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Tail Factor Convergence in 
Sherman’s Inverse Power Curve 
Loss Development Factor Model

Jon Evans

ABSTRACT

The infinite product of the age-to-age development factors in 

Sherman’s inverse power curve model is proven to converge to 

a finite number when the power parameter is less than −1, and 

alternatively to diverge to infinity when the power parameter 

is −1 or greater. For the convergent parameter values, a simple 

formula is derived, in terms of any finite product of age-to-age 

factors, for the endpoints of an interval containing the limit of 

the infinite product. These endpoints converge to the limit as the  

finite time cutoff point increases. For any finite time cutoff, 

the product of age-to-age factors lies below the interval, and 

thus the lower endpoint of the interval is always a better esti-

mate of the limit than the finite product itself. Several numerical 

examples are included for illustration. The convergence condi-

tion and the interval formula are applicable to the selection of a 

finite cutoff age, review of the reasonability of the convergence 

rate, and actual numerical calculations of the tail factor.
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Example 2, using b = −0.5, appears to zoom toward 
infinity in the tail.

This paper uses basic real analysis (Rudin 1976 
being a standard textbook reference) to prove that the 
infinite product of the age-to-age factors converges 
to a finite number when the power parameter b is less 
than −1, and diverges to +∞ when b ≥ −1. Note, in 
this paper we refer to a sequence that increases with-
out any upper bound as diverging to +∞, or having a 

1. Background and introduction

Sherman (1984) found that an inverse power curve 
of the form 1 + a (t + c)b fit empirical age-to-age loss  
development factors better than several other basic 
functional forms he tested. Lowe and Mohrman (1985) 
expressed concern about the convergence of the prod-
uct of the age-to-age factors. Boor (2006, p. 373), 
and the CAS Tail Factor Working Party (2013, p. 52)  
noted that there has been no known closed-form 
expression that approximates the tail generated by the 
inverse power curve.

In practice, the age-to-age development factors pro-
duced by the curve are multiplied together out to some 
finite age cutoff, such as t = 80, to produce a cumula-
tive development factor. The impact of factors beyond 
that age to ultimate, or the tail factor beyond the cut-
off, in this case t = 81 . . . , is assumed to be negligible. 
Alternatively, if the impact of the tail factor is not neg-
ligible, then some other modeling consideration must 
inform the selection of the cutoff time.

The potential danger in the assumption of negligible 
tail factor impact is illustrated in Table 1 and Figure 1. 
Two different sets of parameters share the same initial 
age-to-age factor of 1.01 at t = 1 and the same cumula-
tive factor of 1.30 from t = 1 to 100. However, while 
the cumulative factor for Example 1, using power 
parameter b = −4.0, grows only a little past t = 100, 

Table 1. Examples of apparently convergent and divergent 
tail factors for the inverse power curve model

Parameter Values

Parameters Example 1 Example 2

a 545540.243359093 0.0150014750112457

b −4.0 −0.5

c 84.9422458022239 1.25044252421429

Cumulative Development Factors From 1 to n

n Example 1 Example 2

1 1.010 1.010

10 1.085 1.065

100 1.300 1.300

1,000 1.337 2.482

10,000 1.338 19.293

100,000 1.338 1.27E+04

1,000,000 1.338 1.03E+13

10,000,000 1.338 1.54E+41

Figure 1. Examples 1 and 2 from Table 1
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Note, this definition includes cases where d begins 
at a higher value than 1, as the c parameter can be 
increased to handle such cases. It is also worth not-
ing that a(d + c)b > 0, a key fact that will be used in 
subsequent derivations.

Theorem 1

 (i) If b ≥ −1 then 
n→∞
lim Fn(a, b, c) = +∞.

 (ii) If b < −1 then 
n→∞
lim Fn(a, b, c) = F (a, b, c) < +∞ 

exists.

Proof:

 (i) For any sequence of numbers xi > 0 where i = 

1, . . . , n and n ≥ 2 the inequality xi
i

n

∏( )+
=

1
1

 > 1  

+ xi
i

n

∑
=1

 holds according to Lemma A.3. Applying 

this we have F a b c a d cn
b

d
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If b ≥ −1 then 

n→∞
lim d b

d c

n c

∑
= +

+
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 = +∞ according to Lemma A.1, and 

consequently 
n→∞
lim Fn(a, b, c) = +∞.

 (ii) By Lemma A.2, log(1 + x) < x for any x > 0, so 
log(1 + a(d + c)b) < a(d + c)b. Summing over  

d gives ∑ ( )( ) ( )= + +
=

F a b c a d cn
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n
blog , , log 1
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If b < −1 then  

∑= 



→∞ = +

+

L a d
n

b

d c

n c

lim
1

exists and is less than +∞  

according to Lemma A.1. Now note that  
log Fn(a, b, c) is an increasing sequence, because 
1 + a(d + c)b > 1 implies that log(1 + a(d + c)b) 
> 0, and is bounded by L. Consequently,  

n→∞
lim log Fn(a, b, c) exists and is less than +∞. 

So 
n→∞
lim Fn(a, b, c) = F(a, b, c) exists and is less 

than +∞.

2.2. An interval estimate for  
the infinite product limit

For the convergent case of b < −1, it is possible to 
construct a useful interval estimate for the infinite 

limit of +∞. Furthermore, when b < −1, for any finite 
product of the age-to-age factors up to a specific age n, 
there is a simple formula for an interval containing 
the limit of the infinite product. As n increases, the 
interval becomes tighter and the endpoints each con-
verge to the limit of the infinite product. The lower 
endpoint of this interval is always a better estimate of 
the infinite product than the finite product of the age-
to-age factors, which is always less than the lower 
endpoint.

It is worth noting again that tail divergence does 
not necessarily mean the model is invalid, but simply 
that any specific finite cutoff point should be other-
wise justified. For a convergent tail, either a cutoff 
point must still be justified by some other consider-
ation or care must be taken that the tail factor past 
the cutoff is reasonably close to 1. The interval esti-
mate derived in this paper can help answer the latter 
question.

The proof of convergence/divergence is laid out in 
Section 2.1, with the proof of several useful lemmas 
in Appendix A. The interval estimate is derived in 
Section 2.2. Numerical examples of the progressive 
convergence/divergence of the finite product and the 
interval estimate of the infinite product for several 
sets of parameters are shown in Section 2.3.

2. Convergence theorem  
and limit estimation

Following the notational conventions of the recent 
CAS Tail Factor Working Party (2013), in the remain-
der of this paper, d, instead of t, is used for age or time.

2.1. Statement and proof  
of primary theorem

First we will set up a definition for the finite prod-
uct of the age-to-age factors in the inverse power 
curve model.

Definition: F a b c a d cn
b

d

n

∏( )( ) ( )= + +
=

, , 1
1

where a > 

0, b, and c ≥ 0 are real numbers and n is a positive 
integer.
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Consequently, 

F(a, b, c) > Ln(a, b, c)Fn(a, b, c). This completes the 
proof of Theorem 2.

The lower endpoint of the estimation interval is 
always a better estimate of the infinite product F(a, 

b, c) than simply using the finite product Fn(a, b c), 
since Ln(a, b, c) > 1 and consequently Fn(a, b, c) < 
Ln(a, b, c)Fn(a, b, c) < F(a, b, c). The tail bound 
factors are computationally simple even for large 
values of n and give a measure of the relative width 
of the estimation interval prior to doing the computa-
tionally intense calculation of the finite product. For 
example, to achieve a certain target U for the upper 

bound requires n ≈ −c + ( )( ) ( )
− + +b U

a

b1 log
.

1
1

 A more  

relevant measure of relative error, but without any 
simple formula for n that the author is aware of, 
is the ratio of the tail upper bound factor to the 
tail lower bound factor Un(a, b, c)/Ln(a, b, c) =  

exp 
( )( )

− +
+
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Example 1: An upper bound factor target set at U =
1.01 for the parameter values a = 545540, b = −4.0, 
and c = 84.9422 requires n ≈ 178. However, by  
n = 29 the ratio of the tail upper bound factor to the 
tail lower bound factor is about 1.01.

2.3. More numerical examples

Table 2 shows six different sets of parameters, each 
of which produces an age-to-age factor at d = 1 of 1.01 
and a cumulative factor from d = 1 to 100 of 1.30.  
The parameter sets are indexed by a set of values 
{−2.0, −1.5, −1.1, −1.0, −0.9, −0.6} for the power 
parameter b. For b = −1 the divergence happens 
very slowly, but for b = −1.1 the convergence hap-
pens remarkably slowly. To achieve Un(a, b, c) ≈ 
1.01 for the b = −1.1 parameter set would require  
n ≈ 2.7 × 1022, although by n ≈ 5.3 × 1010 Un(a, b, c)/
Ln(a, b, c) ≈ 1.01, still an astronomically slow rate of 
convergence.

product. The following definitions are convenient for 
specifying interval estimates.

Definition: The tail upper bound factor is Un(a, b, c) 

= exp a
n c

b

b( )
− +

+






+

1

1

.

Definition: The tail lower bound factor is Ln(a, b, c) 

= 1 − a
n c

b

b( )+ +
+

+1

1
.

1

Theorem 2
Let F(a, b, c) = 

n→∞
lim Fn(a, b, c). If b < −1 then:

 (i) 
n→∞
lim Un(a, b, c) = 1.

 (ii) 
n→∞
lim Ln(a, b, c) = 1.

 (iii) F(a, b, c) ∈ (Ln(a, b, c)Fn(a, b, c), Un(a, b, c)
Fn(a, b, c)).

Proof:

 (i) b + 1 < 0 implies that 
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b
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Taking the logarithm of the tail factor and apply-
ing bounding techniques described in Lem-

mas A.1 and A.2, a d c b
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. Consequently, F(a, b, c) < 

Un(a, b, c)Fn(a, b, c).

Similarly, using techniques from Lemmas A.1 and 

A.3 produces a d c b
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Table 2. Examples of finite development factor products and interval estimates for infinite development 
factor products

Parameters

Parameter Values

Example 3 Example 4 Example 5

a 12.1209748535112 1.07747300550919 0.174451676891596

b −2.0 −1.5 −1.1

c 33.815190439679 21.6431893821624 12.4522704340826

n

Cumulative Development Factor Product  
(Infinite Product Lower Bound, Infinite Product Upper Bound)

Example 3 Example 4 Example 5

1 1.010 (1.352, 1.431) 1.010 (1.458, 1.589) 1.010 (2.359, 3.877)

10 1.083 (1.375, 1.428) 1.081 (1.488, 1.585) 1.078 (2.449, 3.868)

100 1.300 (1.417, 1.423) 1.300 (1.553, 1.581) 1.300 (2.713, 3.858)

1,000 1.406 (1.423, 1.423) 1.477 (1.576, 1.580) 1.610 (3.017, 3.856)

10,000 1.421 (1.423, 1.423) 1.546 (1.579, 1.580) 1.926 (3.263, 3.856)

100,000 1.423 (1.423, 1.423) 1.569 (1.580, 1.580) 2.221 (3.447, 3.856)

1,000,000 1.423 (1.423, 1.423) 1.576 (1.580, 1.580) 2.488 (3.578, 3.856)

10,000,000 1.423 (1.423, 1.423) 1.579 (1.580, 1.580) 2.723 (3.670, 3.856)

100,000,000 1.423 (1.423, 1.423) 1.580 (1.580, 1.580) 2.925 (3.733, 3.856)

1,000,000,000 1.423 (1.423, 1.423) 1.580 (1.580, 1.580) 3.096 (3.776, 3.856)

Parameters

Parameter Values

Example 6 Example 7 Example 8

a 0.112891979103701 0.0737384147594275 0.0219230164116958

b −1.0 −0.9 −0.6

c 10.2891979090266 8.20670480785112 2.69970572509898

n

Cumulative Development Factor Product

Example 6 Example 7 Example 8

1 1.010 1.010 1.010

10 1.077 1.075 1.069

100 1.300 1.300 1.300

1,000 1.668 1.744 2.185

10,000 2.161 2.550 8.118

100,000 2.803 4.119 219.782

1,000,000 3.635 7.534 8.72E+05

10,000,000 4.714 16.111 9.55E+14

100,000,000 6.113 41.946 4.86E+37

1,000,000,000 7.928 139.919 5.27E+94
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earlier inequality diverges 
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For the case b = −1, integration of the earlier 
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Lemma A.2
If x > 0, then log(1 + x) < x.

Proof:
If t > 1 then 1/t − 1 < 0, and consequently 

∫ ( )− <
+

t dt
x

1 1 0.
1

1
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x x

0
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 and solving the integrals 

produces log(1 + x) − x < 0.

Lemma A.3
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 for any sequence of numbers 

xi > 0, i = 1, . . . , n, and integer n ≥ 2.

Proof:
We proceed by induction.
For n = 2, since x1x2 > 0, it follows that 1 + x1 + x2

+ x1x2 > 1 + x1 + x2.
Assume the conclusion of the lemma is true for n 

where n ≥ 2. We will show that the lemma is then 
true for n + 1.
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 which estab-

lishes the lemma.
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Appendix A—Lemmas

Lemma A.1
Let n be a positive integer and l > 0.

(i) If b ≥ −1 then ∑ = +∞
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For k > 1 and b < 0, kb is a strictly decreasing 

function of k, and therefore there is a sandwich 
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Solving the integrals when b ≠ −1
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For b < −1, taking limits produces 
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In this case, the upper bound of the inequality is 
a finite number and implies convergence to a finite 
number since the sequence of partial sums in the 
middle is non-decreasing.

For −1 < b < 0, taking limits results in k
n

b

k l

l n

∑
→∞ = +

+

lim
1

= +∞, since in this case the lower bound of the 
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