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ABSTRACT

In this paper, we present a stochastic loss development approach 

that models all the core components of the claims process sepa-

rately. The benefits of doing so are discussed, including the provi-

sion of more accurate results by increasing the data available to 

analyze. This also allows for finer segmentations, which is help-

ful for pricing and profitability analysis.
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for loss payments, even more so when the data being 
worked with is sparse. While the primary focus of our 
paper is on estimating the mean of ultimate losses 
and loss reserves, our method is also well suited to 
estimating the distribution of loss payments, since it 
models the entire process from the ground up.

There have been a few approaches that use some 
of the more detailed data, but not all of it. Wright 
(1997) presents a loss development approach that 
looks at the development of frequency and severity 
separately. Another common practice is to use the pro-
jected ultimate claim counts as an exposure measure 
for each year to help with estimating ultimate aggre-
gate losses. Guszcza and Lommele (2006) advocate 
for the use of more detailed data in the reserving pro-
cess and draw an analogy to GLMs used for pricing 
that operate at the individual policy or claim level. 
Their approach still models on the aggregate develop-
ment patterns, although it was only intended “in the 
spirit of taking a first step.” Zhou and Garrido (2009) 
also use GLMs and model on frequency and sever-
ity components separately. Meyers (2007) does this as 
well, but within a Bayesian framework. And recently, 
Parodi (2013) handles the frequency component of 
pure IBNR (incurred but not reported) by modeling 
on claim emergence times directly, one of the com-
ponents of our model, but has more complicated for-
mulas for handling the bias caused by data that is not 
at ultimate and also does not have a detailed approach 
for the other pieces. None of these methods uses all of 
the available information, such as the reporting times 
of unpaid claims, the settlement lags of closed claims, 
and how the probability of payment changes over time 
in a robust, comprehensive, statistical framework. The 
model presented in this paper also allows for expan-
sion, such as controlling for different retentions, mod-
eling claim state transitions as a Markov chain, or 
using a GLM to estimate claim payment probabilities 
from policy and claim characteristics while properly 
controlling for the bias caused from using data that is 
not at ultimate, and being able to correctly adjust these 
probabilities as the claim ages.

Despite our critique of aggregated methods, in many 
cases working with aggregate data may be satisfac-

1. Introduction

Over the recent past, there has been much devel-
opment and discussion of new stochastic models for 
loss development. These models apply a more scien-
tific approach to the old problem of estimating unpaid 
losses, but most still stick with the same strategy of 
using aggregate losses. Some of these models work by 
fitting a curve to the aggregate development patterns, 
such as the inverse power curve (Sherman 1984), or the 
Hoerl curve (Wright 1990). Many approaches employ 
generalized linear models (GLMs), such as Barnett 
and Zehnwirth (1998), which looks at the trends  
in aggregate data, and Renshaw and Verrall (1998), 
which shows some of the statistical underpinnings of 
the chain-ladder method. Generalized additive models 
have been used as well (England and Verrall 2001), to 
smooth the curve in the development direction. There 
are many other approaches; this list is not meant to  
be comprehensive. Using aggregate losses, while sim-
pler to deal with, discards much useful information 
that can be used to improve predictions.

The idea of separating out individual frequency and 
severity components is very common in other areas of 
actuarial practice, such as GLMs used for developing 
rating plans and for trend estimation, to name a few. 
But it is far less common for loss development. In a 
summary of the loss development literature (Taylor, 
McGuire, and Greenfield 2003), the authors, refer-
ring to using aggregated data, observe, “This format 
of data is fundamental to the loss reserving literature. 
Indeed, the literature contains little else.”

Even in the area of volatility estimation and pre-
dicting the distribution of loss payments, aggre-
gated methods have dominated. The most common 
methods are the Mack and Murphy methods (Mack 
1993; Murphy 1994), and the bootstrapping method 
(England and Verrall 1999), which involves bootstrap-
ping the residuals from the aggregate loss triangle. 
There have been some recent Bayesian methods as 
well (e.g., Myers 2015). For a summary of methods, 
see England and Verrall (2002) and Myers (2015). 
It is difficult to say how accurate using aggregated 
data can be in producing an accurate distribution 
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Second, by looking at every component separately, 
we increase the data available to analyze, since, for 
example, only a fraction of reported claims end up 
being paid or reserved for. When looking at aggregate 
data, we only see the paid or incurred claims, but if 
we analyze the claim reporting pattern separately, we 
are able to utilize every single claim, even those that 
close without payment or reserve setup. When mak-
ing predictions, we are also able to take into account 
the number and characteristics of claims that are cur-
rently open, which will add to the accuracy of our 
predictions.

Last, by separating out each piece, it becomes much 
easier to fit parametric models to the data that we can 
be confident in. Using aggregated data involves mod-
eling processes that are more abstracted and removed 
from reality, which makes it harder to fit simple para-
metric models that can be used to smooth volatility 
and produce more accurate fits. It is difficult to find 
an appropriate curve that provides a good fit to the 
development patterns in aggregate data. But it is 
relatively easy to find very good fits for each of the 
individual pieces of the development process, such 
as the reporting and settlement times and the sever-
ity of each loss. Fitting parametric models involves 
estimating fewer parameters than relying on empiri-
cal data where every single duration needs to be esti-
mated independently, and so helps lower the variance 
of the predictions, since prediction variance increases 
with the number of parameters being estimated.1 We 
show an example later based on simulated data that 
demonstrates that the prediction volatility can be cut 
by more than half by using this method over stan-
dard triangle methods. Fitting parametric models to 
each piece will also help us control for changes in 
retentions and limits, and also enable us to create seg-
mentations in the data, as will be further explained in 
Sections 2.3 and 7.2.

tory and the extra work involved in building a more 
detailed model may not justify the benefit. But for many 
other cases, such as those involving low-frequency/ 
high-severity losses, where fine segmentations are 
desired, where there have been mix of business or 
attachment point changes, or when there are relatively 
fewer years of data available, this pushes the limits of 
what aggregate data can do, even with the most sophis-
ticated stochastic models. In this paper we present a 
stochastic loss development model that analyzes all of 
the underlying parts of the claims process separately, 
while still keeping the model as simple as possible.

1.1. Objective

The goal of our method is to model the under lying 
claims process in more detail and to improve the 
accuracy of predictions. There are many benefits to 
individually modeling each component of the claims 
process separately. This can be compared to analyz-
ing data for a trend indication. Combining frequency 
and severity information can often mask important 
patterns in the data, while separating them out usu-
ally yields better predictions. This is because when 
there are different underlying drivers affecting the 
data, it becomes harder to see what the true patterns 
in the data are. Take, for example, two incurred tri-
angles for two different segments, in which the first 
segment has a slower reporting pattern, but more 
severe losses than the second. More severe losses 
tend to be reserved for sooner and more conser-
vatively, and so this will make the aggregate loss 
development pattern faster. On the other hand, the 
slower reporting pattern will obviously make the pat-
tern slower than the second. When comparing these 
two aggregate triangles, it may be difficult to judge 
whether the differences are caused mostly from vol-
atility, or whether there are in fact real differences 
between these two segments. In contrast, looking at 
each component separately will yield clearer details 
and results. The example we gave applied to com-
paring two separate triangles, but this will also cre-
ate problems when attempting to select development 
factors for a single, unstable triangle. High volatility 
compounds this issue.

1That is, with keeping the data the same. By separating out each piece, 
even though we now need to estimate separate parameters for each piece, 
this does not increase the variance, since we are working with more data. 
This is analogous to how separating out frequency and severity trend 
information would not increase the variance even though we now have 
to estimate two trend parameters instead of one.
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data. This will be discussed in the first two parts of 
this section. It will also be helpful to understand the 
process of fitting hyper-parameters, which will be 
discussed in the third part of this section.

2.1. Maximum likelihood estimation  
with right truncation

When modeling insurance losses, we normally have 
to deal with left truncation and right censoring. Left 
truncation is caused by retentions where we have no 
information regarding the number of claims below the 
retention. Right censoring is caused by policy limits 
and is different from truncation in that we know the 
number of claims that pierce the limit, even if we still 
do not know the exact dollar amounts. Reported claim 
counts, for example, which we will be analyzing in 
this paper, are right truncated, since we have no infor-
mation regarding the number of claims that will occur 
after the evaluation date of the data.

We will be using maximum likelihood estimation 
(MLE) to model reporting times, and MLE can handle 
right truncation similar to how it handles left trunca-
tion. To handle left truncation, the likelihood of each 
item is divided by the survival function at its trunca-
tion point; similarly, to handle right truncation, each 
item’s likelihood should be divided by the cumulative 
distribution function (CDF) at its truncation point.

We will illustrate this concept with a simple exam-
ple using reporting lags. Assume that reporting lags 
follow an exponential distribution with a mean of one 
and a half years and that each claim arrives exactly 
as expected (so that we will receive claims at the 
12.5%, 37.5%, 62.5%, 87.5% percentiles of the dis-
tribution). We receive exactly four claims each year, 
and the data evaluation date is 12/31/2014. For 2014, 
the latest accident year, we expect to receive four 
claims with the following reporting lags in years: 
0.20, 0.71, 1.47, and 3.12. Since our data is evaluated 
at 12/31/2014 and the right truncation point for this 
accident year is one year, we will only actually see 
the first two of these claims. Similarly, for 2013, the 
next most recent accident year, we will see the first 
three of these claims, since the right truncation point 

1.2. Outline

For this model, we break the claims process down 
into five separate pieces, as shown in Figure 1. Each 
piece will be discussed in more detail.

The five parts we will analyze are as follows:

A) The reporting time of each claim
B)  The percent of reported claims that are paid, as 

well as the settlement times of reported claims
C) The severity of each paid claim
D)  The final settlement amount of each claim that 

has outstanding case reserves
E) Legal payments

Section 2 will discuss fitting distributions when 
right truncation is present in the data, which will be 
used for some of these pieces; it will also discuss the 
fitting of hyper-parameters, which is not absolutely 
necessary to build this model, but can be used to make 
it more refined. Section 3 will then discuss each of 
these modeling steps in detail and Section 4 will dis-
cuss how to use each piece to calculate the unpaid 
and ultimate loss and legal estimates. Section 5 will 
show a numerical example of using this method on 
simulated data. Section 6 will discuss ways to check 
this model, and finally, Section 7 will discuss some 
alternatives and other uses of this model, such as to 
calculate the volatility of ultimate losses.

2. Technical background

Before we delve into the details of each piece, we 
first need to explain the process of right truncation 
and how to build a model when it is present in the 

Figure 1. Claims process to be modeled
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etc. To calculate the value of F(8) for example, we 
can multiply these probabilities together:
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This is the value of F(8) conditional on the tail of 
the distribution at t = 10. We can plug in this tail value 
from the fitted distribution and use this empirical 
curve to test the goodness of fit of our fitted distri-
bution. Using this method, all points of the calculated 
empirical distribution depend on the tail portion, 
which can be very volatile because of the thinness in 
this portion of the data. For the comparison with the 
fitted distribution to be useful, the right-most point 
should be chosen at a point before the data gets too 
volatile. It may be helpful to choose a couple of dif-
ferent right-most points for the comparison.

2.3. Hyper-parameters

This method can be used to help refine some pieces 
of the model, but it is not absolutely necessary. It 
involves fitting a distribution to data via MLE but 
letting one or more of the distribution parameters vary 
based on some characteristic of each data point. We 
refer to this technique as the hyper-parameters method, 
since the distribution’s parameters themselves have 
parameters, and these are known as hyper-parameters. 
This can be useful, for example, if we want our report-
ing times distribution to vary based on the retention.

To set this method up, each claim should have its 
own distribution parameters. These parameters are a 
function of some base parameters (that are common to 
all claims), the claim’s retention, in this example, and 
another adjustment parameter that helps determine 
how fast the parameter changes with retention. These 
base parameters can be the distribution parameters at a 
zero retention or at the lowest retention. Both the base 
parameters and the adjustment parameters are then 
all solved for using MLE. If there are different seg-
ments, each segment can be given its own base param-
eters but share the same adjustment parameters. One 
or more of the distribution’s parameters can contain 
hyper-parameters. It is also possible to reparameterize  

for this accident year is two years. We will see the 
first three claims for accident year 2012, and we will 
see all of the claims for accident year 2011, which is 
the first year in our study. If we attempted to fit the 
theta parameter of the exponential distribution with 
maximum likelihood without any adjustment, we 
would get a value of 0.93, which equals the mean of 
the claim lags that have arrived before the evaluation 
date, and which is clearly incorrect. Fitting theta, now 
with taking the right truncation point of each accident 
year into account, yields a theta of 1.506, which is 
close to the correct value.

2.2. Reverse Kaplan-Meier method  
for right truncation

When fitting a distribution to data, it is a good idea 
to compare the fitted curve to the empirical to help 
judge the goodness of fit. Probably the most common 
method actuaries use to calculate the empirical distri-
bution when dealing with retentions and limits (i.e., 
left truncation and right censoring) is the Kaplan-
Meier method. Here, however, we have data that is 
right truncated, which is not handled by this method. 
We propose a modification to work with right trun-
cated data that we will refer to as the reverse Kaplan-
Meier method.

In the normal Kaplan-Meier method, we start from 
the left and calculate the conditional survival prob-
abilities at each interval. For example, we may first 
calculate the probability of being greater than 1 con-
ditional on being greater than 0, i.e., s(1)/s(0). We 
may then calculate s(2)/s(1), and so on. For this sec-
ond interval, we would exclude any claims with reten-
tions greater than 1, with limits less than 2, and with 
claims less than 1. To calculate the value of s(2), for 
example, we would multiply these two probabilities 
together, that is:

s
s

s

s

s
( )

( )
( )

( )
( )

= ×2
1

0

2

1
.

To accommodate right truncation, we will instead 
start from the right and calculate the conditional CDF 
probabilities, e.g., F(9)/F(10), followed by F(8)/F(9), 
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3.1. Part A: Reported times

In this section, we will explain how to model the 
reporting lag, that is, the time from the accident date 
of a claim to the report date. (If report date is unavail-
able, the create quarter can be used instead by using 
the first quarter that each claim number first appears.) 
This will be used to help estimate the pure IBNR por-
tion of unpaid losses later. This data is right truncated 
since we have no information about the number of 
claims that will occur after the evaluation date. The 
right truncation point for each claim is the evaluation 
date of the data minus the accident date of the claim. 
We will use MLE to fit a distribution to these times. 
The exponential, Weibull, and gamma distributions all 
appear to fit this type of data very well. (A log-logistic 
curve may also be appropriate in some cases with a 
thicker tail, although the tail of this distribution should 
be cut off at some point so as not to be too severe.)

After this data is fit with MLE using right trunca-
tion, the goodness of fit should be compared against 
the empirical curve which can be obtained using the 
reverse-Kaplan-Meier method, all as described in the 
previous section. Using this approach, as opposed to 
using aggregate data, makes it much easier to see if 

the distribution to help obtain the relationship we 
want, as will be shown in the following example.

In this example, we will assume that we are fit-
ting a gamma distribution, with parameters alpha and 
beta, to the reporting times of all claims (which will 
be explained more later), and that we wish the mean 
of this distribution to vary with the retention, with 
the assumption that claims at higher retentions are 
generally reported later. The mean of a gamma dis-
tribution is given by alpha divided by beta, and so 
we need to reparameterize the distribution. We will 
reparameterize our distribution to have parameters 
for the mean (mu) and for the coefficient of varia-
tion (CV). The original parameters can be obtained 
by alpha = 1/CV 2, and beta = 1/(mu × CV 2). Only 
the first parameter, mu, will vary with the retention.

The first step is to determine the shape of an appro-
priate curve to use for this parameter. For this, we fit 
the data with MLE allowing only one parameter for 
the CV, but having different parameters for the mean 
for each group of retentions. Plotting these points 
can help determine whether a linear of a logarithmic 
curve is the most appropriate. The final curve can 
then be plotted against these points to help judge 
the goodness of fit. After doing this, assume that we 
decided to use the equation, log(mur) = log(mubase) + 
exp(theta) × log(r/base), where r is the retention of 
each claim, base is the retention of the lowest claim, 
and log(mubase) and theta are parameters that are fit 
via MLE, in addition to the CV parameter which is 
common across all claims. We took the exponent of  
theta to ensure that the mu parameter is strictly increas-
ing with retention. Once this is done, we have a distri-
bution that is appropriate for every retention.

3. Modeling steps

The modeling of each of the five parts will now 
be explained in detail. Using all of these pieces for 
the calculation of the unpaid and ultimate projections 
will be discussed in the following section.

Table 1 shows the data that will be needed for each 
of the steps.

Table 1. Data required for each step

Part Data Fields Needed

A) Reporting Times Claim Level, All 
Claims

Accident Date, 
Report Date

B)  Percent Paid and 
Settlement Times

Claim Level, All 
Closed Claims
(May also include 
open outstanding 
claims as well)

Report Date, Closed 
Date, Final State of 
Claim (Paid or Not)

C) Severity Claim Level, All 
Closed Claims

Claim Amount, 
Retention, Policy 
Limit, Accident 
Date, Closed Date

D)  Case Outstanding 
Claims

Claim Level, All 
Closed Claims 
That Have Had 
an Outstanding 
Reserve At Some 
Point

Average 
Outstanding Value, 
Ultimate Paid 
Amount (including 
zeros), Policy Limit

E) Legal Payments Aggregate Claim 
Data, All Data

Paid Losses and 
Paid Legal Amounts 
by Total Duration
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be calculated simply by dividing and there is no need 
to go further.) There will still be many open claims in 
the data that we do not know what their ultimate state 
will be, making the ultimate number of paid and CNP 
claims unknown, and so this data is right truncated.  
The right truncation point for each claim is equal 
to the reported date subtracted from the evaluation 
date. The exponential, Weibull, and gamma distribu-
tions all appear to be good candidates for this type 
of data.

The ultimate number of paid claims is equal to the 
following, where F(x) is the cumulative distribution 
function evaluated at x:

F Evaluation Date Report DatePaid i
i All Paid Claims

∑ ( )−
=

1 .

And the ultimate number of unpaid claims is equal to:

F Evaluation Date Report DateCNP i
i All CNP Claims

∑ ( )−
=

1 .

And so, the ultimate percent of claims that are paid 
is equal to:

Ultimate Paid Claims

Ultimate Paid Claims Ultimate CNP Claims+
.

Dividing each claim by the CDF at the right truncation 
point is similar to performing a chain-ladder method. 
So, for example, if the settlement lag for CNP claims 
is uniform from zero to two years, and the settlement 
lag distribution for paid claims is uniform from zero 
to three years, the LDF to apply to CNP claims for 
the most recent year which has a right truncation 
point of one year equals 1/0.5 = 2, and the LDF to 
apply to paid claims for this year equals 1/0.333 = 3. 
The LDFs for the next most recent year with a right 
truncation point of two years are 1/1 = 1 and 1/0.667 
= 1.5 for the CNP and paid claims, respectively. The 
paid claims will be developed more because of their 
slower closing pattern. Developing the CNP and paid 
claims to ultimate and then dividing will reflect the 
ultimate paid percentage that we expect to observe 
after every claim has been closed.

The most recent years may have high development 
factors and may be unstable. To address this, we can  

the reporting lag distribution has any significant his-
torical changes. There is also no need to estimate a 
separate tail piece, as this is already included in the 
reporting times distribution.2

3.2. Part B: The likelihood  
of a claim being paid

The second component to be modeled is the per-
cent of reported claims that will ultimately be paid. 
This can be done very simply by dividing the number 
of paid claims by the total number of closed claims, but 
this estimate may be biased if closed with no payment 
(CNP) claims tend to close faster than paid claims. If 
this is true and we do not take this into account, we  
will underestimate the percent of claims that are paid, 
since our snapshot of data being used will have rela-
tively more CNP claims that would be present after 
all claims are settled. To give an extreme example 
to help illustrate this point, say there are two report 
years of data. All CNP claims settle in the first year, 
and all paid claims settle in the second year. There 
are 100 claims each year, and 50% of claims are paid. 
The evaluation date of the data is one year after the 
latest year. The first year will have 50 CNP claims 
and 50 paid claims. When looking at the second year, 
however, we will see 50 CNP claims and no paid 
claims, since all of the claims that will ultimately be 
paid are still open (and we do not know what their 
final state will be). When we calculate the percent of 
claims paid using the available data, we will get the 
following:

paid claims

paid claims closed claims+
=50

50 100

1

3

which is less than the correct value of 50%.
Instead, we will suggest an alternative approach. 

For the first step, we fit distributions to all paid claims 
and to all CNP claims separately. (If the distributions 
do not appear different, then the paid likelihood can 

2This tail may only be accurate if relatively small; otherwise, it is an 
extrapolation, which may not be accurate. The gamma tail seems slightly 
better than the Weibull, but this observation is based on limited data.
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the fact that we expect relatively more paid claims 
to close in the future. We will refer to this approach 
as right truncated reweighting. This approach will be 
used when building more complicated models on this 
type of data.

So far, we have calculated the total percentage of 
claims that will be paid; this will be used for the cal-
culation of pure IBNR. We also need to determine 
how this percentage changes with duration to be able 
to apply this to currently open claims for calculation 
of IBNER (incurred but not enough reported). If paid 
claims have a longer duration than CNP claims, then 
it should be expected that the paid percentage should 
increase with duration, since relatively more CNP 
claims will have already closed earlier. So the lon-
ger a claim is open, the more chance it has of being 
paid. To calculate this, we can use Bayes’ formula as 
follows:

P Paid t x

P t x Paid P Paid

P t x Paid P Paid P t x CNP P CNP

s x P Paid

s x P Paid s x P CNP
Paid

Paid CNP

( )

( ) ( )
( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( )

≥

= ≥ ×
≥ × + ≥ ×

= ×
× + ×

(3.1)

where t is the time from the reported date of the claim 
and x is the duration for each year. It is also possible 
to calculate the paid likelihoods for claims closing 
at exactly a given duration (that is, not conditional, 
as in equation 3.1) by using the PDFs instead of the 
survival functions in formula (3.1). These values can 
then be used to compare against the actual paid likeli-
hoods by duration as a sanity check. The conditional 
likelihoods cannot be used for this since these likeli-
hoods represent the probability of a claim being paid 
given that it has been open for at least a certain num-
ber of years, but not exactly at that time.

A more detailed model that also incorporates out-
standing claims can be built, where instead of just 
modeling the lags and probabilities of two states 
(paid and CNP), the outstanding state is modeled. 
Once claims are in the outstanding state, they can 

make the method more similar to a Cape Cod-like 
method by weighting each year appropriately accord-
ing to the credibility of each year. To do this, the weight 
for each year can be set to the average of the cal-
cu lated CDF values of each claim multiplied by the 
claim volume. The paid distribution or the CNP distri-
bution can be used to calculate this CDF, or it can be 
taken as the average of the two. To give more recent, 
relevant experience slightly more weight, an expo-
nential decay factor can be applied. Alternatively, the 
actual number of claims per year can be used instead. 
For this version, the ultimate claim counts for each 
year should be multiplied by the ratio of the actual 
claim count to the ultimate claim count for that year. 
Using this reweighting technique (that is, dividing by 
the CDF and then multiplying by an off-balance factor 
for each year) will not change the number of claims, 
but it still addresses the bias that is caused from our 
data being right truncated. Continuing our example, 
assume that there are six closed CNP claims and four 
closed paid claims in the most recent year, and nine 
closed CNP claims and six closed paid claims in the 
next most recent year. Our initial ultimate estimates 
for the most recent year equals 6 × 2 = 12 CNP claims 
and 4 × 3 = 12 paid claims. Our ultimate estimates for 
the next most recent year equals 9 × 1 = 9 and 6 × 1.5 
= 9, for the CNP and paid claims, respectively. The 
off-balance factor for each year is equal to (6 + 4)/ 
(12 + 12) = 0.4167 for the most recent year and (9 + 6) / 
(9 + 9) = 0.8333 for the next most recent year. So 
each CNP claim is counted as 2 × 0.4167 = 0.8333, 
and each paid claim is counted as 3 × 0.4167 = 1.25 
for the most recent year. In the next most recent year, 
each CNP claim is counted as 1 × 0.8333 = 0.8333, 
and each paid claim is counted as 1.5 × 0.8333 = 1.25. 
The final ultimate number of CNP claims across both 
years is equal to 6 × 0.8333 + 9 × 0.8333 = 12.5, 
and the final ultimate number of paid claims equals 
4 × 1.25 + 6 × 1.25 = 12.5, resulting in an ultimate 
likelihood of a claim being paid equal to one half. The 
probabilities are correct and the weights given to each 
year are appropriate. This approach gives more weight 
to the paid claims that typically close later to reflect 
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It may seem odd at first that the probabilities for 
open claims are developed and so will always be 
higher than the probabilities used to apply to new, pure 
IBNR claims (if this is how claims develop, which it 
often is). If everything develops as expected, the total 
predicted number of paid claims will not change,  
as will be illustrated. Using an example, there are 
100 claims and half of these claims will be paid. 
All unpaid claims close in the first year and all paid 
claims close in the second year. The initial, uncon-
ditional probability to apply to new claims is 50%. 
After a year, we will assign 100% probability of being 
paid to all the remaining claims. Initially we pre-
dicted that half of the 100 claims will be paid, which 
is 50 claims. After a year, no actual claims were paid 
and we will predict that 100% of the 50 remaining 
claims will be paid, which also equals 50 claims. 
This estimate would be biased downwards if we did 
not apply this adjustment to calculate the conditional 
probabilities.

3.3. Part C: Severity portion

This portion involves fitting an appropriate sever-
ity distribution to the claim data. Before doing so, 
all losses should be trended to a common year. We 
will also need to take into account that more severe 
claims tend to be reported and settled later. It is tech-
nically possible to have the paid settlement time 
distribution vary with claim size and use right trun-
cated reweighting here as well, but this approach will 
likely not be accurate, since only a few large claims 
may have settled earlier. Because this problem is 
also relevant to constructing increased limit factors 
in general, we will elaborate on this in detail. There 
are many ways that this can be accounted for, but we 
will only discuss a couple.

The first way is to use the hyper-parameters approach 
discussed earlier. Claim severity can be a function of 
the reporting lag, the settlement lag, both, or the sum 
of the two, which is the total duration of the claim. 
If these lag distributions were made to vary by reten-
tion or by other factors, it may be more accurate to 
model on the percentile complete instead of the actual 

then transition to either the paid or CNP states. All of 
these states and transitions can be modeled using the 
same techniques discussed in this section. The ulti-
mate probability of a claim being paid is then equal to 
the probability of a reported claim being paid (before 
transitioning to an outstanding state, that is) plus the 
product of the probabilities of transitioning to an out-
standing state and of transitioning from an outstand-
ing state to a paid state. This is a mini Markov chain 
model, with bias correction caused from the right 
truncation of the data. If open claims are assigned 
different “signal” reserves that represent information 
about the possibility of payment for each claim, then 
a more detailed Markov chain model can be built that 
incorporates the probability of transitioning to and 
from each of these “signal” states.

Another possible refinement is to have the paid (or 
other state) likelihoods vary by various factors, such 
as the type of claim or the reporting lag, by building a 
GLM on the claim data. To account for the bias caused 
from the data being at an incomplete state, right trun-
cated reweighting can be used to calculate the weights 
for the GLM, and a weighted regression can be per-
formed; this will account for the bias without altering 
the total number of observations. The settlement lag 
distributions can even be allowed to vary by differ-
ent factors using the hyper-parameters approach. The 
resulting probabilities will be the paid (or other) like-
lihoods from time zero, which can be applied to new, 
pure IBNR claims. For currently open claims for calcu-
lation of IBNER, Bayes’ formula (3.1) should be used 
to calculate the conditional probabilities given that a 
claim has been open for at least a certain amount of 
time. If the settlement lag distributions were allowed 
to vary, the appropriate distribution should be used for 
this calculation as well.

We should note that using right truncated reweight-
ing for the GLM and then again adjusting the result-
ing probabilities is not double counting the effects of 
development. The former is to account for the fact that 
the data used for modeling is not at ultimate, while the 
latter is needed to reflect how the probability of a claim 
being paid varies over time.
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need to be done at very fine increments. Using this, 
we can generate a single distribution based on the 
percentages of claims expected to be settled in each 
duration by generating the PDF tables for each dura-
tion as mentioned, and then setting the total sum of 
the weights for each duration to equal the percentage 
of claims expected to be settled in each duration. (It 
is possible that this mixed distribution of durations 
may not be the same as the original distribution used 
to fit a single duration. If this is the case, parameters 
can be added by creating a mixed distribution of the 
same type as the original distribution. There is no 
fear of adding too many parameters and over-fitting 
here, since we are not fitting to actual data, but to 
values that have already been smoothed.) The sur-
vival percentages generated should start at and be 
conditional on the lowest policy retention and go 
up to the top of the credible region for the sever-
ity curve. This will make the mixing of the differ-
ent duration curves more properly reflect the actual 
claim values and make the final fitted distribution 
more accurate.

Another way to account for the increasing sever-
ity by duration is to use a survival regression model 
called the Cox proportional hazards model. This model 
does not rely on any distribution assumptions for the 
underlying data, as it is semi-parametric. It can also 
handle retentions and limits, i.e., left truncation and 
right censoring. As opposed to a GLM that models on 
the mean, the Cox model tells how the hazard func-
tion varies with various parameters. The Cox model is 
multiplicative, similar to a log-link function in a GLM. 
The form of the model is Hi(t) = H0(t)exp(Bi1 Xi1 +  
Bi2 Xi2 + · · ·), where Hi(t) is the cumulative haz-
ard function for a particular risk at time t, H0(t) is 
the baseline hazard, roughly similar to an intercept 
(although this is not returned from the model), and 
the B’s and X’s are the coefficients and the data for 
a particular risk, respectively. The cumulative haz-
ard function, H(t) is equal to: H(t) = -ln[s(t)], and 
so s(t) = exp[-H(t)]. It can be seen from this formula 
that a multiplicative factor applied to the cumulative 
hazard function is equivalent to taking the survival 

lag. To give an example of using the hyper-parameters  
approach, if we allowed the scale parameter of our 
distribution to vary with duration, this would be 
assuming that each claim increases by the same 
amount on average, no matter the size of the claim. 
(Note that this may be a poor assumption, as it is 
more likely that the tail potential increases with dura-
tion, since the more severe claims tend to arrive at the 
later durations.) The limited expected value (LEV) at 
any lag can now be calculated. This LEV can be used 
directly if solving for ultimate losses by simulating 
claim arrival times. If using a closed-form solution, 
a weighted average of the LEVs can be calculated 
by using the (conditional) reporting times and/or 
settlement times distributions. If the total duration 
was used, the distribution for total duration can be 
obtained by calculating the discrete convolution of 
the reporting and settlement times distributions.3 If 
we wanted to calculate a single distribution that rep-
resents the expected amount of claims that will be 
settled in each duration, we can do the following. We 
will first note that if survival values are generated 
from a loss distribution, and these survival values 
are then converted into a probability density func-
tion (PDF) by taking the differences of the percent-
ages at each interval, and then this data is refit via 
MLE using these PDF percentages as the weights 
(by multiplying each log-likelihood by its weight), 
the original distribution parameters will be produced. 
(This can be confirmed via simulation.) The values for 
each likelihood can either be the average of the two 
values for each interval, or more accurately, can be 
represented as a range. MLE can be performed using 
ranges by setting each likelihood to the difference of 
the CDFs at the two interval values. This can also be 
done by generating the PDF values from the distribu-
tion directly, but in order to be accurate, this would 

3A discrete convolution is calculated by first converting each of these 
continuous distributions to be discrete. The probabilities for each amount, 
x, are then calculated by multiplying the probabilities of each distribu-
tion that add up to x. For example, for x = 3, this can be achieved by a 
reporting lag of 0 and a settlement lag of 3, or a reporting lag of 1 and a 
settlement lag of 2, etc.
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via simulation as well.) The first way involves first 
calculating the empirical survival curve at the base 
duration, where the base duration is the duration that 
is assigned a coefficient of zero in the Cox model. To 
do this, instead of using the probably more familiar 
Kaplan-Meier method to calculate the empirical sur-
vival function, we use the Nelson-Aalen method to 
calculate the empirical cumulative hazard function. 
As a note on the Nelson-Aalen method, calculating 
the cumulative hazard and then taking the negative  
of the natural logarithms to convert to a survival func-
tion will produce very similar values to the survival 
values produced from the Kaplan-Meier method. The 
Nelson-Aalen estimate is equal to

∑( ) =
≤

,H t
d

n
i

ii t

where di is the number of events in each interval and 
ni is the number of total risks that exist at each inter-
val. To calculate the hazard at the base duration using 
the coefficients from the Cox model, the following 
formula can be used:

∑
∑
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Each Risk
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The only difference from the normal Nelson-Aalen 
formula is that instead of counting all events the same, 
as one, each event is counted as the inverse of the 
exponent of the sum of its coefficients.

Using this, we can calculate the survival function 
at the base hazard by taking the negative of the natu-
ral logarithm of the cumulative hazard. With the base 
survival function, we can now calculate the survival 
function at any duration, d, using the formula

( ) ( )= ( ). (3.4)s t s td Base
Relative Hazard d

The survival functions at each duration can then be 
converted to probability distribution functions and 
then fit with MLE as shown above. Doing this will 
produce a distribution for each duration (or dura-
tion group, if durations were combined to simplify 
this procedure). A single distribution representing a 

function to a power.4 We will use this fact below. A 
full discussion of the Cox model is outside the scope 
of this paper.5

Assuming that we are modeling on the total dura-
tion of each claim, with this approach we are assum-
ing that the hazard function of the data changes with 
the duration. The hazard can be thought of very roughly 
as the thickness of the tail, and so we are assuming that 
the tail is what increases with duration.

Initially, a Cox model should be run on the indi-
vidual loss data with a coefficient for each duration to 
help judge the shape of the curve for how the hazard 
changes with duration. Next, another model should be 
fit with a continuous coefficient either for the duration 
or the log of duration, or any other function of dura-
tion that is appropriate. Different segments that may 
be changing by year can also be controlled for with 
other coefficients.6

Assuming the log of duration was used, the pattern 
for how the severity curve changes with duration, d, 
can be obtained from the results of the Cox model, 
as follows:

( )

( )

( )= ×

=

exp log

(3.2)

Relative Hazard d

Cox Duration Coefficient d

dCox Duration Coefficient

There are two ways that will be discussed to create 
severity distributions using this information. Before 
we explain the first method, we first need to mention 
that if an empirical survival curve is generated from 
claim data using the Kaplan-Meier method, and this 
survival function is then converted to a PDF and 
fitted with MLE, as explained, the parameters will 
match those that would be obtained from fitting the 
claim data directly with MLE. (This can be confirmed 

4Even though the Cox model technically models on the instantaneous 
hazard function, since it also assumes that the hazards always differ by a 
constant multiplicative factor, this model can also be viewed as modeling 
on the cumulative hazard as well, since the ratios between the instanta-
neous and cumulative hazards will be the same.
5For a longer explanation, see Fox (2002).
6These segments should ideally be treated as separate strata in a strati-
fied model.
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weighted average of the expected durations can also 
be obtained by combining the data from multiple 
durations together and weighting each according to 
the expected percentage of claims expected to be set-
tled at each duration. (Note that this new distribution 
may not be the same type as the original distribution 
as mentioned.) Alternatively, another way that does 
not require fitting a distribution at every duration is 
to only fit a distribution to the base duration. The 
fitted survival values can be produced at the base 
duration using this distribution, and the survival val-
ues at any duration can then be obtained by taking 
this base survival function to the appropriate power. 
The limited expected values can now be obtained 
by “integrating” the survival values at the desired 
duration, since

∫( ) ( )=, ,LEV Retention Policy Limit s x dx
Retention

Retention+Policy Limit

where by LEV(Retention, Policy Limit), we mean the 
limited expected value from the retention up to the 
retention plus the policy limit. To do this discretely, 
we can use this formula as an approximation:

∑

( )

( )( ) ( )= ×

,

.

LEV Retention Policy Limit

Width of s x Increments s x
Retention

Retention+Policy Limit

The thinner the increment width that the survival 
values are calculated at, the more accurate this will 
be. Putting this together, the formula to calculate the 
LEV at each duration d is

∑

( )

( )= × ( )

,

(3.5)

LEV Retention Policy Limit

Width s x

d

Relative Hazard d

Retention

Retention+Policy Limit

The second method to construct distributions for 
each duration is similar except that it involves adjust-
ing the actual claim values instead of the survival or 
hazard functions. We can use the well-known relation-
ship for adjusting a distribution for trend, F(x) = F′(ax)  
(Rosenberg and Halpert 1981), where F(x) is the 

cumulative distribution function of the original dis-
tribution before adjusting for trend, F′(x) is the same 
after adjusting for trend, and a is the trend adjust-
ment factor. Similarly here, using survival functions 
instead of cumulative distribution functions, we can 
solve for the adjustment factor for every value of x  
that satisfies, s(x) = s′(ax) = s(ax)Desired Adjustment, or 
equivalently, s(x)1/Desired Adjustment = s(ax), since the lat-
ter is computationally quicker to solve. The survival 
values can be determined from either the empiri-
cal Kaplan-Meier survival function or from a fitted 
survival function applied to the entire data set. This 
factor, a, can be determined for every claim amount 
and duration by backing into the value of a that satis-
fies the equality. Once this is done, all of the origi-
nal loss data can be adjusted to the base duration, 
and then a loss distribution can be fit to this data. We 
can use this same method to adjust the claim data 
to any duration, or alternatively, any of the methods 
discussed in this section can be performed to derive 
LEVs at all of the durations.

If one is using a one- or two-parameter Pareto 
distribution, this process becomes simpler since tak-
ing the survival function to a power is equivalent to 
multiplying the alpha parameter by a factor. This can 
be easily seen by looking the Pareto formulas, which 
will not be shown here. Once the distribution is fit at 
the base duration using one of the methods discussed, 
the distribution for any duration can be obtained by 
adjusting the alpha parameter, as follows:

( )α = α × . (3.6)Relative Hazard dd base

Similar methods can be used if using other types 
of regression models as well, such as a GLM or an 
accelerated failure time model, which will not be 
elaborated on here.

3.4. Part D: Outstanding reserved claims

This section explains the estimating of the ultimate 
settlement values of claims that currently have outstand-
ing reserves. Note that this is different from open, non-
reserved claims in that the reserve amounts here are 
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packages may give a warning when modeling on data 
that is not all ones and zeros, but it should still return 
appropriate results.) Once again, the fit should be 
compared to the actual. This model will capture the 
fact that claims reserved near the policy limit tend to 
settle for lower on average (since they only have one 
direction to move), while claims reserved for lower 
amounts have a tendency to develop upwards, on aver-
age. It is also possible to add coefficients for the type 
of claim and other factors if desired.

3.5. Part E: Legal payments

The legal percentages should be calculated for each 
duration, since this percentage usually increases with 
duration. To address credibility issues with looking at 
each duration separately, a curve should be fit to this 
data. Once this is done, cumulative percentages should 
be calculated for each duration by taking a weighted 
average of the legal percentages from each duration 
until the last duration. The weights should be based on 
the expected amount of paid dollars per duration. This 
pattern can be obtained by looking at the aggregate 
data, or by using the model from this paper and simu-
lating all years’ losses from the beginning. (This will 
be discussed a bit more, later, as well). These cumu-
lative legal percentages will be applied to the unpaid 
losses for each accident year.

The approach we chose to use here is not as refined 
as it could be. It is also possible to build a more robust 
model that determines the legal payments separately 
for each of the parts from Table 1, and takes into 
account the number claims as well as the limits and 
retentions by year, etc. We used a simpler method 
here so as not to over-complicate our approach.

4. Calculation of unpaid losses

Each part of the unpaid loss plus legal expenses 
now needs to be calculated. Table 2 shows the data 
that is needed for each part that will be described 
in detail below. The right-most column also shows 
which parts of the modeling steps from Table 1 each 
piece depends on.

significant. For example, some companies set up a 
reserve amount of one dollar or a similar amount to 
indicate that a claim is open, but that no real estimate 
of the claim’s ultimate settlement value is available yet.

To calculate the ultimate paid amounts, we will 
use a logistic GLM (that is a GLM with a logit link 
and a binomial error term) on all closed claims that 
have had an outstanding reserve set up at some point 
in the claim’s lifetime. We will model on the dollar 
amounts divided by the policy limits using the fol-
lowing regression equation:

=

+ 





exp . (3.7)

1

2

Paid

Policy Limit
B

Average O S

Policy Limit

B
Average O S

Policy Limit

We used the average outstanding value for each 
claim since the reserve amount of a claim may have 
changed over time.7 Note that this ratio can also be 
calculated directly by dividing the sum of ultimate 
paid dollars by the sum of outstanding reserves, but 
this result may be biased since the ultimate settle-
ment values depend on the dollar amount of reserves 
setup, and this amount depends on the duration. It 
is also not as refined as it could be. CNP claims can 
be included or excluded from this model. If they 
are excluded, a separate model will need to be built 
to account for. If they are included, right truncated 
reweighting should be performed on the claims to 
avoid any bias.

Formula (3.7) seems to provide a very good fit to 
some types of data, although sometimes logarithms or 
other alternatives (such as splines) are more appropri-
ate, depending on the book of business and the com-
pany. The logistic model will ensure that the predicted 
value is always less than one, since the claim cannot 
(usually) settle for more than the limit. (Some GLM 

7Alternatively, it is also possible to include every outstanding amount in 
the model, weight appropriately so that all of the rows for each claim add 
up to one, and use a generalized linear mixed model to account for the 
correlation between the data points.
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group of policies. So as not give too much weight 
to older years, decaying weights can be used here as  
well. To take different retentions into account, we need  
to consider that a policy with a retention of $100,000 
may only see 50% of the ground up claims while a 
policy with a retention of $200,000 may only see 20%. 
By multiplying the exposures by the survival function 
at the retention, we adjust for this. (The severity dis-
tribution that should be used should not be calculated 
at a specific duration, but should be the overall aver-
age distribution that would be used to price accounts.)

We then calculate the expected IBNR frequency 
per policy using this formula:

( )

( )

×

× −

× , (4.3)

Frequency Exposures

s Eval Date Avg Acc Date

s R

Report Time

Severity

where “Eval Date” is the evaluation data, “Avg Acc 
Date” is the average accident data, and “R” is the 
retention. The exposures times the survival function 
of the reported times represents the unused portion of 
the exposures. Once we have this, we can multi ply 
the expected frequency per policy by the paid likeli-
hood, obtained from Part B to get the expected num-
ber of paid IBNR claims. We then apply Part C to 
calculate the average severity for each paid claim by 
calculating the conditional severity of each paid claim 
above the retention, that is, LEV(Retention, Policy 
Limit)/s(Retention). The claim distribution should be 
detrended to the appropriate year if it is desired to 
have losses on a historical basis. Otherwise, if trended 
losses are needed for pricing or profitability purposes, 

4.1. Part 1: Pure IBNR

For the calculation of pure IBNR, we will calcu-
late the frequency of a claim for each policy using 
a Cape Cod-like method while also controlling for 
differences in retentions between policies. We will 
use the following formula to calculate the frequency 
per exposure unit:

Frequency
Total Reported Claims

Used Exposure Units
= (4.1)

where F(x) and s(x) are the CDF and survival func-
tion, respectively, calculated at x and Used Exposures 
Units is defined as:

( )

( )

× −

× , (4.2)

Exposure Units

F Eval Date Avg Accident Date

s Retention

Report Time

Severity

The severity distribution should be detrended to the 
appropriate year before calculating this value. Doing 
this will take care of the frequency trend component 
that is a result of retention erosion. If there is a non-
zero ground up frequency trend as well, this should 
also be accounted for. If using premiums, the expo-
sure units can be the on-level premiums divided by the 
LEV for the policy layer. Dividing by the LEV takes 
the severity component out of the premium. Similar 
to the Cape Cod method, we multiply the exposures 
by the percentage of claims that were expected to have 
already been reported at this point in time. We obtain 
this percentage by applying the CDF of reported claim 
times (Part A) to the right truncation point for each 

Table 2. Data and steps required for calculating unpaid losses

Part Data Fields Needed Depends On

1) Pure IBNR Grouped Policy Data Average Expected Accident Date (Average of the 
Effective Date and the Earlier of the Expiration Date 
and the Evaluation Date), Retention, Policy Limit, Sum 
of Exposures or On-Level Premiums

A, B, C

2)  IBNER on  
Non-Reserved Claims

Claim Level Detail, All Open 
Non-Reserved Claims

Accident Date, Report Date, Retention, Policy Limit B, C

3)  IBNER on  
Reserved Claims

Claim Level Detail, All Open 
Reserved Claims

Outstanding Amount, Policy Limit D

4) Legal Payments None None E
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calculate the losses for a prospective year of policies 
with the expected makeup of retentions and policy 
limits from the beginning to derive an estimate of the 
expected ultimate losses for the prospective period. 
This can be done for historical periods as a check 
as well.

5. Numerical example

We will now illustrate this method with an example 
using simulated data. To simplify, we will not include 
any outstanding claims or legal payments, so only 
Parts A (reporting times), B (percent of claims paid 
and settlement times), and C (claim severity) will 
be needed. We will also assume that the claim sever-
ity does not change with duration or year, and that all 
claims occur on the first day of each year. We first 
walk through an example using a particular simulation 
run chosen at random, and then discuss the results of 
running many simulations.

Claim reporting and settlement times were simu-
lated from exponential distributions, with a mean of 
2 years for reporting times, and means of 4 and 3 years 
for the settlement times of claims that end up being 
paid and unpaid, respectively. Claim frequencies were 
simulated from a negative binomial distribution hav-
ing a variance-to-mean ratio of 2 and a frequency per 
policy of 0.5 (for claims above the retention). Each 
claim had a probability of 20% of being paid. Claim 
severity was simulated from a lognormal distribution 
with mu and sigma parameters of 9 and 2, respec-
tively. All policies had a retention of half a million 
and a policy limit of one million. We simulated ten 
years of data, with 1,000 accounts each year. Tables 3 
and 4 show what the aggregate loss triangle looks 
like for this simulation run, and the respective link 
ratios for that run. Note the large amount of volatility 
in the link ratios.

We will now use the method described in this paper. 
Following Part A, the first step is to fit an exponential 
distribution to the reporting times of all claims using 
MLE, taking the right truncation point of each year’s 
claims into account. Doing this yields a mean of 
1.99, very close to the actual value of 2, which is 

no detrending is needed. The durations, reporting lags, 
and/or settlement lags should be taken into account 
if the severity distribution was made dependent on 
these, by using the appropriate conditional distribu-
tions given the current reporting lag of each claim.

4.2. Part 2: IBNER on  
non-reserved claims

For each open non-reserved claim, we need to cal-
culate the probability of it being paid given its current 
duration using formula (3.1) from Part B above. Sever-
ities can be calculated taking into account each claim’s 
reporting lag and the conditional settlement times dis-
tribution given its current settlement lag. Multiplying 
these two pieces together yields the expected value of 
IBNER for each claim. Summing up all of these values 
will yield the total IBNER on opened, non-reserved 
claims for the entire book.

4.3. Part 3: IBNER on reserved claims

All that is needed for this part is to apply the model 
from Part D to all open reserved claims to produce 
the expected paid ratio to policy limit for each claim, 
and then multiply each percentage by the policy limit 
to obtain the dollar amount. Subtracting the total out-
standing reserves from this number will yield the 
IBNER for these claims. Note that this amount can 
be both positive and negative.

4.4. Part 4: Legal payments

The appropriate cumulative legal percentage from 
Part E should then be applied to each accident year’s 
total unpaid losses to calculate the total expected legal 
payments, taking into account the age of each year. 
This part is only needed if legal payments are paid 
outside of the policy limits; otherwise, they should be 
included in Part C, in the average severity.

4.5. IBNR and ultimate losses

Taking the sum of the four parts above (sections 4.1–
4.4) will yield the unreported loss plus legal estimates 
per year. Adding this to the incurred losses will pro-
duce the ultimate indications. It is also possible to 
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We now continue with Part B, and fit distributions 
to all of the paid and CNP claims separately, also 
with taking the right truncation point of each claim 
into account. The fitted means of the exponential 
distributions for the paid and CNP claims were 4.17 

not surprising given the large number of reported 
claims. Using this, we calculate the value of the 
CDF at the right truncation point for every policy 
(which is the evaluation date of the data minus the 
average accident data of each policy), and then multi-
ply this by the number of exposures to produce the 
number of used exposures per year. Dividing the total 
number of claims by this number yields the excess 
claim frequency per policy. Normally, we would also 
multiply by the survival function at each claim’s 
retention to produce the ground up frequency, as in 
formula (4.2); we chose to skip this step for simplic-
ity since all policies have the same retention in this 
example. The results are shown in Table 5. The bot-
tom right of this table shows that the final calculated 
frequency per policy was 0.500, which matches the 
actual value used to simulate the data. Again, this 
accuracy is not surprising given the large number of 
total claims.

Table 3. Example loss triangle

Year/
Duration 1 2 3 4 5 6 7 8 9 10

2004 $2,603 $7,733 $13,900 $18,985 $22,930 $28,700 $32,359 $33,268 $36,414 $38,731

2005 $1,565 $5,296 $14,285 $23,152 $27,106 $31,980 $34,089 $37,308 $38,502

2006 $708 $6,249 $10,862 $16,483 $19,533 $25,779 $31,793 $35,490

2007 $1,479 $4,321 $9,433 $14,885 $19,508 $24,071 $25,798

2008 $1,068 $5,550 $9,263 $20,372 $26,033 $29,437

2009 $1,350 $10,322 $19,760 $27,413 $33,388

2010 $1,065 $3,656 $10,077 $17,731

2011 $2,732 $7,055 $14,523

2012 $2,356 $9,900

Table 4. LDFs

Year 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10

2004 2.970 1.798 1.366 1.208 1.252 1.127 1.028 1.095 1.064

2005 3.384 2.698 1.621 1.171 1.180 1.066 1.094 1.032

2006 8.824 1.738 1.517 1.185 1.320 1.233 1.116

2007 2.922 2.183 1.578 1.311 1.234 1.072

2008 5.195 1.669 2.199 1.278 1.131

2009 7.647 1.914 1.387 1.218

2010 3.432 2.756 1.760

2011 2.582 2.059

2012 4.203

Table 5. Calculation of expected frequency

Year Used Exposures Claims Frequency

2004 993 521 52.4

2005 989 476 48.1

2006 982 502 51.1

2007 970 499 51.4

2008 951 471 49.5

2009 918 433 47.1

2010 865 424 49.0

2011 778 399 51.3

2012 633 307 48.5

2013 394 206 52.3

TOTAL 8474 4238 50.0
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age needs to be calculated for every open claim and 
depends on the evaluation date of the data and the 
report lag of each claim. The average percentages 
for each year are shown in Table 7. Note how the 
likelihood of being paid is higher for claims from 
older years which have been open for longer; this was 
expected since the average settlement time for paid 
claims was longer than that of unpaid claims.

The final piece is Part C, where we estimate the 
parameters of the severity distribution. Fitting a log-
normal distribution to the data using MLE, taking the 
retention and limit of each claim into account pro-
duced mu and sigma parameters of 11.5 and 1.45, com-
pared to the true parameters of 9 and 2. Using these 
param eters to calculate the average limited expected 
value for the appropriate retention and limit yields 
$479,726; the actual value was $469,588. (In practice, 
if all retentions and limits are the same and average 
severity does not appear to significantly change with 
the duration, it would be more efficient to calculate  
the average of the claim values directly, instead of 
fitting a distribution.)

We now use the results from steps A, B, and C to 
estimate the unpaid losses per year and calculate the 
pure IBNR and the IBNER per policy. Recall that 
pure IBNR is calculated at the policy level by multi-
plying the unused exposures by the claim frequency 
and multiplying that by the expected percentage of 
claims that will be paid and the claim severity (for-
mula 4.3). IBNER is calculated at the claim level by 
multiplying the likelihood that each claim will be 
paid given its current duration (formula 3.1) by the 
severity. Results are then aggregated by year. Add-
ing paid losses yields our ultimate projections. The 
results are shown in Table 8.

and 2.91, not far from the actual values of 4 and 3, 
respectively. We then develop each claim by taking 
the inverse of the CDF at the right truncation point, 
and add up all of these values to produce the ultimate 
number of paid and CNP claims per year as detailed 
in Section 3.2. We can then estimate the percentage 
of claims that are paid each year by dividing. To be 
more similar to a Cape Cod-like method, as men-
tioned, to calculate the weights given to each year, 
we first calculate the average of the paid and the CNP 
CDF values for each claim. We then take the average 
of these values across all claims for each year. Using 
this method, older, more mature years are given more 
weight and newer, greener years are given less. To 
place some more weight on the more recent experi-
ence, a yearly exponential decay factor can be applied, 
as mentioned above in Section 3.2, but we did not do 
so in this example for simplicity. The results are shown 
in Table 6. The final calculated value for the percent of 
claims paid was 21.2%, close to the true value of 20%.

Note how both the results in this table (minus the 
latest two years) as well as the previous table that 
shows claim frequency were relatively stable by 
year, even with volatile data such as this. This is usu-
ally not the case with loss development factors, as 
can be seen from the triangle in Table 4.

We then use formula (3.1) to solve for the condi-
tional percent of claims paid given that a claim has 
been open for a certain amount of time. This percent-

Table 6. Calculation of initial claims payment ratio

Year
Ultimate 

Paid Claims
Ultimate 

CNP Claims
Relative 
Weight

Percent 
Paid

2004 123 409 0.88 23.1

2005 86 392 0.87 18.1

2006 100 401 0.82 19.9

2007 87 404 0.78 17.8

2008 89 349 0.71 20.3

2009 104 336 0.64 23.6

2010 99 304 0.55 24.6

2011 84 277 0.45 23.1

2012 101 231 0.32 30.4

2013 36 191 0.17 15.8

TOTAL 908 3294 NA 21.2

Table 7. Average claims payment 
ratio for open claims

Year Percent Year Percent

2004 35.6 2009 26.4

2005 31.9 2010 25.1

2006 32.0 2011 24.3

2007 29.2 2012 23.0

2008 28.2
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difference in the ultimate projections was a bit under 
40%, also quite dramatic. As the data became sparser 
and we decreased the number of accounts per year, 
the benefit of our method over the triangle method 
became more pronounced, and it became smaller as 
we increased the number of years or accounts, both 
as expected. Any change that made the data more 
volatile, such as increasing the frequency variance-
to-mean ratio, increasing the sigma parameter in the 
severity distribution, or extending the settlement times 
of claims, decreased the difference between the two 
methods, although not too significantly. At first, the 
direction of this change may seem surprising, but the 
fact is that as data becomes more volatile, there is 
less that can be done with it. As an extreme example, 
for data that is so volatile that has almost no credibil-
ity, any method used on it will perform just as poorly, 
since the volatility is coming from the data and not 
from the predictions.

We should mention that the differences in volatil-
ity mentioned are overstated since no human input 
was used for selecting the best loss development 
factors. On the flip side, though, no penalty was given 
for any inaccuracy of the tail estimate. But, regardless, 
it should not be surprising that this method can lower 
the volatility by a very large margin; each parameter 
needed for predicting ultimate losses is estimated 
using the entire data, as opposed to the triangle method 
where each “parameter” only uses data from a single 

Table 9 shows how the results from this simulation 
compare to the actual.

Running many simulations confirms that this 
method is unbiased, even with a tail that extends 
for another 10 to 15 years past the evaluation date 
of the data. For comparison with a standard trian-
gle method, we used the Cape Cod method with the 
modified Bondy method (Boor 2006) for estimating 
the tail, where the tail is set to the square of the latest  
loss development factor; this was about correct, 
although we did not penalize for any overall tail bias. 
Running 5,000 simulations showed a coefficient of 
variation for total unpaid losses for our method of 
11.1% compared to 23.1% for the aggregate triangle 
method, meaning that in this example, our method cut 
the standard deviation down by more than half. The 

Table 8. Estimated losses per year

Year Paid Pure IBNR IBNER Total Unpaid Ultimate

2004 38.7 0.3 9.6 9.9 48.6

2005 38.5 0.6 9.5 10.0 48.5

2006 35.5 0.9 13.3 14.3 49.8

2007 25.8 1.5 14.9 16.4 42.2

2008 29.4 2.5 21.2 23.7 53.2

2009 33.4 4.1 20.5 24.7 58.0

2010 17.7 6.8 24.0 30.8 48.6

2011 14.5 11.3 27.8 39.1 53.6

2012 9.9 18.7 22.5 41.2 51.1

2013 2.5 30.8 17.8 48.6 51.1

Table 9. Estimated vs. actual results

Year
Estimated 

Unpaid
Actual 
Unpaid

Estimated 
Ultimate

Actual 
Ultimate

Unpaid 
Difference

Unpaid Percent 
Difference

Ultimate 
Difference

Unpaid Percent 
Difference

2004 9.9 12.0 48.6 47.0 -2.1 -17.5% 1.7 3.6%

2005 10.0 11.7 48.5 47.0 -1.6 -13.7% 1.6 3.4%

2006 14.3 16.6 49.8 47.0 -2.3 -13.9% 2.8 6.0%

2007 16.4 13.2 42.2 47.0 3.1 23.5% -4.8 -10.2%

2008 23.7 24.1 53.2 47.0 -0.4 -1.7% 6.2 13.2%

2009 24.7 25.4 58.0 47.0 -0.8 -3.2% 11.1 23.6%

2010 30.8 24.3 48.6 47.0 6.5 26.8% 1.6 3.4%

2011 39.1 31.1 53.6 47.0 8.0 25.7% 6.6 14.0%

2012 41.2 37.1 51.1 47.0 4.1 11.1% 4.1 8.7%

2013 48.6 40.7 51.1 47.0 8.0 19.7% 4.2 8.9%

TOTAL/AVERAGE 258.7 236.1 50.5 47.0 22.6 9.6% 3.5 7.5%
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have to worry about dependencies between reporting 
and settlement times, and so this can also serve as a 
test for the full version of the model.

With this paid-only model, more accurate model-
ing by retentions can also be performed. In the full 
model, we modeled on the retention of each policy, 
so for example, a 50 million dollar claim on a policy 
with a one million retention would only be consid-
ered under the one million retention group. With this 
new model, however, a Kaplan-Meier like approach 
can be used and this claim can be counted under all 
retentions up to 51 million, since this claim would 
still have occurred at all of these retentions. To model 
this, we would use the MLE hyper-parameters method, 
but claims can be counted multiple times in all of the 
retention groups that they could have occurred at.  
Normally, the Kaplan-Meier method is done at incre-
ments of every claim level, but this is clearly not pos-
sible here because of performance constraints. Instead, 
the method can be performed using wider intervals. 
This approach is not possible with the full version 
since the ultimate paid amounts for each claim in the 
model is unknown.

7.2. Segmentations using mixed models 
and Bayesian credibility

Our model consists of a bunch of different paramet-
ric distributions and GLMs. Each distribution can be 
broken into finer segments and incorporate credibil-
ity by building a Bayesian model. Similarly, instead 
of using GLMs, generalized linear mixed models 
(GLMMs) can be used to incorporate credibility by 
segment. To produce credibility weighted estimates, 
it is better to run a prospective year from the begin-
ning instead of adding the credibility weighted unpaid  
estimates to actual losses. If this is not done, the unpaid 
portion may be credibility weighted, but the actual 
losses that already occurred still need to take credibil-
ity into account in order to be useful for a prediction. 
Alternatively, initial estimates can be produced with-
out taking credibility into account, and these estimates 
can then be credibility weighted. Further discussion 
is outside the scope of this paper.

duration. In addition, the estimated parameters from 
the latter part of the triangle are often very volatile 
and affect the entire estimate since they feed into all 
the earlier age-to-ultimate factors.

6. Checking

The most obvious way to check this model is to 
compare the ultimate results to that produced from a 
standard triangle analysis. Results are not expected 
to match, but this should still give some indication 
as to the appropriateness of the model.

If settlement times from Part B were calculated for 
times of paid claims only, that is, not including out-
standing reserved claims, then paid loss development 
factors can be produced by starting each year from 
the beginning and calculating the expected losses at 
each duration. Loss development factors can then be 
calculated from these expected payments by dura-
tion, and these can then be compared to the factors 
obtained from a triangle method as a sanity check. It 
is also possible to use these paid loss development 
factors directly as an alternative. Producing incurred 
loss development factors is more complicated, as we 
would also need to take into account when reserves 
are set up, how they change, and when they will ulti-
mately be paid.

7. Refinements and  
alternative models

7.1. Paid-only model

A simplified version of this model only uses paid 
losses and does not consider reported or reserved 
claims. With this approach, Parts B (percent paid 
and settlement times) and D (reserved claims) can be 
left out of the model since we are only interested in the 
settlement of paid claims. Part A (reporting times) will 
be modified to only include paid claims and will now 
model the complete reporting plus settlement duration 
of each claim. This approach does not take advantage 
of all of the data that the full model does, but is much 
easier to implement. With this version, we also do not 
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distribution will be available for each starting reserve 
amount that can be used to simulate the magnitude of 
the change. Once a triangle is simulated, LDFs can 
be calculated (and ideally smoothed) and a method 
similar to that used to calculate the actual IBNR and 
ultimate losses can be performed. Running many sim-
ulations will yield the distribution of the prediction 
errors, either on an absolute basis, or for a one-year 
time horizon, which is needed for Solvency II.

8. Conclusions

The goal of the frequency-severity development 
approach presented in this paper is improved accu-
racy and better segmentation. This model can also 
produce valuable information regarding the expected 
frequency and severity of individual policies, provide 
a better framework for investigating how the report-
ing and settlement patterns may be changing over 
time, and generate volatility estimates. A large loss 
load can be easily calculated as well using the sever-
ity distribution. All of the benefits of this model, how-
ever, need be evaluated against the additional effort 
involved. For cases involving very volatile or sparse 
data, including low frequency-high severity books of 
business, aggregate triangle methods start to struggle 
and their predictions can even become very question-
able at times. In these scenarios, the case for building 
a more detailed model, such as the one presented in 
this paper, becomes even stronger. This model also 
takes many factors into account that triangle methods 
do not, such as the settlement lag of each claim and 
the outstanding amounts of each reserved claim, indi-
vidually and not in aggregate, and so can be used to 
produce more accurate, refined estimates.
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