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Validating the Double Chain Ladder 
Stochastic Claims Reserving Model

by Tony Agbeko, Munir Hiabu, María Dolores Martínez-Miranda,  
Jens Perch Nielsen, and Richard Verrall

ABSTRACT

Double chain ladder, introduced by Martínez-Miranda et al. 

(2012), is a statistical model to predict outstanding claim reserve. 

Double chain ladder and Bornhuetter-Ferguson are extensions 

of the originally described double chain ladder model which 

gain more stability through including expert knowledge via an 

incurred claim amounts triangle. In this paper, we introduce a 

third method, the incurred double chain ladder, which replicates 

the popular results from the classical chain ladder on incurred 

data. We will compare and validate these three using two data sets 

from major property and casualty insurers.
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that can replicate the classical chain ladder estimates 
by using a particular estimation method. But it can 
also be used to provide further results that classical 
chain ladder is unable to provide, such as the predic-
tion of outstanding liabilities separately for RBNS and 
IBNR claims, and the prediction of the tail which is 
defined as the claims forecasts with development pro-
cess beyond the latest development years observed.

The DCL method which replicates the CLM fore-
casts uses only two observed run-off triangles. One 
triangle consists of the number of reported claims, 
and the other is the so-called paid triangle: the total 
paid amounts by underwriting and development year. 
The DCL method can therefore be viewed as a link 
between classical reserving and the statistical model, 
in that it uses the non-statistical calculation method 
but it also has a full statistical method. However, it 
is well known that the classical CLM estimates tend 
to be unstable in the more recent under writing years. 
This instability leads in many cases to an unaccept-
able forecast for the total reserve. The Bornhuetter-
Ferguson technique is one of the most common ways 
to correct that problem in practice. Martínez-Miranda 
et al. (2013) point out that the instability comes from 
the estimation of the underwriting inflation param-
eter in the DCL model. Note that that paper (and any 
method based on paid data) ignores the case esti-
mate reserves from the claims adjusters (the “expert 
knowledge”). Taking the spirit of the Bornhuetter-
Ferguson technique, the authors describe another 
method to estimate the DCL model which corrects the 
instability of the DCL forecasts. The method is called 
Bornhuetter-Ferguson double chain ladder (BDCL) 
and it works on the same triangles as DCL together 
with an additional so called incurred claims data 
triangle. The case estimates contained in the incurred 
data are considered as prior knowledge that can indeed 
provide more stable estimates of the underwriting 
inflation. Although the BDCL works on the incurred 
claims data triangle, the BDCL reserve estimate is dif-
ferent from the incurred chain ladder reserve which 
is calculated by applying CLM to the incurred data 
triangle. Being aware of the popularity of the incurred 

1. Introduction

A crucial function in the management of an insur-
ance company is that of estimating the future outstand-
ing liability of past claims, which may have been 
incurred but not yet reported (IBNR) or reported 
but not settled (RBNS). The function holder is most 
likely to be an actuary who will use not only his tech-
nical expertise but also a significant amount of pro-
fessional judgement to accurately quantify the value 
of the liability that should be recorded as technical 
reserves in the company financial statements.

Insurance claims characteristics vary by their nature, 
timing, amount, reporting delay, and settlement delay. 
For example, property damage claims are more likely 
to be short-tailed, i.e., paid quickly. Industrial claims 
however, are long-tailed, i.e., they take much longer 
to be fully settled. This means that the methodology 
that should be used for quantifying those claims can-
not reasonably be expected to be exactly the same. 
The actuary will choose the most adequate method 
for each situation. One of these methods is the clas-
sical chain ladder method (CLM). CLM was con-
ceived as a deterministic method that operates on 
the historical data contained in the so-called run-off 
triangles. The simplicity and the intuitive appeal of 
CLM have made it one of the most applied meth-
ods in practice by actuaries. But actuaries are aware 
of many of the limitations and drawbacks of CLM, 
such as its reliance on a small data set and its pos-
sible instability.

Over the past decades, a number of research arti-
cles have appeared which aim to replicate the CLM 
forecasts in a statistical framework with the added 
benefit of calculating the variability around the mean 
estimates. Mack (1991), Verrall (1991) and recently 
Kuang et al. (2009) have identified the CLM forecasts 
as classical maximum likelihood estimates under a 
Poisson model. See England and Verrall (2002) and 
Wüthrich and Merz (2008) for comprehensive reviews 
of stochastic claims reserving.

In this paper we will focus on the double chain 
ladder (DCL) model proposed by Martínez-Miranda 
et al. (2012). The DCL model is a statistical model 
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ing, afterwards, we will give a heuristic interpretation 
of these technically introduced parameters. We start 
with the introduction of some notation.

Let us assume that the number of years of historical 
data available is m. We also assume that our data is 
available in a triangular form I = {(i, j) | i = 1, . . . , m;  
j = 0, . . . , m − 1; i + j ≤ m}. Here, i denotes the accident 
or underwriting year and j denotes the development 
year. We will consider three triangular sets of data:

Numbers of incurred claims: Nm = {Nij | (i, j) ∈ I}, 
where Nij is the total number of claims of insur-
ance incurred in year i which have been reported 
in year i + j.

Aggregated payments: Xm = {Xij | (i, j) ∈ I}, where Xij 
is the total payments from claims incurred in year i 
which are settled in year i + j.

Aggregated incurred claim amounts: Θm = {Θij | (i, j) ∈ I}, 
where Θij is the total incurred amounts originat-
ing from year i which have been reported before 
year i + j.

Note that in contrast to Nm and Xm, Θm is not real data 
but rather a mixture of data and expert knowledge 
since it is not fully observed yet.

Double chain ladder is based on micro-level data 
assumptions. We therefore define some variables 
which may not be observed. We denote the count 
of future payments originating from the Nij reported 
claims, paid with k years settlement delay by Nijk

PAID, 
((i, j) ∈ I, k = 0, . . . , m − 1). Let Yijk

(h) (h = 1, . . . , Nijk
PAID) 

be the individual settled payments from the num-
ber of future payments Nijk

PAID. Finally, denote by Xj
il 

those payments of Xil which are reported with delay 
less than or equal to j. We derive the decomposition

X Yij i j l l
h

h

N

l

j i j l l
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Note that in order to obtain point estimates, it is not 
necessary to consider distributional assumptions, since 
moment assumptions are sufficient. The assumptions 
of the DCL model are as follows.

chain ladder reserve among many actuaries, in this 
paper we introduce a third method to estimate the 
double chain ladder model that can exactly repli-
cate that reserve estimate. We will call this method 
incurred double chain ladder (IDCL). Berquist and 
Shermann (1977) also consider triangle adjustments.

The purpose of this paper is therefore to explore 
a link between mathematical statistics and reserving 
practice in insurance companies. This will add value 
to practitioners who might be interested in evaluating 
the robustness of the reserving risk used to compute 
the best estimate liability for Pillar 1 of the Solvency II  
framework. Alternatively, the method could be used 
to assess the strength of case estimates philosophy 
because the output is split between IBNR and RBNS 
reserves or outstanding claims reserve.

The paper is structured as follows. In the next sec-
tion we describe the double chain ladder model. In 
Section 3 we define three methods to estimate the 
model parameters, referred to above as DCL, BDCL 
and IDCL. In Section 4 we describe how to calculate 
the outstanding liabilities forecasts once the double 
chain ladder model parameters have been estimated. 
We illustrate the methods using two real data sets: 
a motor personal injury (Motor BI) portfolio and a 
motor fleet property damage (Motor PD) portfolio. 
In Section 5, we discuss the advantages and dis-
advantages of the three methods and support the 
decision in practice among them using formal model 
validation. In this section we also explore and vali-
date any additional improvement gained by a com-
mon practice by actuaries consisting of limiting the 
data used to estimate the model to just the more recent 
calendar years. Some final remarks in Section 6 con-
clude the paper.

2. The data and model

In this section we will briefly describe the double 
chain ladder model, introduce the notation and state 
the assumptions needed for consistent estimates. For 
a more detailed description we refer to Martínez-
Miranda et al. (2012, 2013). For a better understand-
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The parameters can be interpreted heuristically as 
follows.

• αi = the ultimate number of incurred claims for 
accident year i,

• βj = the proportion of the ultimate number of 
incurred reported in the j’th development year,

• α~i = ultimate aggregate claims paid in accident 
year i,

• β
~

j = the proportion of aggregated payments in the 
j’th development year,

• β̌j = the proportion of aggregated claims incurred 
in the j’th development year,

• πk = the proportion of claims settled after k years,
• µ = the average cost of claims paid in the first acci-

dent year.
• γi = the claim severity inflation parameter, i.e., 

the average inflation of aggregated payments for 
accident year i.

The parameters in the CLM assumptions (i.e., αi, 
βj, α

~
i, β

~
j, β̌j) can be estimated using the traditional 

CLM method, which gives the maximum likelihood 
estimates. To estimate the parameters in assump-
tions A (i.e., µ, γi, πk), we will use the following 
equations.

Xij i i j k k
k

j

∑[ ] = α γ µ β π−
=

E . (2.1)
0

ij i i j[ ]Θ = α γ µβE , (2.2)

where β
–

j = Σ j
h=0 βh only depends on j.

In the next section we will describe in detail three 
different methods to derive these estimates.

3. Estimating the parameters in 
the double chain ladder model

To estimate the outstanding liabilities for RBNS and 
IBNR claims, the parameters in the model described 
in Section 2 should be estimated from the available 
data. In this section we describe three different esti-
mation methods to achieve this goal: DCL, BDCL 
and IDCL. The three methods operate on classical 

Assumptions A (cf. Martínez-Miranda et al. (2012, 
2013)).

A1.  Conditional on the number of incurred claims 
(Nij), the expected number of payments with 
pay ment delay k is given by

N N Nijk
PAID

m ij k[ ] = πE

A2.  Conditional on the future number of payments 
(Nijk

PAID), the expectation of the individual pay-
ments are given by

Y Nijk
h

ijk
PAID

i[ ] = µγ( )E

A3.  The incurred claim amounts can be described via

Xij il
j

j
i

l

m

∑ [ ]Θ = ( )

=

−

FE ,
0

1

where F j
(i) represents the knowledge of the peo-

ple making the case estimates at time i + j.

For the purpose of estimating the parameters we 
will need further assumptions. These assumptions go 
back to Mack (1991) who identified the multiplicative 
structure assumption underlying the CLM.

Assumptions CLM (cf. Mack (1991))

CLM1.  The number of incurred claims Nij is a ran-
dom variable with mean

Nij i j j
j

m

∑[ ] = α β β =
=

−

E , 1.
0

1

CLM2.  The aggregated payments Xij is a random 
variable with mean

Xij i j j
j

m

∑[ ] = α β β =
=

−

E , 1.
0

1

� � �

CLM3.  The aggregated incurred claim amounts Θij

is a random variable with mean

ij i j j
j

m

∑[ ]Θ = α β β =
=

−

E , 1.ˇ
0

1

�
�



Variance Advancing the Science of Risk

142 CASUALTY ACTUARIAL SOCIETY VOLUME 8/ISSUE 2

Once the chain ladder parameter estimates are 
derived, applying assumption CLM2 to (2.1) yields

i i i

j k k

k

j

j

�

�∑

αµγ = α

β π =β−
=

,

.
0

Then we solve the following linear system to obtain 
the parameters π̂ = {π̂k | k = 0, . . . , m − 1}.
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We also have

i

i

i

γ = α
α µ
�

.

Since the model is over-parameterized, we define 
the identification γ1 = 1 and the estimate µ̂ can be 
obtained from

µ= α
α
�

ˆ
ˆ

ˆ
1

1

Finally we can deduce the estimator γ̂ i
DCL from the 

equation

i
DCL i

i

γ = α
α
�

ˆ
ˆ

ˆ

We have now derived all final parameter estimates 
{α̂i, β̂jµ̂, γ̂ i

DCL, π̂k | k = 0, . . . , m − 1, i = 1, . . . , m,  
j = 0, . . . , m − 1}. However, note that having some 
distributional assumptions in mind, one might like to 
have positive delay parameter estimates, π̂k ≥ 0, and 
also that they sum up to 1, Σk=

m−1
0 π̂k = 1, which is gener-

ally not the case. Thus, we will also define adjusted 
delay parameter estimators (π̂~k). We believe that the 
following simple method will provide reasonable 

run-off triangles and make use of the simple chain 
ladder algorithm.

3.1. The DCL method

The DCL only uses real data. That is only the two 
triangles Nm and Xm. Thus, it does not take use of 
knowledge of the experts, that is, Θm. Note that this 
also implies that assumptions A3 and CLM3 are not 
needed.

As implied by the name double chain ladder, the 
classical chain ladder technique is applied twice. 
We use the simple chain ladder algorithm applied 
to the triangle of the number of incurred claims Nm

and the triangle of aggregated payments Xm to derive 
the development factors. These development factors 
lead to the two sets of estimators of (αi, βj) and (α~i, β

~
j) 

(i = 1, . . . , m; j = 0, . . . , m − 1).
For illustration, given the triangle Nij the estimates 

are derived as follows (cf. Verrall (1991)):
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The estimates of the parameters for the accident 
years i can be obtained by “grossing-up” the latest 
cumulative entry in each row. Thus, the estimate of 
αi can be obtained by

N ji ij
j

m i

j m i

m

∑ ∏α = λ
=

−

= − +

−

ˆ ˆ .
0 1

1

Similar expressions can be used for the parameters 
of the aggregated paid claims triangle.

Alternatively, analytical expressions for the esti-
mators can also be derived directly (rather than using 
the chain ladder algorithm) and further details can be 
found in Kuang et al. (2009).
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tion γ̂ i
DCL and delay π̂k for the DCL method. Note that 

here the estimates of the chain ladder parameters are 
obtained from the triangles of aggregated amounts in 
order to make comparisons between the standard chain 
ladder estimates and the estimates from the models 
described in this paper.

Each parameter has a different effect in explaining 
the reserve estimates. The underwriting year param-
eter estimate α̂i is an increasing function of time. This 
is consistent with the expectation that the average 
cost per claims does increase year-on-year. However, 
we observe the well known unstable behavior in the 
most recent underwriting years. The development 
period parameter estimate β̂j peaks in the first devel-
opment periods and then reduces smoothly afterwards 
because the development factors at that point are esti-
mated from insufficient and potentially volatile data in 
the lower left corner of a run-off triangle. Also, most 
claims will have a high proportion of payment at 
those early development periods. The severity infla-

estimates in most cases, but we note that more com-
plicated approaches like constrained estimation pro-
cedures are also possible. We introduce a maximum 
delay period d as the smallest integer with the prop-
erty to satisfy Σk=

d−1
0 max(0, π̂k) ≤ 1 ≤ Σd

k=0 max(0, π̂k). 
Then, we define

if k d

if k d
k

k

k
k

d

∑

( )

( )
π =

π = −

− π =





 =

−
ˆ

max 0, ˆ 0, . . . , 1,

1 max 0, ˆ .
0

1�

Table 1 shows the values of each parameter obtained 
by applying the DCL model to a motor personal injury 
(Motor BI) portfolio and on a motor fleet property 
damage (Motor PD) portfolio. Note that α̂i and β̂j are 
obtained from the triangles of the claim numbers when 
DCL is applied. Figures 1 and 2 show the estimated 
chain ladder parameters, underwriting α̂~i, develop-
ment β̂~j, together with the estimates of severity infla-

Table 1. Estimates of DCL parameters: underwriting �i, development �j, delay �k and severity inflation �i

Acc. 
Year

Motor BI (µ = 2.58) Motor PD (µ = 0.085)

α̂i β̂j π̂k γ̂ i
DCL α̂i β̂j π̂k γ̂ i

DCL

1 1078 0.763 0.067 1.000 5721 0.28 0.18 1.00

2 1890 0.207 0.318 1.120 5040 0.67 1.11 2.07

3 2066 0.019 0.201 1.490 5924 0.04 −1.96 6.90

4 2353 0.006 0.197 1.750 5994 0.00 4.73 18.53

5 3016 0.002 0.133 2.110 5528 0.00 −10.79 18.57

6 3727 0.001 0.042 2.090 5602 0.00 25.00 14.95

7 5058 0.001 0.021 2.240 6740 0.00 −57.49 14.15

8 6483 0.001 0.009 2.120 7895 0.00 132.46 14.84

9 7728 0.000 0.002 1.900 9015 0.00 −304.92 16.15

10 7134 0.000 0.003 2.020 9834 0.00 702.05 17.34

11 7319 0.000 0.000 2.060 9528 0.00 −1616.27 17.06

12 6150 0.000 0.002 2.260 8643 0.00 3721.25 19.10

13 5238 0.000 0.002 2.290 8635 0.00 −8567.33 15.40

14 6144 0.000 0.002 2.420 8622 0.00 19724.36 16.76

15 7020 0.000 0.000 2.290 8695 0.00 −45410.92 22.57

16 6717 0.000 0.003 2.600

17 5212 0.000 −0.001 2.770

18 5876 0.000 0.000 3.360

19 5563 0.000 0.000 3.820

20 5134 0.000 0.000 6.870
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In the next subsection we will define another method 
to estimate the severity inflation parameter. It will be 
based on incurred data and aims to overcome the weak-
ness of its DCL method estimate in the most recent 
underwriting years. However, note that this approach 
will not work for the underwriting parameter αi since 
it already uses incurred data.

3.2. The BDCL method

The CLM and Bornhuetter-Ferguson (BF) meth-
ods are among the easiest claim reserving methods, 
and due to their simplicity they are two of the most 
commonly used techniques in practice. Some recent 
papers on the BF method include Alai et al. (2009, 
2010), Mack (2008), Schmidt and Zocher (2008) and 
Verrall (2004). The BF method was introduced by 
Bornhuetter and Ferguson (1972) and aims to address 
one of the well-known weaknesses of CLM, which 

tion parameter estimate γ̂ i
DCL pattern is consistent 

with an underwriting or accident year effect similar 
to that of the parameter estimate α̂i but also has the 
same weakness in the most recent years. The severity 
inflation on the Motor PD data exhibits an unusual 
and pronounced jump in the 4th development period 
which is likely to be independent from any actual 
claim experience. The delay parameter estimate π̂k

patterns for the Motor BI has a development period 
effect spreading across a number of years. This is 
consistent with liability lines of business which nor-
mally take many years to settle. There appears to be 
no settlement delay in the Motor PD data. Again, this 
is consistent with property damage lines of business 
which are usually settled within a couple of months. 
Therefore there is no delay that could be measured 
on an annual scale except for the very immature data 
in the most recent accident years.
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Figure 1. Motor BI, CL estimated parameters, underwriting �̂i and development �̂j, and DCL estimates 
of severity inflation �̂i and delay �̂k (“general” refers to the solutions of the linear system described in 
Section 3.1 and “adjusted” refers to the adjusted values which are defined afterwards and denoted by �̃̂k)
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Step 2: BF adjustment.

Repeat this estimation using DCL but replacing 

the triangle of paid claims by the triangle of incurred 

data: Θm. Keep only the resulting estimate of the infla-

tion parameter and denote it by γ̂i
BDCL

After Steps 1 and 2, the parameter estimates are 
obtained: {α̂i, β̂j µ̂, γ̂ i

BDCL, π̂k | k = 0, . . . , m − 1, i = 1, . . . m,  

j = 0, . . . , m − 1}. In general, it would be possible 
to use other sources of information from those sug-
gested here. Thus, Step 2 could be defined in a more 
arbitrary way, thereby mimicking more closely what 
is often done when the Bornhuetter-Ferguson tech-
nique is applied. In this way, the process described in 
this section could be viewed in a more general way.

Figures 3 and 4 depict the estimated parameters, 
underwriting α̂i, development β̂j, severity inflation 
γ̂ i

BDCL and delay π̂k using BDCL. Note that in these 

is the effect that outliers can have on the estimates 
of outstanding claims. To do this, the BF method 
incorporates prior knowledge from experts and is 
therefore more robust than the CLM method which 
relies completely on the data contained in the run-off  
triangle.

For the purpose of imitating BF, the BDCL method 
follows identical steps as DCL but instead of using 
the estimates of the very volatile inflation parameters 
γi from the triangle of paid claims, they are estimated 
using some extra information. The information arises 
from using the triangle of incurred claim amounts 
Θm. In this way, the BDCL method then consists of 
the following two-step procedure:

Step 1: Parameter estimation.

Estimate the model parameters αi, βj, πk and µ 
using DCL for the data in the triangles Nm and Xm.
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Figure 2. Motor PD, CL estimated parameters, underwriting �̂i and development �̂j, and DCL estimates 
of severity inflation �̂i and delay �̂k
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Figure 3. Motor BI, BDCL estimated parameters, underwriting �i, development �j, severity inflation �i 
and delay �k
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Figure 4. Motor PD, BDCL estimated parameters, underwriting �i, development �j, severity inflation �i 
and delay �k
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BDCL) the accident year reserve completely repli-
cates the CLM reserve estimates on the incurred tri-
angle. Therefore, we call this method IDCL.

Figures 5 and 6 display the estimated parameters 
for both lines of business under the IDCL. Figures 7 
and 8 illustrate the different severity inflation estimates. 
Table 2 shows the inflation parameter γi for each param-
eterisation, for each accident year, and for each line  
of business. The large value in accident year 2 is prob-
ably caused by a significant change in risk or a pro-
cess review in the Motor PD portfolio. It appears that 
the book increased in size suddenly or that there has 
been a new claims management philosophy causing an 
artificial jump which is not consistent with the actual 
experience and therefore is unlikely to be repeated in 
the future. This shows that IDCL should not be applied 
naïvely. In practice, it would be advisable to remove 
such unusual event from the data or curtail the triangles 
to periods which are not affected by the rare event.

4. Forecasting outstanding 
liabilities for RBNS and IBNR claims

In the previous section we estimated all parameters 
of the double chain ladder model. In this section we 
will use these estimated parameters to calculate point 
forecasts of the RBNS and IBNR components of the 
outstanding liabilities. Using the notation of Verrall 
et al. (2010) and Martínez-Miranda et al. (2012), we 
consider predictions over the triangles illustrated in 
Figure 9 where

J
i m j m

so i j m m
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Then, we define the RBNS reserve as

X Nij
RBNS

i j l
l i m j

j

l i∑= π µγ−
= − +

ˆ ˆ ˆ ˆ ,,

figures and all future figures in this paper, the under-
writing and development parameter estimates plotted 
are chosen so that a direct comparison can be made 
with the chain ladder parameter estimates. The aggre-
gated payments triangle has very few information in 
the latest underwriting periods and is thus very vola-
tile there. We see that the underwriting parameter esti-
mate α̂i derived from the aggregated incurred claim 
amounts triangle doesn’t have the unrealistic jump at 
the end of the period which is estimated by the aggre-
gated payments triangle. This results in a more stable 
severity inflation parameter estimate γ̂ i

BDCL.

3.3. The IDCL method

In the BDCL definition, we introduced an additional 
triangle of incurred claims in order to produce a more 
stable estimate of the severity inflation γi. The derived 
BDCL method is a variant of the BF technique using 
the prior knowledge contained in the incurred triangle. 
One natural question is whether the derived reserve 
is the classical incurred chain ladder estimate. Unfor-
tunately, this is not the case and the BDCL method 
does not replicate the results obtained by applying 
the classical chain ladder method to the incurred  
triangle. Practitioners often regard the incurred reserve 
to be more realistic for many data sets compared to the 
classical paid chain ladder reserve. In this respect, 
we introduce in this section a new method to estimate 
the DCL model which completely replicates the chain 
ladder reserve from incurred data. It is simply defined 
just by rescaling the underwriting inflation parameter 
estimate from the DCL method. Specifically, we define 
a new scaled inflation factor estimate γ̂ i

IDCL such that

R

R
i
IDCL i

i

i
DCLγ = γˆ

*
ˆ ,

where (Ri, γ̂ i
DCL) are the outstanding liabilities estimate 

for accident year i and the inflation parameter esti-
mate respectively, using DCL (cf. Section 3.1), and 
R*

i is the outstanding liabilities estimate for accident 
year i derived by the classical chain ladder method 
for incurred data. With the new inflation parameter 
γ̂ i

IDCL (and keeping all other estimates as in DCL and 
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Table 2. Estimated inflation parameters �i for DCL, BDCL and IDCL

Acc. 
Year

Motor BI Motor PD

DCL BDCL IDCL DCL BDCL IDCL

1 1 1 1 1.00 1.00 1.00

2 1.12 1.12 −7.05 2.07 2.06 4,020,000,000.00

3 1.49 1.49 −187 6.90 6.93 18.50

4 1.75 1.74 −47.7 18.50 18.70 36.90

5 2.11 2.12 19 18.60 17.40 −2.07

6 2.09 2.09 6.25 14.90 14.20 3.79

7 2.24 2.24 1.88 14.20 13.40 5.53

8 2.12 2.12 1.52 14.80 14.30 9.19

9 1.9 1.89 0.863 16.20 14.70 5.53

10 2.02 2.01 1.25 17.30 17.30 17.30

11 2.06 2.06 1.33 17.10 16.70 15.30

12 2.26 2.22 −0.627 19.10 16.70 8.76

13 2.29 2.32 4 15.40 13.50 9.30

14 2.42 2.46 3.78 16.80 14.90 13.20

15 2.29 2.35 3.3 22.60 18.10 17.80

16 2.6 2.41 0.969

17 2.77 2.44 1.48

18 3.36 2.69 1.94

19 3.82 2.91 2.57

20 6.87 3.31 3.12

Figure 9. Index sets for aggregate claims data, 
assuming a maximum delay m� 1
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X̂ij
RBNS(CLM) + X̂ij

IBNR are exactly the point estimates of the 
classical CLM on the cumulative payments triangle 
Aij = Σ j

k=1 Xik. Also, note that the classical CLM would 
produce forecasts over only J1. If the classical CLM 
is being used, it is therefore necessary to construct 
tail factors in some way. For example, this is some-
times done by assuming that the run-off will follow 
a set shape, thereby making it possible to extra polate 
the development factors. In contrast, DCL also pro-
vides the tail over J2 ∪ J3 using the same under lying 
assumptions about the development. Thus, DCL is 
consistent over all parts of the data, and uses the same 
assumptions concerning the delay mechanisms pro-
ducing the data throughout.

Table 3 shows the RBNS and IBNR reserve and  
also the total (RBNS + IBNR) forecasts split by acci-
dent year for Motor BI. Table 4 shows the same 
reserves for Motor PD. As a benchmark for comparison  

where (i, j) ∈ J1 ∪ J2. The IBNR reserve component is

X Nij
IBNR

i j l
l

i m j

l l∑= π µγ−
=

− + −
ˆ ˆ ˆ ˆ ˆ ,,

0

1

where N̂ij = α̂iβ̂j and (i, j) ∈ J1 ∪ J2 ∪ J3.
Note that the RBNS and the IBNR component dif-

fer in how the numbers of incurred claims are han-
dled. In the RBNS component the number of incurred 
claims is known and thus used. In the IBNR compo-
nent, that is not the case and we have to deal with 
estimates. However, if we replace the known number 
of the incurred claims in the RBNS component by its 
estimates, i.e., we define the RBNS component as

X Nij
RBNS CLM

i j l
l i m j

j

l i
DCL∑= π µγ( )

−
= − +

ˆ ˆ ˆ ˆ ˆ ,,

where N̂ij = α̂i β̂j, DCL would completely replicate the 
results achieved by the classical CLM. In other words 

Table 3. Motor BI: DCL, BDCL and IDCL point forecasts for cash flows by accident year, in thousands

Motor BI DCL BDCL IDCL CLM

Accident 
Year RBNS IBNR Total RBNS IBNR Total RBNS IBNR Total Paid Incurred

1 £0 £0 £0 £0 £0 £0 £0 £0 £0 £0 £0

2 £0 £0 £0 £0 £0 £0 −£1 £0 −£1 £0 −£1

3 £0 £0 £0 £0 £0 £0 −£2 £0 −£2 £0 −£2

4 £0 £0 £0 £0 £0 £0 −£9 £0 −£9 £0 −£9

5 £0 £0 £0 £0 £0 £0 £52 £0 £52 £0 £52

6 £49 £2 £51 £49 £2 £51 £36 £1 £37 £51 £37

7 £83 £5 £87 £83 £5 £87 £70 £4 £74 £87 £74

8 £173 £6 £178 £173 £6 £178 £125 £4 £129 £178 £129

9 £257 £7 £264 £256 £7 £263 £117 £3 £120 £264 £120

10 £324 £8 £332 £323 £8 £331 £194 £5 £199 £332 £199

11 £384 £13 £397 £382 £13 £396 £236 £8 £245 £397 £245

12 £461 £18 £479 £454 £17 £471 −£119 −£5 −£123 £479 −£123

13 £529 £24 £553 £534 £25 £559 £835 £38 £874 £553 £874

14 £1,155 £55 £1,210 £1,174 £56 £1,230 £1,763 £84 £1,847 £1,210 £1,847

15 £2,423 £93 £2,516 £2,477 £96 £2,572 £3,313 £128 £3,441 £2,516 £3,441

16 £5,519 £141 £5,660 £5,121 £131 £5,252 £2,352 £60 £2,412 £5,660 £2,412

17 £10,034 £174 £10,208 £8,847 £154 £9,000 £5,701 £99 £5,800 £10,208 £5,800

18 £23,464 £558 £24,022 £18,771 £446 £19,217 £13,524 £322 £13,846 £24,022 £13,846

19 £36,313 £1,636 £37,948 £27,718 £1,248 £28,967 £23,908 £1,077 £24,985 £37,948 £24,985

20 £64,798 £21,539 £86,337 £31,226 £10,380 £41,606 £29,432 £9,783 £39,215 £86,337 £39,215

Total £145,966 £24,279 £170,244 £97,588 £12,593 £110,180 £81,528 £11,612 £93,140 £170,244 £93,140
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estimate the development factors with five different 
data sets which differ in the amount of data used. The 
biggest data set will contain the full data, that is, the 
cumulative aggregated payments triangle Aij = Σ j

k=1 Xik. 
The other four data sets will contain entries only of the 
five to two most recent calendar years (cf. Figure 12).

Table 5 shows the development factors λj with 
respect to the number of calendar years used to gen-
erate them. For example, λjFull uses the full triangle. 
It should be noted that using an increasing number 
of calendar years makes the λj steeper because of 
the difference in the average claim paid between the 
two ends of the calendar year period. This is caused 
by year-on-year severity inflation. Figures 10 and 11 
show the expected cumulative proportion of claims 
settled based on the calendar year period used to derive 
the λj. Note, the cumulative proportion of claims set-
tled Λj is calculated by

j

j

j

m

∏
Λ =

λ

1
.

5.2. Back testing and robustness

The underlying process is based on back testing 
data previously omitted while estimating the param-
eters for each method. The validation process will be 
based on the Motor BI data which appear to be free 
from operational issues. Furthermore, we will also run 
the back testing by limiting the data of the cumulative 
triangles which are older than two or four calendar 
years, respectively (cf. Subsection 5.1 and Figure 12). 
The three statistics defined below are used to assess 
the prediction errors within a cell, a calendar year or 
across the total segment removed from the triangle. 
The full process is illustrated in Figure 13. Let X̂ij

be the estimated cell entry and let Xij be the omitted 
data. Then we define

1. Cell error:

X X

X

ij ij
ij

ij
ij

∑
∑
( )− ˆ 2

2

purposes, the predicted reserves on the classical chain 
ladder (denoted by CLM) are also shown in the last 
two columns of both tables.

All four methods predict a large amount of nega-
tive RBNS for the Motor PD. The negative amounts 
are ultimately balanced against the IBNR to give 
“reasonable” total reserve. The negative values for 
RBNS are due to large amount of recoveries in the 
incurred triangles, i.e., the model is picking up the 
uncertainty around the case estimates and using it to 
predict the results. A possible solution for avoiding 
such inconsistency is to remove the recoveries from 
the triangles, run the model on the claims amounts net 
of recoveries, rerun the same model on the recoveries 
only and then add back both results to obtain a more 
realistic reserve cash flow. Unfortunately, in practice, 
triangles net of recoveries are not readily available. A 
more sophisticated model will have to be developed 
to manage any occurrence of negative claims as well 
as their magnitude if such adjustment is not allowed.

5. Model validation

This section describes the validation strategy used to 
decide which method should be used among the DCL, 
BDCL and IDCL methods discussed in Section 3. 
Section 5.1 acknowledges the potential impact of the 
development factors (cf. Section 3.1) on the model 
output and checks for any additional improvement 
gained by limiting the data used to estimate the model 
to recent calendar years only. Section 5.2 provides 
details of the validation procedure which is based on 
back-testing.

5.1. Estimating forward 
development factors

Using larger amounts of data should intuitively 
reduce the volatility and improve a model’s predictive 
power. However, since the triangles are from actual 
data over 20 years, the emergence of claims, settle-
ment delay and amount paid in recent years might not 
be consistent with those at the beginning of the period. 
This can be illustrated by comparing parameter esti-
mates using different portions of the data. We will 
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Table 5. Development factors and calendar years used to generate each of them

Dev. 
Per.

Motor BI Motor PD

λj1 λj2 λj3 λj4 λjFull λj1 λj2 λj3 λj4 λjFull

1 0.1299 0.0946 0.0791 0.0688 0.0507 0.0564 0.0497 0.0554 0.0539 0.0524

2 0.4697 0.4217 0.3985 0.3808 0.3072 0.5587 0.5165 0.5128 0.4959 0.4917

3 0.6825 0.6495 0.6336 0.6164 0.5278 0.7397 0.7161 0.7041 0.6764 0.6882

4 0.8328 0.8149 0.8047 0.7961 0.7260 0.8625 0.8041 0.7843 0.7566 0.7629

5 0.9317 0.9251 0.9212 0.9183 0.8742 0.9281 0.8832 0.8462 0.8137 0.7975

6 0.9710 0.9707 0.9676 0.9664 0.9394 0.9742 0.9230 0.8767 0.8531 0.8463

7 0.9836 0.9844 0.9851 0.9834 0.9685 0.9792 0.9258 0.8840 0.8625 0.8656

8 0.9891 0.9906 0.9899 0.9887 0.9821 0.9888 0.9309 0.9035 0.8986 0.8974

9 0.9909 0.9924 0.9917 0.9910 0.9866 0.9930 0.9374 0.9189 0.9147 0.9134

10 0.9922 0.9931 0.9925 0.9924 0.9898 1.0057 0.9504 0.9404 0.9313 0.9293

11 0.9932 0.9937 0.9935 0.9933 0.9910 1.0056 0.9650 0.9539 0.9445 0.9445

12 0.9937 0.9944 0.9946 0.9943 0.9930 1.0043 0.9987 0.9889 0.9889 0.9889

13 0.9950 0.9966 0.9964 0.9964 0.9950 1.0000 0.9971 0.9971 0.9971 0.9971

14 0.9950 0.9966 0.9969 0.9969 0.9970 1.0000 1.0000 1.0000 1.0000 1.0000

15 0.9950 0.9970 0.9972 0.9973 0.9975

16 1.0000 1.0000 1.0000 1.0000 1.0000

17 1.0000 1.0000 1.0000 1.0000 1.0000

18 1.0000 1.0000 1.0000 1.0000 1.0000

19 1.0000 1.0000 1.0000 1.0000 1.0000

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 
110% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 P
er

ce
n

ta
g

e 
o

f 
u

lt
im

at
e 

p
ai

d

Development period 

 

1  2  3  4    

Figure 10. Motor BI settlement pattern
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6. Conclusions

In this paper, three different types of estimation 
methods were considered. The DCL formalizes the 
classical CLM mathematically by setting the implicit 
factors, explicitly. However, since the DCL method 
is performed only on triangles of claims count and 
paid claims, excessive volatility in the prediction of 
the most recent accident year’s reserves can be intro-
duced as shown in Figures 1 and 2. The instability 
of the severity inflation parameter estimation can be 
resolved by the introduction of the BDCL method. As 
expected, the BDCL predictions are less volatile than 
those of the DCL as shown in Table 2. Once work-
ing with the incurred claim amounts triangle we were 
also able to replicate the classical chain ladder point 
estimates on incurred data. The user would intuitively 
question the variability between estimates from the 
three methods. The purpose of the reserving exercise 
should dictate the most relevant method to select. 
For instance, using the DCL for regulatory purposes 
where prudence is the norm and using the BDCL or 
IDCL for internal management accounts reporting 
when realistic figures are more suited. The validation 
showed that BDCL and IDCL are superior to DCL. 
However, the validation was not able to distinguish 
clearly between BDCL and IDCL. For the sake of 
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In Table 6, the first column describes the number of 
previous calendar years used to calculate the develop-
ment factors. The second column lists the number of 
calendar years removed to perform the back testing. 
A lower percentage error suggests a better prediction. 
It appears that the DCL method is almost always the 
weakest with for example, up to a 95.97% by cell 
error on one period of back testing when four cal-
endar years are used to estimate the parameters. The 
BDCL seems stronger than IDCL on longer period 
of back testing especially when more data are used. 
However, the IDCL generally outperforms the other 
methods. Figure 14 confirms that the BDCL is more 
stable than the DCL and the IDCL generally stronger 
than the BDCL.

Table 6. Motor BI: prediction errors

Cal. Yr. Used Backtesting

By Cell By Calendar Year Total Reserve

DCL BDCL IDCL DCL BDCL IDCL DCL BDCL IDCL

Last 2 Years 1 83.84% 16.74% 11.65% 64.20% 18.76% 9.53% 64.20% 18.76% 9.53%

2 54.44% 20.86% 19.33% 40.78% 18.25% 14.43% 42.95% 19.22% 15.19%

3 23.39% 25.52% 26.04% 19.01% 22.03% 21.84% 20.75% 24.04% 23.84%

4 27.80% 20.08% 19.28% 24.16% 12.16% 13.98% 27.71% 13.95% 16.03%

Last 4 Years 1 95.97% 26.96% 19.12% 75.11% 28.90% 17.83% 75.11% 28.90% 17.83%

2 59.79% 23.06% 19.96% 49.07% 21.40% 16.46% 51.68% 22.54% 17.33%

3 33.03% 23.38% 20.88% 29.73% 17.98% 14.82% 32.44% 19.63% 16.17%

4 27.20% 24.66% 25.45% 24.93% 12.38% 19.64% 28.60% 14.20% 22.53%

Full Triangle 1 95.78% 22.24% 15.98% 90.02% 19.47% 8.62% 90.02% 19.47% 8.62%

2 52.67% 29.35% 28.20% 54.22% 18.81% 24.35% 57.10% 19.81% 25.65%

3 42% 30.94% 28.51% 38.52% 17.82% 21.87% 42.05% 19.45% 23.86%

4 34.03% 35.04% 36.20% 31.25% 16.51% 30.39% 35.85% 18.94% 34.86%
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Appendix A — Motor BI incurred, paid and count triangles

would be preferred for long-tail classes such as liability. 
An alternative to the methods discussed above is a 
double chain ladder model with a severity inflation 
parameter having a calendar year dependency, mod-
elled by a time series with a deterministic drift and a 
stochastic volatility. But this is beyond the scope of 
this paper and might be subject of further research.

argument, we applied the DCL model on two separate 
data-sets to assess how robust the model is to incor-
rect or erroneous data and we obtained very different 
intermediate results but overall reasonably correct 
final reserve. The IDCL would be preferred for short-
tail lines of business, e.g., property damage which will 
be less affected by severity inflation whilst the BDCL 
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Figure 14. Box plot of the DCL, BDCL and IDCL cell error quartiles

INC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2382 348 156 367 −17 −205 −185 −49 −5 −11 0 0 0 0 0 0 0 0 0 0
2 4285 307 583 593 18 −55 −107 −168 19 22 −19 −43 −7 0 6 11 0 0 0
3 6868 1263 −121 406 −317 194 −113 −31 −105 −75 −22 11 −9 1 55 −38 0 −5
4 9977 186 165 1171 −596 −290 −50 177 −155 −14 −14 41 0 12 0 0 5
5 14308 1109 629 1165 −298 −177 33 −231 −151 19 0 0 0 0 0 100
6 16685 4613 389 1110 −1094 −940 −335 −94 −58 −125 −45 1 −11 0 0
7 25481 6535 −759 30 −634 −886 −183 −321 −35 25 −20 −28 0 −1
8 30809 8035 −1750 572 −861 −617 −280 −481 −56 9 −8 4 0
9 36840 5593 −1198 −1040 −1503 −580 −407 −18 −34 −20 −6 −1
10 36807 4968 −2347 −257 −842 −1116 −225 −8 −37 16 −37
11 32927 6276 −84 1930 −1290 −464 −458 −4 −67 7
12 30101 6765 −772 1322 −285 −1583 −275 5 −81
13 27915 3822 −484 2604 −1584 −671 −137 −100
14 23894 11426 3309 2974 −1754 −415 −148
15 29428 12598 3165 −281 −1334 −478
16 27317 17303 −635 416 −1161
17 25224 9967 136 −261
18 34997 8380 −1060
19 36216 7309
20 36267
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PAID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 52 513 748 555 426 212 213 16 9 37 0 0 0 0 0 0 0 0 0 0

2 144 1006 910 736 593 766 615 245 116 15 36 165 15 67 6 11 0 0 0

3 346 1467 1292 1237 1127 779 392 845 94 230 12 11 21 84 10 17 0 0

4 408 1875 1810 1860 1806 1422 762 307 110 140 53 37 0 7 0 0 0

5 712 3254 2696 2593 3377 2101 923 435 124 30 23 0 59 31 12 82

6 941 3615 3274 4479 3841 2033 1242 472 120 59 5 0 9 0 0

7 1221 5814 5905 7112 5321 2426 857 197 134 40 12 66 99 0

8 1685 8164 7609 7722 6298 1981 830 580 198 124 64 29 48

9 2253 9480 7697 8260 5872 2340 1099 363 147 44 14 19

10 2043 8792 9169 7864 5895 1978 722 245 60 −1 34

11 1570 9962 9670 8024 6121 2392 618 98 71 51

12 1456 9182 8262 8374 4995 1886 883 241 64

13 1129 7676 8515 6467 4505 1502 461 170

14 1381 11548 8890 7964 4951 1980 475

15 2196 12381 10391 7516 4969 1581

16 2068 14179 11164 7740 4177

17 1736 11607 8828 4883

18 3269 15213 8372

19 4651 12172

20 4614

COUNT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 817 235 18 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1538 317 25 5 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0

3 1660 363 34 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0

4 1924 380 34 9 2 2 0 1 0 0 0 1 0 0 0 0 0

5 2445 521 30 14 2 1 0 0 0 0 2 0 0 0 0 1

6 2968 677 53 14 5 1 1 2 3 3 0 0 0 0 0

7 3854 1031 122 26 4 1 1 6 9 2 1 0 0 0

8 4739 1544 121 37 4 3 14 18 1 0 1 0 0

9 5938 1577 88 50 6 29 27 7 3 1 0 0

10 5569 1325 119 39 51 22 6 1 0 0 0

11 5595 1418 170 107 20 2 2 1 0 1

12 4856 1080 156 45 7 1 1 1 0

13 4187 892 123 24 7 0 1 0

14 4632 1314 129 53 5 2 0

15 5631 1192 137 40 4 0

16 4148 2389 128 27 4

17 3531 1521 111 25

18 4542 1163 106

19 4516 881

20 3918
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Appendix B — Motor PD incurred, paid and count triangles

INC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1562 3604 −1372 −928 −2719 91 54 50 −7 4 188 −76 30 4 0

2 1289 876 149 −1526 −47 111 11 −11 32 −6 8 0 −1 0

3 1167 2696 −569 −278 235 −32 −13 −62 267 −116 196 −6 0

4 2189 5141 1106 417 −43 564 9 −14 31 125 88 −138

5 1369 6080 181 123 599 −185 −2 −13 89 10 −1

6 2145 4156 −10 381 32 −77 −20 73 17 −46

7 1391 6230 482 −165 50 −54 −329 −56 36

8 2088 8026 −242 −483 −72 8 −13 21

9 2275 8286 279 7 154 2 2

10 2787 11694 −163 −507 720 −320

11 2600 9988 −93 334 415

12 2955 8878 −93 332

13 2996 6986 29

14 3042 8048

15 3355

PAID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 77 1163 717 525 −2526 96 81 78 19 5 52 149 47 4 0

2 239 −428 1427 −1015 158 240 147 24 32 −6 8 53 8 0

3 164 468 934 308 680 329 17 164 16 −67 25 445 −15

4 405 3646 1713 708 657 937 479 33 172 344 268 −12

5 266 3801 1379 755 654 167 91 744 276 120 −1

6 468 3312 1116 620 326 99 135 400 63 84

7 385 4028 1122 786 199 695 166 3 32

8 564 5171 1861 633 515 115 6 87

9 615 5502 2604 1166 380 409 54

10 709 6410 2412 918 1256 582

11 775 6251 2459 768 779

12 829 5538 2827 1527

13 537 5348 1907

14 611 5438

15 876

COUNT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1022 3345 1330 19 2 1 1 0 0 0 1 0 0 0 0

2 1313 3585 114 11 8 8 0 1 0 0 0 0 0 0

3 1769 3931 179 31 10 2 0 1 1 0 0 0 0

4 1914 3820 234 20 4 1 1 0 0 0 0 0

5 1683 3720 89 25 11 0 0 0 0 0 0

6 1577 3853 148 16 3 1 1 2 1 0

7 1916 4620 168 27 5 1 2 1 0

8 2188 5459 212 29 3 2 1 0

9 2338 6342 284 33 10 4 2

10 2686 6771 336 26 11 1

11 2842 6441 217 17 5

12 2657 5701 244 27

13 2644 5672 277

14 2606 5623

15 2468
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