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ABSTRACT

This paper discusses some strategies to better handle the model­

ing of loss development patterns. Some improvements to current

curve­ and distribution­fitting strategies are shown, including

the use of smoothing splines to help the modeled patterns better

fit the data. A strategy is shown for applying credibility to these

curves that produces results that are well­behaved and that can

be implemented without the use of Bayesian software. Next,

it is shown how the fitted models can be leveraged to help

determine the optimal look­back period to use for selecting

LDFs as well as to calculate the parameter and process error

distributions. Lastly, a technique is demonstrated for making

adjustments to LDFs for different limits, loss caps, and attach­

ment points.
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1.1. Outline

The next section discusses two strategies for
smoothing development patterns. The first involves
fitting a curve and the second involves fitting a dis­
tribution. Section three then discusses a method to
perform credibility weighting on these models. The
related topic of modeling on continuous variables is
handled as well. Section four discusses the topic of
choosing the optimal look­back period and section
five elaborates on the estimation of the error distribu­
tion. The final section, section six, discusses applying
layer adjustments to loss development factors.

2. Fitting curves and distributions
to loss development patterns

Selecting individual loss development factors
without paying attention to the shape of the curve
discards a large amount of useful information about
the relationship between the LDFs that can be used
to improve the accuracy of selections. As mentioned
in England and Verrall (2002) and others, selecting
parameters for every single age is over­parameterized,
meaning that more parameters are being chosen than
necessary, which will increase the prediction variance.
Some curve­fitting strategies for LDFs are discussed
in this section that improve upon the inverse power
curve (Sherman 1984) and fitting a distribution to the
development pattern (Clark 2003).

The example data shown in Table 1 will be used
to illustrate many of the methods in this paper. The
resulting average LDFs are shown in Figure 1.

2.1 The inverse power curve

The inverse power curve (IPOC) is a well­known
method used to help smooth LDFs (Sherman 1984).
This curve can be fit by using the regression equation,
as mentioned in the paper1 (ignoring the c parameter
and setting it equal to zero):

log LDF A B log t( ) ( )− = + ×1 , (2.1)

1. Introduction

Because of the delay from the date an event occurs
until it is reported and ultimately paid, insurance
companies, unlike other businesses, do not know
whether their products are being adequately charged
for or whether they were sold at a profit or at a loss.
Actuaries rely on loss development patterns to help
estimate all of this.

The problem with loss development data is that
it contains summarized information consisting of
the payments of different types of claims as well as
reserve setups, increases and takedowns for reported
data. This makes it difficult to fit a loss develop­
ment pattern to a simple model that can be used to
reduce the number of parameters, perform credibility
weighting, apply adjustments for different layers, or
other tasks.

This paper discusses some strategies to better
handle the modeling of loss development patterns.
Specifically, the following is discussed:

1. Some improved curve­ and distribution­fitting
methods.

2. Credibility­weighting techniques for fitted curves
and distributions.

3. Methods for modeling across continuous variables.

4. Determination of the optimal look­back period
for pattern selection.

5. Calculation of the error distribution for both the
process and parameter variance.

6. Formulas for converting and modeling across
different loss caps, retentions, and policy limits.

All of the models in this paper can be implemented
as full Bayesian models solved using Markov chain
Monte Carlo, or more simply in spreadsheets. This
allows for easier adoption. It also facilitates imple­
mentation in account rating engines where credibility
weighting can be performed on an account’s individ­
ual loss development pattern. Both versions will be
discussed. Throughout this paper, unless otherwise
mentioned, all modeling is performed on the age­to­
age factors and all references to LDFs refer to these.

1The paper actually uses the logarithm of the inverse of the age, but the
regression equations are equivalent.
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Fitting the IPOC on the example data produces the
result shown in Figure 2. As can be seen, it does a
relatively poor job of fitting to the data.

2.2. An improvement: The DIPOC

One way to improve the fit of the IPOC is by
addressing the issue raised in Lowe and Mohrman
(1985) regarding the weights. Instead of using ordi­
nary regression to solve for the parameters, another
type of regression can be used. The method described
here can be implemented either on the individual
LDFs of a triangle or on the average LDFs by age.

An assumption that will be used is that the vari­
ance of an LDF is inversely proportional to the sum
of losses in the previous period, and so the variance
of a weighted average LDF is proportional to the
total sum of losses in the previous period. (So, for
example, the variance of the first LDF is related to
the losses from the first age.) This should be the case
since the variance of the losses for a subsequent age
for two equally sized and uncorrelated accounts is
equal to twice the variance of one of these accounts.
To convert these losses into LDFs, they are divided
by the sum of the losses in the previous age; and so the
variance is divided by the square of this sum (since it
is not a random variable). Thus, the denominator of
the LDF variance for both equally sized accounts

where A and B are regression coefficients and t is
the age. In the author’s experience, it can be a use­
ful tool to help smooth out some LDFs, especially
in the latter portion of the curve, although it often
has trouble fitting the entire curve. This depends on
the book of business, however. Also, solving this
regression equation using ordinary regression gives
too much weight to the tail portion of the curve, as
mentioned in Lowe and Mohrman (1985). This is not
an issue if using an extrapolation from earlier, more
stable points to predict later ages in the curve, as is
commonly done, but can be an issue when attempt­
ing to fit to the entire curve. Several improvements to
this curve will be discussed in the following sections.

Table 1. Example data

Ages

Year 12 24 36 48 60 72 84 96 108

2009 12 28 49 65 75 85 90 93 94

2010 11 29 50 66 77 86 93 96

2011 10 28 49 65 74 85 91

2012 11 29 52 70 81 92

2013 12 34 55 73 85

2014 13 36 65 84

2015 13 37 61

2016 15 40

2017 18

Figure 1. Average LDFs

Age

20 40 60 80

LD
F

1.
0

1.
5

2.
0

2.
5

Age

20 40 60 80

LD
F

1.
0

1.
5

2.
0

3.
0

2.
5

3.
5

Figure 2. IPOC fit to example data
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Using a gamma distribution family assumes that
the standard deviations of the LDFs minus one are
proportional to the mean, or in other words, that the
coefficients of variation (CoV, the mean divided by
the standard deviation), are constant. In practice, the
CoV should also vary with the age of the triangle, as
LDFs tend to be more volatile at the very early ages
where the loss volume is low, as well as at the later
ages where the volatility can be very high relative to
the low expected amounts of development. To model
this relationship, a curve will be used to determine
a CoV factor by age. The CoV for each age is equal
to this CoV factor divided by the square root of the
loss volume, which agrees with the relationship men­
tioned that the variance of an LDF is inversely pro­
portional to the loss volume. This CoV factor curve
should be increasing (faster than the losses, that is),
which allows for the later LDFs to be more volatile.
Having the CoV be related to the losses also allows
for the earlier ages to have more volatility since the
loss volume is lower thus making the CoV higher.

To summarize, where A, B, I, and J are all param­
eters solved via maximum likelihood, the steps are
as follows (note that what we refer to as beta, Excel
refers to as the inverse of beta.):

( )( )= + × +Fitted LDF exp A B log age 1i i

( )= + ×CoV Factor exp I J agei i

= √CoV CoV Factor Lossi i i

1 CoVi i
2α =

iFitted LDF 1i i ( )β = α −

loglik log Gamma PDF
Actual LDF

1, ,
.

i

i i
∑=

− α β












What was done here is similar to a double GLM
that can be implemented in a spreadsheet environ­
ment. (Note that the equation for the CoV is slightly
different from the inverse power curve equation.)

As mentioned, the actual LDFs used can either be
the average LDFs across all selected years, in which

combined will be two squared greater than that of a
single account. And so the variance of the combined
LDF will be 2/22 or half of that of each of the accounts
separately; assuming any other relationship between
variance and losses in this simple example will not
agree with this result and will lead to inconsistencies.

Turning back to the regression, an important ques­
tion to ask is what is the most appropriate distribution
family for loss development factors. If the errors are
assumed to be additive, a normal distribution family
should be used. If instead errors are assumed to be
multiplicative, a gamma distribution family should
be used, since this will make the standard deviation
proportional to the mean. If the error distribution
is between additive and multiplicative, a Tweedie dis­
tribution family should be used. To help answer this
question, a Box­Cox test was run on actual data from
various commercial lines of business using the MASS
package in R (Venables and Ripley 2002). This tests
for the amount of skewness by determining the cor­
rection required in order to make data approximately
normally distributed. The transformation has the fol­
lowing forms: (xQ − 1)/Q for Q not equal to zero; and
log(x) for Q equal to zero, where x represents the
values in the data and Q is the transformation param­
eter, which can be solved for using maximum likeli­
hood.Aresulting value of one provides no meaningful
transformation and indicates that the data is already
approximately normally distributed; a value of zero
or close to zero indicates that the data is closer to
being lognormally distributed and that the gamma
distribution family would be ideal in the regression
context; and a value in between zero and one indi­
cates that a Tweedie would be best. The test results in
Figure 3 show the 95 percent confidence interval and
was conducted using internal company data on the
LDFs minus one for various ages (going across) for
various commercial lines of business (going down)
for both primary and excess as well as both occur­
rence and claims made business. As can be seen, it
produced results mostly around zero, thus showing that
the gamma distribution family, though not 100 per­
cent perfect, is suitable for modeling LDFs.
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The lower the base used, the more LDFs that can
be included, but the more distortion to the model,
since the LDFs minus one were assumed to be
gamma distributed. Different bases should be tested
to make sure that the method is not too sensitive to
the choice of a base. Testing this approach on actual
data had mixed results, however. With this method, the
expected LDFs are still required to be greater than one.

As a final note, this curve, as well as the method
described in the next section, generally works better
with quarterly evaluations, although this is not essen­
tial and depends on the length of the development
period for the line. Quarterly evaluations increase the
number of data points, which makes it easier to both
fit and evaluate the curve.

Running this double inverse power curve (DIPOC)
on the example data yields the result shown in Figure 4.
The fit is improved, but is still not great.

In the author’s experience of using this method on
actual data, the DIPOC can perform well on some
lines, but less well on others. For these cases, the
method from the next section should be used.

2.3. Adding smoothing: The SMIPOC

The following model can be described as a combi­
nation of the inverse power curve and the generalized

case the losses used should be the sum of the losses
across these years used for calculating the LDFs, or
they can be the individual LDFs of the triangle. If the
CoV parameters are the same, the two approaches
will yield identical results, as can be confirmed. This
method usually works well on either, although model­
ing on the individual LDFs should produce more
robust estimates of the variance parameters, which
may make the fit more accurate. If the variance
parameters are also being used to estimate the vari­
ability in the LDFs, then using the individual LDFs
is definitely preferred.

If this method is run on the individual LDFs, it will
fail if any of the loss volumes are zero, which can
occur at early ages of a triangle, since these LDFs are
infinite. One solution is to set all zeros in the triangle
to a very small positive value. Another solution is to
use the overall average for these early ages.

LDFs equal to one should be set to a very small
value above one, since the gamma distribution is not
defined at zero. This method will similarly fail with
LDFs less than one, which can be frequent in reported
loss triangles.A simple solution is to exclude all LDFs
less than one when running the initial model. Then,
a bias correction can be calculated by calculating
the difference between the average empirical LDFs
with and without these negative development LDFs,
and then fitting a curve through these differences to
smooth them out. (A spline curve can be used, which
is described in the next section.)

Another alternative is to subtract a number slightly
less than one from the LDFs instead of subtracting
one when calculating the gamma likelihood, such
as 0.9 or 0.8. This will allow the likelihood of more
of these negative development LDFs to be included.
A revised CoV factor needs to be calculated so that
the variance of each LDF is as expected. This can be
done using the following formula, where Base is the
number subtracted from the LDFs:

Adjusted CoV Factor

CoV Factor Fitted LDF

Fitted LDF Base

( )= × −
−

1
. (2.2)
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Figure 4. DIPOC fit on example data
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are functions that generate multiple new numeric
sequences based off of the original sequence that can
be used for smoothing. These new variables can then
be plugged into a standard regression model with
the same result as an additive model. The example
shown above used three natural cubic spline trans­
formations off of the numeric sequence from one to
ten and are graphed in Figure 6. Each of these result­
ing curves represents one of the degrees of freedom
of the spline. By multiplying each curve by a coeffi­
cient and adding the results together, smooth curves

additive model suggested by England and Verrall
(2001) that they use to model the incremental paid
or reported loss amounts. Here, however, we will
be modeling on the actual LDFs instead, as we have
been doing, because it is easier to implement, pro­
duces results that are more consistent with traditional
actuarial practice, and works better with credibility
weighting (as is shown later). It also involves solving
for fewer parameters so that it can be implemented in
spreadsheets.

Before we begin explaining how this model works,
we will briefly explain splines and additive models.
An ordinary regression model has a dependent vari­
able that is a linear function of one or more predictive
variables and has the form

Y B Xi j ij
j

∑= .

An additive model, instead of just linear functions,
allows for any function, and has the form

Y f Xi ij
j

∑ ( )= .

Usually, some type of smoothing function is used
that helps adapt the curve to the actual data, even if
the relationship is not perfectly linear. Cubic splines
are a very common choice since they do a good job
of adapting the curve to the data and results in nice,
smooth curves.

For example, if we were trying to fit a regression
model to the data below and were not able to find
a simple transformation of the independent variable
that nicely fit the data, such as a logarithm, we might
consider using an additive model. The results, using a
linear regression model (blue line) versus an additive
model (red line), are shown in Figure 5. Note how the
additive model nicely adapts the shape of the curve to
the data.

An additive model can also be implemented with
an ordinary regression model using splines.2 These
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Figure 5. Splines illustration

2A full additive model may also help decide how many new variables
should be generated (known as the degrees of freedom), but this is not
crucial. X
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Figure 6. Spline variables
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spline variables, t (1) and t (2), on the logarithm of the age.
(Superscripts were used to denote the different spline
variables.) The parameters should be solved for the
same way as described for the DIPOC.

The number of degrees of freedom to use for
the spline depends on the data. Often using a spline
with two degrees of freedom produces a good fit,
but another degree of freedom can be added if neces­
sary. A likelihood ratio test can be performed to see
if additional parameters are warranted as well as to
compare this model to the DIPOC. The significance
level for this test is equal to one minus the chi­square
cumulative distribution function at twice the differ­
ence in the likelihood, with the degrees of freedom
equal to the difference in the number of parameters
between the models being tested. So, for example, to
test if this model is superior to the DIPOC, assum­
ing that a spline with two degrees of freedom was
used, the degrees of freedom parameter should be
set to one, since this SMIPOC has one additional
parameter.

Running this model on the example data pro­
duces a much better fit, as can be seen in Figure 7.
A chi­square test to see if this model is preferred over
the DIPOC produces a value of 0.4 percent, which is
very significant.

can be fit to data of multiple forms and shapes. The
benefits of this approach are that splines work better
for the credibility procedure that will be presented
and allow additive models to be implemented from
within spreadsheets.3 A full discussion of additive
models is outside of the scope of this paper.

Having described the benefits of additive models
and how they work, it becomes clear why we would
want to use them in a loss development model; it
is often difficult to find a simple parametric shape
that fits nicely to the entire curve. Additive models
solve this problem by adapting the curve to the data.
A downside, however, is that they can sometimes
over­fit.

This method works best when the spline is gener­
ated on the logarithm of age, and so is very similar to
the inverse power curve, but with additional smoothing
to help fit the data better. This model will be referred
to as the smoothed (double) inverse power curve,
or SMIPOC.

Compared to the DIPOC, the spline/additive model
often provides a much better fit to the data. The regres­
sion equation used here is

log LDF A B s log t( )( ) ( )− = + ×1 .

Where A and B are the regression coefficients, t is
the age, and s is a smoothing cubic spline function.
Using splines, this can be extended to the following
(assuming that a spline with two degrees of freedom
was used):

log LDF A Bt Ct( )− = + +( ) ( )1 , (2.3)1 2

where A is the intercept of the curve, and B and C
are the slope parameters for each of the generated

3One way this can be done is to generate the spline numeric sequences
outside of the spreadsheet and then paste them in. Natural cubic splines
can be generated in R using the ns method of the splines package. For
example, the following code can be used to generate a spline with three
degrees of freedom (that is, equivalent of three variables) starting at the
second age, ending at the 20th, but having a tail that goes out to the 40th, all
on a log scale as will be mentioned a bit later: library(splines) ns( log(2:40),
Boundary.knots = c(log(2),log(20)), df = 3 ). Age

20 40 60 80

LD
F

1.
0

1.
5

2.
0

2.
5

Figure 7. SMIPOC fit on example data
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is equal to the product of this log­likelihood and the
(incremental) number of dollars paid at this period.
If any year is used starting from some point other
than the beginning, which occurs if the n most recent
calendar years are used, the normal rules of MLE
should be applied, namely, the left truncation of the
starting point should be reflected; this would change
the denominator to be the difference between the
CDFs at the right truncation point and at the starting
point. Note that this method can be performed even
if the losses are negative, i.e., some LDFs are less
than one, although the expected development is still
expected to be positive. Once a distribution is fit to
the loss development data, age­to­ultimate factors
can be calculated by taking the inverse of the fitted
CDF values. Age­to­age factors can be obtained by
dividing consecutive age­to­ultimate factors.

Since only CDF/survival values are needed for
this to work, there is some flexibility in the type
of distribution that can be used; a curve can be fit
to the survival values without having to worry what
the corresponding probability density function is. One
such curve that works well (based on the author’s
experience) is to use the inverse power curve equa­
tion, but with a logit transform instead of a log (and
also do not subtract one from the value as done with
LDFs). So, the equation for this curve is

s age ilogit A B log age( )( ) ( )= + × , (2.4)

where s(x) is the survival function at x and ilogit
is the inverse of the logit function. This function
ensures that the resulting survival values are between
zero and one. It will not ensure, however, that the
values will be strictly decreasing, which would result
in negative likelihoods, but this will usually be the
case anyway.

Using this curve, the resulting distribution turns
out to be identical to using the log­logistic distribu­
tion, which is one of the recommended distributions
mentioned by Clark (2003). Since this equation is
based on the inverse power curve, it will be referred
to as a right­truncated inverse power distribution
(RIPOD), since it is a distribution and not just a

2.4. Fitting a right truncated distribution:
The RIPOD and SMIPOD

Clark (2003) fits a distribution to the completed
percentages as an alternative strategy for modeling
a loss development pattern. Taking this approach of
fitting a distribution, a different method for perform­
ing this task will be suggested here that is based off
of the procedure described in Korn (2016) and used
to model claim reporting and payment lag times.

When fitting distributions, for example, left trun­
cation is present if a policy has a retention, since
both the amounts and the number of claims below
the retention are unknown. When looking at report­
ing lags, for example, right truncation is present,
since nothing is known about the number and times
of the claims that will arrive after the evaluation
date. To control for left truncation with MLE, the
likelihood is divided by the survival value at the
retention; similarly, to control for right truncation,
the likelihood should be divided by the cumulative
distribution function (CDF) at the truncation point.
(If both left and right truncation are present, as can
be the case, as shown shortly, the likelihood should
be divided by the difference of the CDF values at the
two truncation points.)

This will be used to model the timing of each
dollar (or euro, etc.) in a development triangle. Right
truncation is present since nothing is known about
the number of dollars that will be paid (or reported)
or the timing of these payments after the evaluation
date. Note that modeling the times of the individual
payment dollars directly assumes that the payment of
each dollar is independent, which is clearly not the
case, but with enough payments, this is immaterial. To
apply this method to a paid triangle with yearly evalu­
ations for year 2015 at 24 months and an evaluation
date of 12/31/2017, for example, the log­likelihood of

each dollar is equal to log
CDF CDF

CDF

( ) ( )
( )

−





24 12

36 .
The difference of the CDFs was used in the numer­
ator since all of these dollars were paid between
12 and 24 months from the beginning of the year.
The total log­likelihood for this year/evaluation period
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When performing MLE to fit the SMIPOD on
actual data, it is sometimes difficult for the maxi­
mization routine to arrive at the global maximum.
Appropriate starting values should be chosen, which
is always the case, but even more so with this method.
One method of selecting good starting values is to set
the initial SMIPOD parameters to those values that
produce the same results as the RIPOD. This way,
the likelihood of the RIPOD can only be improved.
To do this, another optimization routine can be run
that minimizes the squared or absolute differences
between the CDFs of the two methods before run­
ning the actual SMIPOD optimization. This should
work well with a spline having two degrees of free­
dom. In the author’s experience, using this method
with a spline having three degrees of freedom was
unstable and produced unsatisfactory results. Divid­
ing the SMIPOD equation by the survival value at a
low value close to zero can also help add stability to
this distribution. Another possible solution is to opti­
mize the inverted survival function parameters, as is
explained in the next section. If this is done, the final
survival function parameters should be constrained
so that they are decreasing because otherwise nega­
tive likelihoods would result, which would cause an
error in the routine.

curve, keeping with the nomenclature of this paper.
Fitting the RIPOD on the example data produces the
result shown in Figure 8.

It can be seen that this fit is not far off but is still
imperfect. When this is the case, additional smooth­
ing can be added via a spline, similar to what was
done for the inverse power curve. This smoothed
inverse power distribution (SMIPOD) often per­
forms better, although its performance can be com­
pared to the RIPOD using a likelihood ratio test.
There is less guarantee that this curve will be strictly
decreasing, but most of the time it is. (If necessary,
it is possible to constrain the survival values when
performing the fit to be strictly decreasing.) It also
usually produces a lower estimate of the tail, which
is a potential issue mentioned by Clark (2003) with
the log­logistic distribution. The fitted tail was 1.171
for the RIPOD while it was 1.060 for the SMIPOD,
which seems much more reasonable, given the data.
Fitting this distribution on the example data produces
the result shown in Figure 9. A likelihood ratio test
to see if the SMIPOD is preferred over the RIPOD
produces a value of 9.2 percent, which is borderline
significant—although, based off of the graphs and
the resulting tail values, the SMIPOD would prob­
ably be preferred.
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Figure 8. RIPOD fit on example data
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Figure 9. SMIPOD fit on example data
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true for spline curves, since the spline coefficients are
highly dependent on each other and applying sepa­
rate prior/credibility penalties on each coefficient
leads to odd results. The same is true for the DIPOC,
although to a lesser extent. This curve is shown in Fig­
ure 12. It is much better behaved than the SMIPOC
but still produces a nonintuitive result, as can be
seen from the fact that the credibility­weighted curve
crosses over the independently fitted curve.4

3. Credibility weighting
3.1. Method of credibility weighting

Bayesian credibility is used as the credibility
weighting method throughout this paper. This method
can be implemented without the use of specialized
Bayesian software: The prior distribution (that is,
the distribution of the hypothetical means for each
group, in Bayesian terms) that will be used for these
models is the normal distribution, which is the
most common assumption. Since the distribution of
maximum likelihood parameters is assumed to be
approximately normal, this is a conjugate prior and
the resulting posterior distribution (the credibility­
weighted result) is normal as well. Using MLE returns
the mode of a distribution, which will also be equal
to the mean for the normal distribution, and so will
return identical results to that produced using spe­
cialized Bayesian software. Further implementation
details are discussed in the following section.

3.2. Applying credibility to a curve

To perform credibility weighting across differ­
ent segments using Bayesian credibility, Bayes’
formula would be used: f (Parameters ­Data) c
f(Data ­Parameters) w f(Parameters), or equivalently,
Posterior(Parameters, Data) c Likelihood(Data,
Parameters) w Prior(Parameters), and the regression
parameters would be used for calculating this prior
likelihood component, which is the credibility com­
ponent of the likelihood. However, doing so often
results in credibility­weighted curves that do not lie
in between the complement curve, and the curve that
would result if no credibility were performed. This
is a nonintuitive result that is difficult to understand
and to justify. An example segment that will be used
for illustration is shown in Table 2 (using the same
overall triangle shown in Table 1). A comparison
between the average LDFs of the segment versus
the overall is shown in Figure 10. Performing this
naive credibility technique with the SMIPOC on
the example data is shown in Figure 11. It produces
curves that intuitively seem wrong. This is especially

Table 2. Example triangle for credibility weighting

Age

Year 12 24 36 48 60 72 84 96 108

2009 2 7 14 21 25 29 32 34 35

2010 2 8 16 22 27 31 35 37

2011 2 8 19 27 33 38 42

2012 2 8 17 25 30 35

2013 3 9 19 28 34

2014 3 9 21 29

2015 3 11 22

2016 3 10

2017 3

Age
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Figure 10. Average LDFs for credibility examples

4For the SMIPOC, a between standard deviation of 0.4 was used for
all the parameters. For the DIPOC, values of 0.2 were used. The CoV
parameters from the overall curve were used for the fitting of both the
credibility curves and the independently fitted curves.
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A L B log t( )= − , (3.2)1 1

where L = log(LDF − 1) at two different ages along
the curve.

Now, given any two LDFs of the fitted curve, the
original regression parameters can be solved for.
And given these, all of the LDFs of the curve can
be calculated. Ignoring the middle step, the entire
curve can be constructed from these two LDFs.
Since the entire curve can be defined by these two
LDFs, they can also be considered as the parameters
of the curve. This being the case, the prior likelihood
(the credibility component of the likelihood) can
be calculated using these new parameters instead.5

Instead of using the actual LDFs, it’s recommended
to use the logarithm of the LDF minus one so that
the relationships between different segments’ LDFs
will be multiplicative. The ages for these LDF param­
eters can be selected as being equally spaced along
the ages used to perform the fit, but they can be
tweaked if needed. Note that even though the cred­
ibility weighting is being performed on only two
LDFs of the curve, the entire curve is still being cred­
ibility weighted, since changing these LDF param­
eters affects the entire curve as they are the new
curve parameters. The same applies to the SMIPOC,
except that three or four LDFs should be used, since
this curve has three or four parameters that are being
credibility weighted.

It is probably best to invert the equations when
implementing a full Bayesian model. For an MLE
model, this is not necessary, however (unless imple­
menting a multidimensional model or modeling across
continuous variables, which is discussed later), since
any fitted LDFs along the curve can be calculated
using the curve parameters and thus can be used to
calculate the prior likelihood component, effectively
“pretending” that the equation has been inverted
and reparameterized. Doing this will yield the exact
same results as if the inversion had actually been

To fix this issue, the curve can be reparameterized.
The first step is to invert the regression equation
(2.1 or 2.3) to solve for the LDFs. Doing so results in
the following equations for the IPOC/DIPOC. Since
there are two parameters, two LDFs are needed at two
separate ages to solve for them:

B
L L

log
t

t

= −






. (3.1)1 2

1

2
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Figure 11. SMIPOC credibility weighting—
Naive method

Figure 12. DIPOC credibility weighting—
Naive method
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5Note that even though the parameter distribution of the LDFs are
assumed to be gamma, these are not the same as the LDF parameters
which affect the entire curve and are assumed to be asymptotically
normally distributed.

14953-06_Korn-3rdPgs.indd   106 8/9/18   10:05 AM



Strategies for Modeling Loss Development: Curve Fitting, Credibility, and Layer Adjustments 

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 107

with our intuitive expectations of where credibility­
weighted curves should end up. (Although there is
still no guarantee that the resulting age­to­ultimate
factors will do the same, they usually do.)

In this example, note that even though the
credibility­weighted curves lie in between the com­
plement and the independently fitted curves, this
may not always be the case. Sometimes tweaking the

performed. The same applies to a right­truncated fitted
distribution except that the logit of the survival values
should be used as the new parameters instead.

For the MLE model, the complement of credibil­
ity for each parameter can be taken from the results
from fitting a curve to all segments combined, and
not the actual empirical LDFs, since these are sub­
ject to more volatility. Or, alternatively, if all of the
segments’ likelihoods are maximized together, the
complements can be determined from the model and
set as parameters. For a Bayesian model, the latter is
usually performed, but this may be too many param­
eters to solve for simultaneously with an MLE model.
However, using the curve resulting from combining
all segments may be easier to explain and justify to
a less technical audience. To summarize, to perform
credibility weighting, the following component is
added to the log­likelihood:

N
Fitted L Complement L

Between Variance
C C

Cc Ages Used
For Credibility

Weighting

∑ 



=

, ,
, (3.3)

where L = log(LDF − 1) and N(A, B, C) is the loga­
rithm of the probability density function (PDF) of a
normal distribution at A, with mean and variance of
B and C, respectively. The fitted LDFs are determined
from the appropriate curve equation (2.1 or 2.3). There
should be only one set of parameters for calculating
the CoV factors that is shared across all segments,
unless a strong reason exists for doing otherwise. This
is straightforward if all of the segments are being run
together. If not, the CoV parameters can be taken from
the curve fit to the combined data. The equations for
inverting the SMIPOC are shown in Appendix A for
both three and four parameter curves.

Performing credibility weighting on the exam­
ple data using this method with a three parameter
SMIPOC is shown in Figure 13 and with a DIPOC
in Figure 14.6 These results are much more in line
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Figure 13. SMIPOC credibility weighting—
inversion method
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Figure 14. DIPOC credibility weighting—
inversion method

6For the SMIPOC, LDF parameters at ages of 2, 5, and 8 were used with
between standard deviations of 0.05, 0.025, and 0.005, respectively. For
the DIPOC, LDF parameters were used at ages 3 and 6, with between
standard deviations of 0.03 and 0.02, respectively.
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The SMIPOD performs better because it is a more
flexible curve. Figures 19 and 20 show the resulting
LDFs and CDF preforming credibility on the origi­
nal parameters.9 In this case, the credibility­weighted

ages used for the LDF parameters can fix this issue.
If not, and assuming that this is a desired property,
the prior/credibility component of the likelihood can
be calculated at every single age but assigned weights
equal to the ratio of the number of curve parameters
divided by the number of ages so that the overall
effect of the prior is mostly unchanged. Doing this
probably has little theoretical justification but can
still be a useful, practical method.

3.3. Applying credibility to a distribution

The same applies to a distribution fit to the loss
development pattern. Applying credibility to the origi­
nal parameters may result in poorly behaved results.
Using the inversion method, credibility can be applied
to the (logit) survival values. Using the survival values
will help the age­to­ultimate factors be better behaved,
which may be more important than the age­to­age
factors. The inverted formulas for the distributions
are the same as those for the curves, except that the
logit of the survival values are substituted for the
logarithm of the LDFs minus one.

The LDF and CDF results from fitting a RIPOD
by performing credibility on the original param­
eters are shown in Figures 15 and 16, respectively.7

It can be seen that the credibility­weighted LDFs
cross over the independently fitted curve towards the
end. For the CDF, a revised tail estimate causes the
credibility­weighted curve to lie above both the com­
plement and the independently fitted curve.

Inverting the parameters for the RIPOD helps the
performance, but is still not great.8 Figure 17 shows
the LDFs, which look as expected. The CDF, how­
ever, shows a non­intuitive result due to a revised tail
estimate and is shown in Figure 18. This result seems
to be due to the rigidity of the curve; adjusting some
of the earlier factors causes the curve to increase past
the complement.

7Between standard deviations of 0.4 were used for both of the parameters.
8Between standard deviations of 0.02 and 0.1 were used for the inverted
parameters, which were at ages of 2 and 9.
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Figure 15. LDFs for credibility weighting 
with the RIPOD on the original parameters
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Figure 16. CDF for credibility weighting 
with the RIPOD on the original parameters

9Between standard deviations of 0.1, 0.2, and 0.3 were used for the inter­
cept and two slope parameters, respectively.
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3.4. Calculating the between variances

If the inverted equations are used, the between
variances should be calculated on the LDF or sur­
vival parameters (that is, the logarithm of the LDFs
minus one or the logit of the survival values) and not
on the original regression parameters. If using a full
Bayesian model, the between variances can be cal­
culated directly as part of the model.

curves are performing satisfactorily, although this
may not always be the case.

Performing the credibility weighting on the inverted
parameters performs better and is shown in Figures 21
and 22.10
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Figure 17. LDFs for credibility weighting 
with the RIPOD on the inverted parameters
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Figure 18. CDF for credibility weighting 
with the RIPOD on the inverted parameters
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Figure 19. LDFs for credibility weighting 
with the SMIPOD on the original parameters
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Figure 20. CDF for credibility weighting 
with the SMIPOD on the original parameters

10Between standard deviations of 0.03, 0.15, and 0.15 were used for the
three parameters, which were at ages 2, 5, and 9.
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be set equal to the losses at these ages. The formulas
are shown below (Dean 2005). To improve the esti­
mation and reduce volatility in the estimates, it is also
possible to calculate the between variance at every
age and fit a curve.

EPV
W X X

N

gn gn gn

N

g

G

gg

G

g∑∑
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( )
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−

−
==

= 1
. (3.4)
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where EPV is the expected value of the process vari­
ance or the “within variance”; VHM is the variance
of the hypothetical means or the “between variance”;
X are the logarithm of the LDFs minus one; W are the
weights; G is the number of segmentations; and N is
the number of periods used.

For the right­truncated distributions shown, for both
Bayesian and MLE models, too much credibility will
be assigned, since the model assumes that each dollar
is an independent observation. Dividing the number
of dollars by the average claim severity puts the total
number of dollars on the same scale as the true num­
ber of observations and should lead to better results,
although this is only an approximation.

Bayesian models can tend to overestimate between
variance parameters when the number of groups is
small (Gelman et al. 2014). Cross validation does not
suffer from this issue and it can be used with MLE
for both the curve and distribution models. For the
distribution models, it is also not necessary to adjust
the dollar values by dividing by the average sever­
ity since this method does not depend on theoretical
assumptions to select the between variance. To per­
form cross validation, a model is fitted on a fraction
of LDFs or losses in the triangle using a potential
value for the between variance and this model is then
tested on the remaining data. The between variance
with the best result is chosen. The model can be tested
by calculating the likelihood on the test data (without
including the penalty for the credibility component).

The between variance cannot be estimated directly
if MLE is used, however, since they do not have a nice
symmetrical shape like other MLE parameters and
their means can be far off from their maximums. One
way to estimate these if using the MLE approach
with the IPOC family is to use the Bühlmann­Straub
formulas on the actual LDFs of the triangle for the
chosen ages as an approximation. The weights should
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Figure 21. LDFs for credibility weighting 
the SMIPOD on the inverted parameters
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Figure 22. CDF for credibility weighting 
the SMIPOD on the inverted parameters

14953-06_Korn-3rdPgs.indd   110 8/9/18   10:05 AM



Strategies for Modeling Loss Development: Curve Fitting, Credibility, and Layer Adjustments 

VOLUME 11/ISSUE 1–2 CASUALTY ACTUARIAL SOCIETY 111

log LDF log Overall LDF Mean

State Coefficient

Industry Coefficient

s i

s

i

( ) ( )− = −

+

+

1 1

. (3.6)

,

A log­link is used to make the relationship multi­
plicative, since this usually works best for these
models. The total log­likelihood would be calculated
by summing up the log­likelihoods for each of the
fitted triangles across all of the state and industry
combinations as well as the log­likelihood of the
priors for each curve parameter for each selected age.
(However, if each segment becomes too thin, it may
become difficult to credibility weight LDF curves, as
it is hard to calculate LDFs on very limited data. The
right­truncated distributions, since they fit directly
on the incremental losses, do not suffer from this
potential issue.)

The equation for the prior component for each age
is as follows:

∑

∑


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

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N
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State Between Variance

N
Industry Coefficient

Industry Between Variance
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s States
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, 0,

, 0,
, (3.7)

where N(A, B, C) is the logarithm of the proba­
bility density function evaluated at A, with a mean
of B and variance of C. Each state and industry
coefficient is credibility weighted back towards zero,
which pushes each curve back towards the overall
mean. It is also possible to add an interaction term
for state and industry and have that credibility
weighted back towards zero as well. This will give
the model more flexibility to better reflect the dif­
ferences of state­industry combinations that differ
from the average.

This type of model can be solved without the
use of specialized Bayesian software as well, since
the maximum likelihood (MLE) parameters are
assumed to be approximately normally distributed, as
explained in section 3.1. However, unlike a simple
one­dimensional mode, in this model every segment
needs to be maximized together. Because of this, the

This process is often repeated several times until a
smooth curve results, although in this case the data
available to use is a bit limited. The same fit and test
fractions of the data should be used for each evalu­
ated variance since this greatly reduces the number
of iterations required. If a DIPOC or RIPOD is used,
only two parameters need to be solved for, which
should not be too difficult. If a SMIPOC or SMIPOD
is used, however, determining three or four param­
eters via cross validation would be more difficult.
For the SMIPOC, one possible solution is to assume
that the ratio of the between standard deviation to
the overall average fitted LDFs minus one (which
can be calculated beforehand) is constant and so
only one parameter needs to be determined. For
the SMIPOD, however, defining a relationship is
less straightforward. An alternative that can be used
for both curves and distributions, instead of testing
every possible parameter combination, is to test
values by simulating random values within the appro­
priate range. Performance with this method has been
shown to be promising for other types of tuning tasks
(Bergstra and Bengio 2012). For the curve­fitting
methods, cross validation can be performed either
by fitting the models on the individual LDFs of the
triangle or by recalculating the average LDFs from
those years/ages that were selected for each iteration
and then fitting the model to the new averages.

3.5. Multidimensional models

The models being discussed up to this point were
one­dimensional models, as the credibility weighting
was done across a single variable. A multidimen­
sional model can also be constructed that considers
the differences across multiple variables. Assum­
ing that our two variables are state and industry, a
two­dimensional model can be built by defining a
relationship for the (inverted) LDF parameters, such
as the following, for each selected age for the IPOC
curves. For the distribution models, the logit of the
survival function can be substituted for the logarithm
of the LDF minus one.
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weighting, except that the cross­validation approach
needs to be used to determine the between variance
parameters, which are more accurately described as
penalty parameters in this case. This penalty is cal­
culated on the coefficient values, similar to what was
done for the credibility­weighting approach. The same
penalty is usually used for every parameter, whether
a dummy variable or a continuous variable. The only
difference is that all non­dummy variables should be
standardized first so that they are on the same scale,
so that the same penalty can be applied to all of them.
One way to do this is to subtract the mean and divide
by the standard deviation if there are no dummy vari­
ables present. If dummy variables are also present,
one method is to divide all non­dummy variables by
twice the standard deviation (Gelman 2008).

3.7. Individual account credibility

The credibility model discussed here can be
implemented relatively simply, without the use of
Bayesian software. This allows for the use of LDF
credibility­weighting in account rating engines,
often implemented in spreadsheets. The complement
of credibility for each account should be based on
the selected LDFs or survival values for the portfo­
lio with the between variances and the CoV factors
calculated at the portfolio level. The between vari­
ance should represent the variance of the differences
across accounts and can be calculated by looking at
a sampling of accounts. For curves, the CoV of the
LDFs for the account can be calculated by dividing
the CoV factor by the account’s losses and credibil­
ity­weighted LDFs can be produced.

4. Determining the optimal 
look-back period

Once a model is built that can accurately describe
the entire development pattern, it can be leveraged to
help address other issues. One such issue is determin­
ing the optimal look­back period to use for selecting
the LDFs. Using the inverted equations, parameters
can be inserted into the initial model that cause the

number of parameters may be too many to be deter­
mined accurately with a maximization routine except
for very simple multidimensional models. Regarding
the between variances, estimating for these types of
models would be difficult using the Bühlmann­Straub
formulas, so the cross­validation method is recom­
mended instead, if not using a Bayesian model. The
same between variances can be used across all vari­
ables to simplify this procedure.

3.6. Modeling across continuous variables

A similar topic is modeling across continuous vari­
ables. For modeling LDFs across most continuous
predictive variables in the data, such as account size
or retention (which will be discussed more thoroughly
in section 6), a relationship can be defined between
the different curves that depends on the continuous
variable. To implement, the inverted reparameterized
version of the curves or distributions should be used.
For each group, the LDF or survival function param­
eters can be set to a function of the continuous vari­
able. (For the LDF curves, groupings need to be
used so that the data does not get sliced too thin to
be able to calculate LDFs. For the right­truncated
distributions, it is possible to use either groups or
exact values.) For example, the following formula
can be used to determine the LDF parameters for each
account size group if using a curve; once again, if
using a distribution, the logit of the survival func­
tion should be substituted for the logarithm of the
LDF minus one:

log LDF Parameter

log Overall LDF Mean

Coefficient Account Size

( )

( )

( )

−

= −

+ ×

1

1

log (3.8)

With continuous variables, it is also possible to add
stability by including a penalty for larger coefficient
values using a ridge regression type approach. This
method will only allow larger differences between
segments to the extent to which they are credible,
similar to credibility weighting. The steps to imple­
ment are the same as those mentioned by credibility
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LDF curve (or development distribution) to change
at a certain accident or calendar year. (It is even pos­
sible to only change the first one or two LDF/survival
function parameters and leave the later one or two
unchanged in order to use a more recent average
for the beginning, more stable part of the curve but a
longer look­back period for the latter, more volatile
portion of the curve.) The time of the change can
be determined by selecting the change period with the
highest resulting likelihood. The significance of this
change can then be tested against the initial model
using a likelihood ratio test, as described earlier.
Once a significant change is found, the process can
be repeated to see if another statistically significant
change exists between the initially selected change
period and the latest period by repeating the same
process on the new model. Changes should not be
chosen one or two periods from the beginning or end
of the data, as this can lead to false positives, given the
small amount of data being assigned its own param­
eters (this can be confirmed via a simple simulation).

It is also possible to allow the curve to change grad­
ually by implementing a random walk on the inverted
LDF or survival function parameters. Further discus­
sion is outside the scope of this paper.

5. Calculating the 
LDF error distribution

The DIPOC and SMIPOC models can also be
leveraged to calculate the error distribution of the
LDFs. Determining the process variance is straight­
forward, as the coefficient of variations for each
age can be calculated by dividing the CoV factors by
the losses. The parameters of the gamma distribution
can then be obtained using the fitted means and the
coefficient of variations. (Or alternatively, another
distribution, such as a lognormal, can be used as well.)

If a Bayesian model was used, the parameter errors
are part of the output of the model. If MLE was used,
one method is to use the information in the shape
of the likelihood formula. The covariance matrix of
the parameters (inverted or not) can be calculated

by taking the negative of the matrix inverse of the
Fisher information matrix (Klugman et al. 1998).
The Fisher information matrix is the matrix of the
second derivatives of the parameters. Most statisti­
cal packages have tools to calculate this. Otherwise,
it can be calculated directly: The first derivatives of
the curve parameters can be obtained by taking the
difference in the likelihoods at slightly greater than
and at slightly less than the maximum likelihood
value and dividing this quantity by the difference
between the two points used. The second deriva­
tives can similarly be calculated by performing this
same step on the values of the first derivatives. Once
the covariance matrix of the parameters is obtained,
new curve parameters can be simulated using a multi­
variate normal or t distribution and the resulting LDFs
can be calculated for each iteration. Aggregating the
results will yield the parameter error distribution of
the LDFs.

Another method is to use bootstrapping. Parametric
bootstrapping can be performed by simulating new
LDFs using the gamma distribution in the same way
as was described for calculating the process error.
The LDF curve can then be refit from this data and
the expected mean LDFs can be produced. Repeating
this process many times will yield the distribution
of the LDF parameter error. Non­parametric boot­
strapping can be used as well, which is similar, except
that the new data is generated by resampling from the
LDFs of each age (along with their corresponding
losses) with replacement. The limited data in the tail
portion of the curve may cause limitations, however.
To obtain the complete parameter and process error
together, this same procedure can be used, except that
instead of generating the expected LDFs for each itera­
tion, the refitted distribution can be used to simulate
LDFs, as described. Aggregating the results will pro­
duce the total parameter plus process error. Model
error is not accounted for, however.

For the distribution models, calculation of the
parameter error can be performed in the same
manner. However, these models cannot be used to
estimate the process error because of the violation
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For a particular cap, c1:

SDF c
LEV c

LEV c
t

T

t

( )
( )
( )

=1
1

1
, (6.3)

where LEVt(x) is the limited expected value at x at
age t and T is infinity (although t + 1 can be used
to convert age­to­age factors as well). If there is
an assumption for how severity development affects
claims, this can be used to derive the LDFs. For now,
it will be assumed that all uncapped losses increase
on average by the same multiplicative factor as a year
matures, and a scale adjustment will be used to adjust
the loss severity distribution. To explain, most distri­
butions have a way of modifying one of the param­
eters that causes each claim to increase or decrease
by the same multiplicative factor. For example, the
mu parameter of the lognormal distribution is a log­
scale parameter and adding the natural logarithm
of 1.1, for example, will increase each claim by
10 percent. For a mixed exponential distribution,
each theta parameter would be multiplied by 1.1.
Equation 6.3 is rewritten to show the scale parameters
instead of the ages, where LEV(V; c1) is the LEV
with a scale parameter of V at a cap of c1:11

SDF c
LEV c

LEV
a

c
t

t

( )( ) = θ
θ





1
; 1

; 1
. (6.4)

Since both the SDF and LEV(V; c1) are known
or can be calculated, the only remaining unknown
is the factor, a; this equation can be used to back
into this factor. If losses are uncapped, there are
no policy limits, and c1 is infinity, then the factor, a,
would equal the SDF. Otherwise, it will be slightly
higher. Once the loss severity distribution at time t is
obtained, the severity development factor at another
loss cap, c2, can be derived:

SDF c
LEV c

LEV
a

c
t

t

( )( ) = θ
θ





2
; 2

; 2
. (6.5)

of the assumption that each dollar is independently
distributed.

6. Loss caps, retentions, 
and policy limits

Besides for the strategy mentioned for continuous
variables, when modeling across different loss caps,
retentions, and/or policy limits, information from the
severity distribution can be leveraged to help define
the relationships between the groups. This method
assumes that the loss severity distribution has already
been estimated. It also requires claim count devel­
opment factors. Our approach differs from that in
Sahasrabuddhe (2010), which suggests using the
severity distribution to modify the actual data of
the triangle; here we convert the LDFs themselves.
Note that this strategy uses the regular (non­inverted,
that is) versions of the curves (unless credibility
weighting is being done as well.)

We will start off with the following relationship
mentioned in Siewert (1996) (although in a slightly
different syntax). This formula simply states that loss
development consists of the arrival of new claims as
well as increased severity of both the existing and
new claims.

LDF CCDF SDFt t t= × , (6.1)

where CCDF is the claim count development factor
and SDF is the severity development factor, which
accounts for the increase in the average claim severity
as a year matures. Flipping the equation around, this
becomes

SDF
LDF

CCDF
t

t

t

= . (6.2)

These relationships will be used to demonstrate
modeling across different loss caps, assuming that
the LDFs of less stable caps are being based on one
particular, more stable cap. This will then be general­
ized to include retentions and policy limits and also
allow modeling of all groups simultaneously.

11As a side note, applying this SDF to the claims of each year can also
be used as a strategy for developing the severity distribution to ultimate
when fitting increased limit factors.
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CCDFs (even if these are not available) to simplify
the formula. The formula is

LDF AP Cap LDF AP Cap

SDF
AP Cap

Relative to

SDF
AP Cap

Relative to

t t( ) ( )=

×













2, 2 1, 1

2, 2,
0

1, 1,
0

.

(6.10)

To leverage credibility in the claim count develop­
ment factors as well, claim counts from one retention
can be converted to another using this formula:

CCDF AP CCDF AP

s AP s AP

s AP s AP

t t

T T

t t

( ) ( )

( ) ( )
( ) ( )

=

×

2 1

2 1

2 1
. (6.11)

In the above discussion, it was assumed that every
policy is written at the same retention or policy limit.
For a more realistic scenario with different limits and
retentions within each group, the average expected
severity should be calculated across all policies. If
it is assumed that the expected frequency of each
policy is equal to the (on­level) premium divided by
the expected average severity, the average severity
is equal to the total premium divided by the total
number of expected claims, or

Premium

Premium Expected Average Severity
ii

ii i

∑
∑

. (6.12)

If the retentions or policy limits within each group
are not too far apart, it is possible that calculating the
average severities using a premium­weighted aver­
age limit and/or retention may not be too far off. This
strategy can also be used to adjust LDFs if there are
shifts in the average retentions and/or limits by year.
The effects of trend were ignored in the above, which
can easily be added by applying a de­trending factor
to the scale parameter of the loss severity distribution.

As mentioned, the above discussion was geared
towards converting LDFs from one retention/limit/

And this can then be used to calculate the loss devel­
opment factor, at a loss cap of c2:

LDF c CCDF SDF ct t t( ) ( )= ×2 2 . (6.6)

The above assumed that all claims were ground up.
If this is not the case, and there is a retention (assum­
ing that it is uniform across all policies, for now), the
average severities can be calculated as

LEV AP Cap LEV AP

s AP

( ) ( )
( )

+ −
, (6.7)

where AP is the retention. The formula is divided
by the survival function at the retention to produce
the average severities conditional on having a claim
above the retention, which is consistent with the
claims we observe in the triangle.

For modeling across different retentions, the strat­
egy changes slightly since the claim counts are not
at the same level. This can be controlled for by mak­
ing the average severities for a retention conditional
of having a claim at another retention by dividing
by the survival function at this retention. When con­
verting the severity development factor to an LDF,
the claim count development factor at this retention
should be used. The formulas are as follows, where
SDF(x, y, Relative to z) is the severity development
factor at a retention of x, a cap of y, and expressed
relative to the claim counts of retention z.

SDF AP Cap Relative to AP

LEV AP Cap LEV AP s AP

LEV AP Cap LEV AP s AP

t

T T T

t t t

[ ]
[ ]

( )

( )
( )

( ) ( )
( ) ( )

= + −
+ −

2, , 1

2 2 1

2 2 1
.

(6.8)

LDF AP Cap CCDF AP

SDF
AP Cap

Relative to AP

t t

t

( ) ( )=

× 





2, 1

2, ,
1

. (6.9)

If just converting from LDFs of one retention to
another once the a factors are already known, the
SDFs can also be expressed relative to first dollar
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is as follows, where, once again, superscripts denote
each resulting spline variable:

log LDF A Bt Ct( )− = + +( ) ( )1 .1 2

The following substitution variables are used:

X t t= −( ) ( ).1
1

2
1

Y t t= −( ) ( ).1
2

2
2

W t t= −( ) ( ).2
1

3
1

Z t t= −( ) ( ).2
2

3
2

The equations for inverting each of the variables
are as follows, where L = log(LDF − 1):

C

X

W
L L L L

XZ

W
Y

( ) ( )
=

− − −

−
.

2 3 1 2

B

Y

Z
L L L L

YW

Z
X

( ) ( )
=

− − −

−
.

2 3 1 2

A L Bt Ct= − −( ) ( ).1 1
1

1
2

The following are the equations for inverting a
splines regression equation with four parameters in
total (an intercept and a spline with three degrees of
freedom). The equation for this curve is as follows:

log LDF A Bt Ct Dt1 .1 2 3( )− = + + +( ) ( ) ( )

The following substitution variables will be used,
where L = log(LDF − 1):

X L L
t t

t t
L L( )( )= − − −

−
× −

( ) ( )

( ) ( ) .1 2
1
1

2
1

3
1

4
1 3 4

I t t
t t t t

t t
( ) ( ) ( )= − −

− × −
−

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) .1
2

2
2 3

2
4
2

1
1

2
1

3
1

4
1

cap to another, but it is also possible to model across
all groups simultaneously using these relationships.
To do so, the process is similar. A base layer should
still be chosen that is used to convert the LDFs to
other layers. To simplify the backing into the a values,
a table can be constructed with the respective LEV
values for different values of the inverse of a, which
will always be between zero and one, and the a value
having the closest LEV to the calculated value at
each age can be selected. If simultaneously fitting
CCDFs, curve parameters will be needed for these
as well (at one particular retention). The fitted LDFs
and CCDFs can now be calculated for each layer,
which can then be compared to the actual. The log­
likelihoods can be calculated and summed across all
groups, and this value can be maximized.

It was assumed that every claim increases by the
same amount using a scale factor adjustment, but
since the adjusted LEV values for each age are being
backed into, this procedure allows for any sort of
parameter transformations. For example, for excess
losses modeled with a one­ or two­parameter Pareto,
allowing the alpha parameter to vary instead of the
beta parameter, which is a scale parameter, has
the effect of increasing or decreasing the tail of the
distribution.

7. Conclusion

In this paper, several strategies were discussed for
handling different aspects of the loss development
pattern process. All of the methods were designed to
be applicable to actual data, practical to implement,
and powerful as well. Using these models can allow
for more accurate smoothing as well as differentia­
tion between risks that reflects the differences in the
patterns in which losses arrive.

Appendix A

The equations for inverting a curve with three
parameters (an intercept and a spline with two degrees
of freedom) are shown below. The regression equation
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