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AbstrAct

This paper presents a Bayesian technique for adjusting a mixed 

exponential severity distribution in response to partially-credible 

observed claim severities. It presents two applications: pricing 

excess of loss (XOL) reinsurance layers and computing increased 

limits factors (ILFs). The paper’s Bayesian model uses a Dirichlet 

distribution over the mixed exponential’s initial mixture weights. 

The posterior distribution, produced by conditionalizing on the 

observed claim severities, is computed using a Markov chain 

Monte Carlo method.
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1. Introduction

Actuaries find per-claim loss severity distribu-
tions useful for several purposes, including comput-
ing increased limit factors (ILFs), pricing excess of 
loss (XOL) reinsurance contracts, and stochastic risk 
modeling. This paper presents a method for comput-
ing a severity distribution in the mixed exponential 
family.

When claim data is abundant, a severity distribution 
can be easily computed using empirical methods, non-
parametric statistics, or maximum likelihood methods 
(Klugman 2009). When no data is available, actuaries 
use a default distribution, perhaps from a statistical 
agency or from a different book of business. Our tech-
nique is designed to compute a severity distribution 
for the awkward middle ground where data is par-
tially credible: some claims have been observed, but 
the default distribution is still considered informative.

Intuitively, the claim severity distribution should 
morph from the default distribution into some fitted 
distribution as more and more claims are observed. 
This paper uses Bayesian statistics to achieve this 
“morphing” in a principled and mathematically cor-
rect way.

Here are some advantages of the technique pre-
sented in this paper:

1. The default severity distribution is mixed expo-
nential and thus is compatible with many severity 
distributions supplied by Insurance Services Office 
(ISO). Other mixed distributions should work with 
minor modifications.

2. In the limiting condition where there are no claims, 
the method produces the default distribution— 
having too few claims is never an issue.

3. In the other limiting condition (abundant observed 
claims), the method is equivalent to fitting a mixed 
exponential via maximum likelihood.

4. The uncertainty about the default severity distribu-
tion is supplied by a single parameter, which can be 
estimated in a straightforward way.

5. Truncated and censored data (as caused by limits 
and deductibles) are handled correctly. Adjust-

ments such as the Kaplan-Meier estimator are not 
required.

6. The posterior distribution is computed using stan-
dard Bayesian updating on observed claim severi-
ties. This is usually considered the most principled 
way of analyzing partially-credible data.

7. Trend can be a chicken-and-egg problem: claim 
severity depends on trend, but the estimation of 
trend depends on the credibility of observed claim 
severities. Here trend and severity are estimated 
simultaneously.

8. The technique quantifies uncertainty about the 
severity distribution. In other words, it analyzes 
“parameter risk” and not just “process risk.”

9. The resulting posterior predictive severity distri-
bution is easy to work with analytically because it 
is a mixed exponential with the same means as the 
default severity distribution.

The numerical results of this technique can be com-
puted quickly using the Markov chain Monte Carlo 
(MCMC) method. Below we will use this method 
on some sample data to compute the posterior dis-
tribution. Later the paper discusses two possible 
applications: pricing excess of loss reinsurance and 
generating ILFs.

2. Required input data

We need four pieces of input data to use the tech-
nique to compute a posterior severity distribution:

1. the observed claim data: a per-claim list of sever-
ity, age, deductible, and whether or not each claim 
was capped by a policy limit,

2. the means and weights of the default mixed expo-
nential severity distribution,

3. the prior severity uncertainty, as represented by 
Dirichlet parameter α0, and

4. the prior trend mean and standard deviation.

The first, claim data, is straightforward. The other 
inputs are more subjective. The remainder of this sec-
tion discusses each of these and gives some examples.
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2.1. Claim data

Table 1 shows the format of the necessary claim data. 
The Amount column contains the total claim size (this 
could include or exclude loss expense, depending on 
what’s being modeled). In this example, we are using 
closed claims only, so no development is necessary. If 
development is required, claims should be developed 
prior to the application of this method.

The Age column is used for trending and indicates 
years before the desired trend endpoint. Fractional ages 
are allowed. The capped column indicates whether 
the claim was capped by policy limits. The deductible 
column indicates the deductible that the claim was sub-
jected to. If the deductibles were non-zero, the indi-
cated amount would be the loss net of the deductible.

2.2. Mixed exponential

The second piece of data required by this method is 
the mixed exponential severity distribution that would 
be used if no claim data were available. Here we use 
a Bayesian framework, where it is called the prior 
predictive distribution. Table 2 shows the means and 
weights of an example mixed exponential distribution. 
Common sources for this data are statistical organi-
zations such as ISO or analysis of a similar book of 
business. For weights aj and means µj, the probability 
density function of a mixed exponential is
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j
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This paper focuses on the mixed exponential dis-
tribution because that is the prior severity distribution 
most familiar to the author. However, this paper’s tech-
niques should apply to mixtures of other distributions 
(e.g., an Erlang mixture as developed by Lee and Lin 
2010) with modifications. The main computational 
requirement is that the distribution’s density and cumu-
lative distribution function should be calculable.

2.3. Dirichlet uncertainty

Although the means and weights of the mixed expo-
nential distribution determine the severity distribution, 
we also need to know how certain we are that these 
parameters are accurate. Are they just a rough estimate 
that may be far off, or are we sure that the true distri-
bution is very similar? The more confidence we have 
in our a priori distribution, the longer we will stick 
with it as more claims are observed. This uncertainty 
can be summarized as a0, the sum of the Dirichlet 
parameters. Here we picked a value of 20. See Sec-
tion 3.3 for guidance on choosing this parameter.

2.4. Trend

Finally, we need the prior trend rate distribution. 
The trend is applied to each ground-up claim by age. 
For instance, if the trend rate is 7%, then claims of 
age 2.5 are expected to be 1.07-2.5 times as severe as 
claims of age 0.

We assume trend is constant over time, and the 
parameter uncertainty is modeled as a gamma distri-
bution, shifted so that the zero point indicates -100% 
trend. Choosing a mean and standard deviation suf-
fices to determine the gamma parameters via method 

Table 1. Observed claim data

Amount Age Deductible Capped?

33,750 3 0 No

1,000,000 1 0 Yes

22,707 1 0 No

54,135 1 0 No

174,524 3 0 No

19,661 2 0 No

140,735 2 0 No

1,000,000 3 0 Yes

1,127 1 0 No

316,483 2 0 No

Table 2. Prior means and weights

Weights (%) Means

30.0 50,000

25.0 100,000

25.0 500,00

10.0 1,500,000

7.0 5,000,000

3.0 20,000,000

Avg 1,265,000
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and Dirichlet distributions. Sometimes aj, k, and q 
are called hyperparameters because they generate 
parameters (wb and r) used in other distributions.

3.1. The categorical distribution

Actuaries know and use the categorical distribution 
but perhaps do not bother naming it. This distribution 
simply chooses a number from 1 to m with specified 
probabilities. For instance, if y ~ Categorical (.5, .3, .2) 
then y = 1 with probability 0.5, y = 2 with probability 
0.3, and y = 3 otherwise. Equations (1) and (2) imply 
that xi is a capped and trended mixed exponential dis-
tribution, conditional on weights w1, . . . , wm.

3.2. The Dirichlet distribution

The exponential, categorical, and gamma distribu-
tions are familiar to actuaries, the Dirichlet perhaps 
less so. The Dirichlet distribution is the multidimen-
sional analogue of the beta distribution. Just as the 
beta distribution can be used to express uncertainty 
about two numbers that must sum to 1, the Dirichlet 
can express uncertainty about m positive numbers 
that must sum to 1. And just as the beta distribution 
can parameterize a Bernoulli distribution, the Dirichlet  
is natural for parameterizing a categorical distribution. 
This property makes it popular in Bayesian analysis 
(see Mildenhall 2006, for an example of the Dirichlet 
applied in an insurance context).

Here are some useful properties of the Dirichlet  
distribution (Wikipedia 2010). If w1, . . . , wm ~ 
Dirichlet (a1, . . . , am) and a0 = Sm

j=1 aj, then

∑ =
=

1. (5)
1
wjj

m

[ ] = α
α

. (6)
0

E wj

j

[ ] [ ] [ ]( )( )
( ) ( )

= α α − α
α α +

=
−

α +
Var

1

1

1
. (7)0

0
2

0 0

w
E w E w

j

j j j j

[ ] [ ] [ ]
( )

= −α α
α α +

=
−

α +
≠

Cov ,
1 1

for . (8)
0
2

0 0

w w
E w E w

j k

j k

j k j k

of moments. These constants can be based on a sta-
tistical agency, another book of business, economic 
indicators, or actuarial judgment. In this paper, the 
example trend mean is 0.05 and the trend standard 
deviation is 0.01.

3. Bayesian model

The expressions below formally describe the 
assumed Bayesian model. See Hoff (2009) for a basic 
introduction to Bayesian methods.
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xi, bi, wb, and r are all real random variables, while 
µb, m, ti, di, li, aj, k, and q are real numbers. Index 
i ∈ {1, . . . , n} ranges over the number of observed 
claims n; xi are the claims’ severities, li are their limits, 
and di are their deductibles. m is the number of mixed 
exponential buckets; bi ∈ {1, . . . , m} represents the 
bucket that produced the ith claim, and µb is the mean 
of each bucket b. Functions gdi

 adjust the weights for 
each claim’s deductible di; they are defined by Equa-
tion (24) in Section 5. Finally, ti is the age of the ith 
claim and r is the trend factor. Random variables are 
independent unless the dependence is expressed in 
the equations above.

Intuitively, Equations (1) and (2) express the pro-
cess risk and (3) and (4) express the parameter risk. 
They basically say that each claim is independent and 
is produced by a (possibly capped) mixed exponen-
tial distribution. Moreover, we know for certain the 
exponential means µ1, . . . , µm. However, the trend 
rate and mixed exponential weights are uncertain. 
All claims share the same trend factor r and mixed 
exponential weights w1, . . . , wm but these are them-
selves random variables, generated by the gamma 
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about $50,000 of uncertainty around the expected 
value of the actual ground-up mixed exponential 
claim distribution capped at $1M, where uncertainty 
is measured by the standard deviation. Then, by set-

ting h(X) = min(X, 1Mil), ( )= µ −
−

µ1 ,
1

h ej j

Mil

j  and s = 
$50,000, the above result can be used to calculate a0.

In our sample input data, we assumed that the stan-
dard deviation of expected loss in the first million 
layer was 65770. Applying (12), a0 = 20.

3.3.1. other metrics
Although (12) gives us a quick way to estimate a0 

from prior uncertainty about the standard deviation of 
expected loss, the actuary’s prior may be couched in 
different terms. For instance, he or she may instead 
have an intuition about a 90% confidence interval 
around expected loss, or even a 90% confidence inter-
val around the 95% percentile of loss.

A simple simulation can be used to infer a0 from 
this type of information:

1. Using a candidate value of α0, simulate 500 draws 
from the Dirichlet distribution.

2. For each of the draws in (1), simulate 1000 claims, 
applying deductibles or limits as desired.

3. For each draw in (1), compute the statistic (e.g., 
expected loss) on the 1000 claims generated in (2).

4. Compute the summary statistic (e.g., standard 
deviation) on the 500 statistics computed in (3).

Modern computers are fast enough that the above 
procedure may just take a split second per a0 value. 
It is thus practical to evaluate a range of values and 
choose one based on an arbitrary metric.

3.4. Matching the prior predictive 
severity distribution

In the introduction, we mentioned that the model 
matches the prior predictive mixed exponential sever-
ity distribution before any claims are observed. This 
is demonstrated below, by showing that our model’s 
CDF is equal to the CDF of the desired default mixed 
exponential. For simplicity we will assume here that 
there are no limits or deductibles—if two distributions 

Because we are given the initial default weights 
aj = E[wj], the choice of a0 will uniquely determine 
a1, . . . , am by (6). As in the beta distribution, the 
larger the sum of the parameters a0, the more certain 
we are of the true weights.

3.3. Choosing a0

In the input data section, the parameter a0 was used 
to summarize our uncertainty around the mixed expo-
nential prior distribution. Sometimes this parameter 
is thought of intuitively as the number of claim obser-
vations equivalent to the information encapsulated by 
our Bayesian prior. In this case, however, that intu-
ition is of limited help in selecting a particular value. 
Instead we will use this result:

Suppose that X is a mixed exponential distri-
bution (with fixed means) depending on weights 
w1, . . . , wm, and that h(x) is a real function. Define 

hj = E[h(x)|b = j] and aj
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Above, (9) follows from (1) and (2), (10) from the 
variance sum formula, and (11) from (7) and (8).

We can now use (12) to choose a value for a0. For 
instance, suppose the actuary feels that the there is 
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for means µj and weights aj. The loss net of deduct-
ible d is distributed as Y = (X - d) |{X >= d}. Its den-
sity function is

f x
f x d
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we adjust the mixed exponential weights to reflect 
the deductible d. From this definition we can make 
two observations:

1. If there is no deductible, then g w
w
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= wj. Thus, we can simply ignore the g functions in 
this case.

2. The larger the deductible d, the more the weights 
of the mixed exponential are skewed to the larger 

means by the e
d

j
−

µ  term. This is intuitive because 
exponentials with larger means tend to generate 
more severe claims.

are the same gross of limits and deductibles, they will 
also be the same net of those policy terms.
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Steps (13) to (17) follow from simple probability 
and the model specification. Step (18) holds because 
our default distribution is taken to cover the current 
time, so ti = 0. Finally, Sm

j=1 aj = 1 implies (19), the CDF 
of our default mixed exponential distribution.

3.5. Deductibles

This subsection will describe how this method 
accounts for deductibles and explain how the g func-
tions mentioned in Section 3 are derived. The main 
result will be that a mixed exponential ground-up 
severity distribution implies that losses net of any 
deductible level are also mixed exponential with the 
same means.

Suppose a claim has a mixed exponential ground-
up severity distribution represented by random vari-
able X. Then its probability density function is

f x
a
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Then p(x) can be expressed as the weighted mix-
ture of various other mixtures of exponentials with 
means 100 and 300, such as

p x
e e

e e

x x

x x

( ) = +

+ +

− −

− −
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However, it is impossible to express p(x) as a (pos-
itive) mixture of exponentials with means other than 
100 or 300. Thus, the method used in this paper to add 
uncertainty to a mixed exponential’s weights cannot 
be used to add uncertainty to its means instead.

4. Computation and results

The posterior distribution of the probabilistic model 
specified in Section 3 is probably not analytically sol-
uble because of the interaction of the Dirichlet and 
gamma distributions. Interestingly, the model does per-
mit an analytic solution if we omit trend uncertainty, 
but the number of terms in the analytic solution is 
exponential in the number of claims and thus is com-
putationally intractable.

However, a Markov chain Monte Carlo (MCMC) 
technique can be used to quickly compute the poste-
rior distribution. We recommend Just Another Gibbs 
Sampler (JAGS), which can create an MCMC algo-
rithm given a succinct description of a Bayesian model 
(Plummer 2003). It is also cross-platform, open source, 
actively maintained, and easily integrated into R code. 
Here is JAGS code that expresses the model specified 
in Equations (1)–(4).

model {

  weights ~ ddirch(alpha)

  trend.factor ~ dgamma(trend.shape, trend.rate)

  for (i in 1:n) {

    bucket[i] ~ dcat(weights)

    is.capped[i] ~ dinterval(claim[i], limit[i])

    claim[i] ~ dexp(1 / (means[bucket[i]] / trend.factor^ages[i]))

  }

}

This method correctly adjusts each claim’s sever-
ity distribution to account for its deductible. How-
ever, it suffers from two limitations when claims 
are subject to different deductible levels. First, it 
assumes that claims subject to different deduct-
ible levels are generated from the same underlying 
ground-up distribution. In reality, policyholders’ 
perceptions of their risk influence their deduct-
ible choices. Second, it only takes into account 
per-claim severity data. Frequency data along with 
exposure information per deductible level (e.g., a 
deductible profile) may yield additional informa-
tion about ground-up severity.

3.6. Why not vary the means?

It may seem more practical to allow the means of 
the exponential distributions to vary with observed 
claims. The reason this paper only adjusts the 
weights is that this allows the correct default dis-
tribution to be used when there are no claims. As 
shown in the previous section, the prior predic-
tive severity distribution will correctly equal the 
default distribution as long as the expected weights 
are equal to the desired default weights. However, 
there is no similar way to do this by varying the 
means.

For example, suppose desired claim severity is 
an equally-weighted mixed exponential of means 
100 and 300:

p x
e ex x

( ) = +
− −

0.5
100

0.5
300

.
100 300
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3. The severity uncertainty from Section 3 repre-
sented by α0 = 20.

4. The trend mean and standard deviation, chosen in 
Section 2.4 to be 5% and 1%, respectively.

A few results of the MCMC simulation, samples 
from the posterior distribution of the bucket weights 
wi, are shown in Table 3. Table 4 summarizes all the 
results.

The required time of the MCMC simulation will 
increase linearly with the number of claims n, the 
number of exponential means m, and the number of 
samples. In this example, 80,000 samples were pro-
duced in total. The runtime was quick on a Intel i5 CPU 
because there were only 10 claims being analyzed. In 
practice, the runtime of this model does not seem to be 
a large practical problem—if the number of claims is 
large enough that the model runs slowly, the number of 
claims is also large enough that the data has full cred-

Above, is.capped is a boolean vector that indi-
cates whether each claim is capped at policy limits. 
Complete documented R code, without the ability to 
handle adjustable deductible levels, is available in an 
easy-to-use format from FAViR (2012). Because the 
example data set was from a casualty line and had no 
deductible, the above omits deductible handling code 
for speed. Appendix A contains the full JAGS model.

Appendix A also discusses code to implement the 
same model written in Stan (Stan Development Team 
2013), an alternative to JAGS.

4.1. Example MCMC results

The model was run based on the input data in Sec-
tion 2, i.e.:

1. The observed 10 claims xi as shown in Table 1.

2. The default mixed exponential means µj and weights 
aj as shown in Table 2.

Table 3. First 10 samples from MCMC process

Sample # w1 w2 w3 w4 w5 w6 Trend Factor

1 0.196 0.356 0.214 0.086 0.145 0.002 1.062

2 0.247 0.331 0.218 0.062 0.080 0.062 1.052

3 0.324 0.147 0.160 0.199 0.034 0.136 1.049

4 0.194 0.163 0.421 0.137 0.070 0.015 1.065

5 0.143 0.411 0.169 0.040 0.214 0.023 1.050

6 0.486 0.305 0.118 0.073 0.009 0.009 1.049

7 0.280 0.204 0.206 0.174 0.016 0.120 1.061

8 0.287 0.195 0.435 0.060 0.003 0.020 1.050

9 0.235 0.164 0.389 0.152 0.044 0.016 1.037

10 0.347 0.161 0.189 0.230 0.061 0.011 1.033

Table 4. Prior vs. posterior exponential weights

Prior to Data Posterior to Data

Weight (%) Mean Weight (%) Error (%) Mean

30.0 50,000 30.9 0.04 50,000

25.0 100,000 25.6 0.03 100,000

25.0 500,000 23.3 0.03 500,000

10.0 1,500,000 9.7 0.02 1,500,000

7.0 5,000,000 7.2 0.02 5,000,000

3.0 20,000,000 3.2 0.01 20,000,000

Avg 1,265,000 Avg 1,303,736
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with a0 equal to 5 and 80. As a0 increases, the ini-
tial uncertainty decreases and the posterior weights 
approach the prior weights. The autocorrelation-
adjusted error for every reported weight percentage 
was less than 0.1%.

5. Applications

The output of this method is a mixed exponential 
posterior severity distribution and can be used like 
any other severity distribution. For instance, it can 
help with pricing excess of loss reinsurance layers, 
for producing ILFs, or for stochastic risk simula-
tion. The first two applications will be illustrated 
in this section.

5.1. Reinsurance XOL pricing

Consider a company that only writes $1M lim-
its and is evaluating the purchase of an excess of 
loss reinsurance layer. Several options are avail-
able: $500K xs $500K, $400K xs $600K, $350K xs 
$650K, $250K xs $750K, and $200K xs $800K. One 
way to price these layers that is popular with reinsur-
ers is to compute the percentage loss in each of these 
layers relative to direct loss.

This ceded loss percentage can be computed by 
iterating through the sampled weights as in Table 3 
and integrating the mixed exponential distribution 
implied by each set. The results in our example are 
shown in Figure 1. Each boxplot shows the 10th, 
25th, 50th, 75th, and 90th percentiles of the corre-
sponding distribution. Note that these boxplots rep-
resent uncertainty about the distribution of claim 
severities (“parameter risk”).

The boxplots do not show the uncertainty caused 
by whether individual claims fall into the layers 
(“process risk”), which would depend on the claim 
frequency distribution. A high anticipated volume of 
claims would diversify away the process risk, but not 
the uncertainty shown by the boxplots.

The ceded losses per layer could then be computed 
by multiplying the calculated percentage loss in each 
layer by the direct loss ratio and dollars of direct pre-

ibility and a (faster) maximum likelihood technique, 
as in Keatinge (1999), would reach the same answer.

Table 4 compares the prior and posterior marginal 
expected weights. The error column is an estimate 
of the standard error in the expected value of the 
MCMC method. This can be decreased through run-
ning more simulations. Because the error is estimated 
using time-series methods, it takes autocorrelation 
into account. The other exhibits assume this error 
is acceptably small and can be ignored. The coda 
package of R is compatible with JAGS and includes 
more tools for MCMC error-testing and diagnostics.

Because data from only 10 claims were available, the 
expected prior and posterior weights are very similar. 
However, the weights for the $5M and $20M buckets 
have increased. In general, each claim will nudge up the 
weights of the high likelihood means. The probability 
of a sample severity from an exponential distribution 

being capped at $1M, e
Mil1−
µ , increases with the distribu-

tion’s mean µ. Thus, a claim getting capped at policy 
limits is evidence in favor of the larger exponential 
means; conversely, a small claim is evidence in favor of 
the smaller means. Two of our 10 claims were capped, 
so our larger means ($5M and $20M) have gotten more 
posterior weight. The posterior expected trend (not 
shown in the table) is still 5.0%; this is also not surpris-
ing because only a few claims per year were available.

4.2. Sensitivity testing

The results in the previous section depended on 
the selection of a0 = 20 in Section 3. Because a0 is 
proportional to s-2 by Equation (12), a doubling of 
uncertainty is associated with a fourfold decrease 
in a0. Table 5 shows the results of the simulation 

Table 5. Results by a0 level

Weight (%) by a0 value

Mean Prior 80 20 5

50,000 30.0 30.3 31.0 31.7

100,000 25.0 25.2 25.6 27.2

500,000 25.0 24.5 23.3 20.8

1,500,000 10.0 9.9 9.6 9.6

5,000,000 7.0 7.1 7.2 7.5

20,000,000 3.0 3.0 3.2 3.2
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mium. This ceded loss could then be grossed up for 
reinsurer expenses and profit load to determine the 
price of the reinsurance contract.

5.2. ILFs

Another application of a claim severity distribu-
tion is calculating increased limits factors. Suppose 
our company, which currently only writes $1M lim-
its, wants to write policies with a variety of other 
limits. Just as in the previous section, for each sam-
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Figure 2. Loss relative to $1M limit

pled weight distribution we can compute the ratios 
of expected loss relative to a $1M policy by integrat-
ing each specified mixed exponential. The results are 
shown in Figure 2.

As expected, the uncertainty about loss increases 
as the limit increases. Because our data set included 
some claims capped at $1M, the posterior distri-
bution predicts a greater increase in loss for limits 
above $1M. As before, these boxplots do not include 
“process risk,” only the remaining uncertainty about 
the underlying claim severity distribution.
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applications as pricing XOL reinsurance or comput-
ing ILFs.
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A. Appendix: Additional  
Model Code

1. Full JAGS Code

The example code used above lacked the ability to 
handle claims from different deductible levels. The 
code below handles deductibles, but runs much slower 
because it must contain an additional inner loop iterat-
ing over each exponential distribution.

The loss relativities in Figure 2 should not be used as 
ILFs directly because they are not loaded for expense 
and risk. Another issue not considered here is whether 
policies with different limits will really be generated by 
the same severity distribution. Table 6 compares ILFs 
based purely on expected loss with risk-loaded ILFs 
based on expected loss plus twice the standard devia-
tion of loss. The additional parameter risk associated 
with the higher limits leads to more leveraged ILFs.

6. Conclusion

This paper describes a technique for estimating 
claim severity distributions based on partially cred-
ible data and a mixed exponential prior predictive 
severity distribution. Conceptually the technique is 
straightforward—we specify a Bayesian model com-
patible with the prior severity distribution and our 
uncertainty about that distribution, and then condi-
tionalize on the observed data to find the desired pos-
terior distribution.

The main idea of the Bayesian model is the use 
of a Dirichlet distribution to parameterize the mixed 
exponential weights. The Dirichlet distribution only 
requires one extra parameter, which represents uncer-
tainty about the prior predictive severity distribution. 
The posterior distribution is computed numerically 
using MCMC implemented by JAGS.

Once computed, the posterior severity distribution 
is easy to work with and can be used for such typical 

Table 6. ILFs with and without risk load

Limit 
($000)

Expected 
Loss ($000)

Loss Std. 
Dev. ($000)

Loss-Only 
ILF

ILF with 
Risk Load

500 206.1 30.6 0.67 0.63

750 262.9 44.7 0.85 0.83

1,000 309.5 57.6 1.00 1.00

1,500 383.9 81.1 1.24 1.29

2,000 442.9 102.7 1.43 1.53

3,000 535.7 141.8 1.73 1.93

5,000 668.2 207.9 2.16 2.55
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instance, local variables are allowed). Stan, like JAGS, 
is released under open source licenses.

Unfortunately, currently Stan does not support 
discrete variables, so the implementation of mixed 
distributions such as this paper’s model is less 
straightforward. However, the implementation below 
may be more generalizable to other mixed severity 
models because it explicitly computes the log likeli-
hood for each observed claim. The exponential distri-
bution used below can be replaced by any distribution 
with a known density and cumulative distribution 
function.

2. Stan

Although JAGS seemed to work well for this model, 
another option is Stan (Stan Development Team, 
2013), a recent MCMC tool developed by a team led 
by Andrew Gelman. Unlike JAGS, Stan uses algo-
rithm differentiation to implement the Hamiltonian 
Monte Carlo technique, which often works better than 
the traditional Gibbs or Metropolis-Hastings sampling 
algorithms. Another feature is that Stan model code is 
turned into C++ and then compiled. Stan model code 
is more procedural and may be easier to write (for 

var weights[m], trend.factor, trended.means[n, m],

  ded.weights[n, m], bucket[n];

model {

  weights ~ ddirch(alpha)

  trend.factor ~ dgamma(trend.shape, trend.rate)

  for (i in 1:n) {

    for (j in 1:m) {

      trended.means[i, j] <- means[j] / trend.factor^ages[i]

      ded.weights[i, j] <- weights[j] * exp(-ded[i] / trended.means[i, j])

    }

    bucket[i] ~ dcat(ded.weights[i, ] / sum(ded.weights[i, ]))

    is.capped[i] ~ dinterval(claim[i], limit[i])

    claim[i] ~ dexp(1 / trended.means[i, bucket[i]])

  }

}

data {

  // claim data

  int<lower=0> n; // number of observations

  real<lower=0> x[n]; // severity net of deductible

  real<lower=0> deductible[n];

  int<lower=0, upper=1> capped[n]; // 1 if claim is capped at deductible

  real age[n]; // age of claim

  // mixed distribution settings

  int<lower=0> m; // number of mixture distributions

  vector<lower=0>[m] means; // exponential means
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  // hyperparameters

  vector[m] alpha; // hyperparameters for dirichlet distribution

  real trend_shape; // shape of gamma trend distribution

  real trend_rate; // rate of gamma trend distribution

}

parameters {

  simplex[m] weights; // exponential weights

  real<lower=.9, upper=1.2> trend; // trend factor (1.0 means no trend)

}

model {

  weights ~ dirichlet(alpha);

  trend ~ gamma(trend_shape, trend_rate);

  for (i in 1:n) {

    vector[m] mu; // trended means

    vector[m] ded_weights; // for weights net of the deductible

    real ps[m]; // for manual addition of mixture likelihoods

    mu <- means / pow(trend, age[i]);

    for (j in 1:m)

      ded_weights[j] <- weights[j] * exp(-deductible[i] / mu[j]);

    ded_weights <- ded_weights / sum(ded_weights);

    for (j in 1:m) {

      if (!capped[i])

        ps[j] <- log(ded_weights[j]) + exponential_log(x[i], 1 / mu[j]);

      else ps[j] <- (log(ded_weights[j])

              + log1m(exponential_cdf(x[i], 1 / mu[j])));

    }

    lp__ <- lp__ + log_sum_exp(ps);

  }

}




