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The Theory of Split Credibility

by Ira Robbin

AbSTRACT

This paper tackles the question: why should split credibility be 

better than credibility without a split? It corrects previous mis-

understandings and presents new formulas showing how param-

eter uncertainty is reduced by use of unsplit credibility and then 

how it might be further reduced by introduction of a split. It 

derives the formulas for unsplit and split credibility when losses 

follow the widely used collective risk model (CRM). It then 

demonstrates that split credibility can sometimes be ineffective 

in a CRM context and can sometimes produce negative cred-

ibility values or inversions of the primary and excess credibili-

ties. The paper concludes with a call for further research to find 

a stronger conceptual justification for the split credibility plan 

used in practice.
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1. Introduction

In an experience-rating plan with a primary-excess 
split, such as the one promulgated by the National 
Council on Compensation Insurance (NCCI) (2002) 
for rating workers compensation risks, individual 
risk losses are divided into primary and excess com-
ponents. A credibility-weighted estimate of each com-
ponent is obtained and the two estimates are added 
together to produce the final experience-adjusted esti-
mate of total loss.1

1.1. Conceptual foundation

But does this splitting procedure lead to a better 
estimate than credibility weighting without a split? 
Gillam (1989; 1992) and others have presented strong 
empirical evidence that a split actually does work bet-
ter. However, we have found no paper that correctly 
and completely explains why it should work better. 
The first purpose of this paper is to provide a rigorous 
conceptual foundation for split credibility. Then we 
will use that as a base to arrive at a clear understand-
ing of the conditions needed for splitting to produce 
materially superior estimates.

1.2. Incorrect intuitive justification

We start by explaining what is wrong with an intu-
itive justification for split credibility that is given in 
the literature. The incorrect justification is that use 
of a split breaks total loss into two components, each 
separately less volatile and, thus the argument goes, 
more credible than the total.2 However, as is gener-
ally accepted, excess layer loss is inherently more 

volatile than total loss.3 To be more precise, as shown 
in Appendix A, excess layer loss has a process risk 
coefficient of variation (CV) at least as large as the 
corresponding CV for total loss.

1.3. Volatility alone does not  
determine credibility

Because the excess layer is more volatile, can we 
therefore conclude it is less credible than the primary 
layer? Many readers may be thinking the answer is 
an obvious “yes.” Recalling further that such a rela-
tion between primary and excess layer credibility is 
designed into the NCCI plan,4 they might feel even 
more certain that excess layer credibility must be less 
than primary layer credibility. However, as we will 
later see, there is nothing in the general mathematics 
that forces such a relation. The reason is simply that 
“high volatility” is not synonymous with “low cred-
ibility.” Rather, credibility is conceptually the weight 
given to observed data, as opposed to the weight given 
to prior belief. It depends not only on volatility (pro-
cess risk), but also on the uncertainty in our initial 
belief (parameter risk).

An often-underappreciated aspect of credibility 
is that credibility is positively correlated with initial 
ignorance (parameter risk): the less we think we know 
in advance, the more willing we are to be swayed by 
the observed data, even if it is noisy. So, when we try 
to assess credibility in a split plan, we need to examine 
not only the process variances, but also the parameter 
variances of the split components. In general, with an 
arbitrary loss model, there is nothing to prevent a split 
from allocating a relatively larger portion of param-
eter risk than process risk to the excess layer. If that 
happens, the excess layer may end up having more 
credibility than the primary layer.

1The actual plan uses a formula that contains ballast and weight val-
ues. Venter (1987) shows this is equivalent to adding together separate 
credibility-weighted estimates of the primary and excess losses.
2In an otherwise excellent article that has been on the Casualty Actu-
arial Society examination syllabus for many years, Venter (1987) wrote 
that “both the primary and excess losses are less heavy-tailed than total  
losses: this seems obvious for primary losses. For excess losses, by elimi-
nating the smaller portion, enough losses are eliminated to bring up the 
average value and to reduce the probability of a loss being a large mul-
tiple of the average. This makes the excess losses less heavy-tailed and 
thus more predictable than total losses.”

3For example, Teng (1994) argues that workers compensation large 
dollar deductible and excess programs are riskier than full coverage pro-
grams due to the greater variability of excess losses.
4Using the formula from Venter (1987), ze = w • zp where w is the weight-
ing value, we see that the design of the plan forces the excess credibility 
to always be less than the primary credibility.
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In addition, when analyzing these components and 
their credibility, it is insufficient to consider them in 
isolation: their process covariance and parameter co-
variance5 both need to be considered.

1.4. Risk allocation and effective splitting

When we split losses, we induce allocations of 
the process risk and the parameter risk to the sepa-
rate components and to their process covariance and 
parameter covariance. Based on the realization that 
splitting leads to such allocations, we can then see 
that an effective split plan necessarily entails a trade-
off in which one component gets a higher credibility 
and the other, a lower credibility. The key to achiev-
ing an effective plan is thus to define components 
so as to separate a less predictable portion of losses 
from a more predictable one. To put it another way, a 
split will work if it helps us concentrate on the signal 
and ignore the noise.

1.5. Reduction of mean square 
parameter error with optimal credibility

To show that these understandings are, in fact, 
correct, we will start first by examining experience 
rating when there is no split. Using minimal mean-
squared error as the criterion for optimality, we will 
show that use of the optimal credibility value reduces 
the expected square error of the estimate of the mean 
(the parameter risk) by a ratio equal to that optimal 
credibility value.

For example, if the optimal credibility is 40% and 
the original expected parameter variance is 100, the 
optimally credibility-weighted estimate of the mean 
will have an expected square error of 60.

Thus optimal credibility has a dual role:

•	 It	is	the	best	weight	to	assign	to	observed	data	as	
opposed to prior belief in arriving at an estimate of 
the mean, and

•	 It	is	the	percentage	by	which	parameter	variance	is	
reduced by using the optimal weight on experience 
in computing the experience-adjusted estimate.

1.6. Reduction of mean square error 
with optimal split credibilities

We will then turn to an arbitrary split plan, where 
the split is any manner of dividing losses. We will 
derive optimal credibility formulas, where optimality 
here again denotes maximal reduction in the expected 
square error of the estimate of the mean. Our formu-
las are equivalent to formulas previously presented 
by Mahler (1987) with notation modified to facili-
tate interpretation. We will then study the reduction 
in mean square error when optimal credibility values 
are used, leading to a split credibility version of the 
error reduction formula. In the split model formula, 
we first allocate the original parameter variance to the 
components. Under this particular allocation,6 each 
component gets its own variance plus the covari-
ance. When optimal credibilities are used, the square 
error for each allocated component is reduced by its 
credibility.

Returning to the example in Section 1.5, suppose 
we split the losses in two, and suppose further the 
components have parameter variances of 60 and 20, 
respectively, and a parameter covariance of 10. Note 
this reconciles with a parameter variance of 100 
for the unsplit total, since 60 + 20 + 2 * 10 = 100. 
The allocations of the total parameter variance are 
therefore 70 (70 = 60 + 10) and 30 (30 = 20 + 10). 
If the optimal credibilities are 50% and 20%, then 
the mean square error is 70 * (100% – 50%) + 30 *  
(100% – 20%) = 35 + 24 = 59. Recall that the optimal 
unsplit credibility was 40% and that use of unsplit 

5Calculations have been done without including covariance. In particular, 
when Gillam (1989) computed parameters for the NCCI workers com-
pensation split experience-rating plan, he chose to omit the covariance 
terms from Mahler’s equations. His decision was based on a simplify-
ing assumption that he stated was “defensible more on the basis of its 
usefulness than its veracity.” Given the practical focus of Gillam’s work, 
this was a reasonable choice, but that should not be read as a theoretical 
justification for ignoring covariance.

6Note there are many possible ways of allocating covariance back to the 
individual components.
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The key to whether the split is effective depends 
critically on how much parameter uncertainty there is 
with respect to the severity of losses. In the extreme 
case where mean severity is fixed and only the mean 
claim counts are uncertain, then actual excess losses are 
just a noisy distraction from the true signal emanating 
from the primary loss. When that is the case, a split is 
very effective, and the smaller the split point the better. 
However, when severity is subject to significant param-
eter risk, splitting may not accomplish much at all.

1.9. Misbehavior of optimal split 
credibility values

Under the NCCI plan, credibility values are well-
behaved in two respects:

•	 Both	primary	and	excess	credibilities	are	between	
zero and unity and there are no negatives or values 
over 100%, and

•	 There	are	no	 inversions:	primary	credibilities	are	
always less than or equal to excess credibilities.

However, optimal split plan credibilities under the 
minimal MSE criteria do not necessarily obey these 
guidelines. If mean frequency is known to a fair degree 
of accuracy, while mean severity is quite uncertain,  
optimal credibility values may become inverted. Intui-
tively, in such a scenario, the primary layer results 
carry little information about severity, but it is infor-
mation about severity that is needed arrive at a better 
estimate of mean loss.

Mathematically, a negative credibility value for 
either the primary or the excess layer can emerge as a 
solution to the optimal mean square error equations. 
Intuitively, this could occur when a split allocates most 
process risk to one component and it also induces a 
sizeable parameter covariance. In such a situation, 
results from the non-volatile component may provide 
better information about the other component than its 
own results.

1.10. Split credibility when losses follow 
the collective risk model

We will examine split credibility under the Heckman  
and Meyers (1983) collective risk model (CRM). In 

credibility thus reduced square error from 100 to 60. 
Introduction of the split has reduced parameter error in 
this example, but only a modest amount from 60 to 59.

1.7. differential risk allocation 
determines split effectiveness

To study, in general, what might be gained by 
adopting a split plan, we will take the difference in 
the mean square estimation errors between the opti-
mal non-split and split plans. Based on the resulting 
formula, we will show split credibility is most effec-
tive at reducing mean square estimation error when 
the two components have relatively different amounts 
of process and parameter risk. If there is such a dif-
ferential allocation, the component with the lion’s 
share of parameter risk ends up with optimal credibil-
ity larger than the optimal credibility for the unsplit 
losses while the component with the lion’s share of 
process risk has optimal credibility smaller than the 
optimal credibility for the unsplit losses. If the split 
does not produce such a differential allocation of pro-
cess and parameter risk, it need not be appreciably 
more effective than a no-split plan.

1.8. Primary-excess splits

While an arbitrary split might not produce much 
of an improvement, one might hope a reasonable 
primary-excess split would do better. Such a split 
will allocate the volatile tail of severity to the excess 
layer so the excess layer will receive a dispropor-
tionate share of the overall process risk. However, 
as argued previously, we can say nothing about 
whether the split is effective unless we also know 
how the parameter risk gets allocated. That, in turn, 
depends on the structure of the loss model and its 
priors. With an arbitrary loss model and arbitrary 
priors, there is no reason the split could not allocate 
a proportion of the parameter risk that is smaller to, 
equal to, or greater than the proportion of the pro-
cess risk allocated to the excess layer. As a result, we 
arrive at the possibly disappointing conclusion that 
a primary-excess split does not, in general, signifi-
cantly improve accuracy.
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ence modification factor (Mod) for a risk. While the 
Mod is obtained from losses that are capped at the 
accident limit, it is then applied to initial expected 
losses that are uncapped to arrive at the final estimate 
of experience adjusted expected losses.

There are theoretical and practical justifications9 
for this capping and mod extension procedure. Con-
ceptually, it tames the severity tail that is often the key 
driver of overall process risk. This stabilizing effect 
tends to increase the credibility of the excess layer. 
It comes at a price, however; there is uncertainty in 
extrapolating from capped losses to uncapped losses. 
One course for future research is to use the meth-
ods developed in this paper to analyze optimal mean 
square error for Mod extension estimates.10

1.12. MSE derivation and CRM support 
for primary-excess split

Our conclusion is that the minimal mean square 
error credibility derivation does not provide strong 
conceptual support for a primary-excess split. Fur-
ther, with CRM losses, split credibility may or may 
not do appreciably better than unsplit credibility. 
In addition, optimal credibilities may not be well-
behaved: the model may produce negative credibili-
ties or primary-excess credibility inversions. Later we 
will end with very brief speculation on what could be 
done to provide more support for primary-excess split 
credibility.

2. No-split credibility

We start with a general no-split plan. Let A be the  
random variable representing actual historical loss.  
We suppose A is dependent on a possibly multi-
dimensional parameter, q, and define µ(q) = E[A  q] 
and s2(q) = Var(A  q). Let h be the prior distribution 
of q and use h to define E = E[µ(q)], s2 = E[s2(q)], 
and t2 = Var(µ(q)). Under this notation, s2 is a measure 

that model, claim counts are assumed to be condi-
tionally Poisson with a Gamma prior. Parameter risk 
for the claim counts is driven by the “contagion” 
parameter. Claim severities are conditionally expo-
nential and also have a Gamma prior. Parameter risk 
for severity is captured in the “mixing” parameter, 
which quantifies uncertainty about the scale. We will 
derive equations for split credibility under CRM. Our 
equations are equivalent to Mahler’s (1987), though 
we use a different notation to facilitate interpretation.

As might be expected based on prior discussion, a 
split does not automatically confer any great advan-
tage when the underlying losses follow the CRM. 
With some sets of parameters it works fairly well; 
with others it confers modest or even no improve-
ment at all over unsplit credibility. In some cases, 
a CRM can produce primary-excess credibility inver-
sions in which the optimal excess layer credibility is 
larger than the optimal primary layer credibility. For 
example, a primary-excess credibility inversion would 
be present if the optimal primary layer credibility was 
25% while the optimal excess layer credibility was 
40%. In still other cases, one can have primary cred-
ibilities over 100% and excess credibilities that are 
negative. Stranger still, there are scenarios in which 
the primary credibility is negative. The interplay of 
contagion, mixing and split point governs which sce-
nario will prevail.

1.11. Loss capping and mod extension

Under the NCCI experience rating plan individual 
accidents are subject to an accident limit, the State 
Accident Limit (SAL7), before being split into primary 
and excess components by the split point. The sum 
of credibility weighted primary and excess losses is 
compared to a calculated value of expected loss8 that 
reflects the accident limit. This produces the experi-

7Under the NCCI plan (2002), the State Accident Limit (SAL) is also 
used to define caps on multi-person accidents and occupational disease 
losses.
8The expected loss is derived from expected loss rates that are also  
adjusted to the development and law level of the experience period 
losses. See Gillam (1992) for an excellent and detailed description of 
the procedures used to put the loss rates at the level of the ratable losses.

9One practical advantage is that capping produces results less sensitive to 
the anomalies of loss development and claims reserving practices.
10Developing an estimate on limited losses and extending it using a mod 
factor to unlimited losses is another form of experience rating that is 
often done in its own right, without any subsequent splitting.
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eters are first randomly selected from the priors and 
then the values of the losses and sampled from the 
loss distributions with those selected parameters. Such 
a sequential procedure guarantees theoretical indepen-
dence between parameter error and conditional value 
error as expressed in Equation (2.3).

We next use standard techniques of basic calculus 
to find the credibility value that minimizes the square 
error. Taking the derivative of the square error with 
respect to z, we find:

d

dz
z z( )ε = σ − − τ2 2 1 . (2.4)

2

2 2

Next we set the derivative to zero and solve:

d

dz
z

z

( )

( )

ε = ⇒ σ + τ = τ

⇒ = τ
τ + σ

0

. (2.5)

2

2 2 2

2

2 2

So the credibility, z*, that minimizes mean square 
error is given as:

z = τ
τ + σ

= τ
λ

* . (2.6)
2

2 2

2

2

Using Equations (2.2) and (2.6), we see that the 
minimum mean squared error for the non-split linear 
estimator is given as:
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The “NS” label stands for “No-Split.” Using 
Equation (2.6), this minimal square parameter error 
can be written as:

z( ) ( )ε = τ σ
τ + σ

= τ − τ
λ





 = τ −NS 1 1 * . (2.8)0

2

2 2
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2
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2

of the process risk and t2 is a measure of parameter 
risk. We also set l2 = s2 + t2 so that l2 is the total vari-
ance of A.

In this construction each risk has a particular q 
value that we have no way of knowing in advance. 
Our initial knowledge is only about the distribution 
of the parameter, q.

Given an observation of A for a particular risk, we 
could use Bayes Theorem to obtain the posterior dis-
tribution, h(q  A).11 From this, we could in principle 
compute the conditional expected value, E[µ(q)  A]. 
However, the conditional expected value may be 
difficult to compute and so a linear mod formula is 
often used. Regarding z as a variable, the resulting 
linear estimate of the expected value of A is given as

A z A z E( )= + −• •
�

1 . (2.1)

Here credibility, z, is the weight given to the actual 
experience. We use the notation, z*, to denote the opti-
mal credibility value under the least mean square error 
criterion. To find this optimal credibility, we first write 
the mean square error as a function of the credibility:

E zA z E

z E A z

E E

z z

[ ]
[ ]

[ ]
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( )

( )
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The expectation is with respect to q and then with 
respect to A given q. In simplifying Equation (2.2), 
various cross terms vanish under the assumption the 
sampling deviation of actual results from the mean 
for a risk is independent of the deviation of the risk 
mean from the population mean. Specifically, we 
have assumed:

E A E[ ]( )( )( ) ( )− µ θ − µ θ = 0. (2.3)

This assumption is plausible because in the CRM 
and most other loss model constructions the param-

11In a more complete treatment, the actual experience, A, would explicitly 
depend on the number of years of observations. That would not change 
the qualitative conclusions to be reached in this paper.
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As before, we derive a formula for the mean square 
parameter error:

E z A z E z A

z E
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In obtaining this expression, we have assumed that 
the sampling deviation of actual results from the mean 
for each variable is independent of the deviation of 
the risk mean from the population mean for both vari-
ables. In mathematical notation, these assumptions 
can be written as:
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In the derivation of Equation (3.2), the assumptions 
in (3.3) are used to eliminate various cross terms. Note 
that the square error formula has other terms which do 
not vanish but which depend on the process and param-
eter covariance. These terms are present in Mahler’s 
formula, though in different notation. We express 
(3.2) using our notation, next expand expressions to 
arrive at terms that are polynomials of the credibilities, 
and then group them as follows:
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Since the initial square parameter error before any 
observations are made is t2, this equation says use 
of the optimal credibility value reduces mean square 
parameter error by a proportion that is equal to that 
optimal credibility value.

3. General split plan credibilities

Assume A can be written as the sum of two loss 
random variables: A = A1 + A2. In this generality, the 
split is not necessarily between primary and excess 
losses: it could be any way of splitting losses. We 
suppose each Ai is dependent on a possibly multi-
dimensional parameter, q, and define µi(q) = E[Ai(q)] 
and s2

i (q) = Var(Ai(q)). Also let C(q) = Cov(A1(q), 
A2(q)). Assume h is the prior distribution of q and 
use h to define Ei = µi = E[µi(q)], s2

i  = E[s2
i (q)],  

r = E[C(q)], ti
2 = Var(µi(q)), li

2 = si
2 + ti

2, and p = 
Cov(µ1(q), µ2(q)). Note that, in addition to the process 
and parameter risk terms for each loss component, 
we have also defined expected process covariance 
and parameter covariance terms. Set k = r + p so 
that k is the total covariance. Define s2 as the total 
process variance, t2 as the total parameter variance, 
and l2 as the total variance. We observe that s2 = s1

2 

+ s2
2 + 2r, t2 = t1

2 + t2
2 + 2p, and l2 = l1

2 + l2
2 +2k. The 

notation is summarized in Table 1.
The split credibility Mod formula12 is:

MOD
z A z E z A z E

E

( ) ( )
= + − + + −1 1

. (3.1)1 1 1 1 2 2 2 2

12As before, a more complete treatment would explicitly show depen-
dence on the number of years of observations. That would not change the 
qualitative conclusions to be reached in this paper.

Table 1. General split loss model notation

Notation

Loss Component A A1 Co A2

Mean µ µ1 µ2

Process Variance s2 s1
2 r s2

2

Parameter Variance t2 t1
2 p t2

2

Total Variance l2 l1
2 k l2

2
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As Mahler (1987) noted, the solutions of (3.8) are 
not really credibilities in the traditional sense, since, 
in this generality, one of them could be negative or 
have a value above unity. As proved in Proposition 2 
in Appendix B, the minimal mean square error for the 
split plan is given as:

SP
D
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( )( )
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− κ τ + π τ + π

















( )
1

2
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In Appendix B, it is also shown that Equation (3.9) 
can be reduced to:
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Here we have reintroduced the “*” denoting opti-
mal credibility to emphasize that the formula is only 
valid when optimal credibility values are used. The 
“SP” indicates the formula is for a split plan. This for-
mula extends the parameter error reduction formula 
from the no-split case. The initial mean square param-
eter error is the parameter risk. Under Formula (3.10), 
it is split, with each component taking its own param-
eter variance and the parameter covariance. Since the 
total covariance portion of the parameter variance is 
two times the parameter covariance, each component 
is allocated half of the parameter covariance contribu-
tion to the total parameter variance. These allocations 
are then reduced in proportion to the respective optimal 
credibility values. There are other ways to allocate the 
covariances, but under this particular allocation, one 
arrives at a generalization of Formula (2.8) in which 
optimal credibility is not only the best weight to use in 
a linear estimate of the mean, but also it is equal to the 
percentage reduction in the variance of the estimated 
mean achieved by using that optimal weight.

4. when does splitting reduce 
mean square parameter error?

To study whether a split plan reduces minimum mean 
square parameter error, we first define the reduction 
in minimal mean square parameter error: D(e0

2) = e0
2 

Using our notation to simplify further, we have:

z z z

z z z

ε = τ + λ − τ + π + λ
− τ + π + κ

2 ( )

2 ( ) 2 . (3.5)

2 2
1
2

1
2

1 1
2

2
2

2
2

2 2
2

1 2

We take partials with respect to the credibility 
parameters:

z
z z

z
z z

( )

( )

∂ε
∂

= λ − τ + π + κ

∂ε
∂

= λ − τ + π + κ

2 2 2

2 2 2 . (3.6)
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2
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2

2

2

2 2
2
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Setting the partials equal to zero, we obtain the 
system of equations:

z z

z z

( )
( )

λ + κ = τ + π
λ + κ = τ + π . (3.7)

1 1
2

2 1
2

2 2
2

1 2
2

Solving we find:

z
D

z
D

D

( ) ( )

( ) ( )

= λ τ + π − κ τ + π

= λ τ + π − κ τ + π

= λ λ − κ

(3.8)

where .

1

2
2

1
2

2
2

2

1
2

2
2

1
2

1
2

2
2 2

Example 1 demonstrates the credibility formulas 
in (3.8). Example 1 is shown with additional infor-
mation in Exhibit 1 Sheet 1.

Example 1. Split credibility example

Unsplit 
Credibility Split Credibility

Loss Component A A1 Covariance A2

Mean 100  50  50

Process Variance 400 100 70 160

Parameter Variance 200 100 25  50

Total Variance 600 200 95 210

MSE Optimal No-split 
Credibility

33.3%

D 32,975

MSE Optimal Split 
Credibility

58.0% 9.5%
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z
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( )

( )
( )

= τ
λ

= τ + τ + π
λ + λ + κ

= τ + π
λ + κ

= τ + π
λ + κ
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2

2 2

2 2

. (4.3)
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Since all the optimal credibilities are equal, it fol-
lows from Equation (4.1) that the split plan does not 
reduce mean square error. Note this result holds no 
matter what the process covariance is between the 
components. So, for example, a split where each 
component is equal to half the loss gains us nothing. 
Neither does a plan where we toss a fair coin to decide 
if a claim belongs to one component or the other. Of 
course, there is no intuitive reason to expect either of 
these split plans could improve the accuracy of our 
credibility-weighted estimate of the mean. More gen-
erally, our intuition is that a split cannot improve the 
accuracy of the final estimate if it does not meaning-
fully use additional information beyond that which 
was used for the no-split plan.

4.2. Formula for the difference  
in minimal mean square error

We are now ready to state several key formulas 
for the difference in minimal mean square error. The 
first expresses that difference in terms of the process 
and parameter variances and covariances:

D

( )
( )

( )
( )

( )
∆ ε =

λ
τ + π σ + ρ

− σ + ρ τ + π






1
. (4.4)0

2

2

1
2

2
2

1
2

2
2

2

The proof of this formula is shown in Corollary 2 
of Appendix B. The proof also yields the following 
important formula that expresses the mean square 
error reduction in terms of the square of difference of 
the resulting split credibility values:

D
z z( ) ( )∆ ε =

λ
−* * (4.5).0

2

2 1 2

2

This result is Theorem 2 in Appendix B.

4.3. what makes a split effective?

By definition, we regard a split as effective when 
it improves our estimate of the mean. More precisely, 

(NS) - e0
2(SP). In Corollary 1 of Appendix B it is proved 

that this can be expressed in terms involving the opti-
mal no-split and split credibilities:

z z

z

z z z z

( )( )
( )( )

( )( ) ( )( )

( )∆ε = τ − − τ + π −
− τ + π −

= τ + π − + τ + π −

1 * 1 *

1 *

*** * (4.1).
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2

1
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2
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In words, the difference in mean square parameter 
error is the parameter risk allocated to the first com-
ponent including its share of the parameter covariance 
times the difference between the optimal credibility 
of the first component and the optimal credibility of 
unsplit losses plus the corresponding term for the sec-
ond component.

4.1. Comparison of credibilities

We immediately see from Equation (4.1) that error 
improvement at least requires one of the split plan 
credibility values to be larger than the credibility from 
the original no-split plan. In this generality, where the 
split is arbitrary and not necessarily between primary 
and excess losses, there is no reason why the split 
plan should reduce mean square parameter error.

We will use Equation (4.1) to derive intuitively 
accessible formulas that summarize what is required 
for a split to reduce the minimal mean square param-
eter error. But, before presenting our main results, it 
is useful to consider a simple example to hone our 
intuition.

4.1.1. The even split example
Consider an “even split” where the two compo-

nents have the same process variance and the same 
parameter variance as seen, for instance, in Exhibit 1 
Sheet 2. In the general case of an even split, we have 
s1

2 = s2
2, t1

2 = t2
2 and p = t1t2. It follows that l1

2 = l2
2 

and that z1* = z2*. We derive:

z
( ) ( )

( ) ( )
( )( )

( )
( )

= λ τ + π − κ τ + π
λ λ − κ

= λ τ + π − κ τ + π
λ − κ λ + κ

= τ + π
λ + κ

*

. (4.2)
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Each component gets assigned a total process vari-
ance equal to the sum of its own process variance plus 
the process covariance. The parameter variance is allo-
cated the same way. Equation (4.4) implies that if the 
splitting leads to an allocation where each component 
has the same ratio of allocated parameter variance to 
allocated process variance under this particular alloca-
tion, then there will be no improvement at all in opti-
mal MSE due to the split. To state this mathematically,

( )τ + π
σ + ρ

= τ + π
σ + ρ

∆ ε =If , then 0. (4.6)1
2

1
2

2
2

2
2 0

2

This is demonstrated with a numerical example in 
Exhibit 1, Sheet 4.

4.3.3. different optimal credibility values  
by component

From Equation (4.5) it follows that an effective split 
is one that produces optimal credibility values that dif-
fer substantially for the two components. One can also 
argue this makes sense intuitively by reasoning back-
wards. If a split were to lead to optimal credibility val-
ues that were the same for both parts of the split, then 
one might as well have left them unified and applied a 
single credibility value to the undivided whole.

4.3.4. The impact of covariance
When comparing two different ways of splitting, 

the split with the larger process covariance is not 
necessarily any more or less effective than the other 
one. Compare the base case, Exhibit 1 Sheet 1, with 
Exhibit 1 Sheet 5. The split shown in Sheet 5 has a 
larger process covariance, but it is more effective: it 
reduces MSE more than the split in Sheet 1. In con-
trast, the split example in Sheet 6 has the same covari-
ances as the one in Sheet 5, but it is not as effective as 
the base case split. The conclusion is that the impact 
of covariance is complicated. The contrary examples 
in Sheet 5 and Sheet 6 were obtained by adjusting s1, 
s2, and r to exacerbate or diminish the differential 
allocation of process and parameter risk while obey-
ing the overall constraint that “s” stay fixed in the 
equation, s2 = s1

2 + s2
2 + 2r. The same non-definitive 

when the mean square error criterion is used to judge 
the quality of an estimate, an effective split is one 
that leads to a significant reduction in the least mean 
square error of our estimate in comparison with that 
obtained using the unsplit plan. So a split is effective 
if it produces a relatively large value for the differ-
ence in optimal mean square errors, D(e0

2).

4.3.1. The most effective split possible
Examining Equation (4.4), we see that the most 

effective split possible would be one that puts all the 
process risk in one component and all the parameter 
risk in the other. With a split that extreme, both the 
process and parameter covariances will be zero. Thus 
we would have p = r = k = 0 and it would follow 
from Equation (3.8) that one component would have 
credibility of 100% and the other would have cred-
ibility of 0%. Further, from Equation (3.10) it would 
follow that the mean square parameter error of the 
resulting split credibility estimate would be zero! In  
other words, our split credibility estimate would be 
exactly right because it is based on a perfect separa-
tion of noise from signal. Exhibit 1 Sheet 3 provides 
a numerical example.

In any realistic scenario it will be impossible to 
make such a clean split of the process and parameter 
risk. However, the intuition still holds. The key for a 
split to be effective is that it must lead to a propor-
tionately different allocation of the total process and 
total parameter variances.

4.3.2. Ineffective splits and proportional 
allocation

We have already seen that an even split is ineffec-
tive. This can be generalized using the process and 
parameter variance allocations from Equation (4.4) 
as displayed in Table 2.

Table 2. Equation (4.4) allocation of process and  
parameter variance

A1 A2

Allocated Process Variance s1
2 + r s2

2 + r

Allocated Parameter Variance t1
2 + p t2

2 + p
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X. Further suppose each X(i) is independent of the 
claim count. Define the actual loss, A, via: A = X(1) + 
X(2) + . . . + X(N). Now suppose N is parametrically 
dependent on a parameter, qN, and that X is para-
metrically dependent on a parameter, qX. Assume qN 
and qX have prior distributions that are independent. 
We will abuse notation and usually drop the subscripts, 
N and X on q. Define µN(q) = E[N  q], µX(q) = E[X  q], 
sN

2(q) = Var(N  q), and sX
2(q) = Var(X  q). Then take 

expec tations and variances with respect to the priors to 
define µN = E[µN(q)], µX = E[µX(q)], sN

2 = E[sN
2(q)], sX

2 = 
E[sX

2(q)], tN
2 = Var(µN(q)), and tX

2 = Var(µX(q)).
We will now derive the process and parameter 

variance of loss using terms based on the claim count 
and claim severity. The conditional mean and vari-
ance are given by:

A N X( ) ( ) ( )µ θ = µ θ µ θi . (5.1)

A N X N X( )( ) ( ) ( ) ( ) ( )σ θ = µ θ σ θ + σ θ µ θi i . (5.2)2 2 2 2

Taking expectations with respect to the priors, we 
find the process and parameter variances:

i iA N X N X X( )σ = µ σ + σ τ + µ . (5.3)2 2 2 2 2

i i iA N X N X N Xτ = τ τ + τ µ + µ τ . (5.4)2 2 2 2 2 2 2

Note in Equation (5.3), the expected process vari-
ance contains a term that includes the severity param-
eter variance.

Plugging these into the basic no-split credibility 
formula, Equation (2.6), we find the optimal cred-
ibility is given as:

z N X N X N X

N X N X N X N X N X X( )
= τ τ + τ µ + µ τ

τ τ + τ µ + µ τ + µ σ + σ τ + µ
• • •

• • • • •

* .

(5.5)

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

If we assume N is conditionally Poisson so that  
sN

2 = µN, the process variance is:

A N X X X( )σ = µ σ + τ + µ• . (5.6)2 2 2 2

result is true for splits with different parameter covari-
ances. Corresponding sets of counterexamples can be 
readily constructed along the same lines.

4.3.5. Effective split with negative credibility 
for one component

It is possible to have an effective plan that has a neg-
ative credibility value for one component. A particular 
instance is shown in Exhibit 1, Sheet 7. Such a situ-
ation may arise when one split component, the vola-
tile one, is given the lion’s share of the process risk, a 
very modest share of the parameter risk, and the split 
produces a parameter covariance roughly as large as 
the parameter variance of the volatile component. 
Because the volatile component has so much process 
risk and so little parameter risk, one would not want 
to give it any weight. The high parameter covariance 
allows us to gain more accurate information about 
the mean of the volatile component from the results 
of its better-behaved sister component than we can 
gain from the results of the volatile component itself. 
This provides some intuitive justification for how a 
negative credibility can occur and how a split with 
such a negative credibility component may nonethe-
less be effective.

5. Credibility with losses from a 
single severity type model

Now we will derive credibility formulas for losses 
that arise from a model in which claim counts are 
generated by a single random variable and each 
claim severity is conditionally an independent sam-
ple from the single severity distribution. We will 
further assume, to simplify the discussion, that our  
uncertainty about severity is confined to lack of 
precise knowledge of its scale. We refer to such a 
model as a Single Severity Type Model with Severity 
Scale Uncertainty. The CRM is an example of such 
a model.

To begin the mathematical derivation, let N be the 
number of claims and write X(i) for the loss from 
the ith claim. Assume each X(i) is an independent 
random sample of the severity random variable, 
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6. Split credibility with losses  
from a single type model

Next we derive comparable split credibility for-
mulas. Given a per occurrence split point, k, and 
an occurrence of size X, we define Xp = min (X, k) 
as the primary severity and Xe = X - min(X, k) as 
the excess severity. Observe, under this definition 
Xe will have a mass point at zero equal to the prob-
ability that X is less than or equal to the split point. 
In other words, Xe is not the conditional excess 
severity. We have adopted this approach so that the 
primary, excess, and total losses all have the same 
claim count distribution. This simplifies some der-
ivations. We now define the actual primary loss,  
Ap = Xp(1) + Xp(2) + . . . + Xp(N) and the actual 
excess loss, Ae = Xe(1) + Xe(2) + . . . + Xe(N). The 
primary and excess process and parameter vari-
ances are given as:

A N X N X Xp p p p( )σ = µ σ + σ τ + µi i . (6.1)2 2 2 2 2

A N X N X Xe e e e
( )σ = µ σ + σ τ + µi i . (6.2)2 2 2 2 2

A N X N X N Xp p p p
τ = τ τ + τ µ + µ τi i i . (6.3)2 2 2 2 2 2 2

A N X N X N Xe e e e
τ = τ τ + τ µ + µ τi i i . (6.4)2 2 2 2 2 2 2

We can derive the following formulas for the 
covariances:

E Cov A A

k

p e

N N X X X Np e e

[ ]( )
( )

ρ =

= σ − µ µ µ + µ µ• • • •

,

. (6.5)2

Cov E A E Ap e

N N X N X Xp e

[ ]( )
( )

π = θ θ

= τ + µ π + τ µ µ• • •

, [ ]

. (6.6)2 2 2

Here pX = Cov(E[Xp  q], E[Xe  q]) denotes the param-
eter covariance of the primary and excess severities. 
The derivations are shown in Appendix C.

So with conditionally Poisson claim counts, the 
formula for optimal credibility is given as:

z N X N X N X

N X N X N X N X X X( )
= τ τ + τ µ + µ τ

τ τ + τ µ + µ τ + µ σ + τ + µ
• • •

• • • •
* .

(5.7)

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

5.1. Credibility when losses follow  
the collective risk model

We will now examine the optimal credibility for-
mula, Equation (5.7), when account loss distributions 
follow the usual collective risk model. Let N be Pois-
son with parameter nc, where E[c] = 1 and Var(c) = c. 
Under these assumptions, we have µN = n, sN

2 = n, and 
tN

2 = cn2. The parameter, c, is called the contagion. Let 
X be conditionally exponential with mean sb where  
s > 0, E[b] = 1 and Var(b) = b. The parameter, b, is 
called the mixing parameter. With this notation we 
have µX = s, sX

2 = E[s2b2] = s2 (1 + b), and tX
2 = Var(sb) 

= s2b. It follows that µA = ns and:

E n E X ns E

ns b

A [ ][ ] [ ]
( )

σ = χ β = β
= +

• •

•

| 2

2 1 . (5.8)

2 2 2 2

2

Var n s

n s c b

A ( )
( )( )( )

τ = χ β
= + + −• 1 1 1 . (5.9)

2

2 2

Thus the optimal credibility is given as:

z
n s c b

n s c b ns b

n c b

n c b n b

( )( )( )
( )( )( ) ( )

( )( )( )
( )( )( ) ( )

= + + −
+ + − + +

= + + −
+ + − + +

•

•

•

•

*
1 1 1

1 1 1 2 1

1 1 1

1 1 1 2 1
. (5.10)

2 2

2 2 2

2

2

For a specific numerical example, suppose s = 10,  
n = 10, b = .25, and c = .20. Then using 5.8 the pro-
cess variance is 2 ? 10 ? 100 ? 1.25 = 2,500 and apply-
ing 5.9 the parameter variance is 100 ? 100 ? (1.25 ? 
1.20 - 1) = 5,000. Thus we find the credibility is 2/3 
or about 67%.
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Assuming claim counts are conditionally Poisson, 
the process variance terms simplify to:

A N X X Xp p p p( )σ = µ σ + τ + µi . (6.7)2 2 2 2

A N X X Xe e e e
( )σ = µ σ + τ + µi . (6.8)2 2 2 2

k N Xe
ρ = µ µi i . (6.9)

6.1. Split credibility formulas under the 
collective risk model

We will now apply the CRM structure of priors 
to evaluate the required terms in the split credibility 
formulas shown in (3.8). We already have the for-
mulas for the variances of the claims counts. Using 
the CRM assumption that severity is conditionally 
exponential, we may write the following formulas 
for the conditional means of the primary and excess 
severities.

s k s

s k s

X

X

p

e

( )( )
( )( )

( )

( )

µ θ = β − − β

µ θ = β − β

1 exp( .

exp . (6.10)

We can also derive the formulas for the conditional 
severity process variances:

dx x s x s

k k s

s k s

s s k k s

s k s

X

k

p ∫ ( ) ( )( )
( )( )
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∞
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−
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2 exp
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2 2 1

2 2

2 2

2 2

Now, in conformance with the CRM structure, 
assume that b is such that g = 1/b is Gamma distrib-

uted. Let g have shape parameter a and scale parame-
ter l such that E[g] = a/l and Var(g) = a/l2. It follows 
that E[b] = l/(a - 1) and E[b2] = l2/{(a - 1)(a - 2)} 
as shown in 6.13 and 6.14:
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It also follows that the density of b is given as:

h( ) ( )
( )

β = λ
Γ α

β −λ β( )
α

− α+ i exp . (6.15)1

With this density, we can derive the uncondi-
tional severities and the process and parameter vari-
ances and covariances. To ensure the derivations 
are clearly understood, we will show the first one 
in some detail.

E

E s k s

s d

s d k s

s
k s

X Xp p

∫

∫

[ ]
[ ]( ) ( )( )

( )

( )( )( )

( )

( )

( )

µ = µ θ

= β − − β

= β β λ
Γ α

β −λ β

− β β λ
Γ α

β − λ + β

= λ
α −

− λ
λ +













( )

( )

•

∞
•

α
− α+

∞
•

α
− α+

α−

1 exp(

exp

exp

1
1 . (6.16)

0

1

0

1

1



Variance Advancing the Science of Risk

42 CASUALTY ACTUARIAL SOCIETY VOLUME 7/ISSUE 1
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Finally we turn to the process and parameter covari-
ances of the severity. We can derive:
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This expression is the formula for the limited 
expected value of a Pareto severity distribution with 
scale, sl, and shape parameter, a.

Recall we have also assumed in Section 5.1 that 
E[b] = 1 and that Var(b) = b. It follows immediately 
from (6.13) that l = a - 1 and we can then use (6.14) 
to show a = 2 + 1/b:
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Using this to substitute into (6.16), we have:
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Given the way we have defined Xe, it follows that:
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Using (6.11), (6.12), and (6.17) and applying sim-
ilar logic, we can derive the following formulas for 
the severity process and parameter variances:
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is the scenario under which a primary-excess split 
will be effective and behave in the usual way actu-
aries expect. The primary layer in the example has 
92% credibility and the excess layer has only 11%. 
The introduction of the split reduced optimal MSE 
by roughly 12% of optimal MSE of the unsplit cred-
ibility estimate.

However, under the CRM a choice of parameters 
that puts more parameter risk in the excess layer can 
produce an inversion of primary and excess credibil-
ities in a plan which is still effective. In Exhibit 2, 
Sheet 3, the severity mixing parameter is reset back 
to 0.250 while the contagion is reduced to 0.020. This 
results in a primary credibility of only 3% and an 
excess credibility 72%. Such an inversion of primary 
and excess credibilities can never happen in the NCCI 
split rating plan. The split in this example reduces 
MSE by 9% of the MSE of the unsplit estimate.

Finally in Exhibit 2, Sheet 4 is an example of 
unusual behavior in which the primary credibility 
is negative and the excess credibility is positive. 
This is achieved by reducing mean claim counts 
and count parameter risk while boosting mean 
severity and severity risk. The primary layer ends 
up with a very modest parameter variance, one 
that is smaller than the parameter covariance. In 
the example, primary credibility is -33% and the 
excess credibility is 43%.

7.1. Effectiveness and well-behaved 
primary-excess splits

We say a primary-excess split plan is effective if it 
appreciably reduces mean square error and we say it 
is well-behaved if it has no primary-excess credibility 
inversions and all credibility values are between zero 
and unity.

The CRM examples show that, with the right 
set of parameters, there are MSE optimal primary-
excess split credibility plans that are both effective 
and well-behaved. Based on the examples, we see 
this happens when:

•	 There	 is	 substantial	 parameter	 risk	 due	 to	 claim	
count uncertainty,

While these formulas look forbidding, they are 
actually not too difficult to program. In the next Sec-
tion, we will use the formulas in Section 6 to gen-
erate unsplit and split credibilities under the CRM 
structure.

7. Split credibility results  
for CRM models

With the formulas derived in Section 6, we have 

enough to compute split credibilities and the error 

reduction due to a split under CRM. We will look at 

examples to illustrate that some of the undesirable 

behaviors that can exist under an arbitrary split plan 

can also arise under a primary-excess split plan oper-

ating on an underlying CRM structure. First, recall 

the example at the end of Section 5.1 in which the 

mean claim count is 10, the mean severity is 10, the 

contagion, c, is .250 and the severity mixing param-
eter, b, is 0.200. In this example, total mean loss is 
100 and we had previously seen the optimal unsplit 
credibility is 67%. If we now introduce a split point 
of 10, we find, as shown in Exhibit 2, Sheet 1 that 
the optimal primary and excess credibilities are both 
67%. As we know from Equation (4.5), this implies 
the primary-excess split is no better than the un-split 
plan. We can also see from Exhibit 2, Sheet 1 that 
this is an example of proportional allocation of pro-
cess and parameter risk in which the primary layer 
gets 36% of the process variance and 36% of the 
parameter variance under the covariance allocation 
in Table 2. Thus, it also follows from Equation (4.6) 
that this split is ineffective when the loss model is the 
CRM with the parameters given.

With other parameters, this same split can be 
effective. In Exhibit 2, Sheet 2, the assumptions are 
the same as in Sheet 1 except the mixing parameter 
is reduced from 0.250 to 0.025. With uncertainty 
about severity dramatically reduced, the excess 
layer gets a modest allocation of parameter risk 
and large allocation of process risk. The opposite 
is true for the primary layer: it has less process risk 
and more or the parameter risk allocated to it. This 
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extended that error reduction interpretation to apply 
in a split credibility context.

By taking differences and simplifying, we found a 
formula for the reduction in mean square parameter 
error attributable to splitting. Interpreting this formula, 
we found that mean square error of the estimate would 
be effectively reduced if the split produced a differen-
tial allocation of process and parameter risk. We also 
saw that credibility for one component had to be bigger 
and credibility for the other component smaller than 
the credibility for the unsplit total in order for there to 
be any error reduction from splitting.

We have shown with examples using the standard 
CRM that a primary-excess split does not always 
improve accuracy to any great degree, nor does it 
always produce non-negative credibility values or 
a primary layer credibility that is bigger than the 
excess layer credibility. We saw that these disquiet-
ing results were not an artifact of making odd param-
eter choices but were inherent in the nature of the 
primary-excess splitting process operating on plau-
sible models with reasonable parameter selections.

To summarize, this work has established a solid 
mathematical foundation for split credibility. How-
ever, it has also highlighted potential weakness: under 
a standard model such as the CRM, primary-excess 
splitting does not automatically confer a great advan-
tage; nor does it produce well-behaved credibility 
values. It is possible a model having different types 
of claims with different severities or other more com-
plex severity parameter risk structure might allow a 
more effective split of noise from signal while at the 
same time preventing inversions and negative cred-
ibility values. More support for splitting might also 
be found by investigating optimality criteria different 
from minimal mean square error, or perhaps by study-
ing use of optimal credibilities subject to constraints 
that promote good behavior. Perhaps most promising 
is to carry the error analysis further to a plan that has a 
split on capped losses and also uses Mod extension to 
estimate total uncapped losses. This is the actual type 
of plan used by the NCCI. Work along these or simi-
lar lines might provide a stronger conceptual founda-
tion for the use of split credibility.

•	 Most	process	risk	is	due	to	volatility	of	severity,
•	 The	 split	 allocates	 a	 disproportionate	 amount	 of	

parameter risk to the primary layer
•	 The	 split	 allocates	 a	 disproportionate	 amount	 of	

process risk to the excess layer.

The CRM structure with its single severity subject to 
scale parameter uncertainty readily allows parameter 
selections that satisfy these conditions.

However the CRM examples also show that a 
primary-excess split does not have to produce an 
effective or well-behaved plan. An effective plan 
with inversions can results when severity parameter 
risk drives the overall parameter risk and the split 
puts a relatively large amount of parameter risk in 
the excess layer. In such a scenario, the effect of a 
split intuitively is to deprive the primary layer of 
much of the information about severity and thus to 
diminish its allocation of parameter risk and there-
fore diminish the primary layer credibility. There 
is nothing in the structure of the model to prevent 
the primary layer credibility from falling below the 
excess layer credibility. From an a priori perspective, 
there is nothing anomalous or bizarre about such sce-
narios. Why can’t we have a fairly small uncertainty 
about mean claim counts and larger relative uncer-
tainty about mean severity, as in Exhibit 2, Sheet 3? 
From this perspective, middle scenarios in which 
split credibility is well-behaved, but only modestly 
effective, also seem quite reasonable.

8. Conclusion

To summarize, we have shown that analysis of 
split experience rating requires analysis of the alloca-
tion of the process and parameter risk to the primary 
and excess layers and to the covariances between 
the layers. We stressed it is insufficient to focus on 
volatility alone: low volatility is not synonymous 
with high credibility. We have derived formulas for 
the mean square parameter errors in the unsplit and 
split plans. We showed that credibility is the ratio by 
which parameter risk is reduced in an optimal esti-
mate as well the weight given to experience versus 
prior belief in the linear estimation formula. We then 
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Exhibit 1 Sheet 2. Even Split is Ineffective

Unsplit Credibility Split Credibility

Loss Component A A1 Covariance A2

Mean 100 50 50
Process Variance 400 120 80 120
Parameter Variance 200 90 10 90
Total Variance 600 210 90 210

MSE Optimal No-split Credibility 33.3%

D 36,000

MSE Optimal Split Credibility 33.3% 33.3%

Formula 4.4 Variance Allocations
Allocated Process Variance 200 200
Allocated Parameter Variance 100 100
Total Variance Allocation 300 300

Initial MSE 200 200
MSE of Credibility Estimate 133 133
Reduction in MSE 67 67
Reduction in MSE as % of Initial MSE 33.3% 33.3%
Addtl reduction in MSE due to split n/a 0
Addtl reduction as % of Initial MSE n/a 0.0%
Addtl reduction as % of MSE under no-split plan n/a 0.0%

Exhibit 1 Sheet 1. Split Credibility Example: Base Case

Unsplit Credibility Split Credibility

Loss Component A A1 Covariance A2

Mean 100 50 50
Process Variance 400 100 70 160
Parameter Variance 200 100 25 50
Total Variance 600 200 95 210

MSE Optimal No-split Credibility 33.3%

D 32,975

MSE Optimal Split Credibility 58.0% 9.5%

Formula 4.4 Variance Allocations
Allocated Process Variance 170 230
Allocated Parameter Variance 125 75
Total Variance Allocation 295 305

Initial MSE 200 200
MSE of Credibility Estimate 133 120
Reduction in MSE 67 80
Reduction in MSE as % of Initial MSE 33.3% 39.8%
Addtl reduction in MSE due to split n/a 13
Addtl reduction as % of Initial MSE n/a 6.5%
Addtl reduction as % of MSE under no-split plan n/a 9.7%
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Exhibit 1 Sheet 3. Perfect Split of Process and Parameter Risk Produces a Perfect Estimate

Unsplit Credibility Split Credibility

Loss Component A A1 Covariance A2

Mean 100 50 50
Process Variance 400 — 0 400
Parameter Variance 200 200 0 -—
Total Variance 600 200 0 400

MSE Optimal No-split Credibility 33.3%

D 80,000

Split Credibility 100.0% 0.0%

Formula 4.4 Variance Allocations
Allocated Process Variance -— 400
Allocated Parameter Variance 200 -—
Total Variance Allocation 200 400

Initial MSE 200 200
MSE of Credibility Estimate 133 0
Reduction in MSE 67 200
Reduction in MSE as % of Initial MSE 33.3% 100.0%
Addtl reduction in MSE due to split n/a 133
Addtl reduction as % of Initial MSE n/a 66.7%
Addtl reduction as % of MSE under no-split plan n/a 100.0%

Exhibit 1 Sheet 4. Same Proportional Allocation of Process and Parameter Risk is Ineffective

Unsplit Credibility Split Credibility

Loss Component A A1 Covariance A2

Mean 100 50 50
Process Variance 400 100 80 140
Parameter Variance 200 80 10 100
Total Variance 600 180 90 240

MSE Optimal No-split Credibility 33.3%

D 35,100

MSE Optimal Split Credibility 33.3% 33.3%

Formula 4.4 Variance Allocations
Allocated Process Variance 180 220
Allocated Parameter Variance 90 110
Total Variance Allocation 270 330

Initial MSE 200 200
MSE of Credibility Estimate 133 133
Reduction in MSE 67 67
Reduction in MSE as % of Initial MSE 33.3% 33.3%
Addtl reduction in MSE due to split n/a 0
Addtl reduction as % of Initial MSE n/a 0.0%
Addtl reduction as % of MSE under no-split plan n/a 0.0%
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Exhibit 1 Sheet 6. Increasing Process Covariance Can Reduce Effectiveness

Unsplit Credibility Split Credibility

Loss Component A A1 Covariance A2

Mean 100 50 50
Process Variance 400 110 75 140
Parameter Variance 200 100 25 50
Total Variance 600 210 100 190

MSE Optimal No-split Credibility 33.3%

D 29,900

MSE Optimal Split Credibility 54.3% 10.9%

Formula 4.4 Variance Allocations
Allocated Process Variance 185 215
Allocated Parameter Variance 125 75
Total Variance Allocation 310 290

Initial MSE 200 200
MSE of Credibility Estimate 133 124
Reduction in MSE 67 76
Reduction in MSE as % of Initial MSE 33.3% 38.0%
Addtl reduction in MSE due to split n/a 9
Addtl reduction as % of Initial MSE n/a 4.7%
Addtl reduction as % of MSE under no-split plan n/a 7.1%

Exhibit 1 Sheet 5. Increasing Process Covariance Can Improve Effectiveness

Unsplit Credibility Split Credibility

Loss Component A A1 Covariance A2

Mean 100 50 50
Process Variance 400 90 75 160
Parameter Variance 200 100 25 50
Total Variance 600 190 100 210

MSE Optimal No-split Credibility 33.3%

D 29,900

MSE Optimal Split Credibility 62.7% 5.9%

Formula 4.4 Variance Allocations
Allocated Process Variance 165 235
Allocated Parameter Variance 125 75
Total Variance Allocation 290 310

Initial MSE 200 200
MSE of Credibility Estimate 133 117
Reduction in MSE 67 83
Reduction in MSE as % of Initial MSE 33.3% 41.4%
Addtl reduction in MSE due to split n/a 16
Addtl reduction as % of Initial MSE n/a 8.1%
Addtl reduction as % of MSE under no-split plan n/a 12.1%
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Exhibit 1 Sheet 7. A Split with a Negative z for One Component Can Be Effective

Unsplit Credibility Split Credibility

Loss Component A A1 Covariance A2

Mean 100 50 50
Process Variance 400 110 75 140
Parameter Variance 200 125 25 25
Total Variance 600 235 100 165

MSE Optimal No-split Credibility 33.3%

D 28,775

MSE Optimal Split Credibility 68.6% 211.3%

Formula 4.4 Variance Allocations
Allocated Process Variance 185 215
Allocated Parameter Variance 150 50
Total Variance Allocation 335 265

Initial MSE 200 200
MSE of Credibility Estimate 133 103
Reduction in MSE 67 97
Reduction in MSE as % of Initial MSE 33.3% 48.7%
Addtl reduction in MSE due to split n/a 31
Addtl reduction as % of Initial MSE n/a 15.3%
Addtl reduction as % of MSE under no-split plan n/a 23.0%
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Exhibit 2 Sheet 1. Non-Split and Primary-Excess Split Credibility Plans under  
CRM Ineffective Split

Inputs Notation Value

Mean Claim Count n 10.000

Mean Severity s 10.000

Severity Mixing Parameter b 0.250

Claim Count Contagion c 0.200

Split Point k 10.000

Results Total Non-Split Primary Excess Split

Claim Counts
Mean 10.000 10.000 10.000
Process Variance 10.000 10.000 10.000
Parameter Variance 20.000 20.000 20.000

Severity

Mean 10.000 5.981 4.019
Process Variance 125.000 12.086 88.025
Parameter Variance 25.000 1.200 16.388
Process Covariance 12.445
Parameter Covariance 3.706

Loss

Mean 100.000 59.812 40.188
Process Variance 2,500 491 1,206
Parameter Variance 5,000 860 2,290
Process Covariance 402
Parameter Covariance 925
Total Covariance 1,327
Total Variance 7,500 1,350 3,495

Credibility
Numerator 5,000 1,971,464 1,971,464
Denominator 7,500 2,957,196 2,957,196
Optimal z 66.7% 66.7% 66.7%

Error
MSE 5,000 1,667 1,667
MSE Reduction 3,333 Addl MSE Reduction 0

Variance Allocation

Process Variance 2,500 892 1,608
  Process Var Alloc % 33.3% 35.7% 64.3%
Parameter Variance 5,000 1,785 3,215
  Param Var Alloc % 66.7% 35.7% 64.3%
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Exhibit 2 Sheet 2. Non-Split and Primary-Excess Split Credibility Plans under  
CRM Effective Split

Inputs Notation Value

Mean Claim Count n 10.000

Mean Severity s 10.000

Severity Mixing Parameter b 0.025

Claim Count Contagion c 0.200

Split Point k 10.000

Results Total Non-Split Primary Excess Split

Claim Counts
Mean 10.000 10.000 10.000
Process Variance 10.000 10.000 10.000
Parameter Variance 20.000 20.000 20.000

Severity

Mean 10.000 6.277 3.723
Process Variance 102.500 12.783 62.935
Parameter Variance 2.500 0.167 1.390
Process Covariance 13.391
Parameter Covariance 0.471

Loss

Mean 100.000 62.768 37.232
Process Variance 2,050 523 782
Parameter Variance 2,300 808 444
Process Covariance 372
Parameter Covariance 524
Total Covariance 896
Total Variance 4,350 1,331 1,226

Credibility
Numerator 2,300 765,277 95,099
Denominator 4,350 828,993 828,993
Optimal z 52.9% 92.3% 11.5%

Error
MSE 2,300 1,084 959
MSE Reduction 1,216 Addl MSE Reduction 125

Variance Allocation

Process Variance 2,050 896 1,154
  Process Var Alloc % 47.1% 43.7% 56.3%
Parameter Variance 2,300 1,332 968
  Param Var Alloc % 52.9% 57.9% 42.1%
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Exhibit 2 Sheet 3. Non-Split and Primary-Excess Split Credibility Plans under  
CRM Credibility Inversion: ze > zp

Inputs Notation Value

Mean Claim Count n 10.000

Mean Severity s 10.000

Severity Mixing Parameter b 0.250

Claim Count Contagion c 0.020

Split Point k 10.000

Results Total Non-Split Primary Excess Split

Claim Counts
Mean 10.000 10.000 10.000
Process Variance 10.000 10.000 10.000
Parameter Variance 2.000 2.000 2.000

Severity

Mean 10.000 5.981 4.019
Process Variance 125.000 12.086 88.025
Parameter Variance 25.000 1.200 16.388
Process Covariance 12.445
Parameter Covariance 3.706

Loss

Mean 100.000 59.812 40.188
Process Variance 2,500 491 1,206
Parameter Variance 2,750 194 1,704
Process Covariance 402
Parameter Covariance 426
Total Covariance 828
Total Variance 5,250 685 2,910

Credibility
Numerator 2,750 40,533 944,757
Denominator 5,250 1,306,291 1,306,291
Optimal z 52.4% 3.1% 72.3%

Error
MSE 2,750 1,310 1,190
MSE Reduction 1,440 Addl MSE Reduction 119

Variance Allocation

Process Variance 2,500 892 1,608
  Process Var Alloc % 47.6% 35.7% 64.3%
Parameter Variance 2,750 620 2,130
  Param Var Alloc % 52.4% 22.5% 77.5%
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Exhibit 2 Sheet 4. Non-Split and Primary-Excess Split Credibility Plans under 
CRM Negative Primary Credibility

Inputs Notation Value

Mean Claim Count n 4.000

Mean Severity s 25.000

Severity Mixing Parameter b 0.250

Claim Count Contagion c 0.100

Split Point k 5.000

Results Total Non-Split Primary Excess Split

Claim Counts
Mean 4.000 4.000 4.000
Process Variance 4.000 4.000 4.000
Parameter Variance 1.600 1.600 1.600

Severity

Mean 25.000 4.452 20.548
Process Variance 781.250 1.526 761.389
Parameter Variance 156.250 0.042 152.014
Process Covariance 9.167
Parameter Covariance 2.097

Loss

Mean 100.000 17.807 82.193
Process Variance 6,250 86 5,343
Parameter Variance 3,750 32 3,351
Process Covariance 411
Parameter Covariance 183
Total Covariance 594
Total Variance 10,000 118 8,694

Credibility
Numerator 3,750 -224,869 288,835
Denominator 10,000 672,661 672,661
Optimal z 37.5% 233.4% 42.9%

Error
MSE 3,750 2,344 2,305
MSE Reduction 1,406 Addl MSE Reduction 39

Variance Allocation

Process Variance 6,250 497 5,753
  Process Var Alloc % 62.5% 7.9% 92.1%
Parameter Variance 3,750 216 3,534
  Param Var Alloc % 37.5% 5.8% 94.2%
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A Ae
≤CV CV . (A.5)

Proof: We will take the derivative of the square 
of the process CV with respect to the attachment. 
To do this, we need formulas for the derivatives of 
the square of the expected excess severity and the 
expected square of excess severity:

E X

k k
x k dF x

G k

e

X Xk

X X

e

e

∫
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∂
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2 . (A.7)
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The derivative of the square of the CV of excess 
loss is therefore:

CV

k

E X G kA X e X X

N X

e e e

e

( ) ( )
( )

[ ] ( )∂
∂

= − µ + µ
µ µ

2 2
. (A.8)

2 3 2

4

This derivative will be non-negative if:

E X G kX e Xe
( ) [ ] ( )µ ≤ • . (A.9)

2 2

Now consider the extreme case in which the sever-
ity distribution above the attachment, k, consists of 
a single mass point of probability GX(k) at a point,  
y + k. It follows in that case that:

y G kX Xe
( )µ = • . (A.10)

We will show the process coefficient of variation 
(CV) of excess loss is at least as large as the process 
CV for total loss.

Let N denote the claim count and let X denote 
the claim severity. Let A stand for total loss so that  
A = X(1) + X(2) + . . . + X(N), where the X(i) are inde-
pendent trials of X. Assuming N is Poisson, the mean 
and variance of A are given as:

A N Xµ = µ µ• . (A.1)

E XA N [ ]σ = µ • . (A.2)2 2

Using CVA to denote the process Coefficient of 
Variation of A, it follows that:

E X
A

N X

[ ]=
µ µ•

CV . (A.3)2

2

2

Given an attachment, k, define the excess severity, 
Xe, via Xe = X-min(X, k), and excess loss, Ae = Xe(1) 
+ Xe(2) + . . . + Xe(N). The square of the process CV 
of excess loss is:

E X
A

e

N X

e

e

=
µ µ•

CV
[ ]

. (A.4)2

2

2

We will now mathematically state and prove the 
result that excess layer CV is greater than CV for 
total loss.

Proposition 1: The CVs of excess and total layer 
loss satisfy the inequality:

Appendix A: Coefficients of Variation 
for Excess and Total Loss
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E X y G ke X[ ] ( )= • . (A.11)2 2

So in the extreme case we have:

E X G kX e Xe
( ) [ ] ( )µ = • . (A.12)

2 2

This implies the derivative of the CV of excess 
loss is zero for the extreme case in which the tail 
consists of a point mass. In any other case, the 

inequality will hold strictly. We can thus conclude 
the derivative of the square of the process CV of 
excess loss is non-negative, where the derivative is 
taken with respect to the attachment point for excess 
loss. Since this is true for any attachment point, it 
follows that the process CV at any attachment is at 
least as large as the process CV of total loss. This 
is because the CV of total loss corresponds to an 
attachment of zero.
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Appendix B: Optimal Mean Square 
Parameter Error Formula Proofs

Proposition 2: The minimal mean square param-
eter error for a split plan is given by:
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D

( ) ( )
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( )ε = τ −
λ τ + π + λ τ + π
− κ τ + π τ + π
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Proof: The general mean square error formula for 
arbitrary credibility values is given in Equation 3.4 as:
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The optimal credibility values as shown in Equa-
tion 3.8 are:
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Expand the second term on the right hand side of 
B.2 as follows:
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Also expand the “z1” term:

z
D

D

D

( )

( ) ( ) ( )( )

( ) ( )( )

( )
( ) ( )

( )( )
( )( )

τ + π = λ τ + π − κ τ + π τ + π





= λ τ + π − κ τ + π τ + π

λ λ − κ

=
λ λ τ + π − κ λ τ + π

− κλ λ τ + π τ + π
+ κ τ + π τ + π















•

•

2 2

2

1
2 2

2

2

.

(B.5)

1 1
2 2

2
1
2 2

1
2

2
2

2 2
2

1
2 2

1
2

2
2

1
2

2
2 2

2

1
2

2
4

1
2 2 2

2
2

1
2 2

1
2

2
2

1
2

2
2

3
1
2

2
2

Thus it follows:
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Similarly, one can derive:
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and this further reduces to:
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Using D = D = l2
1l2

2 - k2 and performing a few 
basic algebra operations leads to:
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This is what was to be proved.
Theorem 1: The minimal mean square parameter 

error for a split plan is given by:
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Proof: First expand t2 in Equation B.1 to obtain:
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Next regroup terms:
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Factor and then substitute the optimal credibility 
values to derive:
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Adding B.6 and B.7 together and grouping like 
terms leads to:
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Next expand the cross-term in B.2:
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Plugging B.8 and B.9 into B.2 yields the following 
formula for the mean square error:
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This simplifies to:
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and that
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Thus the square difference of the optimal cred-
ibilities is
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This simplifies to
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Now examine the expression for minimal mean 
square error in B.18:
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Consider the first term can be expanded as follows:
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This leads directly to the result.
Corollary 1: The reduction in minimal mean square 

parameter error in going from a no-split to a split plan, 
D(e0

2) = e0
2(NS) - e0

2(SP), is given as:
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Proof: The first equality follows directly from 2.8 
and B.14.

The second equality is derived from the first as 
follows.
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Next it is shown the reduction in mean square 
error is related to the square of the difference in the 
optimal credibilities.

Theorem 2: The reduction in minimal mean 
square parameter error in going from a no-split to a 
split plan, D(e0

2) = e0
2(NS) - e0

2(SP), is given as:
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Similarly, it can be shown that
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Comparing B.30 to B.25 leads to the desired 
conclusion.

Corollary 2: The reduction in minimal mean square 
parameter error in going from a no-split to a split plan 
is given as:
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Proof: The overall plan is to start with Theorem 2 
and perform substitutions and algebraic operations to 
arrive at the result. Write
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Then expand total variance and covariance terms 
into process and parameter components and then 
simplify as follows to get the result:
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Plug this into Theorem 2 and the result follows.
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Next derive the formulas:
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And
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Plugging B.28 and B.29 into B.27, one obtains:
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Using this and a similar formula for the second 
term in B.26, the difference in minimal square error 
may be written as:
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We will show the process covariance is given as:

Proposition 3:

E Cov A A kp e N N X X X Np e e[ ] ( )ρ = = σ − µ µ µ + µ µ• • • •( , ) .

(C.1)

2

Proof: Consider

A A X i X i

X i X i X i X j

p e p
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e
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p e
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i j

∑ ∑
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( ) ( )

( ) ( )

( ) ( ) ( )

=
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= =

= ≠

. (C.2)
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Thus

E A A E N E X X E N N

E X E X

p e p e

p e

[ ] [ ]
[ ]

[ ]( )
[ ]

[ ]θ = θ θ + − θ

θ θ

• •

• . (C.3)

2

When a claim leads to an excess layer loss that is 
strictly positive, it follows that the primary loss must 
consume the whole primary limit. Therefore

E X X kE Xp e e[ ] [ ]θ = θ . (C.4)

Taking expectations to arrive at unconditional val-
ues, C.2 implies:

E A A E N kp e N X X X Np e e[ ] [ ]( )= − µ µ µ + µ µ• • • • • .

(C.5)

2

So we find
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• •

• • •

,

(C.6)

2

The result follows immediately.
Now we will show parameter covariance is 

given as:

Proposition 4:

Cov E A E Ap e

N N X N X Xp e

[ ]( )
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= τ + µ π + τ µ µ• • •

,

. (C.7)2 2 2

Proof: Using our notation, we can write
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Therefore
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We add and subtract a term, regroup and simplify 
to obtain the desired result:
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This is the result claimed in C.7.

Appendix C: Parameter and Process 
Covariance Between Primary 

and Excess Layer Losses


