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AbSTRACT

The aim of this paper is to analyze the impact of underwriting 

cycles on the risk and return of non-life insurance companies. 

We integrate underwriting cycles in a dynamic financial analysis 

framework using a stochastic process, specifically, the Ornstein-

Uhlenbeck process, which is fitted to empirical data and used to 

analyze the impact of these cycles on risk and return. We find 

that underwriting cycles have a substantial influence on risk and 

return measures. Our results have implications for managers, 

regulators, and rating agencies that use such models in risk man-

agement, e.g., to determine risk-based capital requirements.
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of these cycles in an enterprise risk management 
framework.

Our paper builds on two branches of literature—
dynamic financial analysis (DFA) and underwriting 
cycles. Since their introduction in the late 1990s (CAS 
2010), several surveys and applications of DFAs have 
been published. Lowe and Stanard (1997) focus on 
property-catastrophe reinsurance and develop a model 
for the underwriting, investment, and capital manage-
ment process. Kaufmann, Gadmer, and Klett (2001) 
focus on non-life insurance companies and also pro-
vide an up-and-running model. Those papers introduce 
basic DFA models; Blum et al. (2001), D’Arcy and 
Gorvett (2004), and Eling, Parnitzke, and Schmeiser 
(2008) use DFA to examine specific decision-making 
situations. Blum et al. (2001) analyze the impact of 
foreign exchange risks on reinsurance decisions and 
D’Arcy and Gorvett (2004) search for an optimal 
growth rate in the property-casualty insurance busi-
ness. Eling, Parnitzke, and Schmeiser (2008) con-
centrate on how management strategies influence a 
non-life insurer’s risk and return position. Recently, 
Eling and Toplek (2009) integrated copulas in DFA 
to assess the impact of nonlinear dependencies on a 
non-life insurer’s risk and return profile. DFA is thus 
well suited for analyzing how changes in the busi-
ness environment influence risk and return of insur-
ance companies, and in this paper we use it to study 
the impact of underwriting cycles.

Empirical work analyzes underwriting cycles for a 
broad range of countries and for many lines of busi-
ness. Among the most important studies are Cummins 
and Outreville (1987) (covering 13 countries), Lamm-
Tennant and Weiss (1997) (12 countries), Meier and 
Outreville (2006) (three countries), Meier (2006) (four 
countries), and Swiss Re (2001) (seven countries). 
Some studies focus on regions, such as Asia (Chen, 
Wong, and Lee 1999) or Europe (Meier and Outreville 
2006). For a recent critical discussion of the empirical 
properties of underwriting cycles, see Boyer (2012). 
Another important stream of literature analyzes the 
causes of underwriting cycles, looking at naïve rate-
making methods (Venezian 1985), competition-driven 

1. Introduction

Underwriting cycles, i.e., the cyclical patterns of 
insurance prices and profits, have been extensively 
researched for the United States and to some degree 
for Europe and Asia. Although there is ongoing aca-
demic dispute with regard to their causes, the exis-
tence of underwriting cycles is broadly accepted 
in academia and practice. Underwriting cycles are 
incorporated into enterprise risk management and 
solvency models such as dynamic financial analysis 
models (Kaufmann, Gadmer, and Klett 2001). Find-
ings on insurance cycles are also used in forecasting 
and scenario analysis of hard and soft market phases, 
which is particularly crucial, e.g., for market entry and 
exit strategies of insurance companies (Chen, Wong, 
and Lee 1999).

In this paper, we investigate whether underwrit-
ing cycles substantially affect the risk and return 
of non-life insurance companies. For this purpose, 
we integrate empirically observed underwriting 
cycles in a dynamic financial analysis framework 
using an Ornstein-Uhlenbeck process and analyze 
their impact on risk and return under different sce-
narios. The key question is whether underwriting 
cycles substantially affect risk and return or whether 
their impact is negligible. Substantial impact would 
confirm the importance of modeling underwriting 
cycles in enterprise risk management; minor impact, 
although of academic interest, would throw some 
doubt on the relevance of these cycles in practice. 
Most practitioners would confirm that underwriting 
cycles have a substantial effect on insurance com-
pany profitability; however, their impact on risk is 
not often discussed in practice and thus might be of 
special interest to practitioners. A typical question 
would be, for example, whether an insurer could be 
more or less vulnerable to insolvency due to cycli-
cality of underwriting premium levels. Given the 
broad discussion of underwriting cycles both in aca-
demia and in practice, we expect a substantial impact  
and a high relevance, but we are not aware of any 
research that has systematically illustrated the impact  
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2. dFA model

We rely on the DFA model presented in Eling, 
Parnitzke, and Schmeiser (2008) and further devel-
oped in Eling and Toplek (2009) to illustrate the 
impact of underwriting cycles on risk and return of 
insurance companies. We provide a brief review of the 
model here; full details can be found in those papers. 
The insurer’s equity capital is projected into the future 
taking into consideration asset returns, claims, and dif-
ferent types of costs. EC

t
 denotes the insurer’s equity 

capital at the end of period t (t ∈ {1, . . . , T}) and E
t
 the 

company’s earnings in t. Simulation is discontinued 
for scenarios in which the insurer defaults and thus 
has negative or zero equity capital. Development of 
the equity capital over time can be written as

EC EC Et t t= +−1 ,

with E
0
 as the starting equity capital. The earnings 

E
t
 in year t consist of the investment result I

t
 and the 

underwriting result U
t
; taxes (with tax rate tr) are paid 

on positive earnings:

E I U tr l Ut t t t t= + − +( )( )max , .• 0

The investment return I
t
 in year t is given as

I r EC P Ext pt t t t

P= + −( )−
•

1 .

Here, r
pt
 is the total return on the investment portfolio, 

P
t
 the premium earnings throughout year t, and Ex

t
P the 

up-front costs to be paid. The investment portfolio is 
comprised of all available funds (equity capital plus 
premiums less up-front costs) and the investment 
return is obtained by multiplying the portfolio return 
with these funds. The portfolio return in year t is 
calculated as r

pt
 = a

t
 • r

1t
 + (1 - a

t
) • r

2t
, with r

1t
 as the 

(random) return of high-risk investments (e.g., stocks), 
r

2t
 as the (random) return of low-risk investments (e.g., 

bonds), and a
t
 as the share of high-risk investments.

The underwriting result U
t
 in year t is calculated 

as insurance premiums P
t
 less claims C

t
 less costs 

(up-front costs Ex
t
P and claim settlement costs Ex

t
C). 

prices (Wilson 1981; Stewart 1981; Harrington and 
Danzon 1994), capacity constraints (Winter 1988, 
1991, 1994; Niehaus and Terry 1993; Cummins and 
Danzon 1997), institutional intervention (Cummins 
and Outreville 1987), the general business cycle 
(Grace and Hotchkiss 1995; Chen, Wong, and Lee 
1999), and interest rates (Wilson 1981; Doherty and 
Kang 1988; Fields and Venezian 1989).

Given this broad empirical evidence and the vast 
literature on the causes of underwriting cycles, it 
is surprising that underwriting cycles have not yet 
been the focus of enterprise risk management models. 
This paper thus contributes to both streams of liter-
ature by evaluating underwriting cycles’ impact on 
the insurer’s risk and return position, building on the 
DFA model presented by Eling and Toplek (2009). 
We find that underwriting cycles have a substantial 
influence on risk and return measures.

Our results have important implications for manag-
ers of insurance and reinsurance companies because 
they indicate that it is crucial to consider underwrit-
ing cycles in risk management. Understanding the 
nature and characteristics of underwriting cycles in 
enterprise risk management will make the industry 
and individual companies aware of the magnitude of 
the effects of future underwriting cycles (see Chen, 
Wong, and Lee 1999). Furthermore, our findings with 
regard to different risk measures are important for 
regulators and rating agencies that rely on measures 
such as the ruin probability and the expected policy-
holder deficit when calculating risk-based capital. 
These measures are also the foundation of internal 
risk models, again emphasizing the relevance of the 
results for insurers and reinsurers.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the DFA framework, which follows 
Eling and Toplek (2009) and contains the essential ele-
ments of a non-life insurance company. In Section 3, 
we describe the considered underwriting cycles and 
how they can be integrated in a DFA model. In Sec-
tion 4, we conduct a DFA simulation study to examine 
the effects of underwriting cycles on risk and return. 
Section 5 concludes.
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agement rules, which are not considered in order to 
isolate effects of the underwriting cycles. For an appli-
cation of management rules in DFA models, see Eling, 
Parnitzke, and Schmeiser (2008).

Two types of costs are integrated in the model, the 
up-front costs (Ex

t
P) and claim settlement costs (Ex

t.
C). 

The claim settlement costs are given as a portion d 
of the total claims, i.e., Ex

t
C = dC

t
. The up-front costs 

depend linearly on the level of written market vol-
ume (modeled with the factor g), and quadratically 
on the change in written market volume (modeled 
with the factor h, e.g., due to increased advertising 
and promotion efforts). The up-front costs Ex

t
P are 

thus calculated as

Ex MV MVt

P

t t t t t= + −( )( )− −γ β η β β• • • •
1 1

2

.

DFA modeling is always a tradeoff between accuracy 
and complexity. Although the presented model is 
far too simple to accurately reflect reality, increased 
model complexity is not always an advantage. The 
increased number of parameters that influence model 
results could possibly mask the effects of under-
writing cycles, which are the focus of our study. We 
thus restrict ourselves to the standard components 
necessary in DFA.

3. Integrating underwriting  
cycles in dFA

3.1. Overview of modeling options

In our model, the premium income P
t
 in year t is 

dependent on the premium rate level P
t
, which is a fac-

tor representing the attainable premium level subject to 
the underwriting cycle. Several options for integrating 
underwriting cycles in DFA are found in the literature.

According to D’Arcy et al. (1998), the premium 
rate level may be modeled using a discrete Markov 
process of order 1. Relying on this type of process 
requires setting predefined states of the underwriting 
cycle: one application of Markov processes in DFA 
(Eling, Parnitzke, and Schmeiser 2008) uses three 
market states: weak, moderate, and strong. In the real 
world, there is a much wider range of possible states; 

The claims in year t are the sum of (random) non-
catastrophe losses and (random) catastrophe losses 
(C

t
 = C

t
Cat + C

t
Non–Cat). U

t
 is then given by

U P C Ex Ext t t t

P

t

C= − − − .

The premium income P
t
 depends on the underwrit-

ing market volume accessible to the insurer (MV
t
), its 

share of the relevant market (b
t
), and a premium rate 

level (P
t
). The market volume is obtained by inflating 

last year’s market volume by the rate i (to represent 
average market growth and compensate for inflation):

P MV it t t t= +( )
−Π • • •β 1 1 ,

with MV
0
 as the starting market size. The premium 

rate level P
t
 reflects the influence of the underwriting 

cycle and is described in detail in the next section.
To appropriately interpret results of the simulation 

model, we briefly discuss some aspects of the premium 
and reserving process of the DFA model. No explicit  
ratemaking models are employed, as this would 
require the implementation of management rules and 
an exogenous market environment, including consid-
eration of competitors and their actions. Instead, we 
rely on a passive ratemaking mechanism and assume 
that the expected premium earnings and the expected 
base claims grow with the overall market size, i.e., 
with inflation. This results in an almost constant 
expected combined ratio. Thus, we implicitly assume 
that the insurer’s underwriting, in a situation without 
underwriting cycles, can match the overall market 
trend and the insurer thus can charge an adequate, in 
terms of expected loss and cost ratio, premium rate 
level. For the sake of simplicity, no reserving process 
is included in the model. We consider yearly contracts 
with premiums paid at the beginning of each year. All 
claims resulting from these contracts are assumed to 
be entirely settled at the end of the year.

Also, the insurer’s market share b
t
 is assumed to 

remain constant for all simulation years so that its 
insurance portfolio only grows with overall market 
inflation. Otherwise, the model would need to include 
an exogenous market environment as well as man-
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with some starting value P
0
. The process is mean-

reverting with stability level µ, which, in our context, 
can be interpreted as the long-term premium rate 
level. The strength of reversion toward µ is described 
by the reversion parameter l > 0. The stochastic ele-
ment is a standard Wiener process W

t
, scaled by the 

standard deviation parameter s > 0. The parameter 
s thus controls (in combination with l) the process 
variance, as for higher values the influence of the 
random process W

t
, and thus overall process variabil-

ity, increases. The OU process can be interpreted as 
the limiting case of an AR(1) process, which allows 
estimation of the process parameters using linear 
regression. In our context, the OU process is evalu-
ated at discrete time steps and since our DFA model 
is set up on a yearly basis, each time step is inter-
preted as one year.2

4. Simulation analysis based on 
empirical data

4.1. Model and calibration

To assess the impact of underwriting cycles on risk 
and return of insurance companies, we analyze the 
DFA model introduced in Eling and Toplek (2009) 
and consider different parameterizations of the OU 
process. For process calibration we rely on Swiss 
Re sigma premium growth data for the worldwide 
non-life market for the years 1980 to 2010. We also 
employ country-specific non-life insurance premium 
growth data for Australia, Canada, Germany, Japan, 
Switzerland, and the United Kingdom between 1984  
and 2010, as reported in the OECD statistics data-
base.3,4 In relying on premium growth data for calibra-
tion of the OU process, which describes the achievable 

indeed, Kaufmann, Gadmer, and Klett (2001) state 
that calibration of the required transition matrix is a 
delicate task and therefore propose that it should be 
based on personal experience rather than on empirical 
data. Such Markov chains may be suitable for bench-
marking purposes in an academic setting, but they are 
not readily calibrated to empirical data.

Cummins and Outreville (1987) empirically esti-
mate underwriting cycles using an autoregressive 
process of order 2. This AR(2) process can be inte-
grated in a DFA simulation and thus employ past 
information (such as premium rate levels or the com-
bined ratio) to simulate future premium rate levels. 
Autoregressive processes are the most widespread 
approach for modeling cyclical patterns of premium 
rate levels over time (for an overview, see Venezian 
1985; Niehaus and Terry 1993; Daykin, Pentikäinen, 
and Pesonen 1994; Lamm-Tennant and Weiss 1997; 
Fung et al. 1998; Chen, Wong, and Lee 1999; Meier 
2006) and have been used in a variety of DFA mod-
els such as Eling and Toplek (2009) and Kaufmann, 
Gadmer, and Klett (2001).

While the AR(2) process can be calibrated to empir-
ical data and does not require setting of predefined 
market states as in the Markov chain approach, for the 
purpose of this analysis an approach is required that 
allows for direct control of the main process drivers, 
the long-term premium rate level, and the process 
variance. This is necessary in order to analyze the 
sensitivity of simulation results with respect to these 
parameters. A continuous-time alternative that fulfills 
these requirements is the Ornstein-Uhlenbeck process.

3.2. Ornstein-Uhlenbeck process

To integrate underwriting cycles in our analysis, 
we rely on the continuous-time Ornstein-Uhlenbeck 
(OU) process.1 The OU process for the premium rate 
level P

t
 follows the stochastic differential equation

d dt dWt t tΠ Π= −( ) +λ µ σ ,

1In general, the model can also accommodate underwriting cycles fol-
lowing Markov chains and AR(2) processes, which have been consid-
ered in an earlier version of this paper. Results of these analyses are 
available upon request.

2For simulation purposes we do not rely on a naive simulation approach, 
as this is not valid for large ∇t. Instead, we rely on the exact solution 
of the stochastic differential equation for simulation: P

t
 = P

t-1
 e-lDt +  

µ(1 - e-lDt) + − −

α
λ

λ1

2

2e
dW

t

t

∆

,  whereas dW
t
 ~ N(0,1) (since Dt = 1).

3Not all countries for which data are available can be considered, e.g., 
the United States, as not all estimated parameter sets are valid for the 
OU process.
4For Australia the year 1984 and for the United Kingdom the years 
1984–1985 and 2009–2010 are excluded due to missing data.
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the asset allocation, which can be a main driver for 
investment results and, thus, the financial stability of 
insurance companies.

For each simulated scenario, the model is initial-
ized using the same state of the random number gen-
erator, so that differences in simulation results can 
be exclusively ascribed to the varying properties of 
the underwriting cycle or model parameterization. 
As the starting value for the processes, we choose the 
respective average premium level µ. Calibration of 
the DFA model, aside from the underwriting cycle, 
is based on Eling and Toplek (2009) and reported in 
Appendix A.

The impact of the underwriting cycle is identi-
fied using the geometric growth rate of the insurer’s 
equity capital and two risk measures: ruin probability 
and expected policyholder deficit. We rely on these 
two risk measures because they are widespread in 
academia and practice and are typically considered in 
a DFA context (see Eling and Toplek 2009). Results 
for other popular risk measures, such as value at risk 
and tail value at risk (see Dowd and Blake 2006) are 

premium level in our model, we implicitly assume 
that years with positive premium growth rates rep-
resent a hard market phase and vice versa.

Figure 1 shows the actual development of the pre-
mium rate level for the worldwide non-life insurance 
market from 1980 to 2010. Also included in this 
figure are three paths simulated according to the esti-
mated OU process. This figure highlights that the sim-
ulated process variance is comparable to the observed 
variance.

Our analysis proceeds in three steps. (1) The param-
eter estimates derived from the empirical data described 
above are used for a market-specific analysis. (2) We 
systematically vary the process parameters to analyze 
the impact these parameters have on simulation results. 
(3) To analyze the robustness of our findings, we vary 
the dependence structure among the assets, the liabil-
ities, and between assets and liabilities: in the main 
analysis we assume independence among the assets, 
the liabilities, and between assets and liabilities, 
while in later robustness tests we consider both non-
linear dependence structures. Furthermore, we vary 

Figure 1. Observed non-life market premium rate level and simulated paths
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RP = 0.016%, EPD = 0.002%) and can be considered 
as a benchmark case for the scenarios with a cycle. 
The values for GEG indicate that on average the equity 
capital of the insurer grows by 23.74% per year. The 
calibration used in this paper thus reflects the situa-
tion of a relatively profitable insurance company (as 
mentioned, we rely on the calibration used in Eling and 
Toplek 2009).

Generally, the underwriting cycle adds uncertainty 
to the premium rate level that the insurer can charge. 
Consequently, the effects of hard and soft insurance 
markets are reflected in the variation of the consid-
ered risk measures. The process parameter s repre-
sents the influence of the stochastic error process W

t
 

and thus affects the level of variation inherent in the 
underwriting cycle. Higher values are associated with 
stronger expected changes in the chargeable premium 
rate level. It is especially noteworthy that the process 
variance is much lower for the worldwide non-life 
market than for single countries. For the non-life 
market, the standard deviation (of the stationary pro-

cess, i.e., σ λ2 2 ), is 3.16%, while in Germany and 
Japan it is 15.94% and 18.65%, respectively.

As shown in Table 1, the equity growth rate increases 
in all cases when an underwriting cycle is introduced. 
This can be explained by the process stability level µ 
being larger than 1 in all cases. For our model, this 
means that insurers can, on average and over time, 
charge higher prices for the same coverage, resulting 
in a capital inflow for the insurer.

available upon request. The geometric equity growth 
rate is defined as

GEG
E EC

EC
T

T

=
( )





−
0

1

1,

with T as the total number of simulation years. The 
ruin probability is given by

RP P T= ≤( )τ ,

with t = inf{t  t > 0, EC
t
 < 0} being the year of ruin. 

The expected policyholder deficit relative to the ini-
tial capital is

EPD E EC r ECt

T

t f

t

= −{ }( ) +( )( )=

−
Σ 1 00 1max ; ,i

with r
f
 as the risk-free interest rate (the equity capital 

is set to zero the year after insolvency).

4.2. Simulation analysis based on 
empirical data

In a first step, we calibrate the DFA model with 
underwriting cycles fitted to the empirical premium 
growth data from Swiss Re and OECD. The fitted pro-
cess parameters are reported in the first three columns 
of Table 1, while the according simulation results are 
reported in the last three columns.

The simulation results without underwriting cycle 
are reported in the first row of Table 1 (GEG = 23.74%, 

Table 1. Simulation results for varying process parameters of the OU process

Country µ s l

Implementation leads to

GEG RP EPD

No Cycle 1 0 0 23.74% 0.016% 0.002%

Total non-life market 1.035 0.033 0.544 27.35% 0.003% 0.000%

Australia 1.092 0.630 4.384 30.81% 0.424% 0.098%

Canada 1.085 0.281 2.165 31.39% 0.031% 0.005%

Germany 1.083 0.250 1.230 30.58% 0.172% 0.035%

Japan 1.074 0.331 1.575 29.14% 0.494% 0.115%

Switzerland 1.075 0.276 1.611 30.12% 0.127% 0.025%

United Kingdom 1.053 0.152 1.011 28.54% 0.045% 0.007%
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levels of risk than those of single countries. Therefore, 
insurers may consider diversification over several 
countries to reduce their exposure to adverse short-
term effects of the underwriting cycle in one country.

4.3. Systematic variation of process 
parameters , s, and 

To achieve a clearer sense of how underwriting 
cycles affect insurance company risk, we system-
atically vary the process parameters µ, s, and l, and 
focus on the ruin probability as a measure of risk. The 
country-specific analysis highlighted the relevance of 
the process calibration for simulation results. While 
the parameter µ determines the expected value, the 
process variance depends on the parameters s and l. 
We use the German underwriting cycle, as reported in  
Table 1, as the basis for this analysis. We vary the res-
pective parameters over a range of ±10%, consider - 
ing 250 model points, and rerun the simulations with 
250,000 iterations. Results are shown in Figure 2.

As expected, the relationship between the long-term 
premium level µ and the ruin probability is negative. A 
decrement in the premium rate level, ceteris paribus, 
increases the risk of insolvency and vice versa. How-
ever, this relationship is not linear and has a decreasing 
slope. Thus, once a certain security level is reached, 
additional capital inflows due to hard underwriting 
markets have only a minimal positive effect on the 
stability of insurance companies.

Higher volatility of the underwriting cycle is in 
general associated with higher risk as measured by 
RP and EPD. For example, the parameterization for 
the total non-life insurance market provides the low-
est overall risk and also has the lowest process vari-
ance, while the opposite is true for Japan.5 However, 
some of the effects of higher process variation are 
compensated for by the overall process mean and the 
strength of mean reversion. The parameters µ and s 
for Germany and Switzerland are very comparable, 
but the German cycle exhibits higher downside risk. 
This can be explained by the higher mean-reversion 
rate of the Swiss cycle, which results in faster recov-
ery when premiums are low. The ruin probability for 
Switzerland (0.127%) is therefore lower than the ruin 
probability for Germany (0.172%). This aspect will 
be discussed in the next section as well. Also, the 
ruin probability for Japan is much higher than that for 
Germany and Switzerland.

The differences found in the equity growth rate and 
downside risk document that underwriting cycles have 
an important influence on DFA results. The results are 
especially relevant for regulators and policyholders 
who are interested in limiting default risk, compared 
to other stakeholders who might be more interested in 
the return situation of the insurance company. Overall, 
higher volatility and thus higher chances for sudden 
changes in the short-term achievable premium level 
are strong drivers of the downside risk of insurance 
companies.

In non-life insurance, most contracts are renewed 
after one year. Consequently, insurers should take pre-
cautions in regard to absorbing drops in the premium 
rate level, especially if the market is highly competi-
tive, as is, e.g., the German automobile insurance 
market. Adverse period-to-period effects should also 
be guarded against by appropriate pricing method-
ologies. Another important finding is that the under-
writing cycle of the aggregate market induces lower 

5In using processes calibrated to insurance markets of different countries, 
we do not intend to derive propositions on the riskiness of these countries, 
but to show the impact that underwriting cycles might have on risk and 
return of insurance companies in these countries. In the real world the 
achievable premium level is subject to many more aspects, such as, for 
example, the insurer’s reputation.
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tion of the dependence structure in the DFA model. To 
this point, our focus has been on uncorrelated risks, 
i.e., we assume independence among assets, among 
liabilities, and between assets and liabilities. We now 
abandon this assumption and model dependence struc-
tures according to the Gauss and the Clayton copula.6 
We thus consider nonlinear dependence and intend to 
analyze whether the results found for the underwrit-
ing cycles are substantially affected by a variation of 
the dependence structure. As in the main part of the 
analysis, 500,000 simulation runs are considered. 
The results are reported in Appendix B.

While the actual risk and return figures vary, the 
insights from the main analysis remain unchanged. We 
see that the long-term stability level drives the growth 
of the equity capital and period-to-period variance is a 
major driver for downside risk. The dependence struc-
ture affects the risk situation more strongly than the 
return situation. As shown by Eling and Toplek (2009) 
the dependence structure induced by the Clayton 
copula leads to higher values for ruin probability and 
expected policyholder deficit than the Gauss copula’s 
due to higher tail dependence.

In Figure 3, the process parameters that determine 
the process variance are varied. The left-hand side of 
this figure shows the simulation results for varying 
levels of s. The higher s, i.e., the influence of the 
error term W

t
, the higher the ruin probability. This 

effect is almost linear, so that increased uncertainty 
in achievable premium levels always poses a risk, 
regardless of whether this uncertainty is already high. 
The relationship between the strength of mean rever-
sion to the long-term stability level, i.e., l, and risk is 
shown on the right-hand side of Figure 3. A stronger 
mean reversion rate is negatively associated with risk, 
indicating that time until premium level recovery can 
be achieved is also very relevant to the downside risk 
of insurance companies. This explains the relatively 
high levels of risk found for Japan in Table 1. The 
effects on the considered risk measures, however, are 
slightly smaller than for variation of s.

As both l and s affect process variance, this analy-
sis confirms that period-to-period variance is a signifi-
cant driver of insurance company risk. In this analysis 
we vary the parameters by only ±10%, but estimation 
results in Table 1 show that the empirically observed 
variation can be much higher.

4.4. Robustness of findings

There are various possibilities for testing the robust-
ness of our findings. One central aspect considered in 
Eling, Parnitzke, and Schmeiser (2008) was the varia-

6As in Eling, Parnitzke, and Schmeiser (2008), we assume a (Kendall’s) 
rank correlation of 0.2 among assets and among claims and -0.1 between 
asset and claim realizations. For the generation of random variates accord-
ing to the Clayton copula, we rely on the efficient sampling algorithm of 
Hofert (2011).
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Figure 3. Ruin probability for varying values of the parameters s and 
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and the industry as a whole, aware of the magnitude 
of the effects these cycles can have (Chen, Wong, and 
Lee 1999). Moreover, prospective insurance entrants 
should find the timing and causes of underwriting 
cycles highly relevant. Our main findings can be sum-
marized as follows:

1.  Underwriting cycles have a substantial influence 
on both risk and return. The main driver of insur-
ance company risk is the variance of the underwrit-
ing cycle, or uncertainty in achievable premium 
levels. In our context, the relationship between ruin 
probability and process variance is nearly linear.

2.  The existence of underwriting cycles makes possi-
ble efficient diversification against adverse effects 
of sudden premium rate drops in single countries. 
In this context, we find the cycle variance and re-
sulting risk for aggregated markets to be smaller 
than for single countries.  

3.  Our results indicate that the inclusion of different 
dependence structures will mainly affect risk, and 
only marginally the return situation.

Given the substantial differences in risk and return 
numbers found in our model, it seems crucial to take 
underwriting cycles into account in risk modeling. 
However, it is important to keep in mind that the sim-
ulation results depend on the model and cycle calibra-
tion. We consider the Ornstein-Uhlenbeck process and 
calibrate it to data from several countries. However, 
the results should not be misinterpreted to mean, for 
example, that German insurers are more risky than 
Swiss insurers. Rather, the results show the range 
of potential outcomes in a specific situation and thus 
illustrate the variability of risk and return introduced 
by underwriting cycles that must be taken into con-
sideration by insurance managers.

The approaches to modeling underwriting cycles 
presented in this paper are, like the DFA framework 
itself, only models, and thus simplifications of reality. 
Moreover, the data used to estimate cycle parameters 
are partly aggregated over different lines of business. 
Integrating underwriting cycles calibrated according  
to different lines of business and applying these to 
different risk positions separately would be a useful 

As a second robustness test we vary the insurer’s 
asset allocation, specifically, the share invested in 
risky assets (e.g., stocks). The initial asset allocation 
for the risky assets (a = 40%) is varied by ±10% 
over 250 model points. We consider three different 
parameterizations of the underwriting cycle, namely, 
for Japan, Germany, and Switzerland. The results, 
using 250,000 simulation runs, are shown in Figure 4.

This test has several interesting results. First, the 
ruin probability increases with the riskiness of the 
overall asset allocation. Moreover, the impact of this 
variation on the risk measure is smaller than that of 
a ±10% change in the corresponding underwriting 
cycle’s parameters. Thus the underwriting cycle is an 
important element and determines the risk situation of 
insurance companies. Finally, these results are robust 
for varying underwriting cycles, as the findings from 
the main analysis (i.e., that Japan has a higher ruin 
probability than Germany, which, in turn has a higher 
ruin probability than Switzerland) are confirmed.

5. Conclusion

The aim of our paper is to enhance the understand-
ing of underwriting cycles in an enterprise risk man-
agement context by systematically analyzing them 
in a DFA framework. Understanding the nature and 
characteristics of underwriting cycles in enterprise 
risk management will make individual companies, 

Figure 4. Ruin probability for varying 
asset allocations
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extension of the work presented here, e.g., in discover-
ing additional diversification effects. Such an under-
taking could investigate in more detail the effects of 
different business types, such as long- or short-tail busi-
ness, on corporate success. Also, this type of analysis 
might be especially relevant for multinational insurers 
already active in several countries, or for insurers plan-
ning market entry and exit strategies. Future research 
could also include the implication of these cycles in 
other established DFA models, such as Dynamo, a 
publicly available DFA model developed by a working 
party in the Casualty Actuarial Society.
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Table b1. Simulation results with integration of Gauss and Clayton copula

Country

Simulation results with integration 
of Gauss copula

Simulation results with integration 
of Clayton copula

GEG RP EPD GEG RP EPD

No Cycle 23.07% 0.124% 0.016% 22.65% 0.421% 0.073%

Total non-life market 26.86% 0.044% 0.005% 26.59% 0.203% 0.036%

Australia 30.16% 0.704% 0.168% 29.89% 0.915% 0.229%

Canada 30.94% 0.103% 0.017% 30.74% 0.235% 0.045%

Germany 30.02% 0.348% 0.075% 29.78% 0.523% 0.115%

Japan 28.42% 0.818% 0.196% 28.14% 1.050% 0.260%

Switzerland 29.55% 0.300% 0.061% 29.30% 0.485% 0.103%

United Kingdom 27.99% 0.157% 0.025% 27.72% 0.344% 0.064%

Appendix b. Simulation results for Gauss and Clayton copula

Table A1. Model calibration

Parameter Symbol (Initial) Value

Time period in years T 5

Equity capital ECt $80 million

Underwriting market volume MV $1,000 million

Market growth i 0.03

Risk-free return rf 0.03

Portion invested in high-risk investments in period t at 0.40

Normally distributed high-risk investment return in period t r1t

  Mean return µ(r1t) 0.10

  Standard deviation of return s(r1t) 0.15

Normally distributed low-risk investment return in period t r2t

  Mean return µ(r2t) 0.07

  Standard deviation of return s(r2t) 0.06

Log-normal distributed non-catastrophe in year t Ct
Non–Cat

  Mean claims µ(Ct
Non–Cat) $170 million

  Standard deviation of claims s(Ct
Non–Cat) $17 million

Pareto-distributed catastrophe claims in year t Ct
Cat

  Mean claims µ(Ct
Cat) $0.5 million

  Dispersion parameter D(Ct
Cat) 4.5

Up-front exp. linearly depending on the written market volume g 0.05

Up-front exp. nonlinearly depending on the change in written market volume h 0.001

Claim settlement costs as portion of claims d 0.05

Appendix A. Model calibration


