 1, additional param-
eters can affect the asymptotic variance but not the
mean of Tn. To handle nuisance parameters, Wald
(1947) proposed the method of weight functions

w(q), integrating both components of the likelihood
ratio with respect to the unknown parameter q,

f H w d

f H w d
n

n A

n

∫
∫

( )
( )

( )
( )

Λ =
θ θ
θ θ

x

x
.

0

Then, the same stopping boundaries a and b (Fig. 1)
control the integrated Type I and Type II error prob-
abilities, namely,

H H w d

H H w dA

∫
∫

{ }

{ }

( )

( )

θ θ θ = α

θ θ θ = β

P

P

reject , ,

do not reject , (2.6)

0 0

0

Applying this approach to our case of a normally
distributed statistic with an unknown variance, a
sequential t-test is detailed in Govindarajulu (2004,
Sect. 3.2). This method essentially follows Wald’s
SPRT with a special choice of a constant weight
function w(q) = 1 on q ∈ (0, h). Letting h → ∞ yields
the test statistic

based on all the observed severities and based on the
no-zero severities only. Then P{Tn

˜ = Tn} = 1 for all n.
This result follows immediately from an alterna-

tive expression for statistic Tn given below.

Lemma 1. Statistic T Xn n n1 ˆ 2( )= + γ can also be
expressed as

T
n

Y
n

Yn
k

n

j

Xk

kj
k

n

j

Xk

kj
1 1

, (2.4)
1 1 1 1

2∑∑ ∑∑=
= = = =

the average loss per day normalized by the root of the
total of squared losses per day.

The proof is given in the Appendix. Clearly, all
Ykj = 0 can be simply dropped in (2.4) without affect-
ing any sums, and Corollary 2 follows. Lemma 1 is
also used in the proof of Theorem 1.

2.2. Sequential scheme

Based on the asymptotically normal distribution
of test statistic Tn, a sequential test for full credibility
is developed in this section. The proposed procedure
follows the ideas of Wald’s sequential probability
ratio test, or SPRT (Wald 1947; Govindarajulu 2004;
Tartakovsky, Nikiforov, and Basseville 2014). This
test is based on the log-likelihood ratio lnf(xn |HA)/
f(xn |H0), where xn represents a vector of all the data
collected by the timen.To attain theType I error proba-
bility α and theType II error probability β, the stopping
boundariesa = ln((1 – β)/α) andb = ln(β/(1 – α)) are then
introduced, with the following sequential decision-
making strategy (Fig. 1). Sampling continues as long

Figure 1. Example of an SPRT. Stop when Ln

exceeds one of the boundaries

0

b

a

n

Stop, reject H0

Continue sampling

Stop, do not reject H0

n
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the time it will take to reach a decision. For example,
choosing smaller α and/or β results in lower prob-
abilities of making a Type I or a Type II error. At the
same time, smaller α and β result in wider stopping
boundaries a and b, according to (2.8), expanding the
continue-sampling region. Thus, it will generally take
longer for the statistic Tn to reach the boundaries. Then,
a decision will be based on a larger sample, increasing
its accuracy, in terms of lower error probabilities.

When the method of weight functions is used in
the presence of nuisance parameters, the probabili-
ties in the right-hand sides of (2.9) are understood in
the integral form (2.6), which can also be interpreted
as probabilities under the joint distribution of data
and nuisance parameters.

3. Implementation for common
loss distributions

In this section, the introduced sequential testing
scheme is elaborated for commonly used loss mod-
els (Klugman, Panjer, and Willmot 2012)—Poisson
number of losses Xk and exponential, gamma, log-
normal, Pareto, or Weibull loss amounts Ykj. Each
example requires calculating the asymptotic variance
VT according to Theorem 1, using it in the likelihood
ratio statistic (2.5) or (2.7), and stating the sequential
decision rule in terms of Lk or Tn statistics, according
to (2.8).

3.1. Example 1: Exponential and Weibull
loss models

As a special and simple case, consider the exponen-
tial loss distribution. It is special because the asymp-
totic variance VT appears free of nuisance parameters
(by Corollary 1). Indeed, when Ykj ∼ exponential (q),
the moments are E(Ykj

m) = m!qm. Substituting them
into (2.3), we obtain VT = 1/4 for any q.

By (2.5), the SPRT statistic in this case is

= 2

4 4 2
,

/2
2

/2
2

/2
2

2

2

n T
z

c
T

z

c

n

c
T

n z

c

n

c

n n
q

n
q

n
q

( )Λ −
− δ



 − −







= δ −
δ

+ δ

f t H d

f t H d

V

t
z

c
V n

d

V

t
z

c
V n

d

n
h

h

Tn A

h

Tn

h

h

T

q

T

h

T

q

T

∫
∫

∫

∫

( )

( )
( )

( ) ( )

( ) ( )

Λ =
θ θ

θ θ

= θ
−

−

θ











 θ

θ
−

−
− δ





θ











 θ

→∞

→∞

ln lim
,

,

ln lim

1
exp

2

1
exp

2

.

(2.7)

0

0 0

0

/2
2

0

/2
2

As we shall see in Section 3, the limit in (2.7) can
often be taken by the L’Hôpital’s Rule, erasing both
integrals. Multiple integrals appear in the case of a
multidimensional nuisance parameter q.

Based on Ln, one makes a decision according to the
rule,

Reject in favor of if ln
1

and assign full credibility,

Accept and assign if ln
1partial credibility,

Continue observation and if ,

defer decision.
(2.8)

0

0

H H a

H b

b a

A
n

n

n ( )

Λ ≥ = − β
α

Λ ≤ = β
− α

Λ ∈

















Until Ln exits from the interval (b, a) (which even-
tually happens with probability 1), the null hypoth-
esis (2.1) is neither rejected nor accepted. During this
time, the final decision is deferred, and the partial
credibility factor estimated by Ẑ = cTn/zq/2 is used.
The same factor is applied if H0 is finally accepted,
and the partial credibility is assigned.

According to Wald (1947), testing scheme (2.8)
attains

c z

c z

q

q

{ }
{ }

η = − δ = α

η = = β

P

P

Type I error

and Type II error (2.9)

/2

/2

Here the Type I error occurs when full credibility
is given to a cohort that does not deserve it, and the
Type II error means not giving full credibility where it
is deserved.

Probabilities α and β are to be chosen before the
test. This choice affects the test accuracy as well as
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nuisance shape parameter r. It can be seen that both
integrals in (2.7) diverge to ∞ as h → ∞, justifying
application of the L’Hôpital’s Rule. Then, taking the
limit as h → ∞, we obtain the same formula as for the
exponential distribution,

n

c
T

n z

c

n

c
n n

q4 4 2
,/2

2

2

2Λ = δ −
δ

+ δ

and again, H0 is rejected and full credibility is given
after n insured periods if

T
ac

n

z

c c
n

q

4 2
./2≥

δ
+ − δ

3.3. Example 3: Log-normal loss model

For Ykj ∼ log-normal (µ, s), the mth moment is
µm = exp(mµ + m2s2/2), and from (2.3),

V e eT 1
1

4
.

2 3 2
= − +σ σ

In this case, both integrals in (2.7) converge as
h → ∞, so that the nuisance parameter q = s2 is being
integrated out with the improper prior Ps2(q) = 1(0,∞).
Then the sequential probability ratio test statistic is

i

i

e e
n t

z

c
e e

d

e e
n

t
z

c
e e

d

n

∫

∫

( )( )

( )

Λ =
− + −

−

− +












θ

− + −
− − δ





− +












θ

∞ θ θ −
θ θ

∞ θ θ −
θ θ

1 4 exp
2 1 4

1 4 exp
2 1 4

0

3 1/2

2

3

0

3 1/2

2

3

In this case, there is no simple closed form for the
stopping boundary for Tn; however, the inequality b
< Ln < a can be solved for Tn numerically.

3.4. Example 4: Pareto loss model

For the Pareto (r, q) loss distribution, the mth
moment is µm = qmG(m + 1)G(r – m)/G(r). Substituting
into (2.3), we obtain the asymptotic variance

V
r r

r r
T 1

3

4

2 6

3 4
,

( )( )
( )( )

= − − −
− −

with stopping boundaries {b, a}. That is, sampling
continues while

b
n

c
T

n z

c

n

c
an

q<
4 4 2

< ./2
2

2

2

δ −
δ

+ δ

Solving for Tn, we obtain the stopping boundaries for
the statistic Tn,

bc

n

z

c c

ac

n

z

c c
q q

4 2
,

4 2
./2 /2{ }δ

+ − δ
δ

+ − δ

When Tn attains the upper stopping boundary, the
cohort is considered fully credible. If it attains the
lower boundary, only partial credibility is assigned.
Between the boundaries, the decision about the full
credibility is deferred until one of the boundaries is
crossed.

Similarly, the asymptotic variance VT is constant
for any Weibull distribution with a known shape
parameter. For example, when Ykj ∼ Weibull (q, 1/2),
the mth moment is µm = qmG(1 + 2m), which leads to
VT = 17/12 and the SPRT statistic

n

c
T

n z

c

n

c
n n

q12

17

12

17

6

17
./2

2

2

2Λ = δ −
δ

+ δ

Reject H0 and give full credibility after n insured
periods when Ln ≥ a, or, equivalently,

T
ac

n

z

c c
n

q17

12 2
./2≥

δ
+ − δ

3.2. Example 2: Gamma loss model

Extending the exponential model, let Ykj ∼ gamma
(r, q), with themth moment µm = E(Ym) = qmG(r + m)/G(r).
Substituting these moments into (2.3) and simplifying,
we obtain

V
r r

r
T

2

4 1
.

2

2( )
= + +

+

As stated by Corollary 1, the asymptotic variance of
Tn is free of the scale parameter of the underlying
gamma loss distribution; however, it contains the
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from Corollary 2, the test is independent of the appear-
ance of zero losses in the data. The simulated insured
records start on 01/01/2000 and continue for the next
12 years, with the insurance contract being renewed
and premium being revised once a year. At these times
of renewal, the credibility decisions are to be made.

Claim frequencies Xk are Poisson, and the non-
zero loss amounts Ykj are generated from gamma and
Pareto distributions. The limited fluctuation criterion
(1.2) for full credibility is applied with the relative
precision c = 0.1 and probability q = 0.05, and the
corresponding hypothesis is tested with the indiffer-
ence margin d = 0.02. With these parameters, test
(2.1) reduces to testing

H
z

c
vs H

z

c
q

A
q: 19.4 : 19.6.

(4.1)

0
/2 /2η ≤

− δ
= η ≥ =

Thus, whether a cohort deserves full credibility is

determined by the unknown parameter
1 2η = λ

+ γ
.

Its sequential estimator Tn and the corresponding
stopping boundaries are calculated according to
Equation (2.2) and Table 1, and the sequential test is
conducted for each data sequence resulting in a defi-
nite decision on full credibility.

4.1. Gamma loss model

We start by generating a 12-year record of gamma
distributed losses with shape parameter r = 20, scale
parameter q = 10 (average claim µ = $200), and the
frequency of l = 600 claims per year, 20% of which
are not covered. This results in h = 21.4, high enough
to support full credibility, according to the limited
fluctuation credibility approach.

The histogram of observed losses is on Fig. 2,
where a tall column on the left reflects a large portion of
uncovered claims (Ykj = 0). As we anticipated, the null
hypothesis is rejected, claiming full credibility. The
test statistic Tn converges to the true value of h = 21.4,
supporting the result of Theorem 1, and quickly
exceeds the upper rejection boundary. At this time (in
2001, two years after signing the first contract), the null
hypothesis is rejected, and full credibility is assigned.

and by the L’Hôpital’s Rule, the same test statistic

n

c
t

n z

c

n

c
n

q4 4 2/2
2

2

2Λ = δ −
δ

+ δ

as in the gamma case. Thus, full credibility should
again be assigned as soon as

T
ac

n

z

c c
n

q

4 2
./2≥

δ
+ − δ

Table 1 summarizes the stopping boundaries for
test statistic Tn (the stopping boundary for Tn does not
have a closed form in the case of a log-normal distri-
bution). These are conditions that allow to assign full
credibility.

4. Analysis of actuarial data

In this section, we apply the developed sequential
techniques to the actuarial data generated by the CAS
Public Loss Simulator. This simulator was written by
Goouon under a research agreement with the Casu-
alty Actuarial Society (CAS) and was made publicly
available at http://www.goouon.com/loss_simulator_
project.html. It generates data sets close to the real data
by simulating all the features usually observed in actu-
arial records.

Below, we discuss four data sets that are generated
in order to illustrate situations leading to different deci-
sions on the full credibility. In these examples, we con-
sider a single-payment model, where each loss event
is shortly followed by valuation that results in either
no payment or one payment. The probability of no
payment is set to p0 = 0.2, which means that roughly
20% of submitted claims are denied. As we know

Table 1. Rejection boundary (condition for full credibility) 
for some loss distributions

Loss distribution family
Rejection boundary for Tn (Assign full
credibility when the inequality holds)

Gamma (r, q) 
Pareto(r, q) T

ac
n

z
c cn
q

4 2
/2≥

δ
+ −

δ

Weibull ,
1
2

θ



 T
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z
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q17
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frequency of claims. Partial credibility will then be
assigned with the credibility factor estimated by
Ẑ2003 = cT2003/zq/2 = 0.949.

4.2. Pareto loss model, heavy tail

How will the test results of Section 4.1 change if
we replace the gamma loss model with a heavy-tail
distribution, say, Pareto? In this section, we again
generate 12 years of claims, 01/01/2000 through
12/31/2011. As in our first example (Fig. 2), the fre-
quency of claims is l = 600 per year, 20% of them are
not covered, and the average covered claim amount
is µ = $200. The only difference is that now the
loss distribution is Pareto(r = 5, q = 800) instead of
gamma. Notice that under this model, E(Ykj) = q/(r – 1)
matching the gamma(20,10) expected value; how-
ever, the standard deviation is much higher due

to the heavy tail,
r

r

r1 2
258.2σ = θ

− −
= compared

to gamma’s r 44.7σ = θ = .
The heavy-tail loss distribution implies a higher

variability of the real data, so the limited fluctuation
criterion for full credibility is no longer satisfied with
the same frequency of claims. Parameter h = 13.4 is
much lower than the tested value in (4.1). As a result,
full credibility is denied at the first opportunity (Fig. 4),
and partial credibility is applied with the credibility
factor Ẑ2000 = cT2000/zq/2 = 0.60. Due to high variability

Should fewer claims occur per year, their fre-
quency may be insufficient for the full credibility
even if the loss distribution is the same. In the next
simulation, the loss model is still gamma(r = 20,
q = 10), however, the frequency is only l = 450 claims
per year, of which 20% are not covered.

Based on this data, the test statistic Tn converges
to the new value of h = 18.5, crossing the lower stop-
ping boundary, as on Fig. 3. Hence, after three years
of no decision, the full credibility is finally denied in
2003 due to a significance evidence of insufficient

Figure 2. Generated gamma distributed losses with k = 600 claims per year and p0 = 20% of claims not
covered. Full credibility is awarded in 2001, at the first policy renewal.
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Figure 3. Generated gamma distributed losses
with k = 450 claims per year and p0 = 20% 
of claims not covered. Full credibility is denied 
in 2003, after four years of observation.
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l = 1300 claims per year, and again 20% of claims
are denied. This is almost the minimum l required
for full credibility, as the parameter h = 19.75 barely
agrees with the alternative hypothesis HA. As a result
of this borderline h, it takes ten years until 2009
before the decision is made and full credibility is
finally applied.

In all the considered examples, our scheme, with
sequentially estimated parameters and sequentially
re-tested hypotheses (2.1), eventually agreed with the
standard limited fluctuation credibility approach that
assumes known parameters. However, since the fre-
quency and severity parameters are in practice esti-
mated from the data, results can differ, and a Type I
or a Type II error can occur. Probabilities of that are
controlled by (2.9).

5. Conclusion

This paper introduces sequential methods in actu-
arial science. It is motivated by a number of routine
decisions that actuaries make at regular time inter-
vals, based on sequentially collected data. Using
elementary statistical tools without accounting for
multiple tests, the error rate increases with the num-
ber of decisions made and considerably exceeds the
nominal significance level of each test. On the other
hand, applying properly designed sequential tech-

of loss amounts, only 60% of the compromise esti-
mator of the pure premium is based on the actually
observed data, and the remaining 40% have to come
from other sources such as the prior distribution.

Recall that with the same frequency of claims and
the same average loss, the full credibility was quickly
awarded in the example on Fig. 2, where losses had
gamma distribution.

With Pareto losses, the frequency of claims should
be more than twice higher in order to satisfy the con-
dition for full credibility. In Fig. 5, the frequency is

Figure 4. Generated Pareto distributed losses with k = 600 claims per year, p0 = 20% of claims not
covered, and the average covered loss amount l = $200. Full credibility is denied after the first year 
of observation.
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Figure 5. Borderline case of Pareto loss model
with k = 1300 claims per year. Full credibility is
awarded in 2009, after ten years of observation.
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6.2. Proof of theorem 1

This proof of asymptotic normality of Tn is based
on the multivariate central limit theorem (Lehmann
1999, theorem 5.4.4), representing Tn in terms of the
sums of independent random variables.

From lemma 1, T S Un n n= , where Sk = SXk
j = 1Ykj,

Uk = SX k
j= 1Y

2
kj, S

–
n = n–1Sn

1Sk, and U
–

n = n–1S n

1Uk.
The last expression shows that statistic Tn is a

smooth function of two sample means, S
–

n and U
–

n,
that are based on i.i.d. variables S1, S2, . . . and i.i.d.
variables U1, U2, . . . with
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for k = 1, 2, . . . , provided that the frequency distribu-
tion has two finite moments, and the severity distri-
bution has four finite moments.

niques, one can control the error rate at the specified
level. Level α and power (1 – β) sequential tests for
full credibility are derived in this paper. As a result,
conditions are determined under which an insured
cohort becomes fully credible, according to the lim-
ited fluctuation credibility approach. A stopping rule
is derived when the sequential test for full credibility
rejects the null hypothesis, in which case full cred-
ibility can be assigned.

Although the introduced method is elaborated for
credibility assessment, sequential methods in gen-
eral and the proposed method of handling nuisance
parameters can be applied to other areas. In any situ-
ation when a decision is made as soon as the data
collected to the moment shows significant evidence,
one should be looking for proper sequential methods
in order to control the overall error rate.

6. Appendix

6.1. Proof of lemma 1

Estimating parameter 1 2( )η = λ + γ  with
T X s Yn n n n( )= +1 2 2 , we use the mean frequency
X
–

n = n–1S1
nXk to estimate the frequency parameter ln,

and the severity sample mean Y
–

n = Sn

k = 1SXk
j = 1Ykj/Sn

k = 1Xk

and the severity sample variance
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to estimate the sample coefficient of variation γ = s/µ.
Substituting this version of the sample variance

into Tn and simplifying, we obtain
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and (2.4) follows.
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Applying the bivariate central limit theorem, we
obtain

n S U Normaln n

d( )− λµ − λµ ′ → 



 Σ



,

0

0
, .2

Next,applyingthebivariatedeltamethod(Lehmann
1999, Corollary 5.2.1) to sequences S

–
n and U

–
n and

function f(u, v) = uv–1/2, we obtain that
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(6.3)2

where the asymptotic variance VT is derived by the
bivariate delta method as follows.

For the function f(u, v) = uv–1/2, we have ∂f/∂u = v–1/2

and ∂f/∂v = –uv–3/2/2. Substituting u = ES
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