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A Flexible Framework for 
Stochastic Reserving Models

by Roger Hayne

AbSTRACT

Maximum likelihood estimators provide a powerful statistical 

tool. In this paper we directly deal with non-linear reserving 

models, without the need to transform those models to make 

them tractable for linear or generalized linear methods. We also 

show how the same general approach can be easily adapted to 

provide estimates for a very wide range of reserving methods 

and models, making use of the same framework, and even much 

of the same computer code. We focus on the triangle of incre-

mental average costs, and show how five common methods can 

be set in a stochastic framework.
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1. Introduction

Traditional approaches to estimating unpaid claim 
liabilities, an exercise often referred to briefly as 
“reserving,” have usually been deterministic in nature 
and allowed for the exercise of the practitioner’s judg-
ment in arriving at estimates. In the end, an honest 
practitioner recognized that his or her final estimates 
were just that, and that final payments would likely 
differ, potentially materially. The loss process under 
consideration is generally too complex to be ade-
quately described by a single deterministic forecast-
ing method. Typically, practitioners have used more 
than one forecasting method in reserving exercises 
and in fact, in the United States, Actuarial Standard 
of Practice Number 43 states “The actuary should 
consider the use of multiple methods” in estimating 
unpaid claim liabilities. The divergence of forecasts 
among various methods indicated that the underly-
ing loss process violated the assumptions inherent in 
one or more of the forecast methods. This provided 
the practitioner indications of further qualitative or 
quantitative investigation needed to better understand 
the underlying loss process. Conversely, if different 
methods provided reasonably similar forecasts, then 
the practitioner took some comfort that his or her 
methods captured the critical characteristics underly-
ing the loss process.

There has long been interest in quantifying the 
uncertainty inherent in these traditional estimates. 
Traditional practitioners would often get a qualitative 
sense of the uncertainty in their estimates by review-
ing both the volatility of the data used for forecasting  
and the range of estimates provided by the various  
forecast methods used. However, practitioners have 
sought ways to better describe and quantify this 
uncertainty inherent in reserving projections and have 
turned to statistical approaches for the answer.

Probably the most commonly used of all the tra-
ditional reserving methods is the development factor 
approach, commonly referred to as the chain ladder 
method. This method is straightforward to describe, 
flexible, and easy to implement computationally. It is 

not surprising, then, that it would be one of the first 
methods to be considered in a stochastic framework.

Here we would like to make a clear distinction 
between a stochastic model and a non-stochastic or 
deterministic model. In this paper, we will use the 
term method to denote specific description of a pro-
cess underlying the emergence of amounts over time 
which allows a practitioner to extrapolate from his-
torical experience. For example, the chain ladder 
method assumes that cumulative amounts at one age 
will be a specified percentage of cumulative amounts 
at the immediate prior age. The implementation of 
the method involves studying the triangle of develop-
ment factors sometimes referred to as “link ratios,” 
the ratios of the cumulative amounts at one age to the 
cumulative amounts at a prior age, selecting a repre-
sentative factor for each age, then computing a fore-
cast from the product of the cumulative amounts to 
date with the appropriate selected factors.

By a stochastic reserving model, we mean a math-
ematical statement describing how amounts emerge 
over time along with an explicit statement regard-
ing the uncertainty or variability of the correspond-
ing amounts. For example, the statement of a method 
may be that amounts at 24 months will be the amounts 
at 12 months times a fixed factor. A stochastic model 
based on that statement would be as follows: amounts 
at 12 and 24 months are random variables A12 and 
A24, respectively, with distributions such that E(A24) = 
cE(A12) for some constant c.

In principle, stochastic models describe the full 
probability distribution of possible future claim pay-
ments. However, such models are often too complex 
to allow closed-form calculation of even key quanti-
ties such as the expected value or standard deviation. 
Instead, the widespread availability of inexpensive 
computing power has enabled the use of a number of 
simulation approaches to estimate uncertainty. Prob-
ably the most common tool currently employed is the 
bootstrap applied to the chain ladder model as dis-
cussed by England and Verrall (1999), which provides 
an estimate of the uncertainty of estimates resulting 
from the chain ladder model.
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When reviewing uncertainty in a reserving frame-
work, it is important to recognize precisely what 
sources of uncertainty are being addressed and what 
sources are not. From the reserving point of view, 
total uncertainty can be thought of as having contri-
butions from three sources:

•	 Process	uncertainty—random	fluctuations	inherent	
in any stochastic process, even if the process and all 
its related parameters are known with certainty;

•	 Parameter	 uncertainty—the	 possibility	 that	 the	
parameters of the selected model are estimated 
incorrectly, even if the selected model is correct; and

•	 Model	uncertainty—the	possibility	that	the	amounts	
to be modeled do not arise from the model assumed.

Works such as England and Verrall (1999) con-
sider only a single model, so even though they may 
appropriately take into account process and param-
eter uncertainty, they cannot even begin to account 
for model uncertainty. Just as practitioners apply-
ing traditional reserving methods need to apply a 
variety of methods to assess uncertainty, those using 
stochastic approaches should not ignore model 
uncertainty.

In this paper, rather than relying on linear or  
generalized linear models, as do many of the papers 
using the bootstrap method, we take advantage of 
the broad availability of relatively cheap computing 
power to look directly at non-linear reserving mod-
els and make use of the maximum likelihood estima-
tors (MLEs) to derive estimates of both process and 
parameter uncertainty. We will also use this same 
framework to consider a range of different models 
and begin to explore ways we can at least start to 
recognize model uncertainty in our estimates.

2. Maximum likelihood estimators

Klugman, Panjer and Willmot (1998) present 
a very clear and concise discussion of the MLE 
approach. Rather than repeating that exposition here, 
we will briefly summarize the concept of maximum 
likelihood estimate and the principle conclusions of 

the primary theorem appearing on page 62 of Klug-
man, Panjer and Willmot (1998). We will refer to this 
result as Theorem 1 in what follows.

Suppose we have a sample drawn from a distribu-
tion whose general form is known and described by 
a set of parameters, but the values of those param-
eters are themselves unknown. The task then is to 
estimate those parameters given the sample drawn. 
One approach to this problem is based on the relative 
likelihood of drawing the sample X given a partic-
ular choice of the parameters , calling this likeli-
hood L(X). The maximum likelihood estimator or 
MLE is the value of  that gives the largest value for 
L(X) over all possible choices for . Under some 
mild regularity conditions on the distribution under 
consideration, the MLE has the following asymp-
totic properties as the sample size grows to infinity:

1. It asymptotically tends to the true value of the 
unknown parameters.

2. Its variance asymptotically tends to a value that is 
no larger than the variance of any other estimator 
of those parameters.

3. It asymptotically approaches a Gaussian distribution.

The asymptotic Gaussian distribution has mean  
and covariance matrix equal to the inverse of the Fisher 
information matrix, which has elements given in (2.1).

I X� �Xij

i j

( ) ( )( )= ∂
∂θ ∂θ

−





E ln L (2.1)
2

In practice, both the mean and covariance matrix 
of the limiting Gaussian distribution are calculated 
assuming that the actual parameter values are equal 
to the MLE. We will use this property in incorporat-
ing parameter uncertainty in the stochastic models 
we present here.

3. General stochastic  
reserving model

We will focus on the usual triangular array of 
amounts, where the amount could be claim counts, 
paid losses, or case-incurred losses (paid losses plus 
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incremental severity method discussed by Berquist 
and Sherman (1977), and a variant of the Hoerl curve 
method discussed by Wright (1992).

At this point, we will assume that the reserving 
method can be expressed as a matrix-valued function 
of a parameter vector , as expressed in (3.2).

� . (3.2)A gij ij ( )=

We will turn this simple method or “recipe” into 
a stochastic model by introducing random vari-
ables with specific probability distributions. It is not 
unusual to assume that the variances of the incre-
mental amounts are proportional to a power of their 
expected values (for example, see Venter 2007). We 
will take this same approach. However, since we will 
allow the expected values to be negative, we will, 
without loss of generality, take the variance to be pro-
portional to a power of the square of the mean. Also, 
we are taking the constant of proportionality among 
the variances as an exponential, thereby allowing the 
parameter to take on any value. In addition, we note 
that the variance of an average of a sample indepen-
dently drawn from a population with a finite vari-
ance will be inversely proportional to the number of 
items in the sample, so we will take the constant of 
proportionality to also vary inversely to the number 
of exposures.

Following the notation in Venter (2007), we will 
state our stochastic model as shown in (3.3), sup-
pressing subscripts for the moment and letting w 
denote the natural log of the exposure measure for 
an accident year.

( ) ( )

( )

( )

= µ

= µ = µ
κ

κ−

E ,

Var . (3.3)
2

2

A

A
e

W
e

p

w p

Note that this model includes an implicit structural 
heteroscedasticity. The expected values will differ by 
accident year and development year. Since the vari-
ance is a function of the expected value, it will like-
wise differ by accident and development year. By 

claim adjuster estimates of outstanding losses). In the 
remainder of this paper we will use the term “pay-
ments” for simplicity, but do not intend any loss of 
generality. If we are interested in incurred losses then 
“payments made” during a time span would translate 
to “change in incurred losses” during that time. Simi-
lar adaptations can be made for claim counts or other 
amounts of interest.

We will denote by Cij payments made for expo-
sure period i during development period j. Here the 
time spans are unspecified and can represent quar-
ters, half years, years, or other time spans of inter-
est. Similarly, the exposure period could represent a 
policy period, accident period, underwriting period, 
or other span of interest. As with payments, we will 
simply refer to accident years and annual develop-
ment in what follows.

We will assume that the time span of interest cov-
ers m accident years and n years of development. We 
will denote by ni the age of the most recent available 
experience for accident year i. In the case of a square 
data set with m = n accident years and development 
years, then ni = n - i + 1.

In addition to the basic paid amount data, we will 
assume we have some measure of exposure for each 
accident year, either an exposure count, premium 
amount, or an estimate of ultimate claim counts. We 
note that ultimate claim counts often cannot be known 
with certainty and as such should be treated as random 
variables. We will not make that generalization here 
but rather leave it as a future project. In any event, we 
will denote this measure of relative exposure as Wi for 
accident year i. We will thus focus on the incremental 
averages Aij defined by Equation (3.1).

. (3.1)A
C

W
ij

ij

i

=

The incorporation of this additional exposure infor-
mation widens the variety of methods available for 
analysis. We can now move beyond the simple chain 
ladder to include others, such as a version of the Cape 
Cod variant of the Bornhuetter-Ferguson method, an 



A Flexible Framework for Stochastic Reserving Models

VOLUME 7/ISSUE 2 CASUALTY ACTUARIAL SOCIETY 127

� �A g e gij ij
w

ij

p
i( )( )( ) ( )κ −~ N , . (3.7)2

In formula (3.7) the added constants wi are included 
to reflect the fact that the variance of an average of a 
sample is dependent on the number of elements com-
posing that sample. At this point, if we wanted the 
constant of proportionality to vary by development 
lag we would simply substitute a vector for the con-
stant parameter k.

With observations in a typical loss triangle, we get 
the negative log likelihood function given in (3.8).

�
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The set S in (3.8) denotes the set of all index pairs 
for which data are available. We denote by T the index 
pairs over which we want forecasts. If the data were 
available in a full triangle, with n rows and n columns, 
then S and T would follow the form given in (3.9).

S i j i n j n i

T i j i n j n i n

{ }

{ }

( )

( )

= = = − +

= = = − +

, 1, 2, . . . , , 1, 2, . . . , 1

, 2, . . . , , 2, . . . ,
(3.9)

However, we do not need to restrict ourselves to this 
regular case and will use the more flexible notation.

We select the values of the parameters to be the 
MLEs, the values that minimize the negative log 
likelihood function in (3.8). Let us denote these esti-
mates by ̂, k̂, and p̂. In practice there are a number 
of tools available to estimate these parameters. We 
have used the nlminb function in the package MASS 
written for the statistical programming language and 
environment R (R Core Team 2012) for this pur-
pose, though other tools might be just as useful. We 
used analytic rather than numeric representations for 
the various derivatives to increase the accuracy and 
speed of the calculation.

If we assume that there is no model or param-
eter uncertainty, so that the model parameterized 

combining this structure with two variance param-
eters, k and p, that can be fit to the data, we provide a 
mechanism for the variance structure of the model to 
approximate the variance structure of the data with-
out over-parameterizing our model. We note, though, 
that the formulae we present here can very easily be 
modified to allow k to vary by development period 
if additional control over the heteroscedasticity is 
desired.

We note the incremental amounts A under con-
sideration are averages of a number of observations. 
If we assume the observations are themselves inde-
pendent, then the central limit theorem would imply 
that they have asymptotically Gaussian distributions. 
For this reason, we will assume that the A variables 
are all independent and have Gaussian distributions 
given in (3.4), again suppressing subscripts for the 
moment.

A e w p( )( )µ µκ −~ N , . (3.4)2

Since we are concerned with MLEs, the negative 
log likelihood for this distribution will be key to our 
analysis. The likelihood function for a Gaussian dis-
tribution is given by (3.5).

x p
e

e
w p

x

e
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2
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This gives a negative log likelihood for a single 
variable given in (3.6).
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Using the relationships in (3.2) and (3.4), we have 
the stochastic statement of our reserving model as 
shown in (3.7).
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we have based our model on a Gaussian distribution, 
the conditions of Theorem 1 will be met as long as the 
functions gij are sufficiently regular, which will be the 
case for the examples we will consider. Thus, to esti-
mate the variance-covariance matrix for the param-
eters, we first define the Fisher information matrix as 
the matrix of expected values of the Hessian of the 
negative log likelihood function.

First, the Hessian is the matrix whose element in the 
ith row and the jth column is the second derivative of 
the negative log likelihood function, once with respect 
to the ith variable and once with respect to the jth as 
shown in (3.12), assuming the vector  has k elements.
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Thus the information matrix, which is the expected 
value of this Hessian, evaluated at the parameter esti-
mates is given in (3.13).

with the MLEs gives an exact description of the 
true loss emergence process, then it is straight-
forward to obtain estimates of the distribution of 
outcomes. We have assumed that, for fixed values 
of the parameters, the variables Aij are independent. 
Thus, in the absence of parameter or model uncer-
tainty that could introduce correlations between the 
variables, we can conclude that the distribution of 
average future payments for each year is given by 
(3.10) and that the distribution of total future pay-
ments is given by (3.11).
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This then gives the effect of process uncertainty 
on the total forecast incremental averages by acci-
dent year. This does not, however, address the issue 
of parameter uncertainty.

Just as the standard error provides insight into 
parameter uncertainty in usual regression applications, 
the information matrix can be helpful in estimating the 
variance-covariance matrix of the parameters. Since 
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sion for uncertainty in those estimates in the final 
forecast.

This then sets a general framework that can be 
applied to any loss model that is sufficiently differ-
entiable. The next section of this paper will look at 
five specific examples of commonly applied reserv-
ing methods adapted to this framework.

4. Example models

In this section we will show how five commonly used 
reserving methods can be readily adapted to stochastic 
models in this framework. The five models we select 
are a variant of the Bornhuetter-Ferguson method that 
is akin to the Stanard-Buhlmann or Cape Cod method, 
a variation of the incremental severity model presented 
by Berquist and Sherman (1977), two variations of the  
Hoerl curve models presented by Wright (1992), 
and a formulation of the traditional chain ladder or 
development factor method.

We will show the application of these five models 
to aggregate commercial automobile liability paid loss 
and defense and cost containment expenses, net of 
reinsurance, as reported in the 2010 Schedule P by ten 
U.S. insurers all writing $50 million or more in net pre-
miums for that line in 2010, as shown in Table 1. We 
used a standard chain ladder applied to reported counts 
for these carriers to derive the claim count estimates.

4.1. Cape Cod model

Bornhuetter and Ferguson (1972) estimate the future 
incurred losses for an accident year as a percentage of 
an a priori estimate of ultimate losses for that year. The 
percentage is based on historical incurred loss devel-
opment patterns, and the a priori estimate is based on 
a selected loss ratio times the premiums for that year. 
The distinguishing feature of the Cape Cod variant  
of this method, as presented, for example, by Stanard 
(1985), is that it derives the a priori loss estimates 
directly from the data. We will use the term “Cape 
Cod” in this paper to refer to an approach that has the 
same general structure of the Bornhuetter-Ferguson 
approach but derives its a priori ultimate estimates by 

We show these expectations, along with both the 
elements of the gradient and the Hessian of the nega-
tive log likelihood function in terms of the general 
model functions gij in Appendix A to this paper. The 
inverse of the information matrix is then an approxi-
mation for the variance-covariance matrix for the 
parameters. In particular, then, an estimate of the 
standard error of the various parameters is given by 
the square root of the diagonal of that matrix, that is 

by �diag ˆ, ˆ , ˆ .
1

I p( )( )κ
−

 If we are willing to assume, 

by virtue of Theorem 1 above, that the parameters 
asymptotically have a multivariate Gaussian distri-
bution with expected value (̂, k̂, p̂) and covariance 
matrix l(̂, k̂, p̂)-1, then the problem of estimating the 
distribution of reserve forecasts reduces to estimating 
the distribution of a random variable whose param-
eters have a known distribution, a classical problem 
of estimating a posterior distribution.

There are a number of approaches that can be 
applied to that problem. Given that we have not 
placed any real restrictions on the general expected 
value model, other than having the second derivatives 
existing, an analytic solution is not easy to obtain. A 
Markov chain Monte Carlo (MCMC) method such 
as the Gibbs sampler as discussed by Scollnik (1996) 
or the Metropolis-Hastings algorithm as discussed 
by Meyers (2009) could be used for this purpose. 
However, our assumption that the parameters have 
a multivariate Gaussian distribution makes a more 
straightforward approach available. We use direct 
Monte Carlo simulation to estimate the reserve dis-
tribution. We first randomly select a parameter vector 
(*, k*, p̂*) from a multivariate Gaussian distribu-
tion with expected value (̂, k̂, p̂) and covariance 
matrix l(̂, k̂, p̂)-1 and then randomly select Gaussian 
variables R*

i from Gaussian distributions with mean 
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j i j T
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∈
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for each value of i.
At this juncture, if we wished to assume that claim 

counts were stochastic but independent of the incre-
mental severities, we could simulate the ultimate 
number of claims by exposure year to add a provi-
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Just as with the usual Cape Cod method, this model 
uses the data to determine the accident year expected 
loss rather than basing those estimates on sources out-
side the data as in the Bornhuetter-Ferguson method. 
It therefore allows a separate loss level for each acci-
dent year. Table 2 shows the parameter estimates for 
this model.

In addition to the parameter estimates, Table 2 shows 
estimates of the standard error of the parameters, taken 
as the square root of the diagonal of the covariance 
matrix for the parameters. The standard error is a mea-
sure of the standard deviation of particular parameters 
given the observed data. A large standard error rela-

accident year from the loss and exposure data alone, 
without reference to outside information. The spe-
cific model we use may not necessarily correspond 
to others used that are also called Cape Cod.

To this purpose, then, we will assume that the 
incremental average amounts are the product of two 
different factors, one representing the accident year 
influence, usually taken as the ultimate losses for 
the year, and the other corresponding to the lag, usu-
ally taken as the percentage of losses emerging that 
year. With this simple formulation, there are infinitely 
many sets of parameters that give the same model, 
since multiplying all the accident year parameters by a 
constant and dividing all the development year param-
eters by the same constant gives the same result. For 
that reason we selected the slightly more complicated 
parameterization for this model shown in (4.1) with a 
total of m + n - 1 parameters.

Table 1. 2010 Schedule P commercial automobile liability data for selected companies

Cumulative Average Paid Loss & Defense & Cost Containment Expenses per Estimated Ultimate Claim

Accident
Year

Months of Development Count
Forecast12 24 36 48 60 72 84 96 108 120

2001 670 1,480 1,939 2,466 2,838 3,004 3,055 3,133 3,141 3,160 39,161

2002 768 1,593 2,464 3,020 3,375 3,554 3,602 3,627 3,646 38,672

2003 741 1,616 2,346 2,911 3,202 3,418 3,507 3,529 41,801

2004 862 1,755 2,535 3,271 3,740 4,003 4,125 42,263

2005 841 1,859 2,805 3,445 3,950 4,186 41,481

2006 848 2,053 3,076 3,861 4,352 40,214

2007 902 1,928 3,004 3,881 43,599

2008 935 2,104 3,182 42,118

2009 759 1,585 43,479

2010 723 49,492

Table 2. Cape Cod model parameter estimates

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

Parameter 620.07 1.1603 1.1232 1.3222 1.3757 1.5208 1.5333 1.5800 1.1695 1.1635 1.1805

Std. Error 30.048 0.066 0.064 0.072 0.075 0.082 0.084 0.091 0.082 0.105 0.041

q12 q13 q14 q15 q6 q17 q18 q19 k p AIC

Parameter 1.063 0.838 0.534 0.284 0.111 0.067 0.015 0.024 13.105 0.435 619.32

Std. Error 0.040 0.036 0.029 0.023 0.016 0.016 0.009 0.017 1.010 0.083
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AIC is twice the negative log likelihood valued at the 
selected parameters plus twice the number of param-
eters estimated. Thus a smaller value of the AIC tends 
to indicate a better fit.

Table 3 shows the expected average cost forecasts 
as well as indicated standard deviations by cell implied 
by the model, but ignoring parameter uncertainty.

As mentioned above, we make use of the Fisher 
Information Matrix to estimate covariance among the 
parameter estimates. Thus the distribution of fore-
casts from the Cape Cod method reflects both the pro-
cess uncertainty shown in Table 3 and the parameter 
uncertainty captured by the Fisher information matrix. 
Table 4 summarizes the forecasts for total future pay-
ments, both by accident year and in total as well as 
forecasts for the next calendar year. In this table we 

tive to a parameter estimate may indicate significant 
uncertainty around that estimate.

We would also like to be able to compare the fits of 
different models to get an assessment of which mod-
els seem to better reflect patterns in the observed data. 
One measure that is comparable among models is the 
likelihood of the data given the fitted model. How-
ever, one can often increase this likelihood by adding 
parameters to a model, so a useful comparison should 
also take into account the number of parameters nec-
essary to obtain a particular fit. The Akaike Informa-
tion Criterion (AIC; see, for example, Venables and 
Ripley 2002), is one such statistic that addresses both 
of these points, particularly when comparing mod-
els with the same underlying probability structure as 
we are doing here. As used in these calculations the 

Table 3. Cape Cod model estimates

Accident
Year

Months of Development

24 36 48 60 72 84 96 108 120 Total

Forecast Expected Average Losses

2001

2002 17.47 17.47

2003 10.70 16.91 27.61

2004 55.18 12.60 19.90 87.68

2005 94.63 57.41 13.10 20.71 185.85

2006 268.01 104.62 63.47 14.49 22.89 473.48

2007 507.50 270.22 105.48 63.99 14.61 23.08 984.87

2008 820.62 522.95 278.44 108.69 65.94 15.05 23.78 1,835.47

2009 770.74 607.41 387.08 206.10 80.45 48.81 11.14 17.60 2,129.33

2010 851.72 766.81 604.31 385.10 205.05 80.04 48.56 11.08 17.51 2,970.19

Forecast Standard Deviation

2001

2002 12.37 12.37

2003 9.61 11.73 15.17

2004 19.52 10.26 12.52 25.36

2005 24.91 20.04 10.54 12.86 36.04

2006 39.79 26.43 21.26 11.18 13.65 55.18

2007 50.45 38.35 25.47 20.49 10.78 13.15 73.31

2008 63.27 52.01 39.53 26.26 21.13 11.11 13.56 98.55

2009 60.59 54.63 44.91 34.14 22.67 18.24 9.59 11.71 104.47

2010 59.32 56.67 51.09 42.00 31.92 21.20 17.06 8.97 10.95 114.30
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As with other stochastic models, it is often helpful 
to visualize the model’s fit both in terms of standard-
ized residuals and Q-Q plots. The former help inform 
if the model is missing significant patterns in the data, 
while the latter test how well the model captures the 
statistical characteristics of the data. Generally, a Q-Q 
plot that follows a straight line indicates that the actual 
variability observed in the data is consistent with the 
form of the model. Deviation from a straight line may 
indicate the actual data have different “tail” charac-
teristics than what is assumed in the model. Figure 1 
gives four different charts resulting from our Cape 
Cod model fit. Calendar year influences may show in 
the Standardized Residuals by CY plot, while tests of 

show the total estimated future loss payments and 
standard deviation by accident year and in total for all 
accident years implied by the model, both with and 
without consideration of parameter uncertainty. Also 
shown are the results of our simulation of the effects 
of parameter uncertainty on those amounts along with 
the 90% confidence interval implied by that simula-
tion. The lower half of Table 4 shows the same infor-
mation for the payments estimated to be made in the 
next year. This information can provide a test for how 
well emerging data fits the model. If payments next 
year fall outside the range indicated, then there may be 
cause to question whether the Cape Cod model is the 
appropriate one for this data set.

Table 4. Future payment estimates for the Cape Cod model

Accident 
Year

Process Only Including Parameter Uncertainty

Mean
Standard 
Deviation

Percentile

Mean
Standard 
Deviation 5% 95%

Total Estimated Accident Year Unpaid Loss Estimates

2001 0 0 0 0 0 0

2002 675,486 478,362 671,796 696,527 -320,924 1,913,574

2003 1,154,053 633,975 1,152,202 890,392 -222,454 2,664,759

2004 3,705,613 1,071,770 3,699,395 1,426,606 1,397,182 6,059,300

2005 7,709,391 1,494,876 7,677,680 1,917,178 4,559,428 10,852,708

2006 19,040,687 2,219,174 18,975,975 2,776,688 14,419,234 23,599,264

2007 42,938,949 3,196,213 42,875,071 4,099,182 36,166,422 49,674,115

2008 77,307,053 4,150,959 77,161,212 5,779,893 67,818,676 86,842,885

2009 92,581,984 4,542,194 92,324,203 7,389,974 80,291,551 104,664,146

2010 147,002,025 5,656,751 146,768,931 13,408,467 124,818,538 168,746,509

Total 392,115,241 9,434,799 391,306,466 20,297,820 357,781,810 424,885,057

Estimates of Loss Payments in Next Calendar Year

2001 0 0 0 0 0 0

2002 675,486 478,362 671,796 696,527 -320,924 1,913,574

2003 447,277 401,848 447,581 511,066 -294,577 1,335,516

2004 2,332,108 824,843 2,323,106 1,004,849 739,639 4,020,687

2005 3,925,311 1,033,279 3,914,543 1,215,317 1,965,746 5,954,827

2006 10,777,934 1,600,217 10,733,932 1,854,372 7,733,279 13,836,243

2007 22,126,161 2,199,643 22,098,025 2,607,290 17,841,494 26,464,229

2008 34,563,211 2,664,703 34,493,116 3,275,767 29,161,789 39,930,102

2009 33,511,431 2,634,555 33,388,362 3,427,547 27,901,041 39,111,620

2010 42,153,713 2,935,691 42,106,937 4,627,754 34,603,882 49,789,830

Total 150,512,633 5,674,264 150,177,398 7,616,666 137,692,029 162,703,904
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4.2. berquist-Sherman incremental 
severity model

The Cape Cod model has the largest number 
of parameters of the five models we discuss here. 
 Berquist and Sherman (1977) recognized that aver-
age costs may exhibit a reasonably predictable 
trend over the experience period in question. They 
developed methods to model incremental severities 
that allowed for not only different loss levels by 
lag, as in the Cape Cod model, but also different 
trends by payment lag as well. We  simplify their 

how well the model fits in the tail are shown in the 
Standardized Residuals by Lag plot. The normal Q-Q 
plot shows how close to a Gaussian (straight line) the 
standardized residuals fall. Finally, the distributions of 
total reserve forecasts both with (histogram) and with-
out (line) parameter uncertainty are shown graphically.

Appendix B shows the derivatives for this formu-
lation of the Cape Cod model.

All these calculations were carried out using the 
open-source statistical package R. The code used is 
shown in Appendix G of this paper.
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(4.2) for the Berquist-Sherman incremental severity 
model.

� … …g e i m j nij j

i n( ) = θ = =θ + , 1, 2, , , 1, 2, , (4.2)1

Table 5 through Table 7 and Figure 2 show the results  
for this model, similar to Table 2 through Table 4 and 
Figure 1.

approach here somewhat and replace the sepa-
rate loss levels for each accident year by a single 
parameter, trend from one accident year to the next, 
and assume that this trend is constant through the 
entire time frame to be modeled, effectively replac-
ing the m accident year parameters by a single trend 
parameter for a total of n + 1 parameters to be esti-
mated using the data. We thus use the  formulation in 

Table 5. berquist-Sherman model parameter estimates

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

Parameter 620.96 760.66 708.16 553.57 350.00 181.39 70.96 43.88 11.08 15.21 0.0452

Std. Error 40.498 46.552 43.004 35.491 26.169 17.662 10.390 8.735 4.224 7.343 0.0086

k p AIC

Parameter 11.216 0.6539 643.45

Std. Error 1.0368 0.0846

Table 6. berquist-Sherman model estimates

Accident
Year

Months of Development

Total24 36 48 60 72 84 96 108 120

Forecast Expected Average Losses

2001

2002 16.65 16.65

2003 12.69 17.42 30.10

2004 52.57 13.27 18.22 84.07

2005 88.96 55.00 13.89 19.07 176.92

2006 237.91 93.08 57.55 14.53 19.95 423.01

2007 480.27 248.91 97.38 60.21 15.20 20.87 922.84

2008 794.75 502.48 260.42 101.88 62.99 15.90 21.84 1,760.27

2009 1,063.70 831.50 525.72 272.46 106.59 65.91 16.64 22.85 2,905.37

2010 1,195.40 1,112.89 869.95 550.03 285.06 111.52 68.95 17.41 23.90 4,235.12

Forecast Standard Deviation

2001

2002 8.72 8.72

2003 7.02 8.64 11.13

2004 17.69 7.19 8.85 21.05

2005 25.19 18.39 7.48 9.20 33.37

2006 48.67 26.35 19.24 7.82 9.62 59.90

2007 74.00 48.15 26.07 19.03 7.74 9.52 94.80

2008 104.66 77.55 50.46 27.32 19.95 8.11 9.98 144.30

2009 124.63 106.09 78.61 51.15 27.69 20.22 8.22 10.11 192.18

2010 126.08 120.32 102.42 75.89 49.38 26.73 19.52 7.94 9.76 224.31
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with a fixed number of parameters. Wright consid-
ered two similar curves representing loss volume as 
a year aged, using the variable t to represent what he 
calls “operational time.” Two of the curves he con-
sidered are shown in (4.3).

( )

( )( )β + β τ + β τ

β + β τ + β τ

exp ln

exp
(4.3)

0 1 2

0 1 2
2

Both of these are special cases of the form shown 
in (4.4).

( )( )β + β τ + β τ + β τexp ln (4.4)0 1 2
2

3

Appendix C shows the derivatives for this formu-
lation of the Berquist-Sherman incremental severity 
model.

4.3. Wright’s model

The Berquist-Sherman model presented here 
replaced the Cape Cod’s accident year level factors 
with a uniform annual trend. That model still main-
tained separate parameters for each development lag. 
Just as fitting a line replaces a number of points with a 
line defined by two parameters, Wright (1992) made 
use of a curve to replace the multiple lag parameters 

Table 7. Future payment estimates for the berquist-Sherman model

Total Estimated Accident Year Unpaid Loss Estimates

Accident 
Year

Process Only Including Parameter Uncertainty

Mean
Standard 
Deviation

Percentile

Mean
Standard 
Deviation 5% 95%

Total Estimated Accident Year Unpaid Loss Estimates

2001 0 0 0 0 0 0

2002 643,872 334,239 645,956 483,711 -41,004 1,509,475

2003 1,258,405 465,360 1,257,727 654,156 235,852 2,363,675

2004 3,553,041 889,597 3,554,492 1,140,890 1,725,969 5,467,024

2005 7,338,748 1,384,118 7,337,109 1,679,907 4,625,974 10,107,040

2006 17,011,030 2,408,663 17,031,317 2,805,350 12,489,148 21,635,432

2007 40,234,557 4,133,010 40,212,331 4,762,548 32,478,281 48,188,095

2008 74,139,470 6,077,538 74,158,913 7,280,489 62,403,876 86,346,221

2009 126,323,651 8,355,660 126,307,981 10,575,695 109,238,192 143,818,772

2010 209,606,332 11,101,836 209,681,729 15,864,532 184,115,098 236,297,303

Total 480,109,106 15,997,662 480,187,555 29,089,899 433,504,594 528,833,729

Estimates of Loss Payments in Next Calendar Year

2001 0 0 0 0 0 0

2002 643,872 337,239 645,956 483,711 -41,004 1,509,475

2003 530,262 293,501 531,608 374,295 -30,941 1,181,397

2004 2,221,885 747,725 2,221,462 899,807 817,280 3,752,606

2005 3,690,224 1,044,868 3,697,592 1,197,655 1,784,899 5,723,241

2006 9,567,350 1,957,360 9,573,094 2,199,851 6,051,225 13,261,677

2007 20,939,191 3,226,274 20,909,924 3,597,284 15,114,772 26,954,489

2008 33,473,518 4,407,909 33,482,822 4,903,004 25,585,777 41,665,309

2009 46,249,116 5,418,932 46,219,106 6,120,291 36,363,999 56,379,075

2010 59,163,420 6,240,073 59,128,030 7,212,388 47,462,722 71,104,164

Total 176,478,837 10,189,397 176,409,595 12,632,905 156,084,211 197,512,110



Variance Advancing the Science of Risk

136 CASUALTY ACTUARIAL SOCIETY VOLUME 7/ISSUE 2

directly rather than the operational time variant used 
by Wright (1992). If we wished to replace the param-
eter j in (4.5) by a more general operational time 
independent variable tij, the formulae in Appendix D 
still hold with tij replacing j.

Table 8 through Table 10 and Figure 3 show the 
results for this model similar to Table 2 through 
Table 4 and Figure 1.

Appendix D shows the derivatives for this formu-
lation of Wright’s model.

Incorporating this curve with separate level param-
eters by accident year, we call the function in (4.5) 
Wright’s model.

( )( )( )θ = θ + θ + θ + θ
= =

+ + +exp ln ,

1, . . . , , 1, . . . , (4.5)
1 2

2
3g j j j

i m j n
ij i m m m

We note that, in contrast to the prior two models, 
this requires that the expected losses be positive in 
all cells. We also note that we use the formulation 
from England and Verrall (2001), which uses the age 
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Table 8. Wright model parameter estimates

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

Parameter 6.3169 6.4758 6.4403 6.5919 6.6407 6.7428 6.7468 6.7756 6.4808 6.4732 0.1864

Std. Error 0.1674 0.1665 0.1666 0.1662 0.1668 0.1670 0.1660 0.1634 0.1655 0.1836 0.1825

q12 q13 K p AIC

Parameter -0.078 0.2975 14.583 0.3199 612.33

Std. Error 0.0152 0.2322 0.9101 0.0746

Table 9. Wright model estimates

Accident 
Year

Months of Development

Total24 36 48 60 72 84 96 108 120

Forecast Expected Average Losses

2001

2002 3.55 3.55

2003 12.03 3.43 15.46

2004 41.95 14.00 3.99 59.94

2005 112.49 44.05 14.70 4.19 175.43

2006 270.78 124.59 48.79 16.28 4.64 465.08

2007 501.71 271.86 125.09 48.98 16.35 4.65 968.64

2008 806.18 516.40 279.82 128.75 50.42 16.83 4.79 1,803.18

2009 787.26 600.33 384.54 208.37 95.87 37.54 12.53 3.57 2,130.00

2010 847.16 781.34 595.81 381.64 206.80 95.15 37.26 12.44 3.54 2,961.15

Forecast Standard Deviation

2001

2002 11.20 11.20

2003 15.91 10.65 19.15

2004 23.60 16.61 11.11 30.93

2005 32.66 24.19 17.03 11.40 45.52

2006 43.93 34.27 25.39 17.87 11.96 64.89

2007 51.39 42.24 32.95 24.41 17.19 11.50 80.83

2008 60.85 52.77 43.37 33.84 25.07 17.65 11.81 102.92

2009 59.43 54.50 47.26 38.85 30.31 22.45 15.81 10.58 109.68

2010 57.03 55.57 50.96 44.19 36.32 28.34 20.99 14.78 9.89 117.34
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if we wished to replace the parameter j in (4.6) by 
a more general operational time independent vari-
able tij, the formulae in Appendix E still hold with 
tij replacing j.

Table 11 through Table 13 and Figure 4 show the 
results for this model similar to Table 2 through Table 4 
and Figure 1.

Appendix E shows the derivatives for this formu-
lation of the generalized Hoerl curve model.

4.5. Chain ladder model

The fifth model we will consider here is the chain 
ladder. In contrast to England and Verrall (1999), our 
purpose is to state the classical method in a general 

4.4. Generalized Hoerl curve model

Just as the Berquist-Sherman model presented here 
replaced the Cape Cod’s accident year level factors 
with a uniform annual trend, we can further refine 
Wright’s model and replace separate accident year 
levels by an expected trended amount. We will use 
the four-parameter curve in (4.4) and incorporate 
trend as well in the model that we call a generalized 
Hoerl curve model shown in (4.6).

( )( )( ) = θ + θ + θ + θ + θ
= =

exp ln ,

1, . . . , , 1, . . . , (4.6)
1 2 3

2
4 5g j j j i

i m j n
ij �

We note that, as with the last model, this requires 
that the expected losses be positive in all cells. Again, 

Table 10. Future payment estimates for Wright model

Total Estimated Accident Year Unpaid Loss Estimates

Accident 
Year

Process Only Including Parameter Uncertainty

Mean
Standard 
Deviation

Percentile

Mean
Standard 
Deviation 5% 95%

Total Estimated Accident Year Unpaid Loss Estimates

2001 0 0 0 0 0 0

2002 137,270 432,966 146,803 500,614 -651,264 952,947

2003 646,137 800,325 678,423 905,856 -784,462 2,165,711

2004 2,533,412 1,306,997 2,600,209 1,478,254 219,628 5,027,027

2005 7,277,123 1,888,006 7,393,861 2,222,554 3,797,995 11,100,278

2006 18,702,982 2,609,470 18,835,439 3,162,250 13,713,787 24,078,401

2007 42,231,067 3,524,225 42,372,657 4,389,321 35,280,203 49,702,153

2008 75,946,730 4,334,693 76,107,096 5,819,740 66,651,205 85,842,577

2009 92,611,271 4,768,645 92,884,369 7,316,102 81,036,320 105,112,191

2010 146,554,330 5,807,424 147,221,999 13,359,651 125,978,317 169,973,663

Total 386,640,322 10,029,257 388,240,855 20,375,406 355,694,226 422,510,275

Estimates of Loss Payments in Next Calendar Year

2001 0 0 0 0 0 0

2002 137,270 432,966 146,803 500,614 -651,264 952,947

2003 502,940 665,167 519,746 733,651 -674,295 1,725,485

2004 1,773,153 997,326 1,792,630 1,079,363 29,163 3,557,836

2005 4,666,383 1,354,560 4,706,444 1,457,674 2,307,722 7,115,227

2006 10,889,367 1,766,422 10,920,602 1,890,455 7,829,137 14,061,135

2007 21,873,673 2,240,328 21,906,284 2,454,013 17,890,404 25,974,136

2008 33,955,023 2,562,715 33,989,988 3,006,619 29,069,635 39,023,999

2009 34,229,549 2,584,086 34,316,900 3,252,448 29,052,654 39,729,019

2010 41,928,126 2,822,425 42,069,559 4,461,885 34,945,491 49,564,857

Total 149,955,483 5,727,985 150,368,956 7,586,869 138,022,721 162,924,093
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Figure 3. Wright model charts

Table 11. Generalized Hoerl curve model parameter estimates

q1 q2 q3 q4 q5 k p AIC

Parameter 6.4977 0.0034 -0.065 0.5984 0.0430 13.142 0.5059 639.71

Std. Error 0.2195 0.2395 0.0185 0.3229 0.0084 1.0148 0.0826
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Table 12. Generalized Hoerl curve model estimates

Accident 
Year

Months of Development

Total24 36 48 60 72 84 96 108 120

Forecast Expected Average Losses

2001

2002 4.39 4.39

2003 14.80 4.59 19.38

2004 43.43 15.45 4.79 63.66

2005 110.84 45.33 16.12 5.00 177.29

2006 245.28 115.70 47.32 16.83 5.22 430.35

2007 468.52 256.05 120.78 49.40 17.57 5.45 917.77

2008 766.66 489.10 267.29 126.09 51.57 18.34 5.68 1,724.73

2009 1,059.53 800.32 510.57 279.03 131.62 53.83 19.15 5.93 2,860.00

2010 1,197.91 1,106.05 835.47 532.99 291.28 137.40 56.20 19.99 6.19 4,183.49

Forecast Standard Deviation

2001

2002 7.68 7.68

2003 13.65 7.55 15.60

2004 23.41 13.88 7.67 28.28

2005 37.97 24.15 14.32 7.91 47.88

2006 57.63 39.41 25.07 14.86 8.21 76.10

2007 76.80 56.57 38.68 24.61 14.58 8.06 107.13

2008 100.24 79.85 58.82 40.22 25.58 15.16 8.38 149.86

2009 116.21 100.83 80.32 59.16 40.45 25.73 15.25 8.43 190.33

2010 115.90 111.31 96.58 76.94 56.67 38.75 24.65 14.61 8.08 216.03

stochastic framework and we are not interested in 
reproducing the selection of classic weighted aver-
age development factors. We note that the chain lad-
der method is equivalent to assuming the incremental 
amounts at a particular age are equal to some factor 
times the aggregate amount for the accident year. So 
far, this is precisely the formulation of the Cape Cod 
model above. That model has m + n - 1 parameters. 
What sets the chain ladder apart, though, is the addi-
tional constraint that the expected amounts to date 
equal the actual amounts to date for each accident 
year. In effect, this constraint fixes m of the param-
eters that reflect accident year levels, reducing the 
 remaining model to n - 1 parameters. The implica-
tion of this formulation is that the risk that the actual  
and expected amounts to date differ is not captured in 
process or parameter uncertainty but rather remains in 
the realm of model uncertainty.

Thus, we formulate the chain ladder model here 
using (4.7). Here we denote the actual average amount 
paid to date per unit of exposure for accident year i by 
Pi and denote by ni the age of the most mature avail-
able entry for that accident year. For example, in a 
complete “square” triangle with annual development 
for m accident years through m years of development 
we have ni = m - i + 1.
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Table 13. Future payment estimates for the generalized Hoerl curve model

Total Estimated Accident Year Unpaid Loss Estimates

Accident 
Year

Process Only Including Parameter Uncertainty

Mean
Standard 
Deviation

Percentile

Mean
Standard 
Deviation 5% 95%

Total Estimated Accident Year Unpaid Loss Estimates

2001 0 0 0 0 0 0

2002 169,866 296,971 188,570 355,767 -379,492 767,244

2003 810,146 652,176 857,782 775,477 -377,190 2,141,572

2004 2,690,392 1,195,121 2,763,349 1,414,141 478,798 5,114,808

2005 7,354,087 1,986,075 7,464,912 2,340,903 3,715,734 11,364,279

2006 17,306,357 3,060,366 17,411,757 3,539,256 11,635,512 23,236,441

2007 40,013,505 4,670,729 40,235,193 5,423,020 31,473,809 49,279,771

2008 72,642,848 6,311,652 72,860,486 7,488,778 60,699,576 85,272,138

2009 124,351,005 8,275,308 124,733,603 10,496,421 107,725,640 142,061,952

2010 207,051,137 10,691,966 207,505,148 15,415,859 182,654,820 233,213,854

Total 472,389,343 16,115,325 473,722,319 29,454,831 426,676,462 523,060,721

Estimates of Loss Payments in Next Calendar Year

2001 0 0 0 0 0 0

2002 169,866 296,971 188,570 355,767 -379,492 767,244

2003 618,476 570,763 645,372 650,329 -398,957 1,719,855

2004 1,835,320 989,529 1,859,707 1,080,411 96,052 3,616,012

2005 4,597,553 1,574,902 4,631,492 1,686,375 1,869,355 7,415,311

2006 9,863,747 2,317,720 9,862,558 2,426,617 5,911,497 13,887,916

2007 20,426,916 3,348,200 20,501,981 3,556,848 14,739,516 26,404,805

2008 32,290,474 4,221,997 32,326,281 4,541,447 24,882,439 39,820,696

2009 46,067,803 5,052,593 46,113,592 5,530,294 37,072,543 55,181,750

2010 59,287,652 5,736,070 59,368,323 6,572,320 48,655,391 70,225,964

Total 175,157,807 9,834,234 175,497,877 12,385,515 155,435,156 196,021,497
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tions to the emergence of reported claims over time, 
similar to the Hoerl curve model presented here, but 
limited to a single accident year. Clark (2003) also 
used parametric curves to model emergence of losses 
but in the context of loss triangles. In the models pre-
sented here, the Berquist-Sherman model can be seen 
as a special case of the Cape Cod where accident 
year variations are replaced by trend. Wright’s model 
can be seen as another special case of the Cape Cod 
where the development year variations are replaced 
by a smooth curve. The Hoerl curve model can be 

Table 14 through Table 16 and Figure 5 show the  
results for this model, similar to Table 2 through Table 4 
and Figure 1.

Appendix F shows the derivatives for this formu-
lation of the chain ladder model.

5. Some other MLE applications

This is not the only paper to discuss the use of MLEs 
in the context of actuarial projections. Weisner (1978) 
shows the use of MLEs in fitting probability distribu-

Figure 4. Generalized Hoerl curve model charts
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Table 14. Chain ladder model parameter estimates

q1 q2 q3 q4 q5 q6 q7 q8 q9 k p AIC

Parameter 0.1955 0.2307 0.2077 0.1637 0.1043 0.0555 0.0217 0.0132 0.0030 13.074 0.4378 599.37

Std. Error 0.0049 0.0052 0.0052 0.0051 0.0047 0.0040 0.0031 0.0030 0.0018 1.0074 0.0824

Table 15. Chain ladder model estimates

Forecast Expected Average Losses

2001

2002 17.39 17.39

2003 10.71 16.89 27.59

2004 55.46 12.69 20.00 88.15

2005 94.70 57.55 13.16 20.76 186.17

2006 267.91 104.51 63.51 14.53 22.91 473.36

2007 507.58 270.22 105.41 64.05 14.65 23.10 985.01

2008 821.57 523.52 278.70 108.72 66.07 15.11 23.83 1,837.52

2009 772.46 608.70 387.88 206.49 80.55 48.95 11.20 17.66 2,133.88

2010 853.88 768.69 605.74 385.99 205.48 80.16 48.71 11.14 17.57 2,977.36

Forecast Standard Deviation

2001

2002 12.25 12.25

2003 9.53 11.63 15.04

2004 19.47 10.21 12.46 25.27

2005 24.84 19.98 10.47 12.78 35.91

2006 39.78 26.35 21.18 11.11 13.56 55.07

2007 50.54 38.35 25.40 20.42 10.71 13.07 73.29

2008 63.48 52.12 39.55 26.19 21.06 11.04 13.48 98.71

2009 60.82 54.79 44.98 34.14 22.61 18.18 9.53 11.63 104.68

2010 59.56 56.88 51.25 42.07 31.93 21.14 17.00 8.91 10.88 114.60

seen as a special case of both of these, with both 
development variations and accident year variations 
replaced by parametric curves. Wright’s model most 
closely tracks the approach taken in Clark (2003).

Instead of a Hoerl curve, Clark considers the 
log- logistic curve and the Weibull curve as cumu-
lative emergence patterns. Clark also presents another 
model, labeled as “Cape Cod,” which assumes con-
stant expected accident year loss ratios. In terms of the 
models we have here, this is quite similar to the Hoerl 
curve model, with the assumption of no trend and using 
premiums as an exposure measure in the denominator.

Instead of allowing the variance of incremental 
amounts to be proportional to a power of the square 
of their mean, Clark requires them to be proportional 
to the mean, resulting in the selection of the over-
dispersed Poisson as an underlying statistical model. 
Given the general framework presented in this paper, 
it would not be difficult to include additional example 
models here. All that would be necessary would be to 
appropriately define the various functions correspond-
ing to (3.2). In the implementation we would need to 
derive the Hessian of those expected value functions 
and to incorporate them in the R code in Appendix G.
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are the underlying distributions of forecast outcomes. 
Under the Hoerl and Berquist-Sherman models, there 
is little likelihood for the bulk of the potential fore-
casts from the Cape Cod, Wright, and chain ladder 
models and the converse is also true. In short, dif-
ferences in the forecasts are likely not due to ran-
dom fluctuations or even parameter uncertainty but 
to differences among the models themselves. This is 
model uncertainty. Although the chain ladder model 
shows the tightest distribution and lowest AIC value, 
care should be taken in jumping to conclusions. As 
mentioned before, the formulation of the chain lad-
der has the requirement that the expected amount 

6. Observations and conclusions

As with traditional analyses, the various stochas-
tic models considered here give different estimates 
of expected total future payments, ranging from 
$388 million for Wright’s model to $480 million for 
the Berquist-Sherman model, and AIC values rang-
ing from 643 for the Berquist-Sherman model to 599 
for the chain ladder model. Comparing the total indi-
cated distributions of projected future payments, as 
shown in Figure 6, provides valuable information.

Figure 6 shows that not only are the expected 
amounts different among the various models but so 

Table 16. Future payment estimates for the chain ladder model

Total Estimated Accident Year Unpaid Loss Estimates

Accident 
Year

Process Only Including Parameter Uncertainty

Mean
Standard 
Deviation

Percentile

Mean
Standard 
Deviation 5% 95%

Total Estimated Accident Year Unpaid Loss Estimates

2001 0 0 0 0 0 0

2002 672,556 473,869 671,147 689,049 -319,900 1,885,721

2003 1,153,495 628,724 1,150,636 885,614 -217,651 2,666,293

2004 3,725,552 1,068,159 3,721,634 1,426,223 1,416,270 6,097,255

2005 7,722,556 1,489,549 7,732,341 1,901,538 4,646,017 10,908,311

2006 19,036,072 2,214,503 19,027,321 2,701,443 14,571,405 23,467,318

2007 42,945,172 3,195,515 42,949,561 3,840,408 36,740,390 49,297,398

2008 77,393,393 4,157,471 77,391,906 4,945,416 69,245,975 85,536,306

2009 92,779,952 4,551,418 92,773,213 5,324,172 84,080,881 101,546,274

2010 147,356,871 5,671,774 147,474,496 7,340,340 135,630,736 159,650,144

Total 392,785,618 9,447,957 392,892,256 15,703,578 367,309,051 418,819,212

Estimates of Loss Payments in Next Calendar Year

2001 0 0 0 0 0 0

2002 672,556 473,869 671,147 689,049 -319,900 1,885,721

2003 447,637 398,443 446,263 502,414 -301,293 1,310,455

2004 2,343,910 823,025 2,339,002 1,004,344 759,164 4,030,521

2005 3,928,277 1,030,573 3,930,214 1,201,908 2,003,801 5,954,578

2006 10,773,902 1,599,744 10,760,299 1,822,639 7,789,085 13,773,068

2007 22,129,708 2,203,317 22,125,964 2,479,555 18,086,585 26,225,425

2008 34,603,222 2,673,798 34,598,460 2,968,528 29,750,109 39,518,563

2009 33,585,957 2,644,331 33,596,235 2,894,785 28,889,389 38,392,903

2010 42,260,699 2,947,786 42,311,316 3,318,030 36,884,904 47,842,602

Total 150,745,869 5,689,259 150,778,901 6,405,816 140,279,071 161,360,024
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Figure 5. Chain ladder model charts
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might give additional insight. One significant advan-
tage these stochastic models have over their non-
stochastic counterparts is the ability to assess new 
data. Table 4, Table 7, Table 13, and Table 16 show 
not only estimates and statistics on total future pay-
ments by accident year, but also estimates and sta-
tistics on forecast payments during the next year. 
If emerging losses deviate significantly, say outside 
the 90% confidence interval shown, then one might 
come to suspect that a particular model may not be 
capturing what is actually going on in the underlying 
data. This observation also opens the way toward a 
potential weighting of the various models as time 
progresses. If we assess that none of these models 
are better than any of the others in deriving an ulti-
mate loss forecast, then a Bayesian outlook would 
say that the model that is a straight average of the  
five might in some sense be better than any of the 
models alone. As losses emerge next year, this same 
Bayesian approach would indicate how to modify 
those a priori weights to reflect how well or how 
poorly a particular model performed in forecasting 
the future. If one applied such a Bayesian evolution 
to a broad stable of models, possibly incorporating 
some not shown here, it is likely that the result-
ing blend could produce forecasts most consistent 
with the underlying data. Models that have a good 
track record of predicting the next diagonal receive 
increasing weight while those with poor records 
receive decreasing weight.

There is still much work to be done. At least until 
the loss-generating process in insurance is under-
stood and can be adequately and accurately modeled, 
there continues to be the need to look at a range of 
potential loss emergence models, not just the results 
from a single one. There also continues to be the need 
to find a way to sort through all those various models 
to best track and predict future payments or claims. 
Frequentist approaches such as those presented here 
by their nature are limited to observed data. They 
can, however, form the basis for a richer analysis, 
incorporating not only data specific to a particular 
situation but also experience from similar situations 
using Bayesian methods.

to date equals the actual amount for each accident 
year, a restriction that the other three models pre-
sented do not have.

Reviewing the data in Table 1 gives some insight 
as to the reason for the differences among the mod-
els. We see average costs steadily increasing through 
accident year 2008 and then dropping off in the most 
recent two accident years. Both the Berquist-Sherman  
incremental severity and the generalized Hoerl 
curve models shown here assume a uniform trend 
throughout. The drop-off in the last two accident 
years increases the errors for these two models and 
hence the standard deviation of the forecasts. The 
Cape Cod, Wright, and chain ladder models all key 
on the amounts to date for the more recent accident 
years and thus their forecasts react to the change in 
the pattern. The fundamental question then becomes 
whether this drop-off is due to some characteristic 
of the underlying data or random noise. If the for-
mer is the case, then the uniform trend assumption 
of the Berquist and Hoerl models would be violated. 
If the latter is the case, then the Cape Cod and chain 
ladder models will be fitting to noise and not sig-
nal. The data alone as presented does not answer this 
question.

In spite of the additional information provided by 
stochastic models, the practitioner is faced with the 
same question that the practitioner of traditional meth-
ods faced: the applicability of a particular model or 
method to a particular data set. Unfortunately, a single 
data set probably is not sufficient to answer the ques-
tion in either situation. This is a significant drawback 
to this or any frequentist statistical approach.

This entire discussion goes to probably the greatest 
source	 of	 uncertainty	 in	 reserving	 projections—the	
question of model uncertainty. We hope the greater 
ease that the approach outlined in this paper gives to 
considering a range of models in reserving exercises 
will make it easier to explore and quantify the issue of 
model uncertainty in the future.

These models applied to a single data set may 
not give insight into model uncertainty.  However, 
successive applications of these models over time 
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Suppressing arguments and parameters, we thus 
have the following first partial derivatives:
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These then give the following second derivatives:

Appendix A. Derivatives of the 
likelihood function

In order to derive estimates of parameter uncer-
tainty, we need the matrix of second derivatives of 
the negative log likelihood function. In this appendix 
we list those derivatives.

Recall from (3.8) the negative log likelihood func-
tion is given by
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Appendix b. Cape Cod model

A variation of the Stanard-Buhlmann Cape Cod 
model can be stated as the following set of functions.
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The information matrix then requires the expected 
values of these derivatives. To this end, recall that 
because of (3.7) we have the following relationships:
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Appendix D. Wright’s model

A generalization of two of the curves used by 
Wright (1992). can be described using the following 
set of functions.
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Appendix C. berquist-Sherman 
incremental average cost model

A simplified model from Berquist and Sherman 
(1977) can be represented using the following set 
of functions.
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The various first and second partial derivatives of 
this function are as follows.
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Appendix E. Generalized Hoerl 
curve model

A generalization of two of the curves used by 
Wright (1992) can be described using the following 
set of functions, replacing separate levels by accident 
year by trend.
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Appendix F. Chain ladder model

The incremental averages from the chain ladder 
model can be described by the following functions.
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Appendix G. R Code

The R code of Appendix G can be found on 
the Variance web site at https://www.casact.org/sites/
default/files/2022-02/Hayne-AppendixG-A-Flexible-
Frameword.txt
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
















0 0 0 0 0 1 0

0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0

0 0 0 0 0 0 0
1 1 1 1 0 0 0

0 0 0 0 0 0 0
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� � �

� � � � � � � � � �
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

































� � �
� � � � � � � � � �
� � �
� � �
� � �

� � � � � � � � � �
� � �
� � �
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=
































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+ −

+

−

0 0 0 0 0 1 1

0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1

0 0 0 0 0 1 1

1 1 1 1 1 0 0

1 1 1 1 1 0 0
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