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Interpolation Along a Curve

by Joseph Boor

ABSTRACT

Actuaries quite often have to interpolate data to obtain quan-

tities such as loss development factors (LDFs) for maturities 

in between the maturities included in a loss development tri-

angle, or increased limits factors for limits between the data 

points used in the increased limits analysis. This paper presents 

an approach that includes the advantages of using fitted curves 

for non-linear data, and that avoids the errors arising from mis-

matches between patterns in the data and patterns inherent to 

the curve family used for interpolation.
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1. Introduction

There are several instances in which actuaries are 
either forced to use fitted curves to interpolate data 
or find them preferable to other forms of analysis 
for interpolation. For example, when analyzing loss 
development for medium tail lines of business, it is 
not unusual to need to convert December-to-ultimate 
loss development factors (LDFs) to factors suitable 
for use with June data. It is not unusual to perform an 
increased limits analysis at a few choice points and 
then interpolate the remaining points.

There are concerns with the use of interpolation on 
insurance claims data. In many of the scientific dis-
ciplines, there are overriding laws that create specific 
forms for mathematical functions that underlie data 
points. So, given such a circumstance, all one need 
do is to determine which member of a family of func-
tions is the specific one that underlies the data, then 
determine the intermediate values directly from the 
fitted curve.

However, in casualty actuarial science, there is gen-
erally no such functional family or form that perfectly 
describes either the pattern of loss development or  
the relative frequency of losses by size. Actuaries often 
attempt to use such models anyway. The Weibull curve 
is often used to model the loss emergence underlying 
loss development factors (see Heyer 2001 for an 
example). Many curve families, including the Pareto, 
lognormal, and gamma (among others) have been used 
to model loss severity distributions (Hogg and Klugman  
1984). Those models are widely known to capture the 
general character of the underlying development or 
severity phenomenon. But they are also known to be 
very imperfect estimators of the values at any particu-
lar point. One need only compare the development tri-
angle of a large insurance company with fully credible 
data to any Weibull curve to see that the fitted curve fits 
the data imperfectly. Similarly, typical fully credible 
short tail data by size rarely follows a perfect math-
ematical severity curve. Therefore, in the less-than-
perfect situations of loss development triangles with 
intermediate credibility, and of long-tail loss sever-
ity data with limited credibility in the upper tail, one 

would not expect perfect compliance with any com-
mon mathematical curve.

The problem that arises in current usage involves a 
trade-off of errors. Using the fitted curve values directly 
as interpolated values creates a distortion because the 
curve is an imperfect fit. Specifically, the curve will 
not match the known values of the phenomenon being 
analyzed. In other words, when the goal is to interpo-
late from loss development factors or increased limits 
factors carefully and reliably calculated at a limited 
set of points, the fitted curve typically does not repro-
duce those carefully and reliably determined data 
points. On the other hand, one could reproduce those 
data points exactly by simply using linear interpolation 
between the known values. One might even use the 
exponential interpolation for loss payouts espoused in 
Berquist and Sherman (1977). But, since either inter-
polation process just involves two data points, it will 
likely miss the general overall shape of the curve that 
the fitted curve captures. This paper offers an alterna-
tive that incorporates what is best in both approaches, 
as an expansion of an analysis presented conceptually 
in a paper by Boor (2006).

2. The formula for interpolation 
along the curve

This alternative method begins by fitting a curve 
from the curve family that is expected to be close to 
the pattern underlying the data. Then each segment 
(between two adjacent actual data points) of the fitted 
curve is adjusted so that the curve exactly matches the 
two actual data points. In other words, if we have actual 
data points d(t0), d(t1), d(t2), . . . , d(tm) and a curve fit-
ted to those points of g(t), and we desire an estimate at 
t*, ta < t* < ta+1, a ∈ 0, 1, 2, . . . , m - 1, we take

d t d t
g t g t

g t g t
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So, the curve is used as a guidepost for the changes 
between the observed points, and the actual observed 
values are maintained.
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Further, if the function approaches zero at infinity, 
values beyond the last observed data point may be 
obtained by extrapolation. If tm is the location of the 
last observation and t* > tm, then we get

( ) ( ) ( )
( )

= × >d t g t
d t

g t
t tm

m

m*ˆ , * ,* (2)

which fits the observed values d(tm) and d(∞) = 0 
exactly. So, a very nice property of this approach is 
that it allows for extrapolation1 as well as interpola-
tion. In fact, an astute observer can see that formula (2)  
is just a special case of equation (1) where d(∞) = 
g(∞) = 0. In fact, as long as d(∞) and g(∞) are known, 
finite and close enough to use g as a basis for approx-
imation with large numbers, formula (2) may be used 
to extrapolate towards infinity when d(∞) ≠ 0.

3. Interpolating loss development 
factors along a Weibull curve

The example below shows how this approach 
may be used in practice. The starting point is a series 
of loss development factors. It should be clear that 
asymptotically the loss development factors will 
converge to unity, since all the claims must eventu-
ally be closed. And it is recognized within the actu-
arial profession that in most circumstances the loss 
development factors decline monotonically toward 
unity as the time since inception gets larger. But the 
loss development factor at time zero is infinity, not 
zero (since typically no claims are even reported at 
the beginning of the process). Further, as time wears 
on, the loss development factors approach unity, not 
zero. So, the loss development factors themselves are 
not an ideal candidate for this type of interpolation/
extrapolation.

But the loss development factors may be read-
ily adapted to the approach in this paper. First, one 
should divide unity by each loss development factor. 
That produces the percentage of ultimate loss that is 

expected to be reported at 12, 24, etc. months into the 
process. Then, the percentage of loss dollars that are 
“IBNR” at a given time value may be computed as

% 1
1

loss development factor
. (3)IBNR = −

So the “%IBNR” values across time begin at unity 
and decline monotonically to zero. Therefore, IBNR 
percentages are a better candidate for the approach 
in this paper.

Next, the question of what class of reference func-
tions are to be used for the interpolation. The type of 
function regularly used by actuaries for this particular 
situation is the family of Weibull distributions, with

% 1 % 1 exp ,

(4)

Reported t IBNR t c tb )() )( (= − ≈ − − ×

and

IBNR t c tb( )( ) ≈ − ×% exp . (5)

A strong rationale for the use of the Weibull distri-
bution is its match to the general reporting pattern of 
claims dollars. The incremental pattern, or the tendency 
for claims dollars to be newly reported at a particular 
time, is the derivative of the cumulative distribution 
function in equation (4), or

Incremental %Reported exp . (6)1t cbt c tb b( )( ) = − ×−

So, this distribution starts low at zero, picks up 
size as t b-1 increases, reaches a maximum, and then 
slowly tails off downward. That behavior is typi-
cal of the reporting pattern of insurance claims. So, 
the Weibull is a good choice for the family of inter-
polating distributions. Next, it is necessary to com-
pute the coefficients b and c that define the specific 
Weibull distribution used in the interpolation. One 
may first take the natural logarithms of both sides of 
equation (5) to get

IBNR t c tb( )( ) ≈ − ×ln % . (7)
1In all but a small minority of actuarial analyses, extrapolation below 
zero is not needed.
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Figure 1 illustrates the relationship between the fit-
ted IBNR, the values interpolated along the curve, and 
the data points that are being interpolated. The thin line 
represents the fitted curve, the thick line represents the 
values interpolated along the curve, and the diamonds 
are the actual values of the data that are to be inter-
polated. As one may see, the fitted curve provides the 
general shape, but the interpolation hits the actual val-
ues exactly.

4. Interpolating increased limits 
factors along a Pareto curve

Next, an example involving increased limits fac-
tors will be performed. In this case, the loss severity 
curve will be assumed to follow a Pareto distribution.3 
A little background is needed, though, to introduce 
the Pareto-based function for the increased limits 
factors. Mathematically, if the severity distribution 
is a Pareto distribution with parameter a and trunca-
tion point T, then, using the notation in Boor (2012) 
of E[Xc(L)] for the mean value of losses capped at L, 
and sX(x) and FX(x) for the loss severity function and 
its cumulative distribution function,

∫( ) ( ) ( )( )[ ] = + −E X L xs x dx L F Lc x X

L

1 . (9)
0

Substituting in the specific functions associated with 
the Pareto distribution yields

E X L x
T

x
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T
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Then, if ILF(L, B) represents the increased limits fac-
tor relating costs associated with a limit of L to costs 
associated with a basic limit B, it has the value

, . (11)
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Then the sign of both sides may be switched, and 
another natural logarithm applied to produce

IBNR t c b t( )( )( ) ( ) ( )− ≈ +ln ln % ln ln . (8)

Then, ln(c) may be estimated as the intercept of a 
regression line and b as the slope of the same regres-
sion line.2 The value of c may be determined by simply 
using the exponential function to invert the logarithm.

One may see the process of conversion to %IBNR, 
to curve fitting, and then converting back to loss devel-
opment factors in Table 1. The c and b parameters are 
estimated by transforming the time and %IBNR val-
ues as noted in the table with the precise computations 
noted at the bottom.

For the sake of completeness, two technical items 
deserve mention that do not directly relate to the pro-
cess of interpolating along the fitted curve, but do 
relate to the process of interpolating loss develop-
ment factors. First, the number of months since the 
accident year began in the first column is converted 
to the average number of months of maturity of the 
losses in the data. This makes it possible to determine 
a loss development factor for an odd-shaped year. For 
example, if a company began writing policies at the 
beginning of the calendar year and sold them at a con-
tinuous rate, their accident year would have a triangu-
lar shape weighted towards the end of the year, with 
an average loss maturity of four months. So, the loss 
development factor corresponding to four months 
maturity could be used for that company.

Second, an adjustment is included to convert the 
loss development factors for stub periods (periods of 
loss data of less than a year in duration) to develop-
ment factors suitable for a full year. This adjustment 
is necessary because the basis for all the fitted fac-
tors are loss periods that do not include losses that 
have not occurred as yet. Field experience with this 
methodology suggests that the adjustment is indeed 
necessary.

2This regression method for determining the Weibull coefficients is not 
espoused to be new or innovative. It is not espoused to be developed by 
this author. Actuaries working in this area are aware that this method has 
been in use for at least 25 years.

3Review of fits to the sample data using the one-parameter Pareto dis-
tribution suggests that it often provides a poor fit to the data points.  
Although the curve is adjusted to exactly fit the points, the one param-
eter was rejected on aesthetic grounds.
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Table 1. Example: Interpolation of loss development factors using interpolation of %IBNR along complement  
of Weibull cumulative distribution

Months 
Since AY 
Began

Avg. Loss 
Maturity 
in Mos.

Actual 
L.D.F.

Actual % 
Reported

Actual % 
IBNR ln (IBNR)

ln  
(-ln (IBNR))

ln 
(Mos.)

Fitted 
Weibull 
IBNR

Interpolated 
Along 
Curve

Implied 
L.D.F. for 
Maturity

Implied 
Full AY 
LDF

1 0.5 97.7% 97.9% 47.806 573.673

2 1 95.7% 96.1% 25.349 152.095

3 1.5 93.8% 94.3% 17.559 70.234

4 2 92.0% 92.6% 13.567 40.701

5 2.5 90.2% 91.0% 11.129 26.710

6 3 88.5% 89.5% 9.481 18.963

7 3.5 86.8% 87.9% 8.291 14.213

8 4 85.2% 86.5% 7.389 11.084

9 4.5 83.7% 85.0% 6.682 8.910

10 5 82.2% 83.6% 6.112 7.335

11 5.5 80.7% 82.3% 5.643 6.156

12 6 5.25 19.0% 81.0% -0.211 -1.554 1.792 79.2% 81.0% 5.250 5.250

13 7 76.4% 77.5% 4.437 4.437

14 8 73.8% 74.1% 3.864 3.864

15 9 71.2% 70.9% 3.440 3.440

16 10 68.8% 67.9% 3.113 3.113

17 11 66.4% 64.9% 2.852 2.852

18 12 64.2% 62.1% 2.640 2.640

19 13 62.0% 59.4% 2.464 2.464

20 14 59.9% 56.8% 2.316 2.316

21 15 57.9% 54.3% 2.189 2.189

22 16 56.0% 51.9% 2.080 2.080

23 17 54.1% 49.6% 1.984 1.984

24 18 1.9 52.6% 47.4% -0.747 -0.291 2.890 52.4% 47.4% 1.900 1.900

25 19 50.6% 45.7% 1.842 1.842

26 20 49.0% 44.1% 1.790 1.790

27 21 47.4% 42.6% 1.742 1.742

28 22 45.8% 41.1% 1.699 1.699

29 23 44.4% 39.7% 1.658 1.658

30 24 42.9% 38.3% 1.622 1.622

31 25 41.5% 37.0% 1.587 1.587

32 26 40.2% 35.7% 1.556 1.556

33 27 38.9% 34.5% 1.526 1.526

34 28 37.7% 33.3% 1.499 1.499

35 29 36.5% 32.1% 1.474 1.474

36 30 1.45 69.0% 31.0% -1.170 0.157 3.401 35.3% 31.0% 1.450 1.450

37 31 34.2% 30.5% 1.439 1.439

38 32 33.1% 30.0% 1.429 1.429

39 33 32.1% 29.6% 1.420 1.420

40 34 31.1% 29.1% 1.410 1.410
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Figure 1. Example: Graph of fitted IBNR points, points interpolated along 
curve, and actual IBNR data points

41 35 30.1% 28.7% 1.402 1.402

42 36 29.1% 28.2% 1.393 1.393

43 37 28.2% 27.8% 1.385 1.385

44 38 27.3% 27.4% 1.378 1.378

45 39 26.5% 27.0% 1.370 1.370

46 40 25.7% 26.6% 1.363 1.363

47 41 24.9% 26.3% 1.356 1.356

48 42 1.35 74.1% 25.9% -1.350 0.300 3.738 24.1% 25.9% 1.350 1.350

49 43 23.3% 25.3% 1.339 1.339

50 44 22.6% 24.8% 1.329 1.329

51 45 21.9% 24.2% 1.320 1.320

52 46 21.2% 23.7% 1.310 1.310

53 47 20.6% 23.2% 1.302 1.302

54 48 20.0% 22.7% 1.293 1.293

55 49 19.3% 22.2% 1.285 1.285

56 50 18.8% 21.7% 1.278 1.278

57 51 18.2% 21.3% 1.270 1.270

58 52 17.6% 20.8% 1.263 1.263

59 53 17.1% 20.4% 1.256 1.256

60 54 1.25 80.0% 20.0% -1.609 0.476 3.989 16.6% 20.0% 1.250 1.250

Regression for Weibull parameters

Natural Log of c -3.1240 (Intercept of -ln (-ln (IBNR)) At ln (Time)=0)

c 0.0440 (exp (ln (c)) per ln (c) above)

Power “b” 0.9303 (Slope of -ln (-ln (IBNR)) Across ln (Time))

Table 1. (Continued ) Example: Interpolation of loss development factors using interpolation of %IBNR along complement  
of Weibull cumulative distribution

Months 
Since AY 
Began

Avg. Loss 
Maturity 
in Mos.

Actual 
L.D.F.

Actual % 
Reported

Actual % 
IBNR ln (IBNR)

ln  
(-ln (IBNR))

ln 
(Mos.)

Fitted 
Weibull 
IBNR

Interpolated 
Along 
Curve

Implied 
L.D.F. for 
Maturity

Implied 
Full AY 
LDF
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The result yields the desired estimates of the inter-
mediate increased limits factors, as is illustrated in 
Table 3.

5. Mathematical rationale  
and summary

Again, note that a key assumption in this approach 
is that the data points d(t1), d(t2), . . . are fairly good 
approximations of the true underlying values, if not 
the exact underlying values. Further, it also assumes 
that whatever curve is fit to the data points is a rea-
sonable approximation of the underlying pattern. Pre-
sumably, though, the fitted curve is not the true, more 
complex curve of the underlying phenomenon. Spe-
cifically, as long as the data points d(ti) are known 
to be much higher quality approximations to the true 
underlying phenomenon than the fitted curve values 
g(t1), g(t2), . . . , it is logically preferable to modify the 
curve to match the d(ti)’s exactly.

Another key question to ask involves how the 
mathematics justify this approach, especially when 
the Taylor series-based interpolation processes such 
as linear and polynomial interpolation are so prom-
inent in mathematics. It is important to address why 
interpolation along the curve should be an improve-
ment, in actuarial contexts, over that class of methods. 
First, purely linear approximations deserve attention. 
Obviously, the efficacy of these methods depends on 
the degree to which the character of the fitted curve 
captures the character of the underlying data pattern. 
But it would appear, to the extent that the general 
characteristics of the fitted curve used in the inter-
polation match the data pattern, that in some sense 
the method in this paper captures aspects of the sec-
ond (and possibly higher) derivatives. So, while it is 
unlikely that an exact second derivative match will be 
generated by this approximation, the accuracy result-
ing from this enhancement should usually be superior 
to that of linear interpolation. A secondary consider-
ation results from comparing this methodology to, say, 
cubic splines. While the cubic splines approach has 
more theoretical mathematical support, the method in 

That expression is initially undesirable, because it 
does not lend itself to a simple regression-type calcu-
lation of the parameters. However, most spreadsheet 
software in use today contains goal seek and other 
optimization functionalities. Those may be used in lieu  
of the regression approach used in fitting loss devel-
opment factors.

It may help to provide an example using Pareto inter-
polation along a curve which requires goal seek for 
curve fitting. One might begin with the sample increased 
limits factors for $25,000, $100,000, $500,000 
and $2 million in Table 2. Using equation (11), one  
could compute the increased limits factors that corre-
spond to any assigned values of a and T. As is shown 
in Table 2, one might compute the squared differences 
between the known increased limits factors used as 
input in the process and those computed using the 
assigned values of a and T. Then, the sum of those 
squared differences may be computed, as is shown 
in a subsequent column in the table. The last step 
is simply to execute an instruction that directs the 
spreadsheet goal seek routine to find the values of a 
and T that minimize the sum of squared differences. 
After that, the a and T parameter values for the  
fitted curve are determined and may be carried to 
the next step.

Having the values of a and T determined, the 
next step is to show the fitted curve values at all the 
desired limit values. After that, one should rotate and  
scale the fitted curves in each interval using equa-
tion (1) so that they match the endpoints exactly. 

Table 2. Example: Determination of Pareto parameters 
from increased limits data

“a” parameter to use = 1.103 
Truncation point “T” to use = 15,000

Original 
Limit (“L”)

Actual 
ILF

Fitted Pareto 
Capped 

Expectation
Implied 

Fitted ILF

Squared Diff. 
Actual vs. 

Fitted

$25,000 0.500 22,465 0.55 0.0025

$100,000 1.000 40,857 1.00 —

$500,000 1.500 59,171 1.45 0.0027

$2,000,000 1.750 72,693 1.78 0.0009

Sum of Squared Differences = Minimization Target = 0.0060
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6. Testing

The previous sections provide a strong argu-
ment that interpolation along a curve provides an 
improved prediction of loss development factors and 
increased limits factors at intermediate input val-
ues. However, it is relevant to provide some actual 
field testing of the efficacy of this approach. To 
that end, three major data sets were collected. First, 
industry aggregate development triangles for vari-
ous Schedule P lines of business as of 12/31/2003 
were provided by (and consequential data used here 
by permission of ) the National Association of Insur-
ance Commissioners. Secondly, 10 Schedule P tri-
angles, each from a company with a limited volume of 
development data, were selected. Lastly, the National 
Council on Compensation Insurance provided two 
sets of seven copyrighted excess loss ratios, seven 
for 2007 and seven for 2008 (and gave permission 
for their use). Using those datasets, loss develop-
ment factor and increased limits factor datasets were 
determined. Then, one may evaluate the accuracy of 
various approaches to interpolation by eliminating, 

this paper will work better in an actuarial context for 
four reasons:

• As long as the value at infinity is finite, extrapola-
tion along the fitted curve may be used, whereas 
cubic splines are not designed for extrapolation;

• Business audiences are generally not receptive to 
methods that could feature unexplained reversals 
(e.g., a fitted curve going down, then up, then down 
again when locally it should decrease monotoni-
cally) such as can sometimes happen with higher 
order approximations;

• The mathematics of this approach (at least as long 
as the curve fit is susceptible to easy explanation) 
may be presented in a relatively simple spread-
sheet, whereas cubic splines require a more com-
plex spreadsheet; and

• Testing confirms (see section 6) that interpolating 
along the curve generally produces more accurate 
values than pure curve fitting.

So, this approach represents a significant enhance-
ment over curve fitting, linear interpolation and cubic 
splines in a practical actuarial context.

Table 3. Example: Interpolation along the curve to estimate intermediate increased limits factors—given Pareto  
parameters for approximation

(A) 
Limit (L)

(B) 
Original ILF

(C) 
Fitted Pareto ILF a, 

T as Below

(D) 
Original ILF Change 

in Interval

(E) 
Fitted ILF Change 

in Interval

(F) 
Fitted Value Less 
Value at Bottom 

of Interval

(G) 
=Last (B) +(F) × (D)/(E)  

Interpolated Value 
Along Curve

$25,000 0.500 0.550 0.500 0.450 0.000 0.500

$50,000 — 0.783 0.500 0.450 0.233 0.759

$75,000 — 0.912 0.500 0.450 0.362 0.902

$100,000 1.000 1.000 0.500 0.448 0.000 1.000

$150,000 — 1.120 0.500 0.448 0.120 1.134

$200,000 — 1.202 0.500 0.448 0.202 1.226

$250,000 — 1.264 0.500 0.448 0.264 1.295

$350,000 — 1.355 0.500 0.448 0.355 1.396

$500,000 1.500 1.448 0.250 0.331 0.000 1.500

$750,000 — 1.550 0.250 0.331 0.102 1.577

$1,000,000 — 1.620 0.250 0.331 0.171 1.629

$1,500,000 — 1.714 0.250 0.331 0.266 1.701

$2,000,000 1.750 1.779 0.250 0.331 0.331 1.750

“a” parameter used = 1.103

Truncation point “T” used = 15,000
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that curve fit yielded the fitted curve estimates of the 
loss development factors at the intermediate maturi-
ties of 24, 48, 72, and 108. Further, the availability 
of the fitted curve values accommodated fitting along 
the curve as well. Geometric (exponential) interpola-
tion, and linear interpolation of the loss development 
factors were performed. Lastly, linear and geomet-
ric interpolation7 of the percentages paid or incurred 
were performed as well.

Since the goal was to score the various interpolat-
ing methods, two key datasets were created. First, the 
squared error between each estimate and the actual 
value from the curve was computed. Then, for each 
intermediate value, the interpolation method with the 
lowest squared error was determined.

As one may see, the interpolation along the curve 
has a much more consistent success percentage than 
the other other methods. Further, as noted in the last 
column of Table 4, it is not unusual for the Weibull 
interpolation to lie outside the endpoints of the range 
which are to be interpolated. Therefore, there is a 
strong reason to use the fitting along the curve as the 
benchmark interpolation approach.

To provide a more explicit accuracy test, the squared 
errors of each interpolation method for each target 
dataset were computed. Ratios of the squared error 
generated by the various approximations to each inter-
mediate point to the benchmark interpolation along the 
curve were computed. The results were capped from 
below by 5% and above by 2000%,8 and geometric 
averages computed across the intermediate values. The 
results are shown in Table 5.

As one may see, fitting along the curve is more accu-
rate by an order of magnitude compared to the various 
non–curve fit methodologies. The unadjusted Weibull 
curve fit contains 336% as much error (180% as much 
standard error) as the fit along the Weibull curve 
described in this paper. So, the fit along the curve is 
demonstrably superior.

for example, all the even-numbered values and inter-
polating them using the odd-numbered values. Since 
their true values are known, the interpolation error 
could then be computed precisely.

6.1. Test using the NAIC aggregate 
reserving data

One advantage of the NAIC Aggregate Reserving 
data is that any process variance volatility in the link 
ratios due to inadequate premium volume is minimal 
to nonexistent. So, this test measures the quality of 
interpolation of loss development factors when the 
true long-term average value of the loss development 
factors are known. To execute this test, 2003 aggre-
gate industry triangles using Schedule P parts 2, 3, and 
4 were prepared for the homeowners, private passen-
ger auto liability, workers compensation, commercial 
multi-peril, occurrence medical malpractice, claims/
made medical malpractice, occurrence other liabil-
ity, claims/made other liability, occurrence products 
liability, and claims/made products liability. The case 
incurred (Part 2–Part 4) and paid loss and defense, 
and cost containment were entered into different tabs 
in the same workbook. Link ratios were mechanically 
selected as the weighted average of the last three link 
ratios. Tail factors were selected in a fairly mechani-
cal fashion using the Sherman/Boor tail factor algo-
rithm (Boor 2006). In some cases, link ratios below 
unity were observed.4 Up to three link ratios in each 
development pattern might be replaced by factors of 
“1.0001”.5 Consequently, all the paid and incurred 
loss development patterns could be made usable 
except that of the claims made medical malpractice 
incurred loss development. For each paid or case 
incurred development pattern, the factors at 12, 36, 
60, and 84 months were extracted, and then a Weibull 
curve was fit to those extracted factors.6 The results of 

4Note that that link ratios below unity are contrary to the assumptions of 
the Weibull curve.
5It should be noted that use of of these very flat development factors 
tend to generate results that favor linear interpolation. So, should linear 
interpolation arise as the best estimator in conjunction with those factors, 
it should be viewed skeptically.
6Technically, the Weibull curves “f(t)” were fit to 1.0/LDF(t).

7Specifically, this would involve interpolating the percentage paid or in-
curred, “1/LDF(t)” to the time t0, then dividing that percentage paid or 
incurred into unity to get the interpolated loss development factor.
8Note that 2000% is the multiplicative inverse of 5%.
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6.3. Test using NCCI increased  
limits factors

As noted earlier, interpolation along the curve may 
be used to interpolate increased limits factors as well as 
loss development factors. Therefore, it makes sense 
to test interpolation along a curve in the context of 
estimating increased limits factors. To that end, the 
National Council on Compensation Insurance sup-
plied tables of excess loss factors for Florida from 
2007 and 2008, along with permission to use them. On 
review of the data, it was apparent that the 2008 fac-
tors were so close to the 2007 factors that they could 
not truly represent an independent test of the accu-
racy of the various interpolation methods. The NCCI 
data is available at a wide range of attachments and 
for seven hazard groups. To simulate the classic ILF 
interpolation problem, the excess factors were con-
verted to ILFs centered at $250,000. For each of the 
seven hazard groups, ILFs were extracted for $25,000, 

6.2. Test using the small company 
reserving data

As a contrast to the high data volume displayed in 
the NAIC aggregate data, 10 small company triangle 
sets were identified. All the paid loss and DCC trian-
gles were usable, but only seven of the then incurred 
loss triangles could be used. Errors were computed as 
before, and the interpolation methods with the lowest 
errors are shown in Table 6.

As one may see, interpolation along the curve 
does not have as much benefit for small company 
data. Further, Table 7 shows the average error rel-
ative to the interpolation along the curve. Inter-
polation along the curve still produces benefits 
here, but it does not provide the same error reduc-
tion that it does with industry aggregate data. This 
suggests that interpolation along the curve tends 
to work best with larger, more reliable volumes  
of data.

Table 4. Winning percentage of intermediate LDF value estimates from various interpolation methods vs. interpolation  
along the curve using NAIC aggregate data—percentage of the tests in which each method was superior to  
interpolation along the curve

Curve Fit to:
Number of 
Curves Fit

Winning % of 
Interp. Along 

the Curve
Geometric 

Interpolation
Linear 

Interpolation

Linear % Pd  
or Incrd 

Interpolation

Geometric  
% Pd or Incrd 
Interpolation

Unadjusted 
Weibull

Number of 
Times Weibull 
Outside Range

Even Maturity 
Paid LDFs

11 73% 6% 6% 11% 0% 18% 1

Odd Maturity 
Paid LDFs

11 77% 5% 5% 9% 2% 14% 5

Even Maturity 
Incrd LDFs

10 58% 13% 10% 15% 3% 30% 1

Odd Maturity 
Incrd LDFs

10 68% 18% 15% 25% 5% 18% 3

Straight Average 69% 10% 9% 15% 3% 20%

Table 5. Geometric average ratio of error of intermediate LDF value estimates from various interpolation methods vs. interpolation 
along the curve per NAIC aggregate data—geometric average of ratio of squared error of various methods to squared error of 
interpolation along Weibull curve (individual ratios in average capped at 2000% above and 5% below)

Curve Fit to:
Number of 
Curves Fit

Geometric 
Interpolation

Linear 
Interpolation

Linear % Pd or 
Incrd Interpolation

Geometric % Pd or 
Incrd Interpolation

Unadjusted 
Weibull

Even Maturity Paid LDFs 11 1034% 1183% 568% 1781% 316%

Odd Maturity Paid LDFs 11 1277% 2278% 548% 2931% 527%

Even Maturity Incrd LDFs 10 801% 864% 655% 1401% 190%

Odd Maturity Incrd LDFs 10 694% 943% 366% 1904% 386%

Straight Average 935% 1235% 524% 1947% 336%
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curve fit to the data excluding the basic limit forces 
the fitted curve to be a perfect approximation (i.e., 
unity).

The geometric averages9 of the relative squared 
errors of the various interpolation methods are shown 
in Table 9.

$50,000, $75,000, $100,000, $150,000, $350,000,  
$500,000, $750,000, $1,000,000, $2,000,000,  
$3,000,000, $5,000,000, $7,000,000, and $10,000,000 
in addition to the unity ILF at $250,000. As with 
the loss development factor interpolation test-
ing, the increased limits factors were split into the 
odd numbered inputs and even numbered inputs. 
Using standard spreadsheet goal seek software, the 
Pareto-induced ILF that had a basic limit of unity 
at $250,000 and minimized the squared differences 
against the selected ILFs was computed for each 
hazard group, one using the even numbered ILFs, 
and another the odd ILFs. Then, as with the devel-
opment factors, the accuracy of the various methods 
at filling in the (known) intermediate values was 
computed.

For reference, the percentage of the time that each 
method was the best estimate is shown in Table 8.

Note that interpolation along the curve is clearly 
preferable, in spite of the fact that the nature of the 

Table 6. Winning percentage of intermediate LDF value estimates from various interpolation methods vs. interpolation along the 
curve from small company data—percentage of the tests in which each method was superior to interpolation along the curve

Curve Fit to:
Number of 
Curves Fit

Winning % of 
Interp. Along 

the Curve
Geometric 

Interpolation
Linear 

Interpolation

Linear % Pd  
or Incrd 

Interpolation

Geometric  
% Pd or Incrd 
Interpolation

Unadjusted 
Weibull

Number of 
Times Weibull 
Outside Range

Even Maturity 
Paid LDFs

10 38% 27% 23% 33% 7% 43% 3

Odd Maturity 
Paid LDFs

10 50% 20% 20% 25% 8% 30% 4

Even Maturity 
Incrd LDFs

7 43% 38% 33% 29% 19% 36% 3

Odd Maturity 
Incrd LDFs

8 28% 28% 28% 34% 9% 38% 5

Straight Average 40% 28% 26% 30% 11% 36%

Table 7. Geometric average ratio of error of intermediate LDF value estimates from various interpolation methods vs. interpolation 
along the curve per small company data—geometric average of ratio of squared error of various methods to squared error of 
interpolation along Weibull curve (individual ratios in average capped at 2000% above and 5% below)

Curve Fit to:
Number of 
Curves Fit

Geometric 
Interpolation

Linear 
Interpolation

Linear % Pd or 
Incrd Interpolation

Geometric % Pd or 
Incrd Interpolation

Unadjusted 
Weibull

Even Maturity Paid LDFs 10 365% 419% 232% 943% 147%

Odd Maturity Paid LDFs 10 473% 658% 302% 1362% 265%

Even Maturity Incrd LDFs 7 238% 255% 336% 423% 110%

Odd Maturity Incrd LDFs 8 341% 406% 177% 1453% 201%

Straight Average 355% 429% 253% 985% 176%

9Capped at 5% from below and 2000% from above.

Table 8. Winning percentage of intermediate ILF value 
estimates from various interpolation methods vs. interpolation 
along the curve

Fitted Curve
Interp. Along 

the Curve
Linear 

Interpolation
Geometric 

Interpolation

12% 81% 7% 0

Table 9. Geometric average ratio of squared errors relative to 
ILF interpolation along the curve

Fitted 
Curve

Interp. Along 
the Curve

Linear 
Interpolation

Geometric 
Interpolation

Ratio of 
Sq. Errors

703% 100% 592% 740%



Variance Advancing the Science of Risk

20 CASUALTY ACTUARIAL SOCIETY VOLUME 8/ISSUE 1

table. As further support for the preference10 for inter-
polation along the curve, the ratios (with capping, as 
before) of the squared error in cubic splines to that of 
interpolation along the curve are shown in Table 11.

It is also relevant to evaluate the relative perfor-
mance against the small company data. The winning 
percentage of cubic splines is shown in Table 12. The 
average error ratio (subject to the previous protocols) 
is shown in Table 13. As one may see, cubic splines 
performed slightly worse (relative to interpolation 
along the curve) on small company data than on the 
NAIC aggregate data.

To complete the review, cubic splines were com-
pared to interpolation along the curve using the same 

As one may see, interpolation along the curve is 
a superior algorithm, at least for the increased limits 
problem analyzed above.

6.4. Comparison to cubic splines

The previous testing presents strong reasons to 
prefer interpolation along the curve to other com-
mon actuarial interpolation methods. However, one 
might argue that numerical analysis, with its focus 
on interpolating polynomials, could offer a superior 
methodology. One could then argue that the adjust-
ments to the fitted curves inherent in interpolation 
along the curve are similar to numerical analysis 
concepts such as linear interpolation. However, it 
makes sense to compare interpolation to a represen-
tative interpolation method from numerical analy-
sis. Therefore, interpolation along the curves is 
compared to interpolation via cubic splines within 
this section. An appendix is included for readers 
who are not familiar with the mathematics of cubic 
splines.

The three data sets used previously were reused in 
this section. The fitting to industry loss development 
data produced the results in Table 10.

As one may see, interpolation along the curve is 
preferable twice as often as cubic spline interpolation. 
Further, in several instances cubic splines inter polation 
suggests negative development when positive devel-
opment is what is actually expected. In one case it 
even indicates that inception-date loss at one devel-
opment stage is negative rather than positive. The 
number of those consistency errors is shown in the 

Table 10. Winning percentage of intermediate LDF value estimates from cubic splines vs. interpolation along the curve using 
NAIC aggregate data—percentage of the tests in which cubic splines was superior to interpolation along the curve

Curve Fit to:
Number of 
Curves Fit

Winning % of Interp. 
Along the Curve

Winning % of 
Cubic Splines

Number of Cubic Splines 
Consistency Errors

Even Maturity Paid LDFs 11 64% 36% 3

Odd Maturity Paid LDFs 11 55% 45% 5

Even Maturity Incrd LDFs 10 75% 25% 1

Odd Maturity Incrd LDFs 10 73% 28% 3

Straight Average 66% 34%

Table 11. Geometric average ratio of error of intermediate 
LDF value estimates from cubic splines vs. interpolation along 
the curve per NAIC aggregate data—geometric average of 
ratio of squared error of cubic splines to squared error of 
interpolation along Weibull curve (individual ratios in average 
capped at 2000% above and 5% below)

Curve Fit to:
Number of 
Curves Fit Error Ratio

Even Maturity Paid LDFs 11 188%

Odd Maturity Paid LDFs 11 133%

Even Maturity Incrd LDFs 10 271%

Odd Maturity Incrd LDFs 10 152%

Straight Average 178%

10It was noted that the best performance of cubic splines was in the rela-
tively “flat” distributions associated with long-tail business. However, 
that is also the broad area where the negative inception-to-date loss esti-
mate was observed. Also, cubic splines can be used when losses develop 
downward, whereas interpolation along a Weibull curve cannot.
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7. Summary

As the the analysis and testing in this paper show, 
interpolation along the curve is an enhancement to the 
use of curves fitted from some family of curves. Such 
a curve fit would often be performed anyway. Fur-
ther, by adjusting the fitted curve to exactly match the 
observed data points, the interpolation along the curve 
should be more accurate11 than curve fitting alone. So, 
use of this method should enhance the quality of actu-
arial predictions.
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Table 12. Winning percentage of intermediate LDF value estimates from cubic splines vs. interpolation along the curve using 
small company data—percentage of the tests in which cubic splines was superior to interpolation along the curve

Curve Fit to: Number of Curves Fit
Winning % of Interp. 

Along the Curve
Winning % of 
Cubic Splines

Number of Cubic Splines 
Consistency Errors

Even Maturity Paid LDFs 10 68% 33% 4

Odd Maturity Paid LDFs 10 63% 38% 5

Even Maturity Incrd LDFs 7 93% 7% 1

Odd Maturity Incrd LDFs 8 75% 25% 3

Straight Average 74% 26%

Table 13. Geometric average ratio of error of intermediate 
LDF value estimates from cubic splines vs. interpolation along 
the curve per small company data—geometric average of 
ratio of squared error of cubic splines to squared error of 
interpolation along Weibull curve (individual ratios in average 
capped at 2000% above and 5% below)

Curve Fit to:
Number of 
Curves Fit Error Ratio

Even Maturity Paid LDFs 10 274%

Odd Maturity Paid LDFs 10 169%

Even Maturity Incrd LDFs 7 201%

Odd Maturity Incrd LDFs 8 142%

Straight Average 193%

NCCI increased limits data that was used in the pre-
vious testing. The winning percentage in this case 
was simply a single number. Specifically, interpola-
tion along a Pareto curve produced more accurate 
answers in 66 (81%) of 77 cases. Further, the overall 
average ratio of cubic splines interpolation error to 
the error of interpolation along a Pareto curve across 
the seven hazard groups is 254%. In summary, inter-
polation along the curve appears to be a much more 
reliable method than cubic splines for interpolating 
actuarial data.

6.5. Summary of testing

The testing generally supports the main thesis of 
this paper—that interpolation along the curve is much 
more accurate and reliable overall than the alternative 
interpolation methods employed by actuaries. Fur-
ther, it also suggests that, for common actuarial appli-
cations, it should be preferred to the standard cubic 
splines method employed by numerical analysts.

11This of course assumes that the actual data values used as input to 
the interpolation are reasonably accurate representations of the values 
of the phenomenon being analyzed. Should their accuracy be poor, the 
curve fitting might be preferable.
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4. The second derivative is zero at the outside end-
points, S″1 (t1) = 0 = S″n-1 (tn).

The equations for the (unique) cubic splines that 
fulfill those conditions are
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(with each Si applying between ti and ti+1).
The Ci’s and li’s of course must still be determined. 

Table 14 shows how the Ci’s and li’s may be computed 
from the ti’s and yi’s using a spreadsheet.

As the table shows, the standard column-by-column 
approach used in actuarial spreadsheets may be used to 
perform cubic splines interpolation. Unfortunately, the 
calculations underlying the a’s, b’s, g’s, and even those 
of the C’s are not intuitive. Further, the a’s, b’s, and g’s 
do not appear to represent any meaningful quantities 
that would lend themselves to column labels. Rather, 
they are simply intermediate calculations. As such, the 
calculations do not lend themselves to a spreadsheet 
format that can be readily understood by lay readers.

Appendix. A Brief Description  
of Cubic Splines

Interpolation using cubic splines is discussed else-
where in this paper, but is not a common tactic for 
casualty actuaries. Therefore, this section presents 
the minimum that an actuary might need to know to 
put this paper in perspective. The interested reader is  
referred to a numerical analysis text such as Kincaid 
and Cheney (2002) for additional background on 
cubic splines.

The “natural” cubic spines interpolation between 
the values y1, y2, . . . , yn at the “node” points t1, t2, . . . , tn.  
a set of 3rd degree polynomials, defined in each inter-
val [ti, ti+1] such that for each interval:

1. For the ith interval, a polynomial of degree three 
or less, Si(x), interpolates y(x) for x values be-
tween ti and ti+1;

2. Each Si(x) matches y(x) perfectly at the endpoints, 
e.g., Si(ti) = yi and Si+1(ti+1) = yi+1;

3. The combined splines have continuous first and sec-
ond derivatives across the endpoints, e.g., S′i(ti+1) =  
S′i+1 (ti+1) and S″i (ti+1) = S″i+1 (ti+1); and,

Table 14. Derivation of cubic spline constants, li’s and Ci’s, from the input t i’s and yi’s

Index i ’s 
(Data)

Known Inputs 
t i’s (Data)

Known Values 
y i’s (Data) Step Sizes li’s ti+1 - ti

Formula ai’s  
6[yi+1 - yi ]/ li

1 $25,000 0.32 $50,000 0.0000336000

2 $75,000 0.60 $75,000 0.0000160000

3 $150,000 0.80 $200,000 0.0000090000

4 $350,000 1.10 $400,000 0.0000037500

5 $750,000 1.35 $1,250,000 0.0000010704

6 $2,000,000 1.57 $3,000,000 0.0000002540

7 $5,000,000 1.70 $5,000,000 0.0000000720

8 $10,000,000 1.76

Index i ’s 
(Data)

Starting b 
2.0[l2 + l1]

Starting g 
a2 - a1

Formula bi’s  
2.0[li + li-1] - l2

i-1 /bi-1

Formula gi’s  
ai - ai -1 - li -1 gi -1 /bi-1

Method’s Starting 
C’s (Data)

Final Values Ci’s 
[gi - liCi+1]/bi

1 0 0.00000E+00

2 $250,000 (0.0000176000) $250,000 (0.0000176000) -6.98744E-11

3 $527,500 (0.0000017200) -1.75189E-12

4 $1,124,171 (0.0000045979) -3.97940E-12

5 $3,157,673 (0.0000010436) -3.10861E-13

6 $8,005,174 (0.0000004033) -4.95999E-14

7 $14,875,727 (0.0000000309) -2.07502E-15

8 0 0.00000E+00




