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for Measuring Long-Term 
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ABSTRACT

In this paper we explore a method to model the financial risks of 

holding portfolios of long-term temperature derivatives for any 

subset of the 30 North American cities whose derivatives are 

actively traded on the Chicago Mercantile Exchange (CME). Long-

term derivatives are those whose period of accrual for degree 

days is substantially longer than the temporal auto correlation 

of daily temperature data, and therefore accruals can be mod-

eled with a multivariate normal distribution. One commonly 

traded temperature derivative on the CME has a 6-month index 

period, which satisfies this long-term condition. The method 

presented incorporates spatial dependence among the cities, 

and allows for possible trends in degree days due to climate 

change. Though limited to long-term contracts, the method is 

mathematically and computationally quite simple and applicable 

to some of the most commonly traded temperature derivatives. 

Possible implications for the insurance industry are discussed.
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in both definitions is arbitrary. A convenient conse-
quence of using a common value in both definitions 
is that one can always recover the daily observed 
temperature as

T CDD HDD= + −65 .

Heating and cooling degree days are meant to mea-
sure the overall demand for heating and cooling as a 
function of a day’s temperature. Consider an arbitrary 
location where on day one the average temperature T 
is 70 degrees F. This one day generates 5 CDDs and 
0 HDDs. If on the following day the average tem-
perature were again T = 70 degrees F, this second day 
would generate 5 CDDs and 0 HDDs. One could then 
begin running sums of these two quantities—called 
cumulative cooling degree days (cCDDs) and cumula-
tive heating degree days (cHDDs)—which would be 
10 and 0, respectively. These indices are used to cap-
ture the overall demand for heating or cooling within 
some time frame.

A special class of weather derivatives known as tem-
perature derivatives can be built from these indices. 
Here, the term derivative is used to indicate that the 
product derives its value from something else—in this 
case, the actual temperature. To illustrate by example, 
consider a large utility company that provides elec-
tricity to a city in the month of June. Suppose that the 
average daily temperature in June in this city is around 
73 degrees F, and thus cumulative cooling degree days 
in the month of June often settle around 240 (8 CDDs 
times 30 days). To protect against a surge in demand, 
the company may wish to buy a weather derivative 
which pays in proportion to excess heat. One method 
would be to purchase a temperature derivative which 
pays $10,000 for each CDD in excess of 360, and 
$0 otherwise; mathematically, the payoff is

iP cCDD( )= −10,000 max 360, 0 . (1)

It should be clear that this sort of contract offers pro-
portional protection during exceptionally hot months 
of June, and no financial protection during more typi-
cal months of June. It should also be clear that one 

1. Introduction

Weather risk is any financial impact that a business 
or institution may face as a result of a weather-related 
cause. A commonly discussed example of weather 
risk is when a utility company in a particular region 
faces an unusually hot summer or unusually cold 
winter; unable to meet the increased energy demand 
for heating or cooling, this company may be forced 
to import electricity from farther away (Alexandridis 
and Zapranis 2013). Other weather risks include 
snow fall total amounts (skiing industry), dates of 
a first frost (agriculture), hurricane activity (tour-
ism), and so forth. In each case a business faces 
a direct increase in expenses or decrease in rev-
enue as a result of a weather event. The Chicago 
Mercantile Exchange (CME) has a weather prod-
ucts division (http://www.cmegroup.com/trading/
weather) where tailored financial contracts designed 
to address weather risk are traded. A particular class 
of financial products known as weather derivatives 
were first listed on the CME in 1999 (Kunreuther 
and Michel-Kerjan 2009), the same year that the 
Weather Risk Management Association (WRMA, 
http://www.wrma.org/) was formally chartered. In 
2011 the size of the weather risk market had grown 
to an estimated 11.8 billion U.S. dollars (Benth and 
Benth 2013).

Weather derivatives link a set of payments to a set 
of predetermined weather outcomes. Common ref-
erences include Richards, Manfredo, and Sanders 
(2004), Dischel (2002), and Geman (1999). The most 
commonly traded weather derivative is the tempera-
ture derivative, which defines payments solely based 
on temperature outcomes. The building block for tem-
perature derivatives are heating and cooling degree 
days, defined for a single day at a single location as

HDD T( )= −max 65 , 0

CDD T( )= −max 65, 0 ,

where T is the average daily temperature measured in 
degrees Fahrenheit. The use of 65 degrees Fahrenheit 
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CME-traded temperature derivatives with a specific 
eye towards spatial dependence of locations. We 
take the point of view of a company which holds a 
portfolio of temperature derivatives, some of which 
will involve payments triggered by weather events. 
Whether the company directly sold the derivatives to 
various buyers or came to hold the obligations through 
trading is immaterial. What matters is the best estimate 
of combined risk from holding such a portfolio. There-
fore the paper will focus on estimating risk mea-
sures for losses, and will not focus on the premium/ 
revenue the company earned by accepting the risk in 
the first place.

Further, we explore quantifying the risk from tem-
perature derivatives with an eye towards trends due 
to climate change. The fifth assessment report from 
the Intergovernmental Panel on Climate Change has 
been released (IPCC 2013), and it predicts global 
increases in average temperatures. It also states that 
“it is extremely likely that human influence has been 
the dominant cause of the observed warming since 
the mid-20th century.” Computer model experiments 
under different carbon emissions scenarios give pro-
jections of future temperature rise in line with future 
greenhouse gas emissions. The Bulletin of the Ameri-
can Meteorological Society called for “very long-term 
hedging contracts” to help manage climate risk (Dutton 
2002). It seems likely that increasing concerns over 
climate change will continue to have an impact on 
temperature derivative markets, and climate trends 
must be incorporated into their study. The methodol-
ogy described in this paper incorporates long-term 
trends in temperature due to climate change.

Weather risk markets have the potential to impact 
the way some insurance companies operate with regard 
to weather-related risks. Mills (2005) discussed the 
scope of climate change risk to the insurance indus-
try. Erhardt and Smith (2014) explored a connection 
between weather derivatives, extremes, and insur-
ance. Since the financial outcomes of weather deriv-
atives are minimally correlated with other financial 
outcomes facing the insurance industry (Alexandridis 
and Zapranis 2013), investing in weather derivatives 
is one approach that an insurance company can take 

actuarial method of determining the premium would 
consider the cCDD index as a random variable. Deriv-
ing or estimating this distribution would allow the 
actuary to infer the resulting distribution of payments P,  
which of course then serves as the starting point for 
an actuarial method of pricing or ratemaking.

The temperature derivative described thus far applies  
to a single location. For multiple locations, one should 
realize that the financial performance of those loca-
tions are dependent, as the underlying weather variable 
could be dependent. In this paper we explore how the 
spatial dependence of temperature derivatives impacts 
financial risks. Currently, temperature derivatives are 
actively traded on the CME for 30 North American  
cities, whose locations are shown in Figure 1. Since 
the temperature at two nearby locations can be closely 
related, so too can the financial outcomes of tem-
perature derivatives for those cities. Spatial depen-
dence in weather derivatives has been explored in 
limited cases by Saltyte-Benth, Benth, and Jalins-
kas (2007), Saltyte-Benth and Saltyte (2011), and 
Erhardt and Smith (2014), but each paper considers 
limited cases. Here we aim to extend the reach of 
such cases by covering a wider class of tempera-
ture derivatives.

In this paper, we develop a methodology for mea-
suring the risk of holding an arbitrary portfolio of 

BO
NY

LV

TU

Locations of the 30 Cities

Figure 1. Locations of the 30 North American 
cities whose temperature derivatives are listed 
on the Chicago Mercantile Exchange. The four 
cities, Boston, New York, Las Vegas, and Tucson 
(which are highlighted throughout this paper), 
are labeled BO, NY, LV, and TU, respectively
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period of interest. Let {t ∈ T } be the set of all days 
within the time period of interest T . Then a cumulative 
CDD index is simply

cCDD d CDD d t
t
∑( ) ( )=
∈

T
T

, , ,

where T  is a time period of interest—most com-
monly one of the calendar months, a set of adjacent 
months, or one of the six-month periods April 1–Sep 30  
or October 1–March 31 (Jewson, Brix, and Ziehmann  
2005). Six-month contracts are commonly traded, 
and have been studied in other papers (Campbell and 
Diebold 2005; Erhardt 2014).

2.2. Actuarial risk measures

It can be useful to imagine a company that sells 
derivatives to various buyers for some premium, and 
then holds these obligations as a risk—the hope is 
that the realization of this risk is less than the total 
revenue brought in at the sale. Call L the random loss 
that the institution will ultimately have to pay. The 
exact realization of L comes after the last settlement 
date has passed. The specific mathematical relation-
ship linking this loss L to the degree-day settlement 
index (cCDD(T ) or cHDD(T )) will be outlined in 
later sections. Here it suffices to see that L is simply 
a function based on the random variable temperature, 
T, and that one can therefore build up distributions of 
L by constructing distributions of temperature T and 
degree-day indices.

We will estimate values for various actuarial risk 
measures as defined in Kaas et al. (2008). Definitions 
for risk measures in the actuarial literature are not 
universally agreed upon, so care should be taken. The 
value at risk is defined as

a aa a; min : . (2)VaR L Q Q P L Q( ) ( ){ }= = ≤ ≥

The VaR is easily obtained since the loss L is often 
a continuous random variable for larger values of a, 
and therefore the distribution function FL(l) = P(L ≤ l)  
is strictly increasing and has inverse distribution func-

to maximize returns for a given risk level. Addition-
ally, since the events which trigger a weather deriva-
tive payment arise from scientific laws governing the 
weather, the construction of probabilistic models for 
an actuarial method of pricing and measuring risk is 
possible (Jewson, Brix, and Ziehmann 2005).

2. The data and risk measures

2.1. Data

Daily temperature data were freely obtained from 
the National Climate Data Center (http://www.ncdc.
noaa.gov/cdo-web/). Specifically, we obtained data for 
the 30 North American cities whose temperature deriv-
atives are listed on the Chicago Mercantile Exchange. 
Locations of the cities are shown in Figure 1. At each 
location, measurements include the maximum daily 
temperature Tmax and minimum daily temperature 
Tmin in degrees Fahrenheit for the period January 1, 
1945, through August 30, 2014. Although SI units 
are common in much of the world, the Chicago Mer-
cantile Exchange lists all North American tempera-
ture derivatives in degrees Fahrenheit, so we follow 
this convention.

Let d = 1, . . . , D = 30 index the 30 cities, and let t 
be an index for time. Following the conventions used 
in weather derivative pricing (Jewson, Brix, and 
Ziehmann 2005; Alexandridis and Zapranis 2013), 
we define the daily observed temperature as

T d t T d t T d tobs min max( ) ( ) ( )( )= +,
1

2
, , .

For each day, cooling degree days are computed as

CDD d t T d tobs( ) ( )( )= −, max , 65, 0 ,

and heating degree days are computed as

HDD d t T d tobs( ) ( )( )= −, max 65 , , 0 .

Cooling and heating degree days are most commonly 
used to construct cumulative indices over some time 
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atives on the CME (Campbell and Diebold 2005). 
Summing degree days over six months allows one 
to use the normal approximation, since the length of 
summation is substantially longer than the length of 
temporal dependence in the data. The methodology 
is therefore substantially simpler than that needed for 
modeling shorter time periods.

Figure 2 shows the October–March cHDDs for 
the four representative cities. For each city, the mar-
ginal distribution is roughly normal. Neighboring 
pairs Boston–New York and Las Vegas–Tucson each 
show strong positive dependence in cHDDs in the 
respective scatterplots, while non-neighboring pairs 
show little to no dependence, as expected. Figure 3 
reinforces this point by plotting the linear correlation 

tion FL
−1. Then we simply have Qa = FL

−1(a ). Kaas et al. 
(2008) define the conditional tail expectation as

a a , (3)ECTE L L L Q( )( ) = >

which is the expected loss conditional upon exceed-
ing the VaR.

3. Long-term modeling of CDD  
and HDD indices

Here we will always refer to cumulative CDDs for 
the time period April 1–Sep 30, and cumulative HDDs 
for the time period October 1–March 31. These are 
two of the more commonly traded temperature deriv-
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Figure 2. October–March cumulative heating degree days for four 
representative cities. The neighboring pairs of Boston–New York and  
Las Vegas–Tucson show strong positive dependence, while pairs of cities 
much farther apart show little dependence
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significant at the 0.1 level, cCDDs and cHDDs were 
de-trended and put on a common year 2014 level. 
We did not de-trend data for a city whose trend esti-
mates were not significant at the 0.1 level. Some sta-
tistical output for trend estimation is shown in Table 1.

Readers may wonder about possible long dis-
tance spatial and/or temporal dependence introduced 
by climatic episodes such as El Niño, La Niña, the 
North Atlantic Oscillation, and other large-scale cli-
matic phenomena. We investigated the possibility 
that historical cCDD and cHDD totals for some of 
the 30 cities should be adjusted using the Oceanic 
Niño Index (ONI) (http://www.cpc.ncep.noaa.gov/
products/analysis_monitoring/ensostuff/ensoyears.
shtml). Specifically, we calculated the April–October 
average ONI for the period 1950–2014, and compared 
this to the historical cCDDs for each of the 30 cities 
over the same time period. Similarly, we computed 
November–March average ONI values of the ONI 
and compared these to the cHDDs for each of the 
30 cities from the period 1951–2014. We found no 
statistically significant trends or relationships that 

between two cities as a function of their geographic 
distance from one another (measured in degrees  
Lat-Lon). The general trend for both heating and cool-
ing is high correlation at small distances, which drops 
off as distance increases.

Figures 4 and 5 highlight positive trends in cCDDs 
and negative trends in cHDDs over time at the four 
representative cities. These trends are a result of hotter 
summers and milder winters since the mid-twentieth 
century. For all 30 cities whose linear trends were 

Figure 3. Linear correlation in the cCDDs and 
cHDDs as a function of the distance between the 
pairing of cities (measured in degrees)
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Figure 4. Linear trends in the April–September 
cumulative cooling degree days for four 
representative cities. Slopes for Las Vegas and 
Tucson are significantly different from zero  
at the 0.05 level
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Figure 5. Linear trends in the October–March 
cumulative heating degree days for four 
representative cities. Slopes for Las Vegas,  
New York, and Tucson are significantly different 
from zero at the 0.05 level
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where µX is the mean vector and ΣX is the cova-
riance matrix. Readers familiar with spatial inter-
polation and kriging should recognize that our goal 
is only to model the dependence at the particular 
locations of the 30 cities listed on the CME; there-
fore, it isn’t necessary to choose a Gaussian process 
model, interpolate to unobserved locations, and so 
forth. The 30 by 30 dimension covariance matrix 
ΣX is easily invertible from a computational cost 
standpoint. The covariance is estimated with the 
usual unbiased estimator

�
n

x x x xX i
i

n

i
T∑( )( )Σ =

−
− −

=

1

1
. (4)

1

The mean of the multivariate normal is estimated 
using

m̂ 1
. (5)

n
xX i

i
∑=

4. Models for losses

4.1. Affine models

An affine transformation of random vector X is 
any function of the form a + BX. Since our model 
assumes that cumulative degree days X follow a multi-
variate Gaussian distribution with D dimensional  
mean vector µX and D by D covariance matrix ΣX, 
then any affine transformations of X will similarly 
be Gaussian with only a change in the mean and 
variance. We begin by considering a simple weather 

suggested an adjustment. This does not suggest that 
future research will not uncover statistical value in 
using climate indices such as the ONI as covariates. 
For example, it may be that there is a lag of several 
months between a high ONI value and its impact on 
North American temperature, and perhaps this tem-
poral lag may differ for the 30 cities in North Amer-
ica based on their geographic location. All we state 
here is that the spatial dependence among locations is 
the largest omission to current actuarial temperature 
derivative pricing, and that further adjustments based 
on the ONI and similar indices are outside the scope 
of this paper. To recap, then, we have de-trended data 
for long-term climate trends but not any climate indi-
ces, and so the data xi discussed in the next section 
always refer to the de-trended temperature values.

3.1. The model for cCDDs and cHDDs

The longest temporal autocorrelations observed 
for daily temperature data were about 14 days long. 
None of the cities showed any remaining temporal 
autocorrelation in annual indices from one year to 
the next. Since cumulative totals were computed by 
summing CDDs or HDDs over roughly 180+ days, 
these “long-term” indices were sufficiently long to 
produce normally distributed margins without auto-
correlation by year. The natural choice for a model 
is to let Xi be the D = 30 dimensional random vector 
of cCDD (or cHDD) indices for year i = 1, . . . , n, 
and to model Xi as multivariate normal,

m , ,N∼X X X( )Σ

Table 1. Annual trend estimates for cumulative heating and cooling degree day 
indices for the four cities highlighted in Figures 4 and 5.

Index City Trend� SE Trend� �( ) t-Stat p-Value

cCDDs Boston 0.771 0.798 0.966 0.337

New York 2.399 1.283 1.870 0.067

Las Vegas 12.878 1.624 7.931 4.2 � 10−11

Tucson 9.710 1.720 5.644 4.2 � 10−7

cHDDs Boston −1.927 1.830 −1.053 0.296

New York −5.519 2.659 −2.075 0.043

Las Vegas −11.932 1.459 −8.177 1.7 � 10−11

Tucson −6.334 1.422 −4.456 3.4 � 10−5
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an affine transformation and therefore the distribu-
tion of L is normal as

m m sN NL b c B b B B bT
X

T
X

T
L L( )( )( )+ Σ =∼ , , ,2

where µL is the univariate mean of the loss, and s 2
L 

is the variance of the loss. Observe that one model 
fit to the CDD and HDD indices can be used to esti-
mate financial outcomes for any arbitrary collection 
of temperature derivatives. Different collections will 
involve different choices of the user-selected quanti-
ties b, c, and B, but the terms µX and ΣX will be the 
same. Estimates of the mean and variance of the finan-
cial payments L are simply

m mˆ ˆb c BL
T

X( )= +

and

ŝ ˆ .2 b B B bL
T

X
T= Σ

The Value at Risk (defined in Equation 2) is esti-
mated by

a F m
s

aaVaR L Q Q
Q L

L

( ) = = −



 ≥









� ; ˆ min :
ˆ

ˆ
,

where F (�) is the cumulative distribution function 
for the standard normal. A closed-form expression 
for the estimator of CTEa(L) (which was defined in 
Equation 3) can be derived by recognizing it is simply 
the expectation of a truncated normal (Green 2003),

m s

F m
s

f m
s

a
a

aˆ
ˆ

1
ˆ

ˆ

ˆ

ˆ
,�CTE L

Q
Q

L
L

L

L

L

L

( ) = +
− −





−





where f (�) is the standard normal density function.

4.2. Extending to strike values

While the previous subsection provided some nice 
mathematical results and a simple framework for esti-
mating some risk measures, nearly all weather deriva-

derivative that pays $20 per contract per degree day, 
with the sign of the payment determined by an entry 
level. Mathematically, this payment is

P n X E n E n Xi i i i i i i i( )= − = − +20 20 20 ,

where ni is the number of contracts for city i, Xi is 
the settlement value of the cumulative degree day 
index, and Ei is the entry level for city i. For the 
affine model of payments, the entry level refers to 
the point at which the sign of payments changes from 
positive to negative. For these weather derivatives 
there is always a payment; we will consider the more 
common case where payments are either positive 
or exactly zero in the next subsection. The amount 
$20 is selected since standard contracts traded on the 
CME pay $20 per degree per contract. As a simple 
example, if a company held 100 Atlanta cCDD con-
tracts for the April 1–October 31 period with entry 
level 2000 cCDDs, but the index ultimately settled 
at 2200 cCDDs, the company would lose 100 � 20 � 
(2200 − 2000) = 400,000.

Define vector cT as

c n E n ET ( )= − −20 , . . . , 20 ,1 1 30 30

and square matrix B as

�
�

� � � �
�

B

n

n

n

=



















20 0 0

0 20 0

0 0 20

1

2

30

Then we can express the payment vector P = c + BX, 
which is an affine transformation of vector X, which 
has a known multivariate normal distribution. The 
distribution of P is also multivariate normal, as

mNP c B B BX X
T( )+ Σ∼ , . (6)

The quantity which is ultimately of interest is L = ΣiPi, 
the total aggregate scalar loss. If we define vector  
bT = (1, . . . , 1) we can write L = bTP, which is again 
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where j/J < a < ( j + 1)/J, L[ j] is the j th order statistic, 
and w1 + w2 = 1 are the weights (whose relevance 
vanishes as J→∞). The conditional tail expectation 
can be estimated as

t
a aCTE L L Ij L VaR L

j
j

∑( ) = { }( )>
� i �

1
, (8);

where |t | is the number of losses above a; and I�VaR L
j

( )
and I L VaR Lj{ }( )> a� ;  is the indicator function which takes 
value 1 when the argument holds, and 0 otherwise.

5. Results

Estimated mean vectors µ̂X and covariance matrixes 
Σ̂X for both cCDDs and cHDDs are shown in Tables 2 
and 3. Since these tables can be used with any choice 
of vectors c and matrix B, they contain all informa-
tion needed to estimate aggregate losses for a collec-
tion of April–September cCDD and October–March 
cHDD temperature derivatives. Spatial dependence 
is naturally incorporated through the off-diagonal ele-
ments of Σ̂. Recall that since the data were de-trended 
to 2014 levels, some recognition of climate change 
trends was also incorporated.

Here we demonstrate the approach to computing 
the risk measures for the aggregate loss on a port-
folio of cCDDs using the strike model. Suppose an 
insurance company wishes to hold 100 contracts 
at each of the four cities highlighted in this paper 
(Boston, Las Vegas, New York, and Tucson). For 
each of these four cities, the strike level Ei will be 
100 CDDs higher than average cCDD values taken 
from µ̂X in Table 2. Thus, the four strike levels are 
865, 3723, 1148, and 3442. We have selected strike 
values above the means for these four cities to dem-
onstrate how zero dollar payments arise when none 
of the cities exceeds their respective strike values. 
To clarify, the company will pay amounts 20 � 100 � 
max(Xi − Ei, 0). The total loss is obtained by adding 
the individual losses, but a closed-form density for 
L is not easily obtained so we will use the simula-
tion based approach in Section 4.2, beginning with 

tives have a payment that is non-linear in relationship 
to degree day indices, and typically there are no nega-
tive payments. Instead, there is a large probability of 
a zero dollar payment which occurs when the strike is 
not exceeded. Here we show how the previous math-
ematical results can be used with a computational 
approach to consider weather derivatives whose pay-
ments are identically zero unless the entry level is 
exceeded by the degree day index. Mathematically, 
payments are

P n X Ei i i i( )= −20 max , 0

where ni is the number of contracts for city i, Xi is 
the value the cumulative degree day index settles at, 
and Ei is the strike level for city i—the amount that, 
once exceeded, dictates that non-zero payments are 
triggered. The key difference from the affine model 
is that now, in the event that Xi ≤ Ei, the payment is 
zero instead of negative. Hence it is the distribution 
of Pi |Pi > 0 that is a continuous distribution, and the 
distribution of Pi itself is a mixed discrete-continuous 
distribution with a point mass at Pi = 0.

Recall that our ultimate interest is in the quantity 
L = ΣiPi. The nonlinearity of the payment Pi makes 
closed-form distribution functions of L difficult 
to compute, so instead we turn to a computational 
approach:

1. Simulate a realization P′ from the Gaussian distri-
bution shown in Equation 6.

2. For i = 1, . . . , 30 define R′i = max (P′i , 0). This is 
simply replacing negative elements of P′ with zero.

3. Compute L′ = ΣiR′i
4. Repeat steps (1) - (3) J times.

The result is a collection of J realizations of the ran-
dom variable L, and from this distribution one can 
compute empirical estimates of all desired risk mea-
sures. In general J should be a very large number, in 
the hundreds of thousands or millions, which costs 
very little in terms of computational power. This out-
put can be used to estimate risk measures as

a; (7)1 2 1
� i iVaR L w L w Lj j( ) = +[ ] [ ]+
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and termed this the independence case. Here 24.2% of 
payments were identically zero, and the dashed line 
shows the density of the remaining 75.8% of non-zero 
payments. As expected, the variability and tail thick-
ness of the dependent solid line is larger than for the 
dashed independent line. The 99th percentiles are also 
shown, and as expected the dependent case shows a 
much larger high percentile. Risk measures are shown 
in Table 4.

6. Discussion

In this paper we fit models for cumulative heating 
and cooling degree days for 30 North American cities. 
Through the use of a multivariate normal distribu-

simulations of P. Specifically, the formulation of 
the multivariate normal distribution of P is:

• ni = 100 for i = 3,13,17, and 23, and 0 otherwise;
• E3 = 865; E13 = 3723; E17 = 1148; E23 = 3442; Ei = 0 

for all i not equal to 3,13,17,23
• The vector c = {ci, i = 1, . . . , 30} has non-zero 

entries only for c3 = −20 � n3 � E3 = −1,730,000;  
c13 = −7,446,000; c17 = −2,296,000; c23 = −6,884,000.

• The matrix B has non-zero entries only for B3,3 = 
B13,13 = B17,17 = B23,23 = 20 � 100 = 2000.

• µ̂X and Σ̂X are as shown in Table 2.

Thus, we have fully specified the multivariate Gauss-
ian in Equation 6. We use this distribution to simulate 
J = 100,000 realizations, and for each realization we 
replaced negative elements with zero, producing what 
we termed R′ in Section 4.2. Total losses were the sum 
of the payments for each of the 100,000 realizations. 
In these simulations, fully 36.1% of payments were 
identically equal to zero, meaning that none of the four 
cities exceeded the respective strike values. The den-
sity of the remaining 63.9% of non-zero pay ments is 
shown in Figure 6 as the solid line. For comparison, 
we repeated the methodology ignoring spatial depen-
dence (i.e., we set all off-diagonal terms of Σ̂X to zero), 

Figure 6. Empirical density estimates of non-zero losses using the 
strike value method described in section 4.2. The dependence 
distribution was built recognizing dependence among the four cities, 
while the independence distribution simulates independent losses 
for the four cities. Vertical dashed and solid lines show the 
99th percentiles for the two cases

0e+00 1e+06 2e+06 3e+06 4e+06

0.
0e

+
00

1.
0e

−
06

Densities of non−zero Losses

Dollars

D
en

si
ty

Dependence
Independence

Table 4. Estimated VaR and CTE values from Equations 7 
and 8 for a few high values of �, using both the dependence 
model and the independence model which ignores spatial 
dependence. Numbers are computed empirically as quantiles 
and means for values above the quantile.

a

Dependence Independence

Var� CTE� Var� CTE�

0.90 958,804 1,406,799 822,520 1,229,679

0.95 1,294,455 1,702,666 1,036,317 1,533,535

0.99 1,967,233 2,293,387 1,460,644 2,183,935
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A natural extension of this expertise might be found 
in weather products.

The most notable limitation of the method in this 
paper is its reliance on sufficiently long time periods 
to allow for normality in the degree day sums. We do 
not recommend this approach for modeling cumula-
tive degree days over time periods too short to allow 
the normal approximation to hold. Specifically, we 
do not recommend this approach for a month or even 
a few months. To model degree day totals for shorter 
time periods, a fundamentally different approach must 
be used. An obvious choice would be to first model 
temperature at the daily level, and then use these 
models to construct distributions cCDDs and cHDDs. 
Closed-form solutions would likely be hard to come 
by given the model complexity required for daily 
temperatures, so a simulation-based approach may 
be needed. Such approaches are beyond the scope of 
this paper, but we mention them not only to high-
light the limitation of the approach presented here for 
shorter time scales, but also to suggest future avenues 
of promising research.

Acknowledgments

The author wishes to thank the Research Grants 
Task Force of the Casualty Actuarial Society and the 
Committee on Knowledge Extension Research of the 
Society of Actuaries for their generous financial sup-
port of this project. The authors also wish to thank 
the two anonymous referees and the editorial staff of 
Variance for their helpful suggestions which improved 
the paper.

References
Alexandridis, A., and A. Zapranis, Weather Derivatives: Model-

ing and Pricing Weather-Related Risk, New York: Springer, 
2013.

Benth, F. and J. Saltyte Benth, Modeling and Pricing in Finan-
cial Markets for Weather Derivatives. Hackensack, NJ: World 
Scientific, 2013.

Campbell, S. D. and F. X. Diebold, “Weather Forecasting for 
Weather Derivatives,” Journal of the American Statistical 
Association 100 (no. 469), 2005, pp. 6–16.

tion, we incorporated spatial dependence among 
the 30 cities. Through affine transformations of 
cCDDs and cHDDs, we constructed normal distri-
butions for payments and demonstrated how this 
distribution could be used to estimate some com-
mon risk measures. For the far more commonly 
traded derivatives based on a strike value, we dem-
onstrated how a computational approach can sim-
ulate large numbers of losses and associated risk 
measures.

We demonstrated that historical data on degree 
day indices shows evidence of climate change consis-
tent with scientific papers documenting the changes, 
and found statistically significant positive trends for 
cCDDS over the summer and statistically significant 
negative trends for cHDDs over the winter. Statistical 
models which use data going back several decades 
should explicitly recognize these trends and de-trend 
all data to the common time period of interest. Other -
wise, models run the risk of slightly underestimat-
ing cCDDs and overestimating cHDDs. As men-
tioned earlier in the paper, we briefly investigated 
the need to adjust historical data based on El Niño 
and other climate oscillations but did not identify sta-
tistically significant relationships. We leave it as an 
open question to what degree incorporating external 
covariates based on climate indices would improve 
modeling.

A financial interest for the insurance industry comes 
about by recognizing that weather is minimally cor-
related with financial and insurance markets, and as 
such, the financial performance of weather deriva-
tives is largely independent from the financial per-
formance of other assets an insurer holds. This 
allows diversification and risk control. A busi-
ness interest is simply that weather products can be 
new insurance products. Some property and casu-
alty insurers are already in the business of selling 
insurance products to cover losses triggered from 
environmental or weather causes (crop, flood, and 
catastrophe insurance, to name only three). Sophis-
ticated ratemaking procedures can incorporate past 
weather data and/or seasonal weather forecasting. 



Variance Advancing the Science of Risk

226 CASUALTY ACTUARIAL SOCIETY VOLUME 9/ISSUE 2

Jewson, S., A. Brix, and C. Ziehmann, Weather Derivative 
Valuation. The Meteorological, Statistical, Financial and 
Mathematical Foundations, New York: Cambridge Univer-
sity Press, 2005.

Kaas, R., M. Goovaerts, J. Dhaene, and M. Denuit, Modern 
Actuarial Risk Theory, 2nd ed., New York: Springer, 2008.

Kunreuther, H., and E. Michel-Kerjan, At War with the Weather: 
Managing Large-Scale Risks in a New Era of Catastrophes, 
Cambridge, Mass.: MIT Press, 2009.

Mills, E., “Insurance in a Climate of Change,” Science 309, 
2005, pp. 1040–1044.

Richards, T., M. Manfredo, and D. Sanders, “Pricing Weather 
Derivatives,” American Journal of Agricultural Economics 
86, 2004, pp. 1005–1017.

Saltyte Benth, J., F. Benth, and P. Jalinskas, “A Spatial-Temporal 
Model for Temperature with Seasonal Variance,” Journal of 
Applied Statistics 34, 2007, pp. 823–841.

Saltyte Benth, J., and L. Saltyte, “Spatial-Temporal Model for 
Wind Speed in Lithuania,” Journal of Applied Statistics 38, 
2011, pp. 1151–1168.

Dischel, R., Climate Risk and the Weather Market: Financial 
Risk Management With Weather Hedges, London: Risk Pub-
lications, 2002.

Dutton, J. A., “Opportunities and Priorities in a New Era for 
Weather and Climate Services,” Bulletin of the American 
Meteorological Society 83, 2002, pp. 1303–1311.

Erhardt, R., “Mid-Twenty-First-Century Projected Trends in 
North American Heating and Cooling Degree Days,” Envi-
ronmetrics 26(2), 2014, pp. 133–144.

Erhardt, R., and R. Smith, “Weather Derivative Risk Measures 
for Extreme Events,” North American Actuarial Journal 18, 
2014, pp. 379–393.

Geman, H., Insurance and Weather Derivatives: From Exotic 
Options to Exotic Underlyings, London: Risk Publications, 1999.

Greene, W. H., Econometric Analysis, 5th ed., New York: Pearson 
Education, 2003.

IPCC (Intergovernmental Panel on Climate Change), “The Fifth 
Assessment Report (AR5) of the United Nations Intergovern-
mental Panel on Climate Change (IPCC),” Climate Change 
2013: The Physical Science Basis, IPCC WGI AR5. Tech. rep.




