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Case Studies Using Credibility 
and Corrected Adaptively 

Truncated Likelihood Methods
by Harald Dornheim and Vytaras Brazauskas

AbstrAct

Two recent papers by Dornheim and Brazauskas (2011a, 2011b) 

introduced a new likelihood-based approach for robust-efficient 

fitting of mixed linear models and showed that it possesses favor-

able large- and small-sample properties which yield more accu-

rate premiums when extreme outcomes are present in the data. In 

particular, they studied regression-type credibility models that can 

be embedded within the framework of mixed linear models for 

which heavy-tailed insurance data are approximately log-location-

scale distributed. The new methods were called corrected adap-

tively truncated likelihood methods (or CATL, for short). In this 

paper, we build upon that work and further explore how CATL 

methods can be used for pricing risks. We extend the area of appli-

cation of standard credibility ratemaking to several well-studied 

examples from property and casualty insurance, health care, and 

real estate fields. The process of outlier identification, the ensuing 

model inference, and related issues are thoroughly investigated on 

the featured data sets. Throughout the case studies, performance 

of CATL methods is compared to that of other robust regression 

credibility procedures.
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1. Introduction

Credibility theory is one of the oldest but still most 
common premium ratemaking techniques in insur-
ance industry, and it continues to attract the atten-
tion of practicing actuaries and academic researchers. 
Since the publication of the first regression-linked 
credibility model (Hachemeister, 1975), numerous 
extensions, improvements, and practical applications 
of this model have been proposed in the actuarial lit-
erature. Here is a short but representative list of recent 
papers on this topic:

•	 Frees,	Young,	and	Luo	(1999)	gave	a	longitudi-
nal data analysis interpretation of the standard 
(Bühlmann 1967; Bühlmann and Straub 1970) and 
other additive credibility ratemaking procedures. 
This interpretation also remains valid in the frame-
work of mixed linear models. A few years later, the 
same authors presented several case studies involv-
ing	such	models	(Frees,	Young,	and	Luo	2001).

•	 Fellingham,	Tolley,	and	Herzog	(2005)	analyzed	a	
real data set provided by a major health insurance 
provider, which summarized claims experience for 
select health insurance coverages in Illinois and 
Wisconsin. Credibility methods, in conjunction 
with mixed linear models and Bayesian hierarchi-
cal models, were used to make next-year predictions 
of claims costs.

•	 Guszcza	(2008)	provided	an	excellent	introduction	
to hierarchical models that can be viewed as an 
extension of traditional (linear) credibility models. 
Several hierarchical models were then used in a 
loss reserving exercise, to model loss development 
across multiple accident years.

•	 Klinker	(2011)	introduced	generalized	linear	mixed	
models	(GLMM)	as	a	way	of	incorporating	cred-
ibility in a generalized linear model setting. The 
application	of	a	GLMM	to	a	case	study	on	ISO	data	
revealed connections between this approach and 
the Bühlmann-Straub credibility.

As is the case with many mathematical models, 
credibility-type models contain unknown structural 
parameters (or, in the language of mixed linear mod-

els, fixed effects and variance components) that have 
to	be	estimated	from	the	data.	For	statistical	inference	
about fixed effects and variance components, tra-
ditional likelihood-based methods such as (restricted) 
maximum likelihood estimators, (RE)ML, are com-
monly pursued. However, it is also known that while 
these methods offer most flexibility and full efficiency 
at the assumed model, they are extremely sensitive to 
small deviations from the hypothesized normality of 
random components as well as to the occurrence of 
outliers. To obtain more reliable estimators for pre-
mium calculation and prediction of future claims, vari-
ous robust methods have been successfully adapted to 
credibility theory in the actuarial literature (see, for 
example,	Garrido	and	Pitselis	2000;	Dornheim	and	
Brazauskas	2007;	Pitselis	2002,	2008).

At this point a short discussion about robust  
statistics—a well-established field in statistics—might 
aid the reader who is not familiar with this area. In 
a nutshell, robust statistics is concerned with model 
mis-specification (or using the actuarial terminology, 
model risk) and data quality (e.g., measurement errors, 
outliers, typos). The main focus is on parametric mod-
els, their fitting to the observed data, and identification 
of	outliers.	Fitting	of	the	model,	however,	is	accom-
plished by employing procedures that are designed to 
have limited sensitivity to changes in the underlying 
assumptions as well as to “unexpected” data points. 
The procedures that possess such properties are called 
robust. A very important tool for measuring perfor-
mance of, and for providing guidance on how to con-
struct robust estimators is the influence function	(IF).	
The	 IF	 helps	 to	 quantify	 the	 estimator’s	 robustness	
and efficiency, which usually are two competing cri-
teria. Typically, robust and efficient estimators belong 
to one of three general classes of statistics: L-, M-, or 
R-statistics. (Here, L stands for linear in the “linear 
combinations of order statistics”; M stands for maxi-
mum in the “maximum likelihood type statistics”;  
R stands for ranks in the “statistics based on ranks”.) 
It is not uncommon, however, to have estimators that 
can be reformulated within more than one of these 
classes.	On	the	other	hand,	despite	the	existing	over-
lap, each type of these statistics has its own appeal. 
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M-statistics, for example, are arguably the most ame-
nable to generalization and often lead to theoretically 
optimal procedures. R-statistics can be recast in the 
context of hypothesis testing and enjoy a close rela-
tionship with the broad field of nonparametric sta-
tistics. L-statistics are fairly simple computationally 
and have a straightforward interpretation in terms 
of quantiles.

Further,	in	the	initial	stages	of	its	development,	
research in the field of robust statistics was focused 
on quite simple parametric problems (e.g., estimation 
of the location parameter of a bell-shaped curve), but 
over the years it expanded into linear models, time 
series analysis and other more complex problems. 
Now, almost five decades later, the impact of robust 
statistics is felt in numerous applied and interdisciplin-
ary areas, ranging from natural and social sciences to 
computer science, engineering, insurance, and finance. 
Robust procedures add the most value to the model-
ing process when the underlying model contains many 
unknown parameters and/or multiple assumptions, 
because the more complex the model, the higher the 
chance	to	misspecify	it.	Finally,	robust	statistics	is	 
parametric by its nature and thus differs from empiri-
cal nonparametric methods which have no (or very 
weak) parametric assumptions. The main advantages 
the parametric methods enjoy over the nonparametric 
ones are: (a) parametric models are easier to interpret, 
(b) they are parsimonious, i.e., have few parameters, 
and (c) they facilitate inference beyond the range of 
observed	data.	On	the	other	hand,	the	attentive	reader	
will recognize that some of these advantages are also 
risks (e.g., extrapolation beyond the data). Therefore, 
in this context, robust techniques are indispensable, 
since	 they	 focus	 on	 model	 risk	 management.	 For	 a	
comprehensive (and much deeper) introduction into 
the area of robust statistics, the reader should con-
sult	 Maronna,	 Martin,	 and	Yohai	 (2006).	 Note	 also	
that in the academic literature and actuarial practice 
there exist various methods that are labeled “robust” 
or “robust-efficient” but fall outside the scope of the 
present	discussion.	For	example,	quantile	regression	
also has the robustness-efficiency quality, but the esti-
mated variable/parameter is generally not the object 

of actuarial interest. Another popular approach uses a 
large loss adjustment before the model fitting, which 
is supposed to “robustify” the estimation process. 
This approach, however, has no theoretical justifica-
tion and thus its statistical properties are unknown.

Let us get back to the robust methods at the inter-
section of credibility and mixed linear models. In this 
area, the most recent proposal—corrected adaptively 
truncated likelihood methods (CATL)—is designed 
for situations when heavy-tailed claims are approxi-
mately log-location-scale distributed (Dornheim and 
Brazauskas 2011a, 2011b). This new class of robust-
efficient credibility estimators enjoys a number of 
desirable features.

•	 First,	it	provides	full	protection	against	within-risk	
outliers and observations that may have disturbing 
effects on the estimation process of the between-
risk variability. (Note that the latter property cannot 
be guaranteed when one applies standard versions 
of M-estimators that solely robustify the estima-
tion	of	the	individual’s	claim	experience.)

•	 Second,	the	estimators	do	not	require	expert	judg-
ment to find appropriate truncation points which 
are obtained adaptively from the data.

•	 Third,	the	CATL	procedure	automatically	identifies	
and removes atypical data points without employing 
extensive graphical tools or including data-specific 
predictor variables into the model. This makes the 
modeling process easier and quicker. (Note that the 
emphasis on the automatic nature of CATL methods 
should	not	be	viewed	as	the	authors’	endorsement	of	
the fact that the decision-making process can now be 
delegated to computers. Understanding of the practi-
cal problem, its context, available data, and the eco-
nomic consequences of the model-based decisions is 
the sole province of human intelligence . . . at least in 
the foreseeable future.)

In this paper, we further explore how the CATL 
approach can be used for pricing risks. We extend the 
area of application of standard credibility ratemaking to 
several well-studied examples from property and casu-
alty insurance, health care, and real estate fields. We do 
not merely determine prices via CATL but rather walk 
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models for heavy-tailed claims is presented in Appen-
dix	(Sections	7.2	and	7.3).	For	a	complete	description	
of these methods, see Dornheim (2009).

2.1. The CATL procedure

For	 robust-efficient	 fitting	 of	 the	 mixed	 linear	
model with normal random components, Dornheim 
(2009) and Dornheim and Brazauskas (2011a) devel-
oped adaptively truncated likelihood methods. Those 
methods were further generalized to log-location-
scale models with symmetric or asymmetric errors 
and labeled corrected adaptively truncated likeli-
hood methods, CATL (Dornheim 2009; Dornheim 
and Brazauskas 2011b). More specifically, utiliz-
ing the notation of Sections 7.2 and 7.3, the CATL 
estimators for location li and variance components  
s2

a1
, . . . , s2

aq
, s2

e can be found by the following three-
step procedure:

1. Detection of within-risk outliers.
Consider the random sample

log log, , , , . . . , , , , ,

= 1, . . . , .
1 1 1 1y y

i I
i i i i i i i i i i i i

x z x z( )( )( )( ) υ υτ τ τ τ

In the first step, the corrected re-weighting mech-
anism automatically detects and removes outlying 
events within risks whose standardized residu-
als computed from initial high breakdown-point 
estimators exceed some adaptive cut-off value. 
This threshold value is obtained by comparison 
of an empirical distribution with a theoretical one. 
Let us denote the resulting “pre-cleaned” random 
sample as

log log, , , , . . . , , , , ,* * * * * * * *

= 1, . . . , .
1 1 1 1 * * * *y y

i I
i i i i i i i ii i i i

x z x z( )( )( )( ) υ υτ τ τ τ

Note that for each risk i, the new sample size is  
t*i (t*i ≤ ti).

2. Detection of between-risk outliers.
In the second step, the procedure searches the 

pre-cleaned sample (marked with *) and discards 
entire risks whose risk-specific profile expressed 

the reader through the entire process of outlier identi-
fication and the associated statistical inference using 
examples. The featured data sets include exposure 
measures, heteroscedasticity, random and fixed effect 
covariates and outliers. Throughout the case studies 
performance of CATL methods is compared to that 
of other robust regression credibility procedures.

The rest of the paper is organized as follows. In 
Section 2, we present the CATL procedure for fitting 
heavy-tailed mixed linear models and the resulting 
formulas for robust-efficient credibility premiums. 
In	Section	3,	we	analyze	Hachemeister’s	bodily	injury	
data using CATL and compare the findings with those 
of	classical	robust	methods.	For	illustrative	purposes,	
we fit a log-normal regression model (although other 
log-location-scale models could be considered as well)  
and show how exposure measures are incorporated to 
account for heteroscedasticity in the data. The impact 
of a single within-risk outlier on the computation of 
credibility estimates of future claims as well as their 
prediction intervals is discussed. The case study of 
Section 4 is related to health care data that contains 
Medicare costs for inpatient hospital charges classi-
fied by state. This data set is also contaminated by 
outlying risks and thus offers further insights into 
how robust procedures act on data. Moreover, we fit 
a more generic regression-type model that requires 
additional explanatory variables. Robust credibility 
estimates and prediction intervals for future Medicare 
costs are computed and compared to those of classical 
methods. In Section 5, we venture outside the actu-
ary’s	comfort	zone	and	demonstrate	the	usefulness	of	
CATL procedures in the field of real estate. We ana-
lyze	a	widely	studied	data	set	of	Green	and	Malpezzi	
(2003). Summary is provided in Section 6.

2. CATL credibility for  
heavy-tailed claims

In Section 2.1, we outline the corrected adaptively 
truncated likelihood procedure for fitting mixed 
linear models with heavy-tailed error components. 
Robust credibility ratemaking is briefly discussed in  
Section 2.2. More technical details on mixed linear 
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as a within-risk	outlier.	Procedures	that	do	not	remove	
such claims during the model-fitting process pro-
duce an inflated estimate of within-risk variability 
for State 4 (i.e., ŝ 2

e).  N

remark 2 (Between-risk outliers)
To	 better	 understand	 Step	 2,	 let’s	 examine	 the	

first graph of Section 4, where hospital claims over 
a period of six years are plotted for 54 states/regions 
across the United States. In the plot, we clearly see 
that all	claims	within	each	of	the	states	40,	48,	and	54	
are apart from the bulk of other states. They would be 
treated as between-risk outliers because each of these 
states affects the level of variability (heterogeneity) 
among	the	states.	Procedures	that	treat	these	risks	the	
same way as other risks produce significantly larger 
estimates of between-risk variability of random effects 
(i.e., ŝ22

a).  N

remark 3 (Mean correction factors)
In view of the mixed linear model as described in 

Section 7.3, residuals that follow asymmetric log-
location-scale distributions have no longer mean zero. 
Thus, the expectations E(log(yi)) and E(log(yiai)) dif-
fer from Xib and li, respectively. Therefore, to ensure 
that the estimators are targeting the right variables 
when estimating li, we need to correct the equation 
towards the mean by adding ÊF0

(ei). This also explains 
the word “corrected” in the acronym CATL.  N

2.2. Robust credibility ratemaking

The re-weighted estimates for location, l̂i, and 
structural parameters, q̂CATL = (ŝ 2

a1
, . . . , ŝ 2

aq
, ŝ 2

e), are 
used to calculate robust credibility premiums for the 
ordinary but heavy-tailed claims part of the original 
data. The robust ordinary net premiums

ˆ ˆ ˆ , 1, . . . , 1, = 1, . . . ,, t i Iit
ordinary

it
ordinary

rBLUP i i( )µ = µ α = τ +

are found by computing the empirical limited expected 
value (LEV) of the fitted log-location-scale distribu-
tion of claims. The percentile levels of the lower bound 
ql and the upper bound qg used in LEV computations 

by the random effect significantly deviates from  
the overall portfolio profile. These risks are iden-
tified when their robustified Mahalanobis dis-
tance (this is a Wald-type statistic with robustly 
estimated input variables) exceeds some adaptive 
cutoff point. The process results in a “cleaned” 
sample of risks, denoted as

x z x zy y

i I
i i i i i i i ii i i i

( )( ) ( )( )υ υτ τ τ τlog log, , , , . . . , , , , ,** ** ** ** ** ** ** **

= 1, . . . , *.
1 1 1 1 * * * *

Note that the number of remaining risks is I* 
(I* ≤ I).

3. CATL estimators.
In the final step, the CATL procedure employs 

traditional likelihood-based methods, such as 
(restricted) maximum likelihood, on the cleaned 
sample and com putes re-weighted parameter esti-
mates b̂CATL and q̂CATL = (ŝ2

a1
, . . . , ŝ2

aq
, ŝ2

e). Here, the  
subscript CATL emphasizes that the maximum 
likelihood type estimators are not computed on 
the original sample, i.e., the starting point of Step 
1, but rather on the cleaned sample which is the 
end result of Step 2.

Using the described procedure, we find the shifted 
robust best linear unbiased predictor for location:

X Z ( )λ = β + α + ε =ˆ ** ˆ ** ˆ ˆ , 1, . . . , ,, 0
E i Ii i CATL i rBLUP i F i

where b̂CATL and ârBLUP,i are standard likelihood-based 
estimators but computed on the clean sample from 
Step 2. Also, ÊF0

(ei) is the expectation vector of the  
t*i -variate cdf Ft*

i
 (0, R̂i).	For	symmetric	error	distri-

butions we obtain the special case ÊF0
(ei) = 0.

remark 1 (Within-risk outliers)
To illustrate what the above-described procedure 

does	 in	Step	1,	 let’s	 take	a	 look	at	 the	 first	graph	
of Section 3, where a multiple time series plot of 
Hachemeister’s	bodily	injury	data	is	given.	Notice	
that in State 4, for example, the claim at time 7 devi-
ates from the average trend and thus would be treated 
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Goovaerts	and	Hoogstad	(1987),	Dannenburg,	Kaas,	 
and	Goovaerts.	(1996),	Bühlmann	and	Gisler	(1997),	 
Frees,	Young,	and	Luo	(1999),	Garrido	and	Pitselis	
(2000),	and	Pitselis	(2002,	2008)	used	this	data	set	
to illustrate the effectiveness of diverse regression 
credibility ratemaking techniques.

3.1. Data characteristics

Hachemeister (1975) considered t = 12 periods, 
from the third quarter of 1970 to the second quarter of 
1973, of claim data for bodily injury that are covered 
by a private passenger auto insurance. The response 
variable of interest to the actuary is the severity aver-
age loss per claim, denoted by yit. It is followed over 
the periods t = 1, . . . , ti = t for each state i = 1, . . . , I. 
Average losses were reported from I = 5 different states 
(Appendix, Section 7.1).

A multiple time series plot of the observed variable 
average loss per claim, yit,	is	provided	in	Figure	1.	 
The plot indicates that states differ with respect to 
their within-state variability and severity. State 1 
reports the highest average losses per claim, whereas 
State 4 seems to have larger variability compared to 
other	states.	For	all	five	states	we	observe	a	small	
increase of severity over time. Since yit varies over 
states and time (periods t = 1, . . . , 12), these charac-
teristics are important explanatory variables. There-
fore, Hachemeister originally suggested using the 
linear trend model given by

x zyit it it i it= β + α + ε , (1)

where p = q = 2 in (5) and xit = zit = (1, t). This 
results in a random coefficients model of the form  
yi = Xi(b + ai) + ei, with diagonal matrix Ri =  
Var(yiai)  = Var(ei) = s2

e diag(u-1
i1, . . . , u

-1
it ), where  

uit > 0 are some known (potential) volume mea-
sures. By assumption (b) in Section 7.2, we consider 
independent (unobservable) risk factors that have 
variance-covariance structure D = diag(s2

a1
, s2

a2
).  

Notice that the quarterly observations #6 in State 1, 
#10 in State 2, #7 in State 4, and maybe #6 in State 3  
seem to be apart from their state-specific inflation 
trends	(see	Figure	1).

are usually chosen to be extreme, e.g., 0.1% for ql and 
99.9% for qg.

Then, robust regression is employed to price sepa-
rately identified excess claims. The risk-specific excess 
claim amount of insured i at time t is defined by

O

for y q

y q for q y q

q q for y q
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it
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it l

it l it
ordinary

l it g

g l it
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it g( )
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Further,	 let	It denote the number of insureds in the 
portfolio at time t and let T

i I
i= τ

≤ ≤
max ,

1
the maximum 

horizon	among	all	risks.	For	each	period	t = 1, . . . , T, 
we find the mean cross-sectional overshot of excess 
claims Ôi t = I -1

t Σ It
i=1

Ôit, and fit robustly the random 
effects model

� …i oO t Tt t tξ + εˆ = , = 1, , ,

where ot is the row-vector of covariates for the 
hypothetical mean of overshots x. Here we choose 
ot = 1, and let x̂ denote a robust estimate of x. Then, 
the premium for extraordinary claims, which is com-
mon to all risks i, is given by

oit
extra

tµ = ξ̂.

Finally,	 the	 portfolio-unbiased	 robust	 regression	
credibility estimator is defined by

i Ii
CATL

rBLUP i i
ordinary

rBLUP i i
extra

i i i
( ) ( )µ α = µ α + µ =τ + τ + τ +ˆ ˆ ˆ ˆ ˆ , 1, . . . , ., 1 , , 1 , , 1

From	the	actuarial	point	of	view,	premiums	assigned	
to the insured have to be positive. Therefore, we deter-
mine pure premiums by max 0, ˆ ˆ ., 1 ,i

CATL
rBLUP ii

{ }( )µ ατ +

3. Hachemeister’s bodily  
injury data

The first credibility model linked to regression was 
proposed by Hachemeister in 1975. In the decades 
since the publication of his paper, the private passenger 
automobile data that he studied has been extensively 
analyzed by several authors in the actuarial literature.  
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variable in the framework of adaptively truncated 
likelihood credibility. Then, we fit (log-normal) mod-
els of the form

x zln yit it it i it it it( ) = β + α + ε = λ + ε , (2)

where eit ~ N(0, s2
eit

).	First	of	all,	we	assume	that	error	
terms are serially uncorrelated and process variances 
are equal for all states, so that s 2

ei
 = s 2

e. This yields 
the unweighted covariance matrix Ri = R = s 2

e It×t,  
i = 1, . . . , I, as special case of (1). Results of the  
fitted	 model	 using	 CATL	 based	 on	 Henderson’s	
Mixed Model equation (H) are presented in Table 1. 
In real-data sets where the within-risk variability dif-
fers considerably from risk to risk, it is more appro-
priate to model unequal process variances when using 
CATL methods. As noted by Dornheim (2009), this 
assumption is rather significant for detection of atypi-
cal	data	points.	Figure	1	 indicates	substantial	dif-
ferences in within-risk variability among the states. 
Hence, we fit model (2) twice, once when assum-
ing equal (E) process variances and another time for 

We	use	Hachemeister’s	regression	model	(1)	as	our	
reference model to facilitate comparison of CATL cred-
ibility with other estimators discussed by the authors 
mentioned above. We also consider a revised version 
of	Hachemeister’s	model.	When	applying	the	linear	
trend model to bodily injury data, Hachemeister (1975) 
obtained unsatisfying model fits due to systematic 
underestimation of the regression line. Bühlmann and 
Gisler	(1997)	suggest	taking	the	intercept	of	the	regres-
sion line centered at the mean time (instead of the ori-
gin of the time axis). This ensures that the regression 
line stays between the individual and collective regres-
sion lines. Accordingly, we choose design matrices  
Xi = (xi1, . . . , xit)′ and Zi = (zi1, . . . , zit)′, with xit = zit =  
(1, t - Gi)′, where Gi = u-1

i i Σt
t=1t uit, is the center of grav-

ity of the time range in risk i, and ui i = Σt
t=1uit.

3.2. Model estimation, outlier detection 
and model inference

For	Hachemeister’s	regression	credibility	model	
and its revised version (R), we use ln(yit) as response 
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Figure 1. Multiple time series plot of the variable average loss per claim, yit
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it is common to observe situations, where risks with 
larger exposure measure typically exhibit lower vari-
ability	(Kaas,	Dannenburg,	and	Goovaerts	1997;	Frees,	
Young,	and	Luo	2001).	Here,	it	seems	that	number of 
claims per period, denoted by uit, significantly affects 
the within-risk variability. Indeed, the data set presented 
in the appendix supports this fact. In comparison to 
number of claims, State 4 reports high average losses 
per claim. This, in turn, yields to the increased within-
state	variability	that	is	noticeable	in	Figure	1.

To obtain homoscedastic error terms, we fit models 
using uit as subject-specific weights. This model can 
be written as

x zln yit it it i it it( ) = β + α + ε υ ,1 2

where {eit} is an i.i.d. sequence of normally distrib-
uted noise terms. Similarly, the classical linear trend 
model as described by Hachemeister becomes

x zyit it it i it it= β + α + ε υ .1 2

In view of the latter regression equation, Hachemeis-
ter’s	model	can	be	considered	as	generalization	of	the	
weighted Bühlmann-Straub model.

Our	 findings	 for	 fitting	 of	 weighted	 regression	 
models	to	Hachemeister’s	data	are	shown	in	Table	2,	
together with the results obtained from other prominent 
estimation procedures. The base model is the linear 

unequal (U). Here is a summary of all the notations 
used in Tables 1–3:

•	 REML H and REML HR: REML fitting, based 
on	Henderson’s	mixed	model	equations,	of	Hache-
meister’s	model	(REML H)	and	Hachemeister’s-
revised model (REML HR).

•	 CATL HE and CATL HU: CATL fitting, based 
on	Henderson’s	mixed	model	equations,	of	Hache-
meister’s	model	using	the	assumption	of	equal	pro-
cess variances (CATL HE) and unequal process 
variance (CATL HU).

•	 CATL HRE and CATL HRU: CATL fitting, 
based	on	Henderson’s	mixed	model	equations,	of	
Hachemeister’s-revised	model	using	the	assump-
tion of equal process variances (CATL HRE) and 
unequal process variance (CATL HRU).

Scenario 1 denotes the real-data set used by Hache-
meister. We report fixed effects b (intercept and slope) 
and for each state credibility adjusted estimates and 
predicted average claim sizes (premiums for the next 
period, t =	13).	Further,	in	Figure	2	we	plot	residuals	
from the fitted log-Hachemeister model (2) versus 
the potential exposure measure, number of claims per 
period. The megaphone-shaped picture reveals that the 
logarithmic transformation of average loss per claim 
did not remove heteroscedasticity of error components. 
Thus, additional weighting is required. In practice, 

Table 1. Grand parameters, credibility adjusted estimates, and predictions of Hachemeister’s bodily injury data (Scenario 1) 
based on unweighted regression

Estimation 
procedure

Grand 
parameters

Credibility Adjusted Estimates for State Prediction (est. std. error) for State

1 2 3 4 5 1 2 3 4 5

REML H 1460
32

1685
60

1381
21

1545
42

1221
24

1470
20

2412
(110)

1651
(123)

2087
(193)

1533
(242)

1726
(81)

CATL HE 7.2874
0.0155

7.4379
0.0285

7.2372
0.0080

7.3710
0.0246

7.0773
0.0069

7.3136
0.0094

2461
(111)

1542
(75)

2188
(148)

1294
(65)

1695
(78)

CATL HU 7.2841
0.0164

7.4390
0.0283

7.2353
0.0083

7.3571
0.0211

7.0937
0.0138

7.2954
0.0107

2457
(111)

1542
(76)

2071
(193)

1451
(178)

1689
(59)

REML HR 1671
32

2051
46

1516
25

1817
38

1371
30

1601
23

2348
(121)

1680
(125)

2062
(194)

1569
(242)

1751
(85)

CATL HRE 7.3879
0.0156

7.6234
0.0268

7.2897
0.0089

7.5309
0.0236

7.1200
0.0093

7.3755
0.0096

2435
(112)

1550
(76)

2174
(149)

1311
(66)

1698
(78)

CATL HRU 7.3901
0.0169

7.6233
0.0270

7.2897
0.0090

7.4948
0.0199

7.1776
0.0178

7.3651
0.0108

2438
(112)

1552
(76)

2057
(194)

1482
(176)

1692
(59)

Note: For REML procedures, we report grand mean, b̂, and corresponding credibility adjusted estimates, b̂i.
For CATL procedures, we provide grand location, l̂, and its subject-specific credibility adjusted locations, l̂ i.
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•	 Base:	Linear	trend	model	(Goovaerts	and	Hoogstad	
1987).

•	 RNMY and RNMN: REML fitting; Newton- 
Raphson	iteration	method;	Rao’s	MIVQUE(0)	start-
ing values; Estimator of variance-covariance matrix 
is	constrained	to	be	positive	definite	=	Yes	(RNMY) 
and = No (RNMN).	(Frees,	Young,	and	Luo	1999).

•	 RFSY and RFSN:	REML	fitting;	Fisher-Scoring	
iteration	method;	Swamy’s	starting	values;	Estima-
tor of variance-covariance matrix is constrained to 
be	positive	definite	=	Yes	(RFSY) and = No (RFSN). 
(Frees,	Young,	and	Luo	1999).

•	 MNMY and MNMN: Maximum likelihood fit-
ting;	 Newton-Raphson	 iteration	 method;	 Rao’s	
MIVQUE(0)	starting	values;	Estimator	of	variance-
covariance matrix is constrained to be positive  
definite	=	Yes	(MNMY) and = No (MNMN).	(Frees,	
Young,	and	Luo	1999).

•	 MFSY and MFSN: Maximum likelihood fitting; 
Fisher-Scoring	iteration	method;	Swamy’s	starting	
values; Estimator of variance-covariance matrix is 
constrained	to	be	positive	definite	=	Yes	(MFSY) 
and = No (MFSN).	(Frees,	Young,	and	Luo	1999).

trend	 model	 estimated	 by	 Goovaerts	 and	 Hoogstad	
(1987).	 To	 investigate	 the	 influence	 of	 the	 pursued	
procedure	for	estimation	in	Hachemeister’s	regression	
model,	Frees,	Young,	and	Luo	(1999)	implemented	
several combinations of estimation methods (R = 
REML, M = Maximum likelihood), iteration methods 
(N =	Newton-Raphson,	F	=	Fisher-Scoring)	and	start-
ing values (M =	 Rao’s	 MIVQUE(0),	 S	 =	 Swamy’s	
moment	estimator)	in	SAS	using	the	package	PROC	
MIXED. Moreover, the authors distinguish between 
constraining the estimator of the variance-covariance 
matrix D, D̂,	to	be	positive	definite	(Y)	or	not	(N).	In	
order to limit distorting effects of within-risk outliers 
on	 the	assessment	of	 individual’s	 claim	experience,	
Pitselis	 (2002)	 applied	 MM-	 and	 GM-estimators	 to	
Hachemeister’s	 regression	 model.	We	 denote	 these	
approaches	 by	 MM-RC	 and	 GM-RC,	 respectively.	
As an extension of his joint work about robust esti-
mation	in	the	Bühlmann-Straub	model	(Garrido	and	 
Pitselis	2000),	Pitselis	(2008)	also	employs	regression	
M-estimators	(M-RC)	 that	are	based	on	Hampel’s	
influence	function	approach	(Hampel	et	al.,	1986).	
Here is a summary of all the additional notations:

Figure 2. Scatter plot of residuals versus number of claims per period
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Table 2. Grand parameters, credibility adjusted estimates, and predictions of Hachemeister’s bodily injury data (Scenario 1) 
based on weighted regression

Estimation 
procedure

Grand 
parameters

Credibility Adjusted Estimates for State Prediction (est. std. error *) for State

1 2 3 4 5 1 2 3 4 5

Basea 1469 1696 1377 1540 1312 1421 2436 1650 2073 1507 1759
32 57 21 41 15 26

RNMYa 1461 1659 1396 1535 1199 1518 2468 1624 2093 1528 1680
32 62 18 43 25 12 (44) (96) (119) (204) (72)

RFSYa 1461 1659 1396 1535 1199 1518 2468 1624 2093 1527 1680
32 62 18 43 25 12 (44) (96) (119) (204) (72)

RNMNa 1501 1660 1434 1555 1394 1464 2464 1606 2067 1454 1720
28 62 13 39 5 20 (41) (76) (92) (156) (59)

RFSNa 1501 1660 1434 1555 1394 1464 2464 1606 2067 1453 1720
28 62 13 39 5 20 (41) (76) (92) (157) (59)

MNMYa Initial estimate is not feasible.

MFSYa 1461 1659 1396 1535 1197 1518 2468 1624 2093 1529 1680
32 62 18 43 26 12 (44) (95) (118) (201) (71)

MNMNa Yes, but Hessian is not positive definite - leads to trying to take the inverse of a singular matrix.

MFSNa 1502 1660 1435 1555 1397 1464 2463 1608 2065 1467 1720
28 62 13 39 5 20 (41) (75) (91) (153) (59)

M-RCb

(c = 1.5)
1696 1377 1540 1312 1421 2437 1650 2073 1507 1759

57 21 41 15 26

M-RCb

(c = 1.345)
1696 1377 1540 1312 1421 2437 1650 2073 1507 1759

57 21 41 15 26

GM-RCc

(k = 1)
1680 1378 1544 1247 1452 2427 1648 2092 1505 1737

57 21 42 20 22

GM-RCc

(k = 2)
1686 1377 1544 1247 1451 2427 1648 2092 1505 1737

57 21 42 20 22

MM-RCc 1680 1378 1544 1247 1452 2427 1648 2092 1505 1737
57 21 42 20 22

REML H 1492 1655 1414 1536 1354 1502 2465 1625 2077 1519 1695
30 62 16 42 12 15 (109) (122) (193) (248) (77)

CATL HE 7.2755 7.3790 7.2464 7.3422 7.1169 7.2932 2483 1575 2091 1455 1703
0.0174 0.0335 0.0084 0.0228 0.0114 0.0110 (64) (94) (193) (175) (57)

CATL HU 7.2819 7.4348 7.2349 7.3530 7.0901 7.2967 2471 1545 2065 1447 1691
0.0165 0.0289 0.0082 0.0210 0.0137 0.0105 (111) (74) (194) (174) (57)

REML HR 1675 2058 1517 1800 1399 1601 2451 1661 2065 1613 1706
34 60 22 40 32 16 (109) (123) (193) (242) (78)

CATL HRE 7.3856 7.5955 7.3026 7.4872 7.1200 7.3755 2484 1596 2086 1517 1713
0.0189 0.0330 0.0096 0.0217 0.0188 0.0111 (65) (95) (194) (172) (58)

CATL HRU 7.3867 7.6216 7.2894 7.4859 7.1710 7.3658 2450 1552 2049 1477 1693
0.0169 0.0276 0.0089 0.0198 0.0176 0.0106 (113) (74) (195) (172) (57)

Sources: a Frees, Young, and Luo (1999), b Pitselis (2008), c Pitselis (2002).
* Standard errors reported by Frees, Young, and Luo (1999) are computed.
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approaches or robust regression techniques discussed 
by	Pitselis	 (2002,	2008).	For	 the	second	and	 fourth	
state, CATL HE/U determines slightly lower premi-
ums.	For	instance,	for	State	4	CATL	HU	yields,	1447	
whereas	 the	base	model	by	Goovaerts	and	Hoogstad	
(1987)	 finds	 1507.	 This	 can	 be	 traced	 back	 to	 the	
removal of the suspicious observations #6 and #10 in 
State 2 and #7 in State 4. Robust methods employed 
by	Pitselis	(2002,	2008)	hardly	react	to	these	potential	
outliers. This is mainly due to the subjectively chosen 
truncation points c and k, which may be inappropriate 
(too high). CATL HU also detects claim #4 in State 5 
as an outlier and assigns negligible excess premiums 
(discounts) of -1.47	per	 risk.	For	 the	 revised	 linear	
trend model (R) patterns are similar.  N

Discussion of Figure 3
We	display	in	Figure	3	the	three-step	predictions	of	

the average loss per claim for States 1, 3, and 5 when 
using REML H and CATL HU. The thinner lines show 
predictions and one standard error of the prediction 
for each of the three states. These can be compared 
to	Frees,	Young,	and	Luo	(1999,	Figure	1).	Note,	the	
less variable States 1 and 5 have shorter prediction  
intervals compared to State 3. As expected, in Sce-

nario 1 predictions and intervals obtained from REML 
and CATL HU nearly coincide.  N

To illustrate robustness of regression credibil-
ity methods that are based on M-RC, MM-RC, and 
GM-RC	estimators	for	quantifying	individual’s	risk	
experience,	Pitselis	(2002,	2008)	replaces	the	last	obser-
vation of the fifth state 1690 by 5000 (Scenario 2).  
We follow the same contamination strategy and sum-
marize outcomes in Table 3. It turns out that the choice 
of the methodology has a major impact on the fitting 
of credibility models.

Discussion of Table 3
In the presence of a single outlier in Scenario 2, it is 

not surprising that standard statistical methods react 
dramatically. In the contaminated State 5, the REML 
H	 and	 base	 credibility	 estimate	 of	 Goovaerts	 and	
Hoogstad	(1987)	get	highly	attracted	by	the	outlying	 

•	 M-RC: Robust credibility based on M-estimators. 
(Pitselis	2008).

•	 MM-RC and GM-RC: Robust credibility based 
on multiple M-estimators (MM-RC) and general-
ized M-estimators (GM-RC).	(Pitselis	2002).

The reliability of credibility estimates, µ̂ i,t+1, is of 
major concern to the insurer. In particular, down-
biased predictions result in too-low portfolio premi-
ums, which in turn lead to insufficient funding and 
threatening	of	the	insurer’s	solvency	in	the	long-run.	
To assess the quality of assigned credibility premi-
ums we also report their standard errors in Table 2. 
These can be used to construct prediction intervals of 
the	form	BLUP	(credibility	estimate	µ̂ i,t+1) plus and 
minus	multiples	of	the	standard	error	(Frees,	Young,	
and Luo 1999). Here, we estimate the standard error 
of prediction, ŝ µ̂ i,t+1

, from the data using the common 
nonparametric estimator
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where µ̂ it denotes the credibility estimate obtained 
from the pursued regression method, ui i is the total 
number of claims in state i, and wit is the hard- 
rejection weight for the observed average loss per 
claim yit	when	employing	the	CATL	procedure.	For	
non-robust REML where no data points are trun-
cated, we put wit = 1 as special case.

Discussion of Table 2
Let	 us	 start	 with	 Hachemeister’s	 linear	 trend	

model. We observe that REML estimates based on 
Henderson’s	Mixed	Model	Equations,	REML	H,	and	
the	 resulting	 predictions	 mirror	 findings	 of	 Frees,	
Young,	and	Luo	(1999)	who	investigated	the	influence	
of several combinations of computation methods for 
classical credibility. When applying corrected adap-
tively truncated likelihood methods, CATL HE/U,  
for States 1, 3, and 5, we record credibility estimates 
(predictions) that are similar to those of standard 
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observation and increase from 1695 to 2542 and 
from	1759	to	2596,	respectively.	Further,	it	is	well	
known that the occurrence of outliers distorts the 
estimation process of variance components and, 
hence, yields too-low credibility weights. As a con-
sequence, credibility adjusted estimates are pulled 
toward the increased grand mean (most notably the 
slope component) which results in inflated credibility 
premiums and prediction intervals across all states. In 
particular, for REML H the estimated standard error 
in	State	5	explodes	from	77	to	829	due	to	enhanced	
within-risk variability that is caused by the single 
catastrophic event. Even though only the fifth con-
tract is contaminated, the portfolio-unbiased regres-
sion	M-	and	GM-credibility	estimators	with	chosen	
tuning parameters c = 1.345 and k = 2, respectively, 
are significantly distorted. Indeed, these estimators 
provide protection in the assessment of the individ-
ual state experience. However, they reveal a substan-

tial lack of robustness toward single large claims that 
have adverse effects on the between-risk variability 
as well. Consequently, the entire estimation process 
for states that have merely small claims (e.g., see 
State 2) also becomes distorted. These deficiencies 
have been removed by CATL estimators. We observe 
that CATL HU still provides reasonable credibility 
premiums for all contracts in the portfolio. Both 
the grand location, l̂ =	(7.28,	0.016),	the	credibility	
adjusted estimates, l̂i, the estimated standard errors, 
and predictions of expected claims remain stable. We 
shall emphasize that the latter changes only margin-
ally	from	1691	to	1689	in	the	contaminated	State	5.	
The CATL HU identifies the single large claim and 
distributes uniformly an extraordinary premium of 
4.33 to all contracts.  N

In	Figure	4	we	visualize	the	impact	of	a	single	out-
lier on the premium ratemaking process. When using 
classical regression techniques such as REML, the 

Figure 3. Selected severity predictions based on Hachemeister’s model 
(weighted) and data. The thinner middle line marked by d denotes one-, 
two-, and three-step predictions using REML H. The upper and lower lines 
complete the one standard error prediction interval. Predictions from the 
CATL HU procedure are marked by *
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Table 3. Grand parameters, credibility adjusted estimates, and predictions of Hachemeister’s contaminated bodily injury data 
based on weighted regression

Estimation 
procedure

Grand 
parameters

Credibility Adjusted Estimates for State Prediction (est. std. error) for State

1 2 3 4 5 1 2 3 4 5

Base 1526 1423 1427 1409 1296 2501 1826 2181 1994 2596
75 31 58 45 100

M-RCb 1650 1316 1499 1256 1380 2755 1979 2396 1841 2121
(c = 1.5) 85 51 69 45 57

M-RCb 1638 1304 1487 1308 1365 2756 1980 2397 1841 2119
(c = 1.345) 86 52 70 41 58

GM-RCc 1571 1266 1434 1138 1339 2645 1868 2311 1723 1964
(k = 1) 83 46 67 45 48

GM-RCc 1573 1266 1435 1140 1334 2640 1867 2307 1719 1978
(k = 2) 82 46 67 45 49

MM-RCc 1568 1264 1432 1133 1315 2649 1870 2315 1724 1943
83 47 68 45 48

REML H 1377 1547 1305 1391 1315 1327 2517 1852 2206 1987 2542
65 75 42 63 52 93 (119) (150) (204) (255) (829)

CATL HE 7.2539 7.4061 7.2371 7.3377 7.1090 7.2924 2424 1589 2006 1447 1700
0.0123 0.0296 0.0098 0.0169 0.0116 0.0109 (75) (95) (199) (175) (60)

CATL HU 7.2825 7.4345 7.2354 7.3530 7.0909 7.2986 2477 1550 2071 1452 1689
0.0163 0.0290 0.0081 0.021 0.0135 0.0100 (111) (74) (194) (174) (60)

REML HR 1812 2032 1630 1809 1700 1887 2455 1949 2229 2141 2629
72 65 50 63 67 12 (110) (166) (204) (275) (818)

CATL HRE 7.3326 7.5981 7.3025 7.4837 7.1800 7.3643 2360 1597 1967 1450 1700
0.0123 0.0256 0.0110 0.0144 0.0128 0.0113 (94) (96) (203) (174) (61)

CATL HRU 7.3865 7.6216 7.2894 7.4859 7.1709 7.3645 2459 1559 2057 1484 1694
0.0168 0.0277 0.0088 0.0198 0.0175 0.0101 (112) (74) (195) (172) (60)

Source: b Pitselis (2008), c Pitselis (2002).

contaminated contract elevates the grand mean of 
all states, most of all the forecasted credibility pre-
mium and its prediction interval in State 5. Clearly, 
CATL provides robustness for adequate inference in 
Hachemeister’s	regression	model.

4. Medicare data

In this section, we apply CATL procedures to a 
health care data set that contains Medicare costs for 
inpatient hospital charges. This real-data set has been 
examined	by	Frees,	Young,	and	Luo	(2001)	to	dem-
onstrate that general mixed linear models can be used 
to produce credibility estimates of future claims.

4.1. Data characteristics

The	underlying	health	care	data	set	for	Figure	5	has	
been	published	by	the	Health	Care	Financing	Admin-

istration and reports inpatient hospital charges over 
t = 6 years, from 1990 to 1995. These charges have 
been covered by the Medicare program in I = 54 states  
across the United States, including the District of 
Columbia,	Virgin	Islands,	Puerto	Rico,	and	an	unspeci-
fied category, in addition to the 50 states.

The Medicare program reimburses hospital claims 
on per-stay basis, hence, the dependent variable is 
covered claims per discharge,	denoted	by	CCPD.	The	
multiple	time	series	plot	in	Figure	5	indicates	that	there	
is rather substantial variability among the states and 
some variability over the time. Therefore, it is natural to 
explain the response at least by the regressors state and 
time.	Frees,	Young,	and	Luo	(2001)	investigated	sev-
eral possible explanatory variables through graphical 
tools and found that the component average hospital 
stay per discharge in days,	denoted	by	AVE_DAYS,	
is a statistically significant predictor.
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More interestingly, the state of New Jersey (State 31)  
reveals	a	notably	greater	increase	of	CCPD	over	the	
years	1990	to	1993.	Frees,	Young,	and	Luo	(2001)	
identify this outlying growth of medical costs and take 
it explicitly into account in their model by incorporat-
ing a state-specific correction term for the time slope 

in	New	Jersey.	Further	analysis	(e.g.,	employing	scat-
ter plots) shows that the second observation of the 
54th state is explained by an unusually high hospital 
utilization	AVE_DAYS.	Thus,	this	data	point	that	has	
large distorting effects on classical estimation proce-
dures, such as REML, has been manually removed by 
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Figure 4. Selected severity predictions based on Hachemeister’s 
model (weighted) and data. The thinner middle line marked by 
s denotes one-, two-, and three-step predictions using REML H.  
The upper and lower lines complete the one standard error 
prediction interval. Predictions from CATL HU are marked by *
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we model the serially uncorrelated error terms by the 
unweighted variance-covariance matrix Ri = s2

eIt×t, 
where eit ~ N(0, s2

e) for all states. This model can 
be	viewed	as	an	extension	of	Hachemeister’s	linear	
trend model in Section 3. It is similar to the preferred 
mixed	linear	model	in	Frees,	Young,	and	Luo	(2001),	
denoted by Model 6. Note, however, that their model 
includes an additional special interaction variable to 
represent the atypical large time slope in State 31 and 
is given by

1 31

_ ,
(4)

1 2 4

3 1 2

CCPD YEAR State

AVE DAYS YEAR
it t

it i i t it

( ){ }= β + β + β =
+ β + α + α + ε

where b2 + b41 {State = 31} + ai2 can be interpreted 
as the New Jersey specific total contribution of the 
regressor	YEAR.

In our analysis, the CATL procedure detects and 
rejects all suspicious data points that have been iden-
tified	by	laborious	graphical	tools	in	Frees,	Young,	and	
Luo (2001) and, therefore, supersedes the modeling  

the	authors	(see	Frees,	Young,	and	Luo	2001,	Table	1,	
Figure	4).	In	Figure	5	we	observe	that	two	other	out-
lying	risks	are	State	40	and	48.	These	states	report	rela-
tively	low	CCPD	over	time	and,	thus,	have	a	distorting	
effect on the estimation of between-state variability.

4.2. Model fitting, outlier detection, 
prediction

For	 CATL	 we	 fit	 an	 error	 components	 model	 of	
the form

ln CCPD YEAR AVE DAYS

YEAR
it t it

i i t it

( ) = β + β + β
+ α + α + ε

_
, (3)

1 2 3

1 2

where b = (b1, b2, b3)′ is the grand location,  
ai = (ai1, ai2)′ are the unobservable random effects, 
and xit = (1, t, AVE_DAYSit) and zit = (1, t) are the 
corresponding explanatory variables for i = 1, . . . ,  
I = 54 states followed over the periods t = 1, . . . , t = 6. 
Frees,	Young,	and	Luo	(2001)	found	that	no	weighting	
by some exposure measure is required to accommo-
date potential heteroscedasticity in the data. Therefore, 
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Figure 5. Multiple time series plot of covered claims per discharge  
(denoted by CCPD) over the years 1990 to 1995
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the Medicare data set containing all 54 states, whereas 
the outlying States 31 and 54 have been deleted for 
approach 2. Note that our REML estimates do not 
incorporate the New Jersey-specific time slope.

Discussion of Table 4
When the entire data set is considered (approach 1)  

we observe that the standard method REML 1 gets 
attracted by the outlying data points and produces 
estimates of fixed effects that differ significantly from 
those	of	Model	6.	For	instance,	b3	is	348.3	for	Model	6	
versus 21.9 for REML 1. Also, REML 1 finds the time 
slope b2 = 675.3 for all states. However, the mean slope 
of the state of New Jersey should be much steeper  
(b2 + b4 = 753.1 +	1540.81)	as	indicated	by	Model	6	
and	Figure	7.	Once	the	States	31	and	54	have	been	
eliminated (REML 2), these standard estimates are 
com parable to those in Model 6 but still do not 
account for the extraordinary increase of hospital 
costs in State 31. As expected, the robust CATL 
procedure provides protection against catastrophic 
events and we do not observe any significant differ-
ences between the estimates obtained when employ-
ing	CATL	1	or	CATL	2.	Also,	Figure	7	shows	that	

of New Jersey-specific covariates. Results of the 
detection process using CATL with equal process 
variances	 are	 visualized	 in	 Figure	 6.	We	 see	 that	
State 31 (New Jersey) having an extraordinary high 
time	 slope,	 States	 40,	 48	 and	 54	 having	 unusual	
low intercepts, and the second observation of the 
54th	 state	 (though	 not	 visible	 in	 Figure	 6)	 have	
been entirely removed.

In Table 4 we provide results of fitted regression 
models	based	on	Equation	(4)	for	Model	6	in	Frees,	
Young,	and	Luo	(2001),	and	on	Equation	(3)	for	the	
CATL approaches 1 and 2. Here, approach 1 denotes 
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Figure 6. Multiple time series plot of covered claims per discharge 
(denoted CCPD) over the years 1990 to 1995 after data cleaning

Table 4. Comparisons of diverse fitted regression  
credibility models

Model

Parameter Estimates of Model Variables

Intercept 
(b1)

Year 
(b2)

Year  
(State = 31) (b4)

AVE_DAYS 
(b3)

Model 6* 4,827 753.1 1,540.81 348.3

REML 1 7,932.6 675.3  21.9

REML 2 5,447.9 744.5 301.8

CATL 1 8.491 0.081 0.061

CATL 2 8.504 0.081 0.059

Source: * Frees, Young, and Luo (2001) using REML.
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ibility adjusted estimates b̂i when using REML 1.  
Likewise, the grand location and credibility-adjusted 
locations are summarized for CATL 1. The result-
ing credibility estimates for the expected CCPDit 
as well as the estimated standard errors for construc-
tion of prediction intervals, are registered over the 
forecasted periods t =	7,	8,	9,	that	represent	the	years	
1996	to	1998.

the robust procedures allow for the greater rate of 
inflation of Medicare costs in New Jersey.  N

For	the	computation	of	one-,	two-,	and	three-step	
predictions	over	the	years	1996–1998,	we	assume	
that the most recent subject-specific average hospi-
tal	utilizations	per	discharge	(AVE_DAYSit) remain 
constant,	i.e.,	AVE_DAYSi6 =	AVE_DAYSi7. Then, in 
Table 5 we give the grand mean b̂ and selected cred-
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Figure 7. The years 1990–1995 represent actual CCPD for 
selected states New Jersey (State 31), Virgin Islands (State 48), 
and “Other” (State 54). For 1996–1998, the middle line, marked 
by s, denotes the one-, two-, and three-step predictions using 
REML. The upper and lower lines complete the two standard 
deviations interval. Predictions and intervals obtained from 
CATL are marked by d

Table 5. Grand parameters, credibility adjusted estimates, and predictions of Medicare data for selected states New Jersey 
(State 31), Virgin Islands (State 48) and “Other” (State 54)

Estimation 
procedure

Grand 
parameters

Credibility Adj. Est. for State 3-step Prediction (est. std. error) for State

31 48 54 31 48 54

REML 1 7,932.6
675.3

21.9

5,954.0
1,781.6

21.9

1,679.3
721.8

21.9

2,592.7
391.5

21.9

18,644 (788.3)
20,426
22,207

7,017 (498.3)
7,739
8,461

5,509 (372.9)
5,900
6,292

CATL 1 8.4904
0.0814
0.0606

8.1043
0.1685
0.0606

7.1184
0.1327
0.0606

7.6646
0.0647
0.0606

19,648 (792.2)
23,269
27,555

6,790 (350.2)
7,766
8,880

5,365 (285.7)
5,729
6,118

Note: For REML fitting, eq. (4.2), we report grand mean, b̂, and corresponding credibility adjusted estimates, b̂i.
For CATL fitting, eq. (4.1), we provide grand location, b̂, and its subject-specific credibility adjusted locations, b̂i.
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(PERYPC)	and	annual percentage growth of popula-

tion	(PERPOP)	on	the	response	NARSP.	The	response	
variable	NARSP	represents	 the	MSA’s	average	sale	
price in logarithmic units and is based on transac-
tions reported through the Multiple Listing Service, 
National Association of Realtors. The balanced data 
set contains I = 36 MSAs with n = 9 annual observa-
tions	each,	over	the	years	1986	to	1994.	We	fit	an	error	
components model of the form

NARSP PERYPC PERPOP

YEAR
it it it

i i it

= µ + β + β
+ β + α + ε ,

1 2

3

where i = 1, . . . , I, t = 1, . . . , ni = n, µ is the popu-
lation grand mean, ai is the metropolitan-specific 
random intercept and b = (b1, b2, b3)′ is the fixed 
effects of time-dependent explanatory variables 
PERYPCit, PERPOPit, and YEARt, respectively. We 
assume that the error terms are serially uncorrelated, 
so that Ri = s2

ei
In×n.

5.1. Data characteristics

In this subsection, we characterize the housing sales 
price data using graphical and common statistical tools. 
Table	6	summarizes	the	response	variable	NARSP,	by	
MSA. We see that MSAs vary in their average and 
median	NARSPs.	In	particular,	average	sales	prices	
recorded for metropolitan areas #3, #5, #6 and #19 
both start and close at comparatively high price levels. 
We also observe that the within-MSA variability (Std. 
Dev.) indicates substantial differences among MSAs. 
For	instance,	we	record	an	extremely	high	variability	
of 0.24 for MSA #29 versus nearly negligible varia-
tions of as low as 0.03 for MSA #32. These MSAs 
are considered to be outlying with respect to their 
unusually high/low within-MSA variability. These 
pat terns are highlighted when considering the total 
variation	of	yearly	percentage-change	 in	NARSP.	
(Note that the total variation of yearly percentage-
change	 in	NARSP	 is	 computed	as	 the	 sum	of	 the	
eight	absolute	percentage-changes	for	each	NARSP	
observed over a 9-year period.)

Discussion of Figure 7
Most of the findings that are outlined in Table 5 for 

the selected states New Jersey, Virgin Islands, and 
“Other”	can	be	visualized	 in	Figure	7.	We	see	 that	
credibility	estimates	for	Virgin	Islands	and	“Other”	
are similar. However, we observe that the predic-
tion intervals obtained from CATL are somewhat 
shorter.	For	instance,	this	is	due	to	the	removal	of	the	
second data point in the 54th state. Let us focus on 
predictions in the state of New Jersey. As indicated 
by results recorded in Table 4, it becomes apparent 
that REML significantly underestimates the inflation 
trend of Medicare costs. In contrast, CATL produces 
suitable	forecasts	for	CCPDs.	We	shall	also	empha-
size that intervals based on CATL are shorter.  N

5. Housing prices in  
U.S. metropolitan areas

In the case study of this section, we analyze annual 
housing prices in U.S. metropolitan statistical areas 
(MSAs). In view of the previous two sections, where 
Section 3 falls directly in traditional property/casualty 
field and Section 4 follows the health insurance prac-
tice, this type of data is not what actuaries concentrate 
on currently in their work. With this choice of data we 
clearly	venture	outside	the	actuary’s	comfort	zone,	but	
hope to provide additional insights, highlight the ver-
satility of these advanced techniques, and to broaden 
their area of application.

In this section, we employ graphical tools and sta-
tistical criteria to

•	 view	data,
•	 find	atypical	data	points,	and
•	 evaluate	the	reliability	of	the	newly	designed	robust	

approach as diagnostic tool.

We also compare fitted parameters of robust CATL 
with classical REML. The data set we consider is taken 
from	Frees	(2004)	and	had	been	studied	originally	by	
Green	and	Malpezzi	(2003).

We investigate the influence of the demand-side vari-
ables annual percentage growth of per capita income 
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Table 6. Summary statistics of average housing sales prices (NARSP), by MSA. Each MSA has n = 9 observations.  
The label * (#) marks outlying MSAs identified by using CATL with identically (non-identically) distributed error terms. 
For selected criteria the top 4 and the bottom 4 ranks are given in parentheses

Summary Statistics of average house sale prices (NARSP), by MSA

MSA Mean Median Minimum Maximum Std. Dev. Total Variation

1 4.41 4.39 4.22 4.61 0.132 0.087

2 4.43 4.43 4.36 4.52 0.055 (33) 0.047 (34)

3*# 5.23 (2) 5.29 (2) 4.91 5.39 0.174 0.127 (4)

4* 4.73 4.82 4.42 4.93 0.200(3) 0.131 (3)

5*# 5.10 (4) 5.18 (3) 4.77 5.23 0.170 0.106

6*# 5.44 (1) 5.54 (1) 5.11 5.56 0.178 (4) 0.097

7 4.53 4.49 4.40 4.76 0.114 0.103

8 4.50 4.49 4.40 4.64 0.090 0.054

9 4.41 4.42 4.28 4.51 0.078 0.051

10 4.24 4.27 4.11 4.33 0.076 0.057

11* 4.73 4.76 4.46 4.97 0.209 (2) 0.119

12 4.31 4.31 4.08 4.51 0.150 0.101

13 4.57 4.57 4.30 4.75 0.155 0.139 (2)

14 4.17 (34) 4.22 3.92 4.34 0.155 0.103

15 4.49 4.49 4.36 4.62 0.087 0.059

16 4.32 4.31 4.18 4.47 0.092 0.067

17 4.61 4.67 4.29 4.72 0.152 0.099

18 4.27 4.35 3.96 4.42 0.172 0.116

19*# 5.17(3) 5.16 (4) 5.08 5.21 0.043 (35) 0.039 (36)

20 4.37 4.38 4.22 4.45 0.077 0.052

21 4.34 4.37 4.16 4.44 0.091 0.086

22 4.23 4.22 (33) 4.03 4.44 0.159 0.098

23 4.37 4.38 4.15 4.57 0.149 0.097

24 4.39 4.39 4.20 4.59 0.149 0.089

25 4.39 4.40 4.18 4.55 0.133 0.085

26 4.16 (35) 4.14 (35) 4.03 4.30 0.111 0.067

27* 4.09 (36) 4.12 (36) 3.97 4.20 0.084 0.097

28* 4.20(33) 4.18 (34) 4.14 4.31 0.054 (34) 0.052

29* 4.40 4.38 4.14 4.76 0.236 (1) 0.142 (1)

30 4.67 4.69 4.41 4.78 0.123 0.087

31 4.38 4.36 4.26 4.47 0.072 0.050 (33)

32* 4.52 4.54 4.48 4.55 0.026 (36) 0.044 (35)

33 4.27 4.26 4.12 4.39 0.096 0.098

34 4.23 4.24 4.15 4.36 0.077 0.075

35 4.31 4.24 4.22 4.59 0.125 0.094

36 4.45 4.44 4.25 4.69 0.165 0.100

Summary Statistics Portfolio

Total 4.48 4.41 3.92 5.56 0.332



Case Studies Using Credibility and Corrected Adaptively Truncated Likelihood Methods

VOLUME 7/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 187

and	7.	We	see	that	not	only	are	overall	NARSP	increas-
ing in time but also that average house sale prices 
increase	for	each	MSA.	Indeed,	as	Figure	8	indicates,	
there is substantial variability among MSAs, not just 
a simple time trend. This plot also reveals that MSAs 
#3, #5, #6, #19, and #27 stay permanently away from 
the majority of data, which is seen from unusually 
high	(low)	subject-specific	intercepts.	Finally,	this	
preliminary analysis will help us to understand how 
few atypical MSAs can have disturbing effects on 
classical estimation of variance components. It turns 
out that the robust CATL procedure can provide major 
improvements in model fit over the non-robust REML.

5.2. Model fitting and outlier detection

We find CATL estimates under the following 
assumptions for residuals: identically distributed, i.e., 
eit ~ N(0, s2

e), and non-identically distributed, i.e.,  
eit ~ N(0, s2

e i
). As discussed in a previous section, this 

assumption is rather significant for detection of atyp-
ical data points. In the current example, the assump-
tion of equal error variances allows us to identify such 

Table	7	provides	summary	statistics	for	NARSP,	
by year. We observe that almost all statistical quanti-
ties increase over time except for the overall variation 
(Std. Dev.) in the data. These do not hint at any signifi-
cant time-dependency.

Figure	8	is	a	multiple	time	series	plot	of	NARSP	
and provides a visualization of the findings in Tables 6  

Table 7. Summary statistics of average housing sales prices 
(NARSP), by Year. Each year summarizes I = 36 MSAs.  
The total summarizes (9  36) 324 observations

Year Mean Median Minimum Maximum Std. Dev.

4.31 4.24 3.92 5.11 0.28

4.36 4.26 3.98 5.21 0.29

4.40 4.32 4.03 5.36 0.33

4.46 4.36 3.98 5.56 0.36

4.50 4.39 3.97 5.56 0.35

4.54 4.45 4.04 5.55 0.34

4.57 4.50 4.12 5.54 0.32

4.60 4.52 4.17 5.52 0.30

4.62 4.56 4.20 5.55 0.29

Total 4.48 4.41 3.92 5.56 0.33
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Figure 8. Multiple time series plot of NARSP over n = 9 years, 
1986–1994. The line segments connect metropolitan statistical 
areas (MSAs).
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6. Summary

In this paper, we have illustrated how corrected 
adaptively truncated likelihood methods, CATL, 
can be used for robust-efficient fitting of general 
regression-type models with heavy-tailed data. We 
have seen that this procedure is a flexible and effec-
tive risk-pricing tool. This has been demonstrated 
through three well-studied examples from the fields 
of property and casualty insurance, health care, and 
real estate. In particular, we have shown the entire pro-
cess of data analysis, model selection, outlier identi-
fication, and the associated statistical inference.

Further,	a	number	of	observations	can	be	made	
based	on	our	analysis.	In	particular,	for	Hachemeister’s	
bodily injury data, we notice that CATL methods  
(a) allow to mitigate heteroscedasticity through explicit 
incorporation of weighting and/or use of logarith-
mic transformation; (b) accommodate within-risk vari-
ability through modeling of subject-specific process 
variance; (c) provide high robustness against outliers  
occurring both within and between risks through adap-
tive detection rules that automatically identify and 
reject excess claims in samples of small size; (d) pro-
vide robust credibility premiums; (e) demonstrate 
efficiency and reliability of detection rules, there-
fore making the use of graphical tools (for identifica-
tion of outliers) and expert judgment (for the choice 
of truncation points) non-essential; and (f) compete 
well against established robust methods. Analysis 
of the Medicare and the house-pricing data sets just 
reinforces our findings.

Furthermore,	for	the	readers	who	are	interested	in	
implementing CATL methods, the matlab computer 
code is available from the authors upon request. Also, 
we shall emphasize again that one should be careful 
about the automatic nature of “data cleaning” and 
model fitting exhibited by CATL methods (see com-
ments c and e above). This aspect of the methodology 
is an important improvement, as it makes the process 
of statistical modeling easier and quicker. However, 
it does not imply that the actuary may now ignore 
such crucial issues as understanding of the practical 

MSAs as outlying when their individual within-subject 
variation is comparatively high or low. By contrast, 
when assuming unequal error variances, the CATL 
procedures only detect those MSAs for which random 
effects appear to be extreme.

Discussion of Table 8
CATL estimates for the grand mean µ̂ are lower 

than those from REML, which was expected. This 
effect can be traced back to the identification and elim-
ination	of	extreme	MSAs	having	rather	high	NARSP	
over time (Table 6). As a result, we record substan-
tially reduced estimates for variance components s2

a 
and s2

e. In particular, when removing MSAs #3, #4, 
#5, #6, #11, #19, #27, #28,	#29, #32 from the data, 
the between-MSA variability ŝ2

a drops dramatically 
from	0.097	(REML)	to	as	low	as	0.018	(CATL,	iden-
tical). This is accompanied by a reduction of the over-
all within-subject variability ŝ2

e from 0.005 (REML) 
to 0.003 (CATL, identical). That is, when assuming 
identically distributed error terms, the CATL methods 
eliminate MSAs where either individual random inter-
cepts are extreme or their within-subject variability 
differs clearly from the most typical one. Note that  
the CATL procedure reliably removes all extraordinary 
MSAs that have been detected using laborious and 
time-consuming	graphical	tools.	For	CATL	methods	
with non-identical error variances the latter type of 
extremes is ignored, hence fewer MSAs are truncated 
from the data, and thus, the estimated variance com-
ponent ŝ2

a is slightly increased to 0.026. Now, only the 
MSAs #3, #5, #6, #19 that have atypical high intercept 
are marked as extraordinary. We see that the estimates 
for fixed effects are of the same magnitude.  N

Table 8. Fitted values for the housing sales price data

Estimation 
Procedure

Fixed Effects
Variance 

Components

µ̂ b̂1 b̂2 b̂3 ŝ2
e ŝ2

a

REML 4.34 -0.01 -0.00 0.04 0.005 0.097

CATL (identical) 4.22 -0.01 0.00 0.04 0.003 0.018

CATL (non-identical) 4.27 -0.01 -0.00 0.04 0.004 0.026
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problem, its context, available data, and the economic 
consequences of the model-based decisions.

Finally,	the	case	studies	in	this	paper	were	focused	
and did illustrate various statistical aspects of the 
CATL approach. What is equally important and inter-
esting is to compare this methodology with some 
well-established	and	actuarially	sound	techniques.	For	
instance, one method that is often used in practice is to 
set the overall portfolio rate level and then use predic-
tive modeling techniques to allocate the rates between 
classes. This will be a topic for future research project.
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A.2. Mixed linear models and credibility

Let Y be an m × 1 vector of total observations. 
Then, conditional on the random effect vectors 
{ai ∈ Rq, i = 1, . . . , I}, the response Y can naturally be 
grouped and decomposed into a set of independent 
ti-dimensional vectors y1, . . . , yI, such that Σ I

i=1 ti = m.  
We consider the following mixed effects model:

y X Z i Ii i i i i= β + α + ε =, 1, . . . , , (5)

where the ti × p matrix Xi and ti × q matrix Zi are 
known designs for the fixed population parameter 
b ∈ Rp and the subject-specific random effects ai ∈ Rq, 

A.1. Data

Table A. Hachemeister’s bodily injury data set comprising average loss per claim, yit, and the corresponding number of 
claims per period, it.

Period

Average loss per claim in State Number of claims per period in State

1 2 3 4 5 1 2 3 4 5

1738 1364 1759 1223 1456 7861 1622 1147 407 2902

1642 1408 1685 1146 1499 9251 1742 1357 396 3172

1794 1597 1479 1010 1609 8706 1523 1329 348 3046

2051 1444 1763 1257 1741 8575 1515 1204 341 3068

2079 1342 1674 1426 1482 7917 1622 998 315 2693

2234 1675 2103 1532 1572 8263 1602 1077 328 2910

2032 1470 1502 1953 1606 9456 1964 1277 352 3275

2035 1448 1622 1123 1735 8003 1515 1218 331 2697

2115 1464 1828 1343 1607 7365 1527 896 287 2663

2262 1831 2155 1243 1573 7832 1748 1003 384 3017

2267 1612 2233 1762 1613 7849 1654 1108 321 3242

2517 1471 2059 1306 1690 9077 1861 1121 342 3425

Source: Hachemeister (1975), Figure 3.

respectively, and ei is a ti-dimensional vector of within-
subject residuals.

Following	the	classical	framework	of	the	model	(5),	
we assume that the random effects and error terms 
are: (a) both normally distributed, (b) both serially 
uncorrelated, and (c) independent of each other. 
More specifically, for i = 1, . . . , I,

0 D 0 R 0N N and Covi q i i i ii
( ) ( ) ( )α ε α ε =τ, , , , , ,∼ ∼

where D is a q × q positive definite variance- 
covariance matrix of the form diag(s 2

a1
, . . . , s 2

aq
) 

and Ri = s 2
eIti×ti

 represents the variance-covariance 
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matrix of the residuals. Here Iti×ti
 denotes the ti ×  

ti-dimensional identity matrix. Hence, in view of 
the assumptions (a), (b), (c), we have the so-called 
hierarchical formulation of the mixed linear model 
(5), for which

∼y X Z RN i Ii i i i i ii
( )α β + α =τ , , 1, . . . , .

This formulation implies the marginal model, yi ~ 
Nti

(Xib, Vi(q)), with the covariance structure Vi(q) = 
ZiDZi ′ + Ri, where q = (s2

a1
, . . . , s2

aq
, s2

e) is a vector 
of variance components implicit in Vi.

The regression parameter b common to all indi-
viduals i is estimated by the generalized least squares 
(GLS)	estimator

X V X X V yGLS i i i
i

I

i i i
i

I

∑ ∑( )β = ′
−

=

−

′
−

=

ˆ . (6)1

1

1
1

1

In the case of known variance components q, this esti-
mator is optimal and coincides with the maximum 
likelihood estimator of b. Then, the random effects 
ai are determined by the best (with respect to the 
mean squared error criterion) linear unbiased predic-
tor	(BLUP)

DZ V y X i IBLUP i i i i i GLS( )( ) ( )α θ = ′ − β θ =−ˆ ˆ , 1, . . . , . (7),
1

In practice, however, the parameter vector q is 
unknown and usually estimated by (asymptotically) 
fully efficient methods: maximum likelihood (ML) 
and	restricted	maximum	likelihood	(REML).	Once	
the estimates q̂ = (ŝ 2

a1
, . . . , ŝ 2

aq
, ŝ 2

e) are available,  
the variance-covariance matrices Vi(q) are estimated 
by Vi(q̂). That is, V̂i = Zi D̂Zi′ + R̂ i, where D̂ = diag 

(ŝ2
a1

, . . . , ŝ 2
aq

) and R̂ i = ŝ 2
eIti×ti

.
It	 turns	 out	 that	 GLS	 and	 BLUP	 correspond	 to	

the classical pricing formulas of credibility theory. 
Indeed, the minimum mean square error predictor of 
the random variable Wi = E(yi,ti +1ai) = xi,ti +1 b + zi,ti +1 ai  
is given by the best linear unbiased predictor

x zW i IBLUP i i GLS i BLUP ii i
= β + α =τ + τ +

ˆ ˆ , 1, . . . , , (8), , 1 , 1 ,

where x′i,ti +1 ∈ Rp and z′i,ti +1 ∈ Rq are known covari-
ates of risk i in time period ti + 1. In the actuarial lit-
erature, WBLUP,i is used to predict the expected claim 
size µi,ti +1 = E(yiti +1ai) of risk i in time ti + 1. As 
is well-known, the objective of credibility is to price 
fairly heterogeneous risks based on the overall port-
folio mean, M,	and	the	risk’s	individual	experience,	m.  
This relation can be expressed by the general cred-
ibility pricing formula

P m M M m M

i I
i i i i( ) ( )= ζ + − ζ = + ζ −

=
1 ,

1, . . . , , (9)

where Pi is the credibility premium of risk i, and  
0 ≤ zi ≤ 1 is known as the credibility factor. A com-
parison	of	equation	(8)	with	(9)	implies	that	xi,ti +1 b̂GLS 
can be interpreted as estimate of M, and zi,ti +1 âBLUP,i 
as predictor of the weighted, risk-specific deviation 
zi(m - M).

A.3. Heavy-tailed mixed linear models

Suppose we are given a random sample (xi1, zi1,  
yi1, ui1), . . . , (xiti

, ziti
, yiti

, uiti
), where xit and zit are 

known p- and q-dimensional row-vectors of explana-
tory variables and uit > 0 some known volume measure. 
Further,	the	observations	yit follow a log-location-scale 
distribution with cdf of the form:

( ) ( )= − λ
σ υ







> = = τ
ε

−
,

0, 1, . . . , , 1, . . . , ,

0 1 2
G y F

log y

y i I t

it

it it

it

it i

defined for -∞ < lit < ∞, se > 0, and where F0 is 
the standard (i.e., lit = 0, se = 1, uit = 1) cdf of the 
underlying location-scale family F(lit, s2

e /uit).	 Fol-
lowing regression analysis with location-scale models, 
we include the covariates xit and zit only through the 
location parameter lit. Then, the mixed linear model, 
given by (5), becomes
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covariance matrices. Hence, from (a′), (b), (c), we 
obtain the hierarchical formulation of the heavy-tailed 
mixed linear model that is given by

∼y X Z Rlog F i Ii i i i i ii
( )( ) α β + α =τ , , 1, . . . , .

Examples of such marginal log-location-scale fami-
lies F include log-normal, log-logistic, log-t, log-
Cauchy, and Weibull, which after the logarithmic 
transformation	become	normal,	logistic,	Student’s	t, 
Cauchy,	and	Gumbel	(extreme-value),	respectively.	
Special cases of the ti-dimensional distributions 
Fti

(li, Ri) are the well-known elliptical distribu-
tions such as multivariate normal (see Section 7.2) 
and	the	heavy-tailed	multivariate	Student’s	t with n 
degrees of freedom.

y X Zlog i Ii i i i i i i( ) = β + α + ε = λ + ε = 1, . . . , , (10)

where log(yi) = (log(yi1), . . . , log(yiti
))′ and li is the 

ti-dimensional vector of the within-subject locations 
lit that consist of the population location b ∈ Rp and 
the subject-specific location deviation ai ∈ Rq. While 
assumptions (b) and (c) in Section 7.2 remain valid for 
random components, in the mixed linear model given 
by (10) we replace (a) by assumption (a′), for which

∼ ∼0 D 0 RN and F i Ii q i ii
( ) ( )α ε =τ, , , 1, . . . , ,

where Fti
 (0, Ri) is the ti-dimensional multivari-

ate cdf with location-scale distributions F(0, s2
e /uit)  

as margins, and D = diag(s2
a1

, . . . , s2
aq

) and Ri =  
s2

e  diag(ui1
-1, . . . , u-1

iti
) are positive-definite variance-




