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Splines for Regression Models
• Fit curves across row parameters, column parameters, etc.
• Can get good models with fewer parameters
• But  usually, parametric curves will not capture important effects
• Splines piece together curves out of components – linear or cubic
• Smoothing splines increase smoothness of the splines by imposing 

constraints, like minimizing a selected λ times a roughness measure
• E.g., the sum of squared 2nd or 3rd differences of the curve:

• Whittaker, E.T. (1922). "On a new method of graduation". Proceedings of the 
Edinburgh Mathematical Society. 41: 63–75.

• For cubic splines, the integral over the continuous curve of its squared 
2nd derivative has become a popular roughness measure

• For linear splines, the sum of the squared 2nd differences is comparable



Why Smoothing?
• Improves accuracy: reduces predictive and estimation variances
• Comes out of actuarial credibility theory – reduce prediction error by 

weighting against grand mean – started by Mowbray 1914 CAS paper
• Stein 1956 showed that for any estimate of 3 or more means, 

weighting against grand mean to some extent reduces error
• Buhlmann credibility is same as James-Stein estimator in simple cases
• 1970 paper brought this to regression by shrinking coefficients:

• Hoerl, A.E., and R. Kennard. 1970. “Ridge Regression: Biased Estimation for 
Nonorthogonal Problems.” Technometrics 12: 55–67.

• Variables first standardized to be mean 0, variance 1, which shrinks 
fitted values to grand mean

• As in credibility, this reduces errors but biases estimates towards that 
mean



Smoothing Splines Use Shrinkage
• Ridge regression minimizes NLL + 𝜆𝜆 ∑𝛽𝛽𝑗𝑗2

• Smoothing splines minimize NLL + 𝜆𝜆∑2𝑛𝑛𝑛𝑛 𝑛𝑛𝑑𝑑𝑑𝑑𝑗𝑗
2 for linear splines or 

NLL + 𝜆𝜆 ∫ 𝑑𝑑𝑓𝑓(𝑥𝑥)2 for cubic splines
• Lasso minimizes NLL + 𝜆𝜆 ∑ | 𝛽𝛽𝑗𝑗|. Can do that for splines also.
• Lasso popular because some coefficients shrink to exactly zero, 

eliminating those variables. So used for variable selection as well.
• Problem with all of these, including credibility, is choosing λ.
• Usually done with cross validation: leave out maybe 10% of the 

observations in each of 10 fits, and measure ΣNLL of left out points
• There are problems with that, discussed below



“Bayesian” Version of Shrinkage
• Give the variables shrinkage priors: mode zero priors
• The probability is greatest around zero so parameters closer to zero are 

favored, but further away is ok if it improves the fit enough
• E.g., normal priors, double exponential, t-distributions. σ2, etc. tell how 

much deviation from zero is likely – so controls shrinkage like λ.
• Estimate by MCMC: Markov Chain Monte Carlo estimation
• It’s a collection of numeric methods for sampling from a product of 

two distributions, here the joint likelihood: likelihood times the prior.
• Gives a sample of the distribution of the parameters given the data
• Measures fit by leave-one-out cross validation: every point is used as a 

left-out subsample
• Loo measure can be quickly estimated from the sample of posterior 

fits. Weighting samples more that fit poorly at a point produces a good 
weighted estimate of the likelihood of that point had it been left out.



Not really all that Bayesian
• Priors are not subjective but are part of the postulated model, like 

residual distributions are, and can be tested by model performance
• Parameters here are basically frequentist random effects – frequentist 

parameters are fixed points with estimation variances, but random 
effects are like Bayesian parameters and have postulated distributions

• What Bayesians call posterior distributions are also the conditional 
distributions of the effects given the data

• With normal prior, the parameter NLLs ~ 𝛽𝛽𝑗𝑗
2, so log joint probabilities 

~ data NLL + Σ𝛽𝛽𝑗𝑗
2 and mode gives ridge regression

• With double exponential prior, the parameter NLLs ~ |𝛽𝛽𝑗𝑗| so log joint 
probabilities ~ data NLL + Σ|𝛽𝛽𝑗𝑗| and mode gives lasso. This prior is 
called Bayesian lasso



Cross Validation and Goodness of Fit
• Penalized likelihood measures like the AIC aim to correct for sample bias in 

NLL as a fit measure. NLL is overstated if measured on the sample that the 
parameters were fit to. This bias is greater if more parameters are used, so 
NLL is penalized by a multiple of number of parameters.

• With shrinkage estimates like lasso and smoothing splines, shrunk 
parameters do not use as many degrees of freedom and the more 
shrinkage there is, the fewer effective parameters, so AIC etc. don’t work.

• NLL from cross validation gives another estimate of sample bias – but no 
set way on how many left-out subsamples to use, etc.

• Good for comparing fits across models but problematic to estimate λ or 
shrinkage σ2 by optimizing cross-validation NLL: likely that best λ will be 
one that most under-estimates sample bias.

• “Bayesian” approach gets around this by letting you put a prior on σ2 and 
use its conditional expected value given the data as the estimate



Bayesian Version of Smoothing Splines
• For linear splines, can make the parameters be the 2nd differences of the 

fitted points on the spline curves. Every later 1st difference has that 
parameter in it and gets added to every later spline point as well. Thus, it 
gets added to each subsequent point one more time.

• For the variable for row j, an observation from row z gets [1+z–j]+ times the 
parameter for that variable, so the dummy for the variable is [1+z–j]+ at 
that observation. The same holds for columns, diagonals,… (here z could be 
a real number used to interpolate the spline or at the observed points)

• This design matrix can be used in straight regression, lasso, or Bayesian 
estimation for the 2nd difference (slope change) parameters.

• Cubic is with slight adjustment of (also see links from there): 
https://stats.stackexchange.com/questions/172217/whyare-the-basis-
functions-for-natural-cubic-splines-expressed-as-they-are-es



Cubic Splines
• Cubic splines have design matrices as well that can be used in straight 

regression, or in constrained regression that limits a roughness measure, 
like the squared 2nd derivative or the 2nd or 3rd differences. 

• For n rows there are n variables. The 1st variable is the constant term and is 
1 for all observations. The 2nd is the linear term and = z for an observation 
from row z.

• After that, for 𝑧𝑧 ≤ 𝑛𝑛 − 1, the jth variable dummy value is [2+z–j]3
+.

• For 𝑛𝑛 – 1 < 𝑧𝑧 ≤ 𝑛𝑛, the jth variable is [2+z–j]3
+ – (2+n–j)[1+z–j]3

+.
• These assume the spline is linear for z ≤ 1 and z ≥ n.
• The fitted values on the spline are the parameters β times design matrix, 

and the integral of the squared 2nd derivative is a closed form formula.
• Increasing the λ shrinkage factor reduces the βs except for the constant 

and linear term. This can be closely approximated by using lasso or ridge 
shrinkage priors on the βs instead, which can be done in Excel or MCMC.



Example fit to workers comp 15x15 triangle
• Can fit smoothing splines to every dimension in a rectangle or higher 

dimension version, like in class pricing
• Or to loss development and reserving fits to triangles, i.e., parts of 

rectangles
• Can fit them to diagonal parameters as well
• Whole data set is strung out into a single long column, keeping track of 

the row, column and diagonal each observation comes from
• Spline dummy variables are created for each row, column, and diagonal 

parameter. These depend on row, column etc. each point comes from
• Usually assume row, column, etc. factors multiply so often start by 

modeling log of losses as a linear regression in the factors



Work Comp Cumulative Paid Triangle
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 129124 217397 118421 63984 39196 31450 19809 14556 8420 8507 7319 8937 10274 5383 5594
2 216427 325705 171013 92336 65834 41287 28358 22541 15742 16934 12498 17058 10786 7834 0
3 190698 207945 132229 74989 41989 32347 26640 21860 26870 17868 15149 15073 10549 0 0
4 117415 166555 95082 55577 40785 28737 16396 15102 12993 16123 10323 8979 0 0 0
5 133903 196230 110738 68289 52485 31817 23922 25356 17653 13431 14458 0 0 0 0
6 201997 289239 165234 103281 70280 57042 39964 34252 25683 21589 0 0 0 0 0
7 293284 435794 242665 159174 108122 75959 53191 42359 35453 0 0 0 0 0 0
8 409026 605225 381820 235599 162399 113710 81298 70265 0 0 0 0 0 0 0
9 514682 799168 437650 281391 203616 143531 109599 0 0 0 0 0 0 0 0

10 674265 886002 512631 364672 263383 215784 0 0 0 0 0 0 0 0 0
11 692986 905049 546113 396918 266963 0 0 0 0 0 0 0 0 0 0
12 700094 929014 590184 366655 0 0 0 0 0 0 0 0 0 0 0
13 627820 834302 517097 0 0 0 0 0 0 0 0 0 0 0 0
14 449942 552715 0 0 0 0 0 0 0 0 0 0 0 0 0
15 326810 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Fitting Plan in Excel – See Spreadsheet
• Make a long column for log of losses and use just AY and lag variables
• Build linear and cubic spline design matrices leaving out 1st AY and 1st lag 

in linear splines and using only 1 constant variable in each matrix.
• Start with a regression with no shrinkage for each matrix. With design 

matrix x and log loss variable y, the parameters are (x’x)-1x’y, which can 
be calculated in Excel with matrix mult, inverse, transpose functions.

• For linear and cubic splines, these regressions agree on the fitted values, 
and these are the same as those from using 0,1 dummies.

• Shrink βs by lasso with Excel’s solver, keeping the regression parameters 
as starting values. Begin with λ=0.00001 and gradually increase it by 
factors of 10, using the answers from the previous λ as starting values. 
Keep going until there is some noticeable change in parameters.



Lasso splines, with λ = 0.1 (Graphs interpolated)
Linear or cubic had 9 or 8 (of 28) |β| < 0.001 and 11 or 
16 < 0.01. Normal σ�s = 0.131 up from 0.122 @ λ = 0 
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MCMC Version
• Took out variables with lasso parameters |β| < 0.001
• Used double-exponential (Bayesian lasso) priors in 0,s for parameters 

(except the constant), with log of scale parameter s uniform on [-5, 5].
• This came out E(s) = 0.2414 for linear and = 0.1563 for cubic. Ranges 

[0.025, 0.975] of log posteriors were [-1.90,0.97] and [-2.39,-1.38].
• More shrinkage for cubic, as design dummy variables have higher 

values, with the cubes and all, and so parameters are smaller.
• Loo out-of-sample cross validation LL was 55.5 for linear and 53.9 for 

cubic, so linear gave a slightly better fit. Residual σ�s 0.139 for linear 
and 0.141 for cubic, so these had more shrinkage than λ = 0.1 lasso.

• Function loo_compare found the difference of 1.5 in loo had a 
standard deviation of 2.3, so really not significant



Distribution Assumptions
• Log regression can also be used for log of a parameter in the assumed 

distribution of losses, so exponentiating gives that parameter
• For instance, for losses gamma in aj, bj, you might assume every cell 

has the same b parameter, so the mean is ajb and the variance is ajb2. 
Then variance/mean = b is constant across the cells. This often works 
well for total loss $.

• Models for loss severity often assume all the cells have the same a 
parameter, so the mean is abj and the variance is abj

2. Then CV2 =  
variance/mean = 1/a is constant. Log regression gives lognormal for 
losses with CV2 a constant (= function of fitted σ2)

• Also could start by fitting lasso with the R glmnet app with cross 
validation for λ, which will show parameters that can be set to 0, so 
the variable for those factors just left out of MCMC. With spline 
models, that just keeps previous curve going at the left-out point.



Gamma Spline Fits in Excel
• No closed-form solutions like the regression we used for λ = 0 in the 

log of losses model. But solver needs good starting parameters.
• Log lasso fits give parameters for lognormal fit to losses. So use those 

means µj as a starting point for gamma fit.
• The gamma mean is µj = ajb, so make b a parameter (replacing σ) and 

assume that lossj is gamma in µj/b, b. 
• We need a fairly good b to start with. So in Excel, maybe compute all 

the fitted likelihoods as gamma.dist(lossj, µj/b, b, 0), (the last 0 
denotes density) and try b = exp(10, 11, 12, …) one at a time until at 
least the likelihoods all come out non-zero in Excel.

• Then do the same lasso estimation at λ = 0.1 we used in log model



Gamma Spline Fits in Excel
• This worked fine for the linear splines. The function being minimized, 

NLL + Σ|𝛽𝛽𝑗𝑗|, came to 1306.
• There was a problem for cubic splines. Some of the variables have 

parameter distributions that are near cliffs. That is, in one direction or 
another, anything but the very smallest change in the parameter will 
produce a huge increase the the function being minimized. The 
algorithms built into solver just cannot handle that. Even the R glmnet
function has problems with lasso for cubic splines. MCMC has more 
complicated search algorithms and can deal with it, but it takes them a 
longer time.

• Minimizing over some of the parameters gave a fit of 1316, which is not 
bad but probably is not optimal either.



Ridge Regression for Splines Easy in Excel
• Has closed form parameters, just like regression. Minimizes NLL + λ[sum 

of squares of spline parameters]. Usually minimize linear factor of cubic, 
in case it is not too important to the fit, even though it is not in 2nd deriv.

• Regression parameters are β = (x’x)-1x’y, and in any ridge regression with 
λ, β = (x’x+λI)-1x’y, where I is the nxn identity matrix.

• Can use in Excel for cubic and linear splines for any log regression, even 
with diagonal parameters. Just take out 2 or 3 row/column variables  first 
for identifiability of all parameters – take ones with low parameters.

• To approximate lasso, this can be iterated by (x’x+λIβ-1)-1x’y, with β-1 the 
reciprocals of β

• Tried this for cubic splines for one iteration in spreadsheet – it’s getting 
towards lasso parameters. If some parameters are too close to zero, this 
can get distorted, and those can just be taken out instead (set to zero). 
Will get to lasso eventually.



MCMC Fits of Splines to Gamma Losses

• Same formulas in spreadsheet done in R Stan package with Laplace = 
double-exponential priors for βs.

• For cubic needed starting parameters. Used ridge regression estimates.
• Loo = -1283.2 for linear and -1285.9 for cubic.
• Loo_compare says difference of 2.6 has sd = 2.6, so not very significant
• Loglikelihood was -1270.2 for linear and -1271.6 for cubic, so also better
• Mean of Laplace scale s was 0.2377 for linear and 0.1481 for cubic, 

similar to log spline models



Extensions
• Easy to add diagonal (year-of-payment trend) parameters, as above, 

get rid of unnecessary ones, and compare by loo to see if they help
• Trend impact could vary by lag. In comp, this could be from a medical 

inflation trend, as medical is a bigger and bigger part of later payments
• In liability it could relate to delays from the legal system
• Another constraint is needed on the trend weights. If the raw weights 

by lag are in the vector r, set m = max(r) and p = exp(r–m), so p∊(0,1].
• Also make x the spline design matrix for rows and columns with 

parameters v and t the design matrix for diagonal with parameters u. 
Then model:

• 𝜇𝜇 = exp(𝑐𝑐 + 𝑥𝑥𝑥𝑥 + 𝑝𝑝 × 𝑡𝑡𝑡𝑡), say for the gamma model
• This did improve the fit to the comp triangle, with p increasing by lag



Conclusion
• It is easy to fit linear and cubic smoothing splines to variables in 

pricing and reserving regression models.
• Smoothness measure used is sum of squares or absolute values of the 

spline-curve parameters. This is the same for linear splines as 
measuring by 2nd differences and gives very similar cubic splines to 
those from using the 2nd derivative as the smoothing measure.

• For spline regressions for log of losses, this is a simple, closed form 
formula in Excel. For exponential link, this can be done by solver for 
linear splines, but seems to require MCMC software for cubic splines.

• Even in MCMC, linear splines fit much faster. Results are similar for 
both linear and cubic splines. 

• So far, no clear benefit seen for cubic over linear, except maybe if you 
want to interpolate the curves
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Intro to Neural Networks

4

1. Set random weights for all neurons
2. Compute network
3. Compare predictions to actuals based on loss

function
4. Update weights based on optimization rule
5. Lather, rinse, repeat!

Structured: A Neural Network has a defined structure that consists of 3 types of layers

Sequential: Information flows in a sequence from one layer to the next, undergoing 
operations at each layer – almost like an assembly line 



Intro to Neural Networks

5

• Cybenko (1989) first showed neural networks can act as 
universal function approximators

• Any approximation would have a degree of uncertainty

• Actuaries love uncertainty!

• Is there a way to capture uncertainty in neural network 
estimates?

• If so, what parameters to base uncertainty on?



Extending the Framework
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Need to capture uncertainty in estimates – this 
is where Bayesian Inference comes in!



Extending the Framework

2
9

• Neural networks are parameterized by their weights
• Standard methods designed to learn point estimates of weights
• Bayesian Neural Networks estimate distributions of weights



Extending the Framework

3
0

From… To…

This is the key idea behind Bayesian Neural Networks (BNNs)



Potential (Actuarial) Uses of BNNs

3
1

• Fraud Detection and Analysis
• Quantify uncertainty in likelihoods of fraud – can help improve decision-making on which claims to 

investigate

• Pricing 
• Can use BNNs to generate and select more prudent estimates of claim frequency/severity in the 

absence of credible data

• Reserve Uncertainty Analysis 
• BNNs can potentially be fitted to claims triangles to generate distributions of reserves
• Some initial research done on theoretically fitting BNNs to temporal data, yet to be fully explored

• Asset Liability Management & Capital Modelling
• Results from BNNs can potentially be applied to frameworks like Solvency II which are based on 

Values-at-Risk



Practical Application

32

• Fraud Detection and Analysis
• Quantify uncertainty in likelihoods of fraud – can help improve decision-making on which claims to 

investigate

• Pricing 
• Can use BNNs to generate and select more prudent estimates of claim frequency/severity in the 

absence of credible data

• Reserve Uncertainty Analysis 
• BNNs can potentially be fitted to claims triangles to generate distributions of reserves
• Some initial research done on theoretically fitting BNNs to temporal data, yet to be fully explored

• Asset Liability Management & Capital Modelling
• Results from BNNs can potentially be applied to frameworks like Solvency II which are based on 

Values-at-Risk



Practical Application

33

Running a BNN using PyMC3 on a sample Motor Claims Dataset

Data has flag for whether a claim was classified as Fraud or not

Detailed information for each claim

~12k records



Data

34

• Claim-level information with an indicator for whether a claim was flagged as 
a fraud or not

DRIVER

● Age
● Marital Status
● Gender

VEHICLE

● Country of Make
● Price
● Body Type

POLICY

● Cover Type
● # of Vehicles
● Deductible

SITUATION

● Claim File Date
● Witness Present
● Party at Fault
● Police Report Filed



Data

35



The Model

36

(50-20) 
HL Configuration

Gaussian (0,1) Priors

Bernoulli Likelihood



Posterior Distribution of Weights
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Essentially just shifting Gaussians around!



Predicted Fraud

38

From Point Estimates…



Predicted Fraud
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… to Probabilistic Estimates…



Predicted Fraud

40

…with Uncertainty



The Good, the Bad & the Ugly

19

• BNNs can work better than normal methods for relatively small 
datasets

• Exact inference methods work better than approximate inference
• Exact inference methods are computationally more expensive to 

train

• Computational cost can be heavy during testing
• Need to sample n times from posterior

• No specific rules for setting priors, mostly driven by assumptions



Key Takeaways

19

• Mixing Bayesian Inference with Machine Learning can unlock uncertainty in ML 
estimates

• Generating distributions instead of point estimates – sampling at different quantiles 
can improve quality of estimates

• Can exercise judgement and switch between pessimistic & optimistic estimates with 
a single model

• No active uses in the actuarial domain yet, but there is potential
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