

Reserve Risk using Ultimate Triangles

Andy Feng, FCAS, CPA Economic Capital Modeling

© 2020 – TRC – all rights reserved

1

Which LOB's reserve is more volatile, A or B

<u>LOB A - Inc</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	400	600	800	850
2018	300	500	700	
2019	450	700		
2020	500			

<u>LOB B - Inc</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	400	400	850	850
2018	200	1000	700	
2019	100	700		
2020	500			

Does your answer Change?

<u>LOB A - Inc</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	400	600	800	850
2018	300	500	700	
2019	450	700		
2020	500			

<u>LOB B - Inc</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	400	400	850	850
2018	200	1000	700	
2019	100	700		
2020	500			

<u>LOB A - Ult</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	400	600	800	850
2018	300	500	700	
2019	450	700		
2020	500			

LOB B - Ult	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	850	850	850	850
2018	750	750	750	
2019	950	950		
2020	1000			

CAS Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Agenda

- Reserve Risk Intro
- Reserve Risk using ultimate triangles
- Advantages and Shortfalls
- Comparison of methods
- Quantitative Demonstration

- Solvency II: Reserve Risk = Risk that the current reserves are insufficient to cover their run-off over a 12 month time horizon
- NAIC RBC: Reserve Risk = Risk that the company's recorded loss and loss adjustment expense reserves will develop adversely
- Mack: MSE = E[(Estimated Ult True ult)² | Info as of now]

Reserve Risk – Common Approaches

- Factor based (AM Best, PRA, BMA)
- Closed-form formula (Mack, Merz-Wuthrich, today's approach)
- Boot-strapping (Shapland)
- Monte-Carlo simulation

One year vs ultimate view

	12	24	36	48	60	Ult
2017	400	600	800	850		
2018	300	500	700			
2019	450	700				
2020	500					

Agenda

- Reserve Risk Intro
- Reserve Risk using ultimate triangles
- Advantages and Shortfalls
- Comparison of methods
- Quantitative Demonstration

Rehman & Klugman (2010)

- Defines Ultimate Development Factors g
- Assumes Log-normal distribution
- Uses sample mean and variance as estimators
- Did not produce a result for the entire triangle

Rehman & Klugman (2010)

AY\Age	12	24	36	48
2017	$U_{2017, 12}$	$U_{2017, 24}$	$U_{2017, 36}$	U2017, 48
2018	$U_{2018, 12}$	$U_{2018,24}$	$U_{2018, 36}$	
2019	$U_{2019, 12}$	$U_{2019, 24}$		
2020	$U_{2020, 12}$			

AY\Age	12	24	36
2017	$\widehat{g}_{2017,12}$	\widehat{g} 2017, 24	$\widehat{g}_{2017,36}$
2018	$\widehat{g}_{2018,12}$	$\widehat{g}_{2018,24}$	
2019	$\widehat{g}_{2019,12}$		

$$\widehat{g}_{12} = \frac{(U_{2017, 24} + U_{2018, 24} + U_{2019, 24})}{(U_{2017, 12} + U_{2018, 12} + U_{2019, 12})}$$

Siegenthaler – Ultimate MSEP

$$\widehat{\operatorname{msep}}_{\sum_{i=0}^{I} U^{i} | \mathscr{F}_{I}} \left(\widehat{E} \left[\sum_{i=0}^{I} U^{i} \middle| \mathscr{F}_{I} \right] \right) \xrightarrow{\operatorname{Process Variance}} \operatorname{Parameter Error} \\ = \sum_{i=1}^{I} \left\{ \left[\sum_{k=I-i}^{I-1} \left(\prod_{j=I-i}^{k-1} \widehat{g}_{j} \right) \cdot \widehat{\sigma}_{k}^{2} \cdot \left(\prod_{l=k+1}^{I-1} \widehat{g}_{l}^{2} \right) \right] \cdot \widehat{U}_{i,I-i} + \left(1 - \prod_{j=I-i}^{I-1} \widehat{g}_{j} \right)^{2} \cdot \widehat{U}_{i,I-i}^{2} \right\}$$

$$(1.2)$$

$$+ 2 \sum_{1 \leq i < j \leq I} \left(1 - \prod_{k=I-i}^{I-1} \widehat{g}_{k} \right) \left(1 - \prod_{k=I-j}^{I-1} \widehat{g}_{k} \right) \cdot \widehat{U}_{i,I-i} \cdot \widehat{U}_{j,I-j}.$$

Covariance between AYs

Siegenthaler – One year MSEP

$$\widehat{\mathrm{msep}}_{\sum_{i=0}^{I} \widehat{\mathrm{CDR}}_{i}(I+1)|\mathscr{F}_{I}}(0) = \sum_{i=1}^{I} \left[\widehat{\sigma}_{I-i}^{2} \cdot \widehat{U}_{i,I-i} + (\widehat{g}_{I-i}-1)^{2} \cdot \widehat{U}_{i,I-i}^{2} \right]$$

$$+ 2 \sum_{1 \leq i < j \leq I} (\widehat{g}_{I-i} \cdot \widehat{g}_{I-j} - \widehat{g}_{I-i} - \widehat{g}_{I-j} + 1) \cdot \widehat{U}_{i,I-i} \cdot \widehat{U}_{j,I-j}.$$

$$(1.1)$$

Covariance between AYs

Siegenthaler Assumptions

- Ultimate Development Factors *g* are <u>unbiased</u>
- Ultimate loss has to be set using a method that Is consistent with "Linear Stochastic Reserving Method"
 - Chain Ladder, BF, Budget Loss Ratio are all examples of Linear Stochastic Reserving method
 - Implication: Diagonals are uncorrelated
- No assumption of independence between AY or development age

Agenda

- Reserve Risk Intro
- Reserve Risk using ultimate triangles
- Advantages and Shortfalls
- Comparison of methods
- Quantitative Demonstration

Advantages

- Not dependent on the actuarial method
- Works well for lines with sparse claims activity in early years
- Fast
- Rewards accurate IBNR estimates
 - If ultimate losses are historically stable, this method shows low volatility as it ignores settlement activity

Does your answer Change?

<u>LOB A - Inc</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	400	600	800	850
2018	300	500	700	
2019	450	700		
2020	500			

<u>LOB B - Inc</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	400	400	850	850
2018	200	1000	700	
2019	100	700		
2020	500			

<u>LOB A - Ult</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	400	600	800	850
2018	300	500	700	
2019	450	700		
2020	500			

LOB B - Ult	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
2017	850	850	850	850
2018	750	750	750	
2019	950	950		
2020	1000			

Pitfalls

- Need to construct historical ultimate triangles
- Assumption on Unbiased Ultimate
- Does not handle negative ultimate losses very well
- Negative covariance

Negative Covariance

<u>Ult</u>		<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>
	2017	400	1200	800	850
	2018	300	1000	700	
	2019	450	1100		
	2020	500			

Agenda

- Reserve Risk Intro
- Reserve Risk using ultimate triangles
- Advantages and Shortfalls
- Comparison of methods
- Quantitative Demonstration

Comparing with Mack and M-W

	Siegenthaler	Mack and Merz-Wuthrich
Triangle Used	Ultimate Triangle	Paid or Incurred Triangle
Development Factor	$\widehat{g}_{j} = \frac{\sum_{i=0}^{I-j-1} \widehat{U}_{i,j+1}}{\sum_{i=0}^{I-j-1} \widehat{U}_{i,j}}$	$\hat{f}_{j}^{I} = \frac{\sum_{i=0}^{I-j-1} C_{i,j+1}}{\sum_{i=0}^{I-j-1} C_{i,j}}$
σ	$\widehat{\sigma}_j^2 = \frac{1}{I-j-1} \sum_{i=0}^{I-j-1} \widehat{U}_{i,j} \left(\frac{\widehat{U}_{i,j+1}}{\widehat{U}_{i,j}} - \widehat{g}_j \right)^2$	$\hat{\sigma}_{j}^{2} = \frac{1}{I - j - 1} \sum_{i=0}^{I - j - 1} C_{i,j} \left(\frac{C_{i,j+1}}{C_{i,j}} - \hat{f}_{j} \right)^{2}$

Comparing with Mack and M-W

 Moreover, without parameter error and assuming paid or incurred development factors are fixed, Siegenthaler formula reduces to the famous Mack Formula

$$\operatorname{msep}_{\sum_{i=0}^{I}U^{i}|\mathscr{F}_{I}}^{\operatorname{Mack}}\left(\widehat{E}\left[\sum_{i=0}^{I}U^{i}\middle|\mathscr{F}_{I}\right]\right) = \sum_{i=1}^{I}\left(\widehat{U}_{i,I-i}\right)^{2}\sum_{j=I-i}^{I-1}\frac{\widehat{s}_{j}^{2}}{\left(\widehat{f}_{j}^{(I)}\right)^{2}}\left[\frac{1}{C_{i,I-i}\cdot\prod_{l=I-i}^{j-1}\widehat{f}_{l}^{(I)}}\right]$$

Comparison of methods - Quantitative

• Based on data supplied on Siegenthaler (2018) paper

	One Year Standard Error	Total Run-off Standard Error
Siegenthaler	12,025	15,228
Mack/M-W	11,203	13,457

Agenda

- Reserve Risk Intro
- Reserve Risk using ultimate triangles
- Advantages and Shortfalls
- Comparison of methods
- Quantitative Demonstration

References

- Rehman, Z and Klugman, S.A. (2010) *Quantifying Uncertainty in Reserve Estimates*.
- Siegenthaler, F. (2018) One-year and Total Run-off Reserve Risk Estimators Based on Historical ultimate Estimates.

Conclusions and Questions

