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ABSTRACT

Robust statistical procedures have a growing body of lit-

erature and have been applied to loss severity fitting in

actuarial applications. An introduction of robust methods

for loss reserving is presented in this paper. In particu-

lar, following Tampubolon (2008), reserving models for a

development triangle are compared based on the sensitiv-

ity of the reserve estimates to changes in individual data

points. This measure of sensitivity is then related to the

generalized degrees of freedom used by the model at each

point.
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Robustifying Reserving

All models are wrong but some are useful.

–Christian Dior (or maybe George E. P. Box)

1. Introduction

The idea of this paper is simple. For models

using a loss development triangle, the robustness

of the model can be evaluated by comparing the

derivative of the loss reserve with respect to each

data point. All else being equal, models that are

highly sensitive to a few particular observations

are less preferred than ones that are not. This is

supported by the fact that individual cells can be

highly volatile. This general approach, based on

Tampubolon (2008), is along the lines of robust

statistics, so some background into robust statis-

tics will be the starting point. Published models

on three data sets will be tested by this method-

ology. For two of them, unsuspected problems

with the previously best-fitting models are found,

leading to improved models.

The sensitivity of the reserve estimate to in-

dividual points is related to the power of those

points to draw the fitted model towards them.

This can be measured by what Ye (1998) calls

generalized degrees of freedom (GDF). For a

model and fitting procedure, the GDF at each

point is defined as the derivative of the fitted

point with respect to the observed point. If any

change in a sample point is matched by the same

change in the fitted, the model and fitting proce-

dure are giving that point full control over its fit,

so a full degree of freedom is used. GDF does

not fully explain the sensitivity of the reserve to

a point, as the position of the point in the triangle

also gives it more or less power to change the re-

serve estimate, but it adds some insight into that

sensitivity.

Section 2 provides some background of robust

analysis and Section 3 shows some previous ap-

plications to actuarial problems. These help to

place the current proposal into perspective in that

literature. Sections 4, 5, and 6 apply this ap-

proach to some published loss development mod-

els. Section 7 concludes.

2. Robust methods in general

Classical statistics takes a model structure and

tries to optimize the fit of data to the model un-

der the assumption that the data is in fact gener-

ated by the process postulated in the model. But

in many applied situations, the model is a con-

venient simplification of a more complex pro-

cess. In this case, the optimality of estimation

methods such as maximum likelihood estimation

(MLE) may no longer hold. In fact, a few obser-

vations that do not arise from the model assump-

tions can sometimes significantly distort the esti-

mated parameters when standard techniques are

used. For instance, Tukey (1960) gives examples

where even small deviations from the assumed

model can greatly reduce the optimality proper-

ties. Robust statistics looks for estimation meth-

ods that in one way or another can insulate the

estimates from such distortions.

Perhaps the simplest such procedure is to iden-

tify and exclude outliers. Sometimes outliers

clearly arise from some other process than the

model being estimated, and it may even be clear

when current conditions are likely to generate

such outliers, so that the model can then be ad-

justed. If the parameter estimates are strongly in-

fluenced by such outliers, and the majority of the

observations are not consistent with those esti-

mates, it is reasonable to exclude the outliers and

just be cautious about when to use the model.

An example is provided by models of the U.S.

one-month treasury bill rates at monthly inter-

vals. Typical models postulate that the volatility

of the rate is higher when the rate itself is higher.

Often the volatility is proposed to be proportional

to the pth power of the rate. The question is–

what is p? One model, the CIR or Cox, Inger-

soll, Ross model, assumes a p value of 0.5. Other

models postulate p as 1 or even 1.5, and others

try to estimate p as a parameter. An analysis by

Dell’Aquila, Ronchetti, and Troiani (2003) found

that when using traditional methods, the estimate

VOLUME 4/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 137



Variance Advancing the Science of Risk

of p is very sensitive to a few observations in the

1979—82 period, when the U.S. Federal Reserve

bank was experimenting with monetary policy.

Including that period in the data, models with

p = 1:5 cannot be rejected, but excluding that

period finds that p = 0:5 works just fine. That

period also experienced very high values of the

interest rate itself, so their analysis suggests that

using p = 0:5 would make sense unless the inter-

est rate is unusually high.

A key tool in robust statistics is the identifica-

tion of influential observations, using the influ-

ence function defined by Hampel (1968). This

procedure looks at statistics calculated from a

sample, such as estimated parameters, as func-

tionals of the random variables that are sampled.

The influence function for the statistic at any ob-

servation is a functional derivative of the statis-

tic with respect to the observed point. In practice,

analysts often use what is called the empirical in-

fluence. For instance, Bilodeau (2001) suggests

calculating the empirical influence at each sam-

ple point as the sample size times the decrease

(which may be negative) in the statistic from ex-

cluding the point from the sample. That is, the

influence is n times [statistic with full sample mi-

nus statistic excluding the point]. If the statistic is

particularly sensitive to a single or a few obser-

vations, its accuracy is called into question. The

gross error sensitivity (GES) is defined as the

maximum absolute value of the influence func-

tion across the sample.

The effect on the statistic of small changes in

the influential observations is also a part of ro-

bust analysis, as these effects should not be too

large either. If each observation has substantial

randomness, the random component of influen-

tial observations has a disproportionate impact

on the statistic. The approach used below in the

loss reserving case is to identify observations for

which small changes have large impacts on the

reserve estimate.

Exclusion is not the only option for dealing

with outliers. Estimation procedures that use but

limit the influence of the outliers are also an im-

portant element of robust statistics. Also, find-

ing alternative models which are not dominated

by a few influential points and estimating them

by traditional means can be an outcome of a ro-

bust analysis. In the interest rate case, a model

with one p parameter for October 1979 through

September 1982 and another elsewhere does this.

Finding alternative models with less influence

from a few points is what we will be attempt-

ing in the reserve analysis.

3. Robust methods in insurance
Several papers on applying robust analysis to

fitting loss severity distributions have appeared

in recent years. For instance, Brazauskas and Ser-

fling (2000a) focus on estimation of the simple

Pareto tail parameter ® assuming that the scale

parameter b is known. In this notation the sur-

vival function is S(x) = (b=x)®. They compare

several estimators of ®, such as MLE, matching

moments or percentiles, etc. One of their tests is

the asymptotic relative efficiency (ARE) of the

estimate compared to MLE, which is the factor

which when applied to the sample size would

give the sample size needed for MLE to give

the same asymptotic estimation error. Due to the

asymptotic efficiency of MLE, these factors are

never greater than unity, assuming the sample is

really from that Pareto distribution.

The problem is that the sample might not be

from a simple Pareto distribution. Even then,

however, you would not want to identify and

eliminate outliers. Whatever process is generat-

ing the losses would be expected to continue, so

no losses can be ignored.1 The usual approach to

this problem is to find alternative estimators that

have low values of the GES and high values of

ARE. Brazauskas and Serfling (2000a) suggest

1A related problem is contamination of large losses by a non-

recurring process. The papers on robust severity also address this,

but it is a somewhat different topic than fitting a simple model to

a complex process.
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estimators they call generalized medians (GM).

The kth generalized median is the median of all

MLE estimators of subsets of size k of the origi-

nal data. That can be fairly calculation-intensive,

however, even with small k of 3, 4, or 5.

Finkelstein, Tucker, and Veeh (2006) define an

estimator they call the probability integral trans-

form statistic (PITS) which is quite a bit easier

to calculate but not quite as robust as the GM.

It has a tuning parameter t in (0,1) to control

the trade-off between efficiency and robustness.

Since (b=x)® is a probability and so a number be-

tween zero and one, it should be distributed uni-

formly [0,1]. Thus (b=x)t® should be distributed

like a uniformly raised to the t power. The av-

erage of these over a sample is known to have

expected value 1=(t+1), so the PITS estimator

is the value of ¯ for which the average of (b=x)t¯

over the sample is 1=(t+1). This is a single-

variable root finding exercise. Finklestein,

Tucker, and Veeh give values of the ARE and

GES for the GM and PITS estimators, shown in

Table 1. A simulation suggests that the GES for

MLE for ®= 1 is about 3.9, and since its ARE

is 1.0 by definition, PITS at 0.94 ARE is not

worthwhile in this context. In general the gener-

alized median estimators are more robust by this

measure.

Other robust severity studies include Brazau-

skas and Serfling (2000b), who use GM estima-

tion for both parameters of the simple Pareto;

Gather and Schultze (1999), who show that the

best GES for the exponential is the median scaled

to be unbiased (but this has low ARE); and Ser-

fling (2002), who applies GM to the lognormal

distribution.

4. Robust approach to loss
development
Omitting points from loss development trian-

gles can sometimes lead to strange results, and

not every development model can be automat-

ically extended to deal with this, so instead of

calculating the influence function for develop-

Table 1. Comparative efficiency and robustness of two
robust estimators of Pareto ®

ARE GM-k PITS-t GM-GES PITS-GES

0.88 3 0.531 2:27® 2:88®
0.92 4 0.394 2:60® 3:54®
0.94 5 0.324 2:88® 4:08®

ment models, we look at the sensitivity of the

reserve estimate to changes in the cells of the

development triangle, as in Tampubolon (2008).

In particular, we define the impact of a cell on

the reserve estimate under a particular develop-

ment methodology as the derivative of the esti-

mate with respect to the value in the cell. We

do this for the incremental triangle, so a small

change in a cell affects all subsequent cumula-

tive values for the accident year. This seems to

make more sense than looking at the derivative

with respect to cumulative cells, whose changes

would not continue into the rest of the triangle.

If you think of a number in the triangle as its

mean plus a random innovation, the derivative

with respect to the random innovation would be

the same as that with respect to the total, so a

high impact of a cell would imply a high impact

of its random component as well. Thus models

with some cells having high impacts would be

less desirable. One measure of this is the maxi-

mum impact of any cell, which would be anal-

ogous to the GES, but we will also look at the

number of cells with impacts above various

thresholds in absolute value.

This is just a toe in the water of robust analysis

of loss development. We are not proposing any

robust estimators, and will stick with MLE or

possibly quasi-likelihood estimation. Rather we

are looking at the impact function as a model

selection and refinement tool. It can be used to

compare competing models of the same develop-

ment triangle, and it can identify problems with

models that can guide a search for more robust

alternatives. This is similar to finding models that

work for the entire history of interest rate changes

and are not too sensitive to any particular points.
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To help interpret the impact function, we will

also look at the generalized degrees of freedom

(GDF) at each point. This is defined as the deriva-

tive of the fitted value with respect to the ob-

served value. If this is near 1, the point’s initial

degree of freedom has essentially been used up

by the model. The GDF is a measure of how

much a point is able to pull the fitted value to-

wards itself. Part of the impact of a point is this

power to influence the model, but its position in

the triangle also can influence the estimated re-

serve. Just like with the impact function, high

values of the GDF would be a detriment.

For the chain-ladder (CL) model, some obser-

vations can be made in general. All three corners

of the triangle have high impact. The lower left

corner is the initial value of the latest accident

year, and the full cumulative development applies

to it. Since this point does not affect any other

calculations, its impact is the development factor,

which can sometimes be substantial. The upper

right corner usually produces a development fac-

tor which, though small, applies to all subsequent

accident years, so its impact can also be substan-

tial. When there is only one year at ultimate, this

impact is the ratio of the sum of all accident years

not yet at ultimate, developed to the penultimate

lag, to the penultimate cumulative value for the

oldest accident year. The upper left corner is a

bit strange in that its impact is usually negative.

Increasing it will increase the cumulative loss at

every lag, without affecting future incrementals,

so every incremental-to-previous-cumulative ra-

tio will be reduced. The points near the upper

right corner also tend to have high impact, and

those near the upper left tend to have negative

impact, but the lower left point often stands alone

in its high impact.

The GDFs for CL are readily calculated when

factors are sums of incrementals over sums of

previous cumulatives. The fitted value at a cell

is the factor applied to the previous cumulative,

so its derivative is the product of its previous

cumulative and the derivative of the factor with

respect to the cell value. But that derivative is just

the reciprocal of the sum of the previous cumu-

latives, so the GDF for the cell is the quotient

of its previous cumulative and the sum. Thus

these GDFs sum down a column to unity, so

each development factor uses up a total GDF of

1.0. Essentially each factor uses 1 degree of free-

dom, agreeing with standard analysis. The aver-

age GDF in a column is thus the reciprocal of

the number of observations in that column. Thus

the upper right cell uses 1 GDF, the previous

column’s cells use 1
2
each on average, etc. Thus

the upper right cells have high GDFs and high

impact.

We will use ODP, for over-dispersed Poisson,

to refer to the cross-classified development mod-

el in which each cell mean is modeled as a prod-

uct of a row parameter and a column parame-

ter, the variance of the cell is proportional to its

mean, and the parameters are estimated by the

quasi-likelihood method. It is well known that

this model gives the same reserve estimate as CL.

Thus if you change a cell slightly, the changed

triangle will give the same reserve under ODP

and CL. Thus the impacts of each cell under

ODP will be the same as those of CL. The GDFs

will not be the same, however, as the fitted val-

ues are not the same for the two models. The

CL fitted value is the product of the factor and

the previous cumulative, whereas the ODP cu-

mulative fitted values are backed down from the

latest diagonal by the development factors, and

then differenced to get the incremental fitted. It

is possible to write down the resulting GDFs ex-

plicitly, but it is probably easier to calculate them

numerically.

It may be fairly easy to find models that re-

duce the impact of the upper right cells. Usually

the development factors at those points are not

statistically significant. Often the development is

small and random, and is not correlated with the

previous cumulative values. In such cases, it may

be reasonable to model a number of such cells as

a simple additive constant. Since several cells go
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Table 2. Incremental loss development triangle

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

11,305 18,904 17,474 10,221 3,331 2,671 693 1,145 744 112 40 13
8,828 13,953 11,505 7,668 2,943 1,084 690 179 1,014 226 16 616
8,271 15,324 9,373 11,716 5,634 2,623 850 381 16 28 558
7,888 11,942 11,799 6,815 4,843 2,745 1,379 266 809 12
8,529 15,306 11,943 9,460 6,097 2,238 493 136 11

10,459 16,873 12,668 9,199 3,524 1,027 924 1,190
8,178 12,027 12,150 6,238 4,631 919 435

10,364 17,515 13,065 12,451 6,165 1,381
11,855 20,650 23,253 9,175 10,312
17,133 28,759 20,184 12,874
19,373 31,091 25,120
18,433 29,131
20,640

Table 3. Impact of CL

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 ¡1:21 ¡0:34 0.04 0.39 0.73 1.10 1.48 1.85 2.46 3.35 4.61 7.31
AY1 ¡1:21 ¡0:34 0.04 0.39 0.73 1.10 1.48 1.85 2.46 3.35 4.61 7.31
AY2 ¡1:17 ¡0:29 0.08 0.44 0.78 1.14 1.53 1.89 2.51 3.39 4.66
AY3 ¡1:15 ¡0:27 0.10 0.46 0.80 1.16 1.55 1.91 2.53 3.41
AY4 ¡1:14 ¡0:27 0.11 0.46 0.80 1.17 1.56 1.92 2.54
AY5 ¡1:10 ¡0:23 0.15 0.50 0.84 1.21 1.59 1.96
AY6 ¡1:07 ¡0:20 0.18 0.53 0.87 1.24 1.62
AY7 ¡1:03 ¡0:16 0.22 0.57 0.91 1.28
AY8 ¡0:95 ¡0:08 0.30 0.65 0.99
AY9 ¡0:73 0.14 0.52 0.87
AY10 ¡0:31 0.57 0.95
AY11 0.70 1.58
AY12 4.95

into the estimation of this constant, the impact of

some of them is reduced. Alternatively, the fac-

tors in that region may follow some trends, linear

or not, that can be used to express them with a

small number of parameters. Again, this would

limit the impact of some of the cells.

The lower left point is more difficult to deal

with in a CL-like model. One alternative is a

Cape-Cod type model, where every accident year

has the same mean level. This can arise, for in-

stance, if there is no growth in the business, but

also can be seen when the development triangle

consists of on-level loss ratios, which have been

adjusted to eliminate known differences among

the accident years. In this type of model, all the

cells go into estimating the level of the last ac-

cident year, so the lower left cell has much less

impact. This reduction in the impact of the ran-

dom component of this cell is a reason for using

on-level triangles.

The next three sections illustrate these con-

cepts using development triangles from the ac-

tuarial literature. The impacts and GDFs are cal-

culated for various models fit to these triangles.

The impacts are calculated by numerical deriva-

tives, as are the GDFs except for those for the

CL, which have been derived above.

5. A development-factor example
5.1. Chain ladder

Table 2 is a development triangle used in Ven-

ter (2007a). Note that the first two accident years

are developed all the way to the end of the tri-

angle, at lag 11. Table 3 shows the impact of

each cell on the reserve estimate using the usual
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Figure 1. Impact of chain ladder by diagonal

Table 4. GDFs of CL

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.080 0.093 0.114 0.133 0.151 0.177 0.201 0.245 0.306 0.394 0.581
AY1 1.0 0.063 0.070 0.082 0.097 0.110 0.128 0.145 0.174 0.221 0.285 0.419
AY2 1.0 0.059 0.073 0.079 0.103 0.124 0.147 0.167 0.202 0.250 0.321
AY3 1.0 0.056 0.061 0.076 0.089 0.106 0.128 0.148 0.177 0.223
AY4 1.0 0.061 0.073 0.086 0.104 0.126 0.149 0.168 0.202
AY5 1.0 0.074 0.084 0.096 0.113 0.130 0.149 0.170
AY6 1.0 0.058 0.062 0.077 0.089 0.106 0.123
AY7 1.0 0.074 0.086 0.098 0.123 0.146
AY8 1.0 0.084 0.100 0.134 0.149
AY9 1.0 0.122 0.141 0.158
AY10 1.0 0.138 0.156
AY11 1.0 0.131
AY12 1.0

sum/sum development factors. In the CL model

an explicit formula can be derived for these im-

pacts, but it is easier to do the derivatives numeri-

cally, simply by adding a small value to each cell

separately and recalculating the estimated reserve

to get the change in reserve for the derivative.

As discussed, the impacts are highest in the up-

per right and lower left corners, and the upper left

has negative impact. The impacts increase mov-

ing to the right and down. The last four columns

and the lower left point have impacts greater

than 2, and six points have impacts greater than

4. Table 4 shows the GDFs for the chain ladder

using the formula previous cumulative/sum pre-

vious cumulatives derived in Section 4. L0’s

GDFs are shown as identically 1.0. Like the im-

pact function, except for lag 0, these increase

from one column to the next. Within each col-

umn the sizes depend on the volume of the year.

Figure 1 graphs the impacts by lag along the

diagonals of the triangle. After the first four lags,

the impacts are almost constant across diagonals.
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Table 5. Impact of regression model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 ¡1:36 0.02 0.42 0.67 0.10 0.87 1.35 1.35 0.97 1.35 0.97 1.73
AY1 ¡1:56 0.22 0.66 ¡0:04 0.67 1.28 1.35 0.97 1.35 0.97 1.73 1.35
AY2 ¡1:53 0.52 ¡0:39 0.38 1.02 1.27 0.97 1.35 0.97 1.73 1.35
AY3 ¡0:51 ¡0:64 0.15 0.78 1.07 0.90 1.35 0.97 1.73 1.35
AY4 ¡1:24 ¡0:31 0.45 0.76 0.64 1.27 0.97 1.73 1.35
AY5 ¡1:38 0.11 0.47 0.32 1.00 0.89 1.73 1.35
AY6 ¡1:61 0.22 0.18 0.80 0.68 1.66 1.35
AY7 ¡0:89 ¡0:36 0.35 0.24 1.34 1.25
AY8 ¡1:34 0.00 ¡0:12 0.87 0.94
AY9 0.29 ¡0:44 0.61 0.57
AY10 ¡0:18 0.66 0.43
AY11 1.11 1.04
AY12 4.31

Table 6. GDFs of regression model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.071 0.089 0.127 0.352 0.195 0.034 0.034 0.055 0.034 0.055 0.076
AY1 1.0 0.047 0.056 0.305 0.107 0.099 0.034 0.055 0.034 0.055 0.076 0.034
AY2 1.0 0.046 0.299 0.084 0.098 0.123 0.055 0.034 0.055 0.076 0.034
AY3 1.0 0.297 0.067 0.058 0.074 0.107 0.034 0.055 0.076 0.034
AY4 1.0 0.064 0.056 0.072 0.120 0.128 0.055 0.076 0.034
AY5 1.0 0.062 0.073 0.110 0.118 0.149 0.076 0.034
AY6 1.0 0.040 0.067 0.061 0.095 0.140 0.034
AY7 1.0 0.082 0.075 0.118 0.182 0.172
AY8 1.0 0.077 0.134 0.212 0.207
AY9 1.0 0.198 0.239 0.246
AY10 1.0 0.245 0.253
AY11 1.0 0.192
AY12 1.0

5.2. Regression model

Venter (2007a) fit a regression model to this

triangle, keeping the first 5 development factors

but including an additive constant. The constant

also represents development beyond lag 5. By

stretching out the incremental cells to be fitted

into a single column Y, this was put into the form
of a linear model Y=X¯+ ", which assumes a
normal distribution of residuals with equal vari-

ance (homoscedasticity) across cells. X has the

previous cumulative for the corresponding incre-

mentals, with zeros to pad out the columns, a

column of 1s for the constant. There were also

diagonal (calendar year) effects in the triangle.

Two diagonal dummy variables were included in

X, one with 1s for observations on the 4th di-
agonal and 0 elsewhere, and one equal to 1 on

the 5th, 8th, and 10th diagonals, ¡1 on the 11th

diagonal, and 0 elsewhere. The diagonals are

numbered starting at 0, so the 4th is the one

beginning with 8,529 and the 10th starts with

19,373. The variance calculation used a hetero-

scedasticity correction. This model with 8 param-

eters fit the data better than the development

factor model with 11 parameters. Here we are

only addressing the robustness properties, how-

ever.

Table 5 gives the impact function for this mod-

el. It is clear that the large impacts on the right

side have been eliminated by using the constant

instead of factors to represent late development.

The effects of the diagonal dummies can also be

seen, especially in the right of the triangle. Now

only one point has impact greater than 2, and one

greater than 4.

Table 6 shows the GDFs for the regression

model. For regression models the GDFs for the
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Figure 2. Impact of regression model by diagonal

observations in the Y vector are known to be

calculable as the diagonal of the “hat” matrix,

where hat =X(X0X)¡1X0, e.g., see Ye [2]. How-
ever in development triangles, changing an in-

cremental value also changes subsequent cumu-

latives, so the X matrix is a function of lags of

Y. This requires the derivatives to be done nu-
merically. The total of these, excluding lag 0, is

8.02, which is a bit above the usual number of

parameters, due to the exceptions to normal lin-

ear models. Compared to the CL, the GDFs are

lower for lag 6 onward, but are somewhat higher

along the modeled diagonals. They are especially

high for diagonal 4, which is short and gets its

own parameter.

Figure 2 graphs the impacts. Note that due to

the diagonal effects, diagonal 11 has higher im-

pact than diagonal 12 after the first two lags.

5.3. Square root regression model
As a correction for heteroscedasticity, regres-

sion courses sometimes advise dividing both Y
and X by the square root of Y, row by row. This

makes the model Y1=2 = (X=Y1=2)¯+ ", where
the " are IID mean zero normals. Then Y=X¯+
Y1=2", so now the variance of the residuals is pro-
portional to Y. This sounds like a fine idea, but it
is a catastrophe from a robust viewpoint. Table 7

shows the impact function. There are 12 points

with impact over 2, seven with impact over 4,

five with impact over 10, and three with impact

over 25.

Part of the problem is that the equation Y=
X¯+Y1=2" is not what you would really want.
The residual variance should be proportional to

the mean, not the observations. This setup gives

the small observations small variance, and so the

ability to pull the model towards them. But the

observations might be small because of a neg-

ative residual, with a higher expected value. So

this formulation gives the small values too much

influence.

Table 8 shows the related GDFs. It is unusual

here that some points have GDFs greater than 1.

A small change in the original value can make a
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Table 7. Impact of square root regression model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 ¡0:94 ¡0:08 0.16 0.68 0.15 0.56 0.01 0.00 0.01 0.38 4.57 15.61
AY1 ¡1:06 ¡0:10 0.28 ¡0:30 2.19 1.86 0.01 0.15 0.00 0.15 10.21 0.01
AY2 ¡0:58 0.12 ¡0:09 0.20 0.68 0.39 0.01 0.03 28.26 3.09 0.02
AY3 ¡0:20 ¡0:50 0.13 0.66 0.69 0.27 0.00 0.11 0.00 32.67
AY4 ¡0:90 ¡0:15 0.33 0.41 0.59 0.56 0.03 0.14 37.14
AY5 ¡1:28 ¡0:36 0.17 0.37 2.05 2.87 0.00 0.00
AY6 ¡1:20 ¡0:09 0.01 0.77 0.71 2.34 0.02
AY7 ¡1:02 ¡0:18 0.36 0.23 0.76 1.97
AY8 ¡0:86 ¡0:07 ¡0:01 1.23 0.46
AY9 ¡0:91 ¡0:06 0.59 1.02
AY10 ¡0:45 0.48 0.89
AY11 0.50 1.46
AY12 4.56

Table 8. GDFs of square root regression model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.082 0.078 0.129 0.697 0.074 0.000 0.000 0.000 0.010 0.356 1.102
AY1 1.0 0.071 0.076 0.230 0.227 0.175 0.000 0.004 0.000 0.011 0.720 0.000
AY2 1.0 0.053 0.287 0.031 0.074 0.042 0.000 0.001 2.199 0.218 0.000
AY3 1.0 0.201 0.045 0.081 0.064 0.025 0.000 0.008 0.000 0.906
AY4 1.0 0.051 0.077 0.061 0.066 0.061 0.002 0.010 1.030
AY5 1.0 0.076 0.102 0.089 0.252 0.322 0.000 0.000
AY6 1.0 0.073 0.045 0.104 0.072 0.221 0.001
AY7 1.0 0.069 0.103 0.053 0.106 0.249
AY8 1.0 0.075 0.051 0.246 0.068
AY9 1.0 0.117 0.193 0.208
AY10 1.0 0.145 0.166
AY11 1.0 0.144
AY12 1.0

greater change in the fitted value, but due to the

non-linearity the fitted value is still not exactly

equal to the data point. The sum of the GDFs

is 13.0, which is sometimes interpreted as the

implicit number of parameters.

5.4. Gamma-p residuals

Venter (2007b) fits the same regression model

using the maximum likelihood with gamma-p

residuals. The gamma-p is a gamma distribution,

but each cell is modeled to have the variance pro-

portional to the same power p of the mean. This

models the cells with smaller means as having

smaller variances. However, the effect is not as

extreme as in the square root regression, where

the variance is proportional to the observation,

not its expected value.

In this case, p was found to be 0.71. The im-

pacts are shown in Table 9 and graphed in Fig-

ure 3. It is clear that these are not nearly as dra-

matic as the square root regression, but worse

than the regular regression, and perhaps compa-

rable to the chain ladder. Diagonals 10 and 11

can be seen to have a few significant impacts.

These are at points with small observations that

are also on modeled diagonals. Even with the

variance proportional to a power of the expected

value, these points still have a strong pull. The

GDFs are in Table 10.

Again this is less dramatic than for the square

root regression, but the small points on the mod-

eled diagonals still have high GDFs. The total of

these is 11.3, which is still fairly high. This is

somewhat troublesome, as the gamma-p model

fit the residuals quite a bit better than did the

standard regression. The fact that the problems

center on small observations on the modeled di-

agonals suggests that additive diagonal effects
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Figure 3. Impact of gamma-p residual model

Table 9. Impact of gamma-p residual model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 ¡0:59 ¡0:07 0.24 0.59 ¡0:03 1.47 1.37 1.37 1.23 1.25 ¡1:45 7.97
AY1 ¡0:90 ¡0:05 0.28 0.10 0.90 1.11 1.30 0.77 1.37 0.91 6.73 1.36
AY2 ¡0:46 0.08 ¡0:07 0.56 0.94 1.43 1.22 1.45 ¡5:62 4.33 1.35
AY3 ¡0:29 ¡0:58 0.21 0.47 1.31 1.37 1.21 0.98 1.47 0.10
AY4 ¡0:68 ¡0:15 0.19 0.51 0.94 1.48 1.24 1.96 0.02
AY5 ¡1:04 ¡0:18 0.20 0.49 0.96 1.07 1.43 1.38
AY6 ¡1:00 0.09 0.22 0.45 1.28 1.13 1.41
AY7 ¡1:02 ¡0:18 0.50 0.50 0.95 1.17
AY8 ¡0:71 ¡0:12 0.12 0.66 0.96
AY9 ¡0:85 ¡0:02 0.80 0.86
AY10 ¡0:44 0.48 0.88
AY11 0.46 1.45
AY12 4.43

Table 10. GDFs of gamma-p residual model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.082 0.078 0.129 0.697 0.074 0.000 0.000 0.000 0.010 0.356 1.102
AY1 1.0 0.071 0.076 0.230 0.227 0.175 0.000 0.004 0.000 0.011 0.720 0.000
AY2 1.0 0.053 0.287 0.031 0.074 0.042 0.000 0.001 2.199 0.218 0.000
AY3 1.0 0.201 0.045 0.081 0.064 0.025 0.000 0.008 0.000 0.906
AY4 1.0 0.051 0.077 0.061 0.066 0.061 0.002 0.010 1.030
AY5 1.0 0.076 0.102 0.089 0.252 0.322 0.000 0.000
AY6 1.0 0.073 0.045 0.104 0.072 0.221 0.001
AY7 1.0 0.069 0.103 0.053 0.106 0.249
AY8 1.0 0.075 0.051 0.246 0.068
AY9 1.0 0.117 0.193 0.208
AY10 1.0 0.145 0.166
AY11 1.0 0.144
AY12 1.0
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Table 11. Impact of gamma-p multiplicative model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 ¡0:94 ¡0:03 0.22 0.58 0.09 1.16 1.43 1.43 1.42 1.36 0.55 2.31
AY1 ¡1:02 0.00 0.32 0.17 0.56 1.02 1.43 1.26 1.43 1.30 2.14 1.43
AY2 ¡0:74 0.15 ¡0:46 0.39 0.98 1.30 1.42 1.42 ¡0:78 1.82 1.42
AY3 ¡0:25 ¡0:50 ¡0:02 0.46 0.97 1.26 1.43 1.33 1.43 0.69
AY4 ¡0:68 ¡0:39 0.23 0.51 0.83 1.26 1.39 1.50 0.64
AY5 ¡1:09 ¡0:10 0.33 0.26 0.93 0.69 1.43 1.43
AY6 ¡1:02 0.05 0.00 0.45 0.79 1.12 1.42
AY7 ¡0:72 ¡0:37 0.31 0.29 1.11 1.07
AY8 ¡0:81 ¡0:01 ¡0:21 0.92 0.99
AY9 ¡0:76 ¡0:25 0.85 0.88
AY10 ¡0:58 0.56 0.94
AY11 0.35 1.50
AY12 4.34

Table 12. GDFs of gamma-p multiplicative model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.079 0.087 0.125 0.323 0.136 0.034 0.033 0.038 0.040 0.093 0.074
AY1 1.0 0.063 0.069 0.191 0.210 0.132 0.034 0.048 0.033 0.046 0.066 0.034
AY2 1.0 0.053 0.410 0.079 0.085 0.068 0.038 0.035 0.175 0.050 0.034
AY3 1.0 0.361 0.105 0.070 0.071 0.063 0.033 0.044 0.031 0.101
AY4 1.0 0.107 0.070 0.067 0.111 0.084 0.040 0.034 0.106
AY5 1.0 0.079 0.094 0.158 0.185 0.276 0.030 0.033
AY6 1.0 0.066 0.106 0.081 0.104 0.117 0.035
AY7 1.0 0.143 0.093 0.127 0.108 0.200
AY8 1.0 0.080 0.200 0.220 0.102
AY9 1.0 0.355 0.281 0.208
AY10 1.0 0.316 0.196
AY11 1.0 0.163
AY12 1.0

may not be appropriate for this data. They do

fit into the mold of a generalized linear model,

but that is not too important when fitting by MLE

anyway. As an alternative, the same model but

with the diagonal effects as multiplicative factors

was fit. The multiplicative diagonal model can be

written:

EY=X[,1 : 6]¯[1 : 6] ¤¯[7]X[,7] ¤¯[8]X[,8],
which means that the first six columns of X are
multiplied by the first six parameters, which in-

cludes the constant term, and then the last two di-

agonal parameters are factors raised to the power

of the last two columns of X. These are now
the diagonal dummies, which are 0, 1, or ¡1.
Thus the same diagonals are higher and the same

lower, but now proportionally instead of by an

additive constant. It turns out that this model

actually fits better, with a negative loglikelihood

of 625, compared to 630 for the generalized lin-

ear model. This solves the robustness problems

as well. The impacts are in Table 11, the GDFs

in Table 12, and the impacts are graphed in

Figure 4.

Diagonal 11 still has more impact than the oth-

ers, but this barely exceeds 2.0 at the maximum.

The sum of the GDFs is 8.67. There are eight

parameters for the cell means but two more for

the gamma-p. It has been a question whether or

not to count those two in determining the number

of parameter used in the fitting. The answer to

that from the GDF analysis is basically to count

each of those as 1/3 in this case. Here the robust

analysis has uncovered a previously unobserved

problem with the generalized linear model, and

lead to an improvement.
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Figure 4. Impact of gamma-p multiplicative model

Table 13. Incremental triangle (Taylor and Ashe 1983)

Lag 0 L1 L2 L3 L4 L5 L6 L7 L8 L9

357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046
290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405
310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286
443,160 693,190 991,983 769,488 504,851 470,639
396,132 937,085 847,498 805,037 705,960
440,832 847,631 1,131,398 1,063,269
359,480 1,061,648 1,443,370
376,686 986,608
344,014

6. A multiplicative fixed-effects
example

A multiplicative fixed-effects model is one

where the cell means are products of fixed factors

from rows, columns, and perhaps diagonals. The

most well-known is the ODP model discussed in

Section 4, where there is a factor for each row, in-

terpreted as estimated ultimate, a factor for each

column, interpreted as fraction of ultimate for

that column, and the variance of each cell is a

fixed factor times its mean. This model if esti-

mated by MLE gives the same reserve estimates

as the chain ladder and so the same impacts for

each cell, but the GDFs are different, due to the

different fitted values.

The triangle for this example comes from Tay-

lor and Ashe (hereafter TA; 1983) and is shown

in Table 13. The CL = ODP impacts are in Ta-

ble 14 and are graphed in Figure 5.

Because the development factors are higher,

the impacts are higher than in the previous ex-

ample. Even though it is a smaller triangle, 14

points have impacts with absolute values greater
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Figure 5. Impact of CL = ODP on TA

Table 14. Impact of CL = ODP on TA

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

AY0 ¡3:11 ¡1:62 ¡1:01 ¡0:45 0.01 0.51 1.16 2.27 4.54 12.59
AY1 ¡2:87 ¡1:38 ¡0:77 ¡0:20 0.25 0.76 1.40 2.51 4.78
AY2 ¡2:43 ¡0:93 ¡0:33 0.24 0.69 1.20 1.85 2.95
AY3 ¡2:21 ¡0:72 ¡0:11 0.45 0.91 1.41 2.06
AY4 ¡1:95 ¡0:46 0.15 0.71 1.17 1.67
AY5 ¡1:67 ¡0:18 0.43 0.99 1.45
AY6 ¡1:25 0.25 0.85 1.42
AY7 ¡0:14 1.35 1.96
AY8 2.07 3.57
AY9 13.45

Table 15. GDFs of CL on TA

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

AY0 1.0 0.108 0.110 0.115 0.120 0.153 0.208 0.272 0.423 1.0
AY1 1.0 0.106 0.121 0.144 0.182 0.211 0.258 0.365 0.577
AY2 1.0 0.087 0.126 0.147 0.175 0.222 0.259 0.363
AY3 1.0 0.093 0.138 0.146 0.204 0.224 0.275
AY4 1.0 0.133 0.111 0.141 0.157 0.189
AY5 1.0 0.119 0.130 0.145 0.162
AY6 1.0 0.132 0.126 0.161
AY7 1.0 0.108 0.139
AY8 1.0 0.113
AY9 1.0
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Table 16. GDFs of ODP on TA

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

AY0 0.154 0.261 0.273 0.295 0.229 0.224 0.253 0.301 0.459 1.0
AY1 0.186 0.295 0.308 0.333 0.276 0.281 0.325 0.400 0.612
AY2 0.187 0.300 0.312 0.338 0.278 0.282 0.324 0.398
AY3 0.188 0.304 0.317 0.344 0.280 0.282 0.323
AY4 0.184 0.309 0.322 0.348 0.275 0.271
AY5 0.197 0.331 0.346 0.374 0.293
AY6 0.221 0.375 0.391 0.423
AY7 0.284 0.498 0.519
AY8 0.370 0.747
AY9 1.0

Table 17. Impact of 6-parameter gamma- 1
2 on TA

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

AY0 0.65 ¡0:82 ¡1:08 ¡2:07 ¡0:87 0.97 ¡0:32 0.33 0.53 12.06
AY1 1.45 ¡0:02 0.68 0.60 ¡0:25 1.90 1.40 1.61 1.57
AY2 1.64 0.75 ¡0:19 0.84 0.90 1.93 1.66 1.36
AY3 1.26 0.43 ¡0:21 0.97 ¡0:36 1.70 1.71
AY4 1.62 0.08 0.67 0.37 0.63 1.35
AY5 1.19 ¡0:11 0.57 0.51 1.17
AY6 2.56 1.19 0.91 1.13
AY7 2.18 1.27 1.49
AY8 1.72 0.92
AY9 1.59

Table 18. GDFs of 6-parameter gamma- 1
2 on TA

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

AY0 0.046 0.152 0.211 0.288 0.150 0.017 0.248 0.095 0.082 0.938
AY1 0.044 0.031 0.057 0.155 0.014 0.115 0.018 0.051 0.043
AY2 0.055 0.041 0.134 0.027 0.102 0.114 0.046 0.049
AY3 0.045 0.078 0.062 0.028 0.181 0.052 0.064
AY4 0.078 0.057 0.026 0.119 0.011 0.037
AY5 0.037 0.147 0.083 0.032 0.026
AY6 0.254 0.200 0.095 0.100
AY7 0.111 0.527 0.250
AY8 0.047 0.031
AY9 0.047

than 2, four are greater than 4, and two are great-

er than 12. The CL GDFs are in Table 15. These

sum to 9, excluding the first column, and are

fairly high on the right where there are few ob-

servations per column. The ODP GDFs are in

Table 16. These sum to 19, and are fairly high

near the upper right and lower left corners.

The GDFs can be used to allocate the total

degrees of freedom of the residuals of n¡ p. The
n is allocated equally to each observation, and the

p can be set to the GDF of each observation. This

would give a residual degree of freedom to each

observation which could be used in calculating a

standardized residual that takes into account how

the degrees of freedom vary among observations.

Venter (2007a) looked at reducing the number

of parameters in this model by setting parameters

equal if they are not significantly different, and

using trends, such as linear trends, between pa-

rameters. Also, diagonal effects were introduced.

The result was a model where each cell mean is a

product of its row, column, and diagonal factors.

There are six parameters overall. For the rows

there are three parameters, for high, medium, and
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Figure 6. Impact of gamma- 1
2 on TA

low accident years. Accident year 0 is low, year

7 is high, year 6 is the average of the medium

and high levels, and all other years are medium.

There are two column factors: high and low. Lags

1, 2, and 3 are high, lag 4 is an average of high

and low, lag 0 and lags 5 to 8 are low, and lag

9 is 1 minus the sum of the other lags. Finally

there is one diagonal parameter c. Diagonals 4

and 6 have factors 1+ c, lag 7 has factor 1¡ c,
and all the other diagonals have factor 1.

With just six parameters this model actually

provides a better fit to the data than the 19 param-

eter model. The combining of parameters does

not degrade the fit much, and adding diagonal ef-

fects improves the fit. An improved fit over that

in Venter (2007a) was found by using a gamma-

p distribution with p = 1
2
so the variance of each

cell is proportional to the square root of its mean.

The impacts and GDFs of this model are shown

in Tables 17 and 18, and the impacts are graphed

in Figure 6, this time along accident years.

The impacts are now all quite well contained

except for one point–the last point in AY0. Pos-

sibly because AY0 gets its own parameter, lag 9

influences the level of the other lags’ parameters,

and this is a small point with a small variance,

this model only slightly reduces the high level

of impact that point has in ODP. The same thing

can be seen in the GDFs as well, where this point

has slightly less than a whole GDF. The points

on AY7 and the modeled diagonals also have rel-

atively high GDFs, as do some small cells. The

total of the GDFs is 6.14. There are six param-

eters affecting the means, plus one for the vari-

ance of the gamma. That one can affect the fit

slightly, so counting it as 1/7th of a parameter

seems reasonable.

In an attempt to solve the problem of the

upper-right point, an altered model was fit: lag 9

gets half of the paid in the low years. This can

be considered a trend to 0 for lag 10. Making the

lags sum to 1.0 now eliminates a parameter, so

there are five. The negative loglikelihood (NLL)

is slightly worse, at 722.40 vs. 722.36, but that is

worth saving a parameter. The robustness is now

much better, with only two impacts greater than

2.0, the largest being 2.35.

7. Paid and incurred example
Venter (2008), following Quarg and Mack

(2004), builds a model for simultaneously es-
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Table 19. Quarg-Mack paid increments

L0 L1 L2 L3 L4 L5 L6

AY0 576 1228 166 54 50 28 29
AY1 866 1082 214 70 52 64
AY2 1412 2346 494 164 78
AY3 2286 3006 432 126
AY4 1868 1910 870
AY5 1442 2568
AY6 2044

Table 20. Quarg-Mack unpaid

L0 L1 L2 L3 L4 L5 L6

AY0 402 300 164 120 100 80 43
AY1 978 604 304 248 224 106
AY2 1492 596 446 184 150
AY3 1216 666 346 292
AY4 944 1104 204
AY5 1200 396
AY6 2978

Table 21. Average reserve impact of paid

L0 L1 L2 L3 L4 L5 L6

A0 ¡0:68 ¡:02 0.32 0.86 2.32 5.95 13.99
A1 ¡0:45 0.20 0.54 1.08 2.54 6.17
A2 ¡0:41 0.24 0.58 1.12 2.59
A3 ¡0:36 0.30 0.64 1.18
A4 ¡0:32 0.33 0.67
A5 ¡0:20 0.46
A6 1.37

timating paid and incurred development, where

each influences the other. The paid losses are part

of the incurred losses, so the separate effects are

from the paid and unpaid triangles, shown in Ta-

bles 19 and 20.

First, the impacts on the reserve (7059.47) from

the average of the paid and incurred chain ladder

reserves are calculated, where the paids at the last

lag are increased by the incurred-to-paid ratio at

that lag. Tables 21 and 22 show the impacts of

the paid and unpaid triangles, and Tables 23 and

24 show the GDFs.

The impacts of the lower left are not great,

mostly because the development factors are fairly

low in this example. The impacts on the upper

right of both paid and unpaid losses are quite

high, however. The unpaid losses other than the

last diagonal have a negative impact, because

Table 22. Average reserve impact unpaid

L0 L1 L2 L3 L4 L5 L6

A0 ¡0:29 ¡0:15 ¡0:26 ¡0:72 ¡1:76 ¡4:01 14.99
A1 ¡0:29 ¡0:15 ¡0:26 ¡0:72 ¡1:76 3.57
A2 ¡0:29 ¡0:15 ¡0:26 ¡0:72 1.77
A3 ¡0:29 ¡0:15 ¡0:26 1.08
A4 ¡0:29 ¡0:15 0.82
A5 ¡0:29 0.68
A6 0.84

Table 23. Average reserve GDF of paid

0 L1 L2 L3 L4 L5 L6

A0 1 0.068 0.109 0.140 0.233 0.476 1
A1 1 0.102 0.117 0.153 0.257 0.524
A2 1 0.167 0.227 0.301 0.509
A3 1 0.271 0.319 0.406
A4 1 0.221 0.228
A5 1 0.171
A6 1

Table 24. Average reserve GDF unpaid

0 L1 L2 L3 L4 L5 L6

A0 1 0.067 0.106 0.139 0.232 0.464 1
A1 1 0.126 0.129 0.160 0.269 0.536
A2 1 0.198 0.219 0.306 0.499
A3 1 0.239 0.300 0.395
A4 1 0.192 0.246
A5 1 0.180
A6 1

they lower subsequent incurred development fac-

tors, but do not have factors applied to them. The

GDFs are similar to CL in general.

The model in Venter (2008) used generalized

regression for both the paid and unpaid triangles,

where regressors could be from either the paid

and unpaid triangles or from the cumulative paid

and incurred triangles. Except for the first couple

of columns, the previous unpaid losses provided

reasonable explanations of both the current paid

increment and the current remaining unpaid. The

paid and unpaid at lags 3 and on were just mul-

tiples of the previous unpaid, with a single fac-

tor for each. That is, expected paids were 33.1%,

and unpaids 72.3%, of the previous unpaid. Since

these sum to more than 1, there is a slight upward

drift in the incurred. The lag 2 expected paid was

68.5% of the lag 1 unpaid. The best fit to the lag
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Table 25. Weibull model impact of paid

L0 L1 L2 L3 L4 L5 L6

A0 0.09 ¡0:18 ¡1:58 4.38 0.38 7.67 5.45
A1 0.04 0.26 0.59 1.90 2.75 2.32
A2 ¡:37 0.33 0.42 0.57 ¡0:28
A3 ¡:13 0.17 0.67 1.26
A4 ¡:02 0.20 0.31
A5 ¡:94 0.70
A6 1.25

Table 26. Weibull model impact unpaid

L0 L1 L2 L3 L4 L5 L6

A0 0.06 0.67 ¡1:02 ¡1:45 ¡1:82 0.51 4.14
A1 ¡0:17 ¡0:44 ¡1:80 ¡0:73 0.52 2.56
A2 ¡0:20 ¡0:16 0.47 ¡1:17 3.63
A3 ¡0:09 ¡0:32 ¡1:17 2.51
A4 ¡0:10 ¡0:34 1.89
A5 ¡0:32 1.47
A6 0.65

Table 27. Weibull model GDF of paid

0 L1 L2 L3 L4 L5 L6

A0 1 0.938 0.725 0.235 0.268 0.125 .143
A1 1 0.451 0.057 0.052 0.066 0.065
A2 1 0.192 0.347 0.377 0.290
A3 1 0.137 0.250 0.145
A4 1 0.094 0.277
A5 1 0.269
A6 1

Table 28. Weibull model GDF unpaid

0 L1 L2 L3 L4 L5 L6

A0 1 0.824 0.172 ¡0:058 0.015 .072 .054
A1 1 0.357 0.700 ¡0:044 0.115 .052
A2 1 0.152 0.465 ¡0:173 0.113
A3 1 0.050 0.136 0.123
A4 1 0.507 0.089
A5 1 0.687
A6 1

2 expected unpaid was 9.1% of the lag 1 cumu-

lative paid. For lag 1 paid, 78.1% of the lag 0

incurred was a reasonable fit. Lag 1 unpaid was

more complicated, with the best fit being a re-

gression, with constant, on lag 0 and lag 1 paids.

There were also diagonal effects in both mod-

els. The residuals were best fit with a Weibull

distribution. Tables 25—28 show the fits.

The two highest impacts for the average of

paid and incurred are 14 and 15. For the Weibull

they are 7.7 and 5.5. The average has two other

points with impacts greater than 5, whereas the

Weibull has none. Below 5 the impacts are rough-

ly comparable. Since the Weibull has variance

proportional to the mean squared, small obser-

vations have lower variance, and so a stronger

pull on the model and higher impacts. In total,

excluding the first column, the GDFs sum to 9.9,

but including the diagonals (see Venter 2008 for

details) there are 12 parameters plus two Weibull

shape parameters. The form of the model appar-

ently does not allow the parameters to be fully

expressed. The Weibull model still has more high

impacts than would be desirable, but it is a clear

improvement over the average of the paid and

incurred. The reserve is quite a bit lower for the

better fitting Weibull model as well: 6255 vs.

7059.

8. Conclusion
Robust analysis has been introduced as an

additional testing method for loss development

models. It is able to identify points that have a

large influence on the reserve, and so whose ran-

dom components would also have a large influ-

ence. Through three examples, customized mod-

els were found to be more robust than standard

models like CL and ODP, and in two of the ex-

amples, even better models were found as a re-

sponse to the robust analysis.
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