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ABSTRACT

In the present paper we consider the claims reserving problem in 

a multivariate context. More precisely, we apply the multivariate 

generalization of the well-known credibility model proposed 

by Bühlmann and Straub (1970) to claims reserving. This multi-

variate model allows for a simultaneous study of N correlated 

run-off portfolios and enables the derivation of an estimator for 

the conditional mean square error of prediction (MSEP) for the 

credibility predictor of the ultimate claim of the total portfolio. 

Thereby, we apply multivariate credibility predictors which 

reflect the correlation structure between the N portfolios and 

which are optimal in terms of a classical optimality criterion. 

We illustrate the results by means of an example and compare 

it to the results derived by the multivariate chain-ladder method 

and the multivariate additive loss reserving method proposed by 

Merz and Wüthrich (2008a, b).
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1. Introduction and motivation

A non-life insurance company needs to hold suffi-
cient reserves on its balance sheet in order to meet the 
future claims payment cashflow. Therefore, given the 
available information about the past claims payment 
cash flow and the claims settlement process as well as 
external knowledge from experts and prior information 
(e.g., premium, number of contracts, data from similar 
run-off portfolios, market statistics), the prediction of 
the outstanding loss liabilities and the quantification of 
the uncertainties in these predictions is a major task in 
actuarial practice and science. It is the basis for prov-
ing solvency on the one hand and it allows for reliable 
premium calculations on the other hand (see, e.g., CAS 
2001 and Teugels and Sundt 2004).

In this paper we consider the claims reserving prob-
lem in a multivariate context. That is, we consider a 
portfolio consisting of several correlated run-off port-
folios (e.g., subportfolios of certain lines of business) 
and we apply the multivariate generalization of the 
well-known credibility model proposed by Bühlmann 
and Straub (1970) for predicting outstanding loss lia-
bilities. This simultaneous study of several individual 
run-off triangles is motivated by several important 
facts (cf. Merz and Wüthrich 2008b).

Since in actuarial practice the conditional mean 
square error of prediction (MSEP) is the most popular 
risk measure to quantify the uncertainties in claims 
reserves, we provide an estimator of the conditional 
MSEP. Such studies of uncertainties for correlated 
run-off portfolios are especially crucial in the devel-
opment of new solvency guidelines for the quantifica-
tion of risk profiles for different insurance companies. 
However, they do not provide a complete picture of 
the uncertainty associated with the predictor of the 
claims reserves for the total portfolio. This can only 
be provided by the whole predictive distribution of the 
claims reserves calculated under very restrictive model 
assumptions or by applying numerical algorithms such 
as bootstrapping methods and Markov chain Monte 
Carlo (MCMC) methods (cf. England and Verrall 2007 
and Wüthrich and Merz 2008). However, in practical 
applications and solvency considerations, estimates 

for second moments such as the conditional MSEP 
and its components conditional process variance/
estimation error are often sufficient, since in most 
cases one fits an analytic overall distribution using 
these first two moments by the method of moments. 
Moreover, analytic solutions are important because 
they allow for explicit interpretations in terms of the 
parameters involved and enable sensitivity analysis 
with respect to parameter changes.

1.1. Claims reserving methods and 
credibility theory in a multivariate context

The calculation of the conditional MSEP for the 
predictor of the ultimate claim for a whole portfolio of 
several correlated run-off portfolios is more sophis-
ticated than for only one run-off portfolio. Holmberg 
(1994) was probably the first one to investigate the 
problem of dependence between run-off portfolios of 
different lines of business. Later Halliwell (1999) and 
Quarg and Mack (2004) proposed the first bivariate 
models which express the dependence between the 
paid and incurred losses of a single run-off portfolio.  
Braun (2004) and Merz and Wüthrich (2008a, b) 
generalized the well-known univariate chain-ladder 
model of Mack (1993) to the bivariate and the general 
multivariate case, respectively, by incorporating cor-
relations between different run-off portfolios. They 
derived an estimate of the conditional MSEP for the 
predictor of the ultimate claim of the total portfolio. 
Merz and Wüthrich (2009a) study a special case of the 
multivariate additive loss reserving model proposed 
by Hess, Schmidt, and Zocher (2006) and derive an 
estimate for the conditional MSEP. Moreover, Dahms 
(2012) presented a general class of models that con-
tains most models mentioned above.

In the present paper we give a credibility approach 
to the claims reserving problem in a multivariate con-
text. Univariate and multivariate credibility methods 
are widely used in insurance pricing, but for claims 
reserving they are less used (though they are also 
useful in this context). In the claims reserving con-
text univariate credibility methods can, e.g., be found  
in Benktander (1976), De Vylder (1982), Neuhaus 
(1992), Mack (2000), Witting (1987), and Gisler and 
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For simplicity, we always assume that I = J, i.e., 
we deal with development triangles (for I ≥ J we 
have development trapezoids), but all results also 
hold true under slight modifications for the case  
I ≥ J.

Usually, at time I we have the sets of observations 
(s-algebras)

C i j II
n

i j
nD F;,( )= σ + ≤ ⊆( ) ( )

for all run-off portfolios n ∈ {1, . . . , N}. The total of 
observation over all run-off portfolios is then given by

I
N

I
n

n

N

D D .
1

∪( )= σ ( )

=

For the following derivations it is convenient to write 
the data of the N run-off portfolios in vector form. Thus 
we define the N-dimensional random vectors

, . . . ,, ,
1

,X X Xi j i j i j
N( )= ′( ) ( )

and

, . . . ,, ,
1

,C C Ci j i j i j
N( )= ′( ) ( )

of incremental and cumulative claims payments, 
respectively. The vector of outstanding claims pay-
ments for accident year i ∈ {1, . . . , I} is defined by

= , . . . , = = .(1) ( )
, ,

= 1

,R C C XR Ri i i
N

i J i I i

j I i

J

i j∑( )′ − −
− +

Furthermore, we define the N-dimensional column 
vector consisting of one’s by 1 = (1, . . . , 1)′ ∈ N and 
the N × N-dimensional identity matrix by I.

2. Multivariate Bühlmann-Straub 
credibility model

Bayesian methods are often an appropriate tool 
to combine data with expert opinion, or, in other 
words, to combine internal data (observations) with 
external given prior information. However, in most 
Bayesian models the derivation of the posterior dis-
tribution is infeasible and numerical methods such as 

Wüthrich (2008). More recently, Dahms and Happ 
(forthcoming) presented in a credibility framework a 
very general class of (multivariate) claims reserving 
methods, which contains most of the methods men-
tioned above as special cases. In the present paper 
we choose a multivariate claims reserving method 
different from Dahms and Happ (forthcoming) and 
apply the multivariate generalization of the cred-
ibility model of Bühlmann and Straub (1970) to the 
(multivariate) claims reserving problem.

1.2. Claims development triangle 
and notation

Throughout this paper all random variables are 
square integrable random variables defined on a com-
mon probability space (W, F, P). We consider the situ-
ation where we have N ≥ 1 portfolios. The associated 
losses of each portfolio are represented by run-off tri-
angles (claim development triangles). We assume for 
the reason of simplicity that all run-off triangles are 
of the same size (the whole theory presented in this 
paper can be easily generalized to different sizes but 
the notation then becomes more complicated) and 
we denote by I (J) the last the accident (develop-
ment) year. The claims development data have the 
structure shown in Figure 1. Thereby we denote by  
X (n)

i,j the incremental claim payments for accident year 
i ∈ {0, . . . , I} and development year j ∈ {0, . . . , J}  
of run-off portfolio n ∈ {1, . . . , N}.

The cumulative claims payments of triangle n for 
accident year i up to development year j are denoted by

C Xi j
n

i k
n

k

j

., ,

0

∑=( ) ( )

=

accident development year j

year i 0 . . . j . . . J

0 realizations of r.v. C (n )
i,j

... i.e. observations D (n )
I

I − j
...

^

C (n )
i,j predicted

I quantities for C (n )
i,j

Figure 1. Claims development  
triangle number n.
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for all i = 0, . . . , I and j = 0, . . . , J. To shorten nota-
tion we define the cumulative loss development pat-
terns (bj

(n))j=0,...,J ⊂ + by

β = γ β − β = γ
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In vector form we have for i = 0, . . . , I and j = 0, . . . , J:
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the N × N-diagonal matrices of the N-dimensional 
vectors a = (a1, . . . , aN)′ ∈ N and (ab

1, . . . , aN
b)′ ∈ N 

for an admissible exponent b ∈ , respectively. Then 
we have for the normalized incremental claims

( ) , (2.3), ,
1

,Y D w Xi j i j i j= −

where wi,j = (wi,j
(1), . . . , w i,j

(N))′ with w i,j
(n) = g j

(n)µi
(n) for all  

i = 0, . . . , I, j = 0, . . . , J and n = 1, . . . , N.
Having this notation the multivariate Bühlmann-

Straub model is then given by:

Model Assumptions 2.1  
(Multivariate Bühlmann-Straub model)
• Conditionally, given Qi, the normalized incremen-

tal claims Yi,0, . . . , Yi,J are independent with

�( ) (2.4),YE i j i i[ ]Θ = Θ

MCMC or numerical integration have to be applied. 
Analytical posterior distributions can only be cal-
culated under very restrictive (distributional) model 
assumptions, for example, if one restricts to distri-
butions from the exponential dispersion family with 
associated conjugated prior (cf. Bühlmann and Gisler 
2005). For an example of this strategy applied in 
claims reserving we refer to Hashorva, Merz, and 
Wüthrich (2013). However, in many models it is 
impossible to express the Bayesian predictor in an 
analytical closed form. In this case the best we can 
do is to restrict the class of possible predictors to 
the class of so-called credibility predictors, which 
are affine-linear functions of the observations with 
minimum MSEP; see (2.7). These predictors have 
the big advantage that prior knowledge and data can 
be combined for the prediction and that they can 
be calculated under less restrictive model assump-
tions than Bayesian predictors. For a detailed intro-
duction and more details on credibility predictors, 
see Bühlmann and Gisler (2005).

Applied to our multivariate claims reserving prob-
lem, this means that we are interested in the predic-
tor of the ultimate claim Ci,J for accident year i ∈  
{1, . . . , I}, which is the best affine-linear function of  
the components of the observations Xi,0, . . . , Xi,I-i at  
time I with respect to the MSEP. We study this prob-
lem in the framework of the multivariate Bühlmann-
Straub model (cf. Bühlmann and Gisler 2005). In 
order to formulate the model assumptions of the 
multivariate Bühlmann-Straub model, we introduce 
latent random variables Qi, which describe the risk 
characteristics of the different accident years i =  
0, . . . , I. Moreover, we assume that there are 
(known) volume measures µi

(n) and (unknown) incre-
mental loss development patterns (cash flow pat-
terns) (g j

(n))j=0,...,J ⊂ + for the N development triangles 
n ∈ {1, . . . , N}, such that

[ ] = γ µ( ) ( ) ( ) (2.1),E Xi j
n

j
n

i
n

for all i = 0, . . . , I. This leads to the normalized incre-
mental claims payments given by
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• For the normalized incremental claims and the 
cumulative claims we obtain

[ ] [ ]( )= Θ =�Y , 1E Ei j i

and, respectively,

[ ]
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,

E

E

i j i j i i

i j j i

for all i = 0, . . . , I and j = 0, . . . , J. Moreover, we 
obtain for the claims reserves
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for all i = 1, . . . , I.

In the following we define the mean square error 
of prediction (MSEP) of a N-dimensional predictor 
X , . . . ,1
� � �X X N( )= ′ for a N-dimensional random 
variable X = (X1, . . . , XN)′ by

� �∑( ) ( )= − Xmsep . (2.7)X
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In the multidimensional credibility theory one looks 
now for a predictor ( )Θ�

im  of (Qi) that minimizes 
the MSEP (2.7) among all N-dimensional pre dictors 
X , . . . ,1
� � �X X N( )= ′ whose components �X k  are 
affine-linear in the components of the N-dimensional 
observations Xi,0, . . . , Xi,I-i with i = 0, . . . , I. That is, 
one has to solve the optimization problem
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We define the structural parameter matrices
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where w(n) 
i,j,x,d = g j

(n)xµi
(n)d with x ∈ [0, 2] and d ≥ 0. 

The matrix S(Qi) = D(s2
1 (Qi), . . . , s2

N(Qi)) is the 
N × N-diagonal matrix of (s2

1 (Qi), . . . , s2
N (Qi))′.

• The pairs (Qi, Yi′ = (Y′i,0, . . . , Y′i,I)) for i = 0, . . . , I  
are independent and the latent variables Q0, . . . , QI 
are identically distributed.

Remarks
• From (2.4) it follows that the normalized incre-

mental claim payments Yi,j of accident year i are 
higher or lower than the normalized incremental 
claim payments Yk,j of another accident year k. 
This means there are accident years which are 
systematically better or worse than other ones.

• We assume that the prior volumes µi = (µi
(1), . . . , µi

(N))′ 
are known and that the incremental loss develop-
ment pattern gj = (g j

(1), . . . , g j
(N))′ is unknown.

• The weights x ∈ [0, 2] and d > 0 reflect the relation 
of the (conditional) expected value Equation 2.4 
and its variance Equation 2.5. For a discussion and 
a motivation of choices x = 0 and x = 1 we refer to 
Mack (2002). Although the cases x = 0 and x = 1 
can be clearly interpreted, we allow for x ∈ [0, 2]. 
In Section 4 we show how appropriate choices for 
x and d can be derived.

• The parameter Qi tells us whether we have a good 
or a bad accident year i. For a more detailed expla-
nation in the framework of tariffication and pricing 
we refer to Bühlmann and Gisler (2005).

• It is straightforward to show that in the case of 
one-dimensional observations (i.e., N = 1), the 
assumptions of the (classical) one-dimensional 
Bühlmann-Straub model are satisfied.
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• Note that
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where s2
n = E[s2

n (Qi)] for n = 1, . . . , N.
• Credibility predictor (2.9) is unbiased for the prior 

mean E[µ(Qi)] = 1.
• In the case of one-dimensional observations and  

x = 1 predictor (2.9) reduces to the one-dimensional 
credibility predictor applied to the claims reserving 
problem (cf. Wüthrich and Merz 2008).

To obtain a predictor for the outstanding claim 
pay ments we have to determine an estimator for the 
parameter gj and bj, respectively. An unbiased esti-
mator for gj is given by

∑ ∑( )− − −

� �ˆ = (2.10)
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for all j = 0, . . . , J. Thus the estimator
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=0
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k

j

is an unbiased estimator for bj for all j = 0, . . . , J. 
This leads to the following predictor:

Predictor 2.3 Under Model Assumptions 2.1 we 
have the following predictors for the ultimate claims
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cred
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cred

for 1 ≤ i ≤ I.
For the numerical calculation of the predictor (2.12) 

we have to estimate the structure parameter matrices 
S and T. This will be done in Section 4.

Under Model Assumptions 2.1 the predicted out-
standing claim payments are given by

Theorem 2.2 (Bühlmann-Straub predictor)
Under Model Assumptions 2.1 the optimal affine-

linear predictor of µ(Qi) is given by
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Proof: The normalized incremental claim payments 
Yi,j fulfill the model assumptions of the multidimen-
sional Bühlmann-Straub model. Hence, Theorem 2.2 
is a direct consequence of Theorem 7.8 in Bühlmann 
and Gisler (2005). N

Remarks
• It is usual to compress the data Xi,0, . . . , Xi,I-i in an 

appropriate manner so that we have a single obser-
vation vector Ki, which has the same dimension 
as µ(Qi):
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Observe that the compressed vector Ki only depends 
on the observations of accident year i. This is a con-
sequence of the independence assumption between 
different accident years. Vector Ki contains all 
information which is relevant for accident year i 
and its n-th component is defined as the weighted 
average of the normalized incremental claims Y (n)

i,j 
over all observed development years j = 0, . . . , I - i.
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3.1. Single accident years

The conditional MSEP for a single year i ∈ {1, . . . , I},  
given DN

I , is defined by
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 is  
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I-measurable). For the conditional process vari-
ance we obtain the following result:

Lemma 3.1 Under Model Assumptions 2.1 the 

conditional process variance for a single accident 

year i ∈ {1, . . . , I} is given by
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Proof. See Appendix. N

The conditional process variance 1′Var(Ri |DN
I ) 

originates from stochastic movements of Ri. If we 
approximate E[S(Qi) |DN

I ] and Var(µ(Qi) |DN
I ) by S 

and T, respectively, and if we replace the development 
pattern gj as well as the structure parameters S and T 
by their corresponding estimators (see Section 4) we 
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for 1 ≤ i ≤ I.
For the derivation of the (conditional) MSEP in the 

next section the following lemma on the quadratic 
loss matrices of the multidimensional credibility pre-
dictors will be used:

Lemma 2.4 In the multidimensional Bühlmann-
Straub Model (2.1), the quadratic loss matrices for 
the credibility predictors are given by
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for 1 ≤ i ≤ I.

Proof: The stated quadratic loss of the credibility pre-
dictor �

cred�
i( )Θ  in Lemma 2.4 is a direct consequence 

of Theorem 7.5 in Bühlmann and Gisler (2005). N

3. Conditional mean square error 
of prediction

In the last section we have provided predictors for the 
ultimate claims and the outstanding claim payments. 
In this section we quantify the prediction uncertainty 
of these predictions for single and aggregated accident 
years in terms of second moments. More precisely, our 
goal is to derive an estimate for the conditional MSEP 
of the predicted outstanding claim payments for single 
as well as aggregated accident years
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We derive these estimators under the assumption that 
all parameters in the Bühlmann-Straub credibility 
predictor �

cred�
i( )Θ  in �Ri

n
cred

( )  are known. Afterwards, 
all parameters are replaced by their estimates. This 
approach is generally applied for such kind of ques-
tions and is known as “empirical credibility approach.”
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and djl = 1 if j = l and djl = 0 else (see Section 4 
for estimates of the structure parameter matrices S  
and T.)

Combining Estimators 3.2 and 3.3 leads to the 
following estimator for the conditional MSEP of the 
predicted outstanding claim payments for a single acci-
dent year:

Estimator 3.4 (Conditional MSEP for single 
accident years)

Under Model Assumptions 2.1 we have the follow-
ing estimator for the conditional MSEP of a single 
accident year i ∈ {1, . . . , I}:
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where the two terms on the right-hand side of (3.10) 
are given by (3.4) and (3.5), respectively.

Remarks
• Predictor (3.7) is the so-called empirical credibility 

predictor, which results from the credibility predic-
tor (2.9) by replacing the structural parameters by 
their estimates.

• For N = 1 (i.e., only one run-off portfolio) estimator 
(3.10) leads to the following estimator
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obtain the following estimator of the conditional pro-
cess variance for a single accident year:

Estimator 3.2 (Conditional process variance 
for single accident years)

Under Model Assumptions 2.1 we have the follow-
ing estimator for the conditional process variance of a 
single accident year i ∈ {1, . . . , I}:
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(see Section 4 for estimates of the structure param-
eter matrices S and T.)

The conditional estimation error in (3.2) reflects 
the uncertainty in the prediction of the conditional 
expectation (mean value) E[Ri |DN

I ] by 
cred�Ri

n( ) . After 
some calculations (see Appendix) and replacing the 
unknown parameters by their estimates (see Section 4) 
we obtain the following result:

Estimator 3.3 (Conditional estimation error 
for single accident years)

Under Model Assumptions 2.1 we have the fol-
lowing estimator for the conditional estimation error 
of a single accident year i ∈ {1, . . . , I}:
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Since we have already derived an estimator for the 
first and second term on the right-hand side of (3.13) 
(cf. Estimator 3.4) we only have to derive an estima-
tor for the third term to obtain an estimator for the 
MSEP (3.13). After some calculations (see Appen-
dix) and replacing the parameters by their estimates 
(see Section 4) we obtain for the third term the fol-
lowing estimator:
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to the derivation see the Appendix.

For the generalization on more than two accident 
years we use the decomposition

D D

D D

R R R R

∑∑ ∑∑

∑

∑∑ ∑( ) ( )
( )( )[ ] [ ]

=

+ ′ − −
′

( ) ( )

≤ ≤

( ) ( )msep msep

2 1 1.

=1=1 =1=1

1 <

� �

� �

i

R R

E E

R
i

n
cred

n

N

i

I

R
i

n
cred

n

N

i

I

i

cred

i I
N

k

cred

k I
N

i k I

i
n

I
N

ni

i
n

I
N

n

This leads to the following estimator for the condi-
tional MSEP of aggregated years:

where
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3.2. Aggregated accident years

At first we consider the case of two different acci-
dent years 1 ≤ i < k ≤ I. We have to be careful if we 
aggregate the estimators �R i
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because they 
use the same observations for estimating the param-
eters gj and bj, respectively. Therefore, they are not 
independent. We define the conditional MSEP of two 
aggregated accident years i and k by
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Using the independence of different accident years, 
the conditional MSEP of two aggregated accident 
years can be represented as follows:
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bj by their estimators (2.10) and (2.11) in order to get 
the final estimators. Under Model Assumptions 2.1 
S is a diagonal matrix, where the diagonal elements  
s2

n = E[s2
n(Qi)], n = 1, . . . , N can be estimated by (see 

Bühlmann and Gisler 2005):
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Observe, that for d = 1 we have 1K n =( )  for all  
n = 1, . . . , N. Since ˆ

,
�Tn n  could be negative, we take

�( )ˆ = max ˆ , 0 (4.2), ,T Tn n n n

Estimator 3.5 (Conditional MSEP for 
aggregated accident years)

Under Model Assumptions 2.1 we have the fol-
lowing estimator for the conditional MSEP for aggre-
gated accident years:
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4. Parameter estimation

The estimators of the development pattern gj and bj 
are given in (2.10) and (2.11). In this section we first 
give estimators for the structure parameter matrices 
S and T for known gj and bj. Then, we replace gi and 
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The estimators ˆ ,2
nσ  n = 1, . . . , N are unbiased esti-

mators for the components of S and the estimators 
ˆ , ˆ  and ˆ

, , ,
�T T Tn n n n

a
n m
b  are unbiased estimators for the com-

ponents of T. However, the estimators ˆ  and ˆ
, ,T Tn n n m

are no longer unbiased. Apart from that, we cannot 
state anything about the unbiasedness of ˆ and ˆ.S T

Finally, we get an estimator of Ai by replacing all 
structure parameters by their estimators, that is
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For the specific choice of the weights x ∈ [0,2] and 
d > 0 we propose the method of minimum sum of 
squared residuals. That means we estimate x and d by
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Another possible way to determine x by means of 
exploratory data analysis is given in Mack (2002).

5. Example

We consider two portfolios A and B (i.e., N = 2) 
from General Liability Reinsurance and Auto Liabil-
ity Reinsurance containing incremental claim pay-
ments with I = 16 accident and J = 10 development 
years. The corresponding data sets are provided in the 
end of this section. In this case the last accident year 
is greater than the last development year, i.e., I > J. 
However, all results we presented except the param-
eter estimate (4.1) also hold for this case. The estima-
tor (4.1) has to be adapted as follows:

ˆ =
1 1

1 1
. (5.1)

2

< =0

,

2

=

1

=0

,

2

I J

X
K

I I i

X
K

n

i I J j

J

j i
i j

n

j
n

i
n i

n

i I J

I

j

I i

j i
i j

n

j
n

i
n i

n

n n

n n

∑ ∑

∑ ∑

σ γ µ
γ µ

−










+
−

γ µ
γ µ

−










( )

( ) ( )
( )

( )

( ) ( )
( )

−

ξ δ

−

− −
ξ δ

( ) ( )

( ) ( )

as estimator for the diagonal elements of T. An estima-
tor for the non-diagonal elements of T (i.e., Tn,m with  
n ≠ m) is given by (see also Bühlmann and Gisler 2005)
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The estimator ˆ
,Tn m  in (4.3) takes the value zero if ˆ

,Tn n 
or ˆ

,Tm m  is zero. In this case, we have an estimator of 
T which is not invertible, which leads to an estima-
tor of Ai that is also not invertible. Alternatively to 
(4.3) we can take as estimator for the non-diagonal 
elements of T
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By replacing b(n)
I-i with their estimators in (4.2) and 
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We calculate the credibility predictors (2.9) in 
order to determine the claims reserves (2.13) for every 
accident year i ∈ {0, . . . , I}. For illustrative purposes 
we restrict the analysis to four explicit parameter 
choices x ∈ {0, 2} and d ∈ {0, 2}.

The credibility predictors (2.13) for these four 
parameter choices are given in Table 3. In a second 
step we choose the parameters x ∈ {0, 2} and d ∈  
{0, 2}, which provide the best model fit to the data.

Goodness-of-Fit

In order to choose specific x and d, we use as a 
goodness-of-fit criterion the SSE(x, d), see (4.5), and 
take the parameter combination x ∈ {0, 2}, d ∈ {0, 2}  
with minimum SSE(x, d). This method is also pro-
posed in Chapter 11 in Wüthrich and Merz (2008) for 
comparing the fit to the data of different claims reserv-
ing methods. Table 4 shows that x = 2 provides a much 

We assume different prior means for the differ-
ent accident years and use the prior means given in 
Table 1 which result as the ultimate claim predic-
tions of the classical CL method.

Next we calculate the estimator (2.10) for the 
incremental development pattern (g j

(n))j=0,...,J ⊂ + 
(note that this estimator is independent from the spe-
cific values of x and d) which are given in Table 2.  
We see that about 60% to 80% of the expected claim 
payments are due in the first two development years. 
Moreover, ˆ 0j

nγ >( )  holds for all development years 
j = 0, . . . , 10 fulfilling Model Assumptions 2.1. 
However, by briefly studying the incremental claims 
payment pattern of the two portfolios we obtain some 
“untypical” accident years. Unlike the other accident 
years, the accident years 2 and 13 show an extremely 
slow decline, whereas accident year 3 shows a fast 
decline of the incremental claim payments.

Table 1. Prior means (n)
i

i 7 8 9 10 11 12 13 14 15 16

µ(1)
i 36,824 34,498 42,154 41,681 36,807 36,708 53,947 34,469 34,721 32,377

µ(2)
i 29,864 31,711 39,496 32,810 32,365 39,905 32,526 30,360 35,155 31,751

Table 2. Estimated loss development pattern � j
n�( ) in Portfolio A and B

x = 0 0 1 2 3 4 5 6 7 8 9 10

1�
jγ ( )

0.54435 0.30141 0.07132 0.03068 0.01890 0.01379 0.01234 0.00359 0.00100 0.00251 0.00010

2�
jγ ( )

0.56160 0.30554 0.04912 0.03138 0.01579 0.01456 0.00262 0.00219 0.01283 0.00363 0.00073

Table 3. Credibility predictor i
cred�( )  for   {0,2} and d  {0,2}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�

0 0

cred�
i( )∗ Θ

ξ = δ =

1.03 0.96 2.33 0.73 0.83 0.64 0.88 0.44 1.22 0.85 0.72 0.80 1.13 1.35 0.97 1.00 1.00

0.73 0.87 1.74 1.16 0.84 0.75 0.91 0.64 1.31 0.94 0.78 0.84 1.19 1.15 0.97 1.00 1.00

�

0 2

cred�
i( )∗ Θ

ξ = δ =

0.97 0.94 2.39 0.84 0.81 0.61 0.87 0.44 1.25 0.85 0.70 0.80 1.20 1.50 0.97 1.00 1.00

0.91 0.93 1.72 1.10 0.87 0.77 0.93 0.69 1.21 0.94 0.82 0.87 1.17 1.23 0.98 1.00 1.00

�

2 0

cred�
i( )∗ Θ

ξ = δ =

1.01 1.02 0.96 1.04 1.04 1.01 0.99 1.03 1.01 1.02 1.03 1.01 0.96 0.89 1.00 1.00 1.00

1.12 1.06 0.96 0.96 1.01 1.02 1.01 1.01 0.98 0.98 1.05 1.03 0.91 0.98 1.02 0.99 1.00

�

2 2

cred�
i( )∗ Θ

ξ = δ =

1.02 1.02 0.96 1.02 1.03 1.01 0.99 1.03 1.00 1.02 1.03 1.01 0.97 0.87 1.00 1.00 1.00

1.07 1.03 0.97 0.96 1.01 1.01 1.01 1.01 0.98 0.98 1.04 1.03 0.91 0.98 1.02 0.99 1.00
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for x = 0 (see Table 3) and consequently to a high 
SSE(0, d). The 0,SSE ( )δ  decreases by about 40% if 
these “untypical” accident years (2, 7, and 13) are left 
out in the calculation of 0,SSE ( )δ . Heterogeneous 
variances are respected in the case x = 2 leading to a 
much better model fit (see Table 4). Figure 2 shows 
the predicted claim payments versus the correspond-
ing residuals. There is no clear trend in the plot, and 
the data are (approximately) centered. However, there 
remains the problem of untypical accident years which 
cannot be fitted appropriately. This problem is visual-
ized in Figure 2, where in Portfolio A and B the highest 
and lowest values (outliers) result from accident years 
7 and 13. The 2, 0SSE ( )  decreases by about 57% 
(from 19,996 to 8,512) if the untypical accident years 
(2, 7 and 13) are ignored.

For x = 2 and d = 0 we analyse the standardized 
residuals given by

( )( )( ) ( )( ) ( )µ Σ Θ − γ µ Θ− − �r = . (5.2),

2 1

,D X D Di j i i i j j i i

better fit than x = 0 what can be explained as follows: 
In Model Assumptions 2.1 the incremental claim pay-
ments are of the type Yi,j|Qi

 ∼ µ(Qi) + ei,j with E[ei,j|Qi] 
= 0 and Var(ei,j|Qi) = D(wi,j,x,d)

-1/2 z S(Qi) z D(wi,j,x,d)
-1/2. 

In the case of x = 0 the conditional variance Var(ei,j|Qi) 
does not depend on development year j and we assume 
homogeneous variances of (Yi,j|Qi

)
0≤j≤J

, although this 
assumption seems quite unrealistic. Then the weights 
of the standardized incremental claim payments Yi,j in 
the compressed data vector Ki in Theorem 2.2 also do 
not depend on the development year j. This leads to 
high credibility predictors for the untypical accident 
years (2 and 13) and small predictors for accident year 7  

Table 4. Estimated loss development pattern � j
n�( )  

in Portfolio A and B

x = 0,  
d = 0

x = 0,  
d = 2

x = 2,  
d = 0

x = 2,  
d = 2

S ,SE ( )ξ δ 57955 60104 19996 19862
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Figure 2. Empirical residuals vs. predicted incremental payments (  2 and d  0).
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tively (see Merz and Wüthrich (2008), Chapter 8, 
for more details to the models). We obtain in the 
Bühlmann-Straub model higher reserves as well as a 
higher prediction uncertainty compared to the other 
two models. The difference can partly be explained 
by the fact that allowing for different “accident 
years qualities” (through 

cred�
i( )Θm ) in the multivari-

ate Bühlmann-Straub model increases the parameter 
uncertainty and the process variance of the model. 
Tables 6 and 7 show the observed incremental claim 
payments in Portfolios A and B.

These standardized residuals have, conditionally 
given Qi, zero mean and diagonal identity matrix as 
covariance matrix. Replacing all unknown param-
eters in (5.2) by their estimates leads to the empiri-
cal standardized residuals ˆ

,ri j . For Portfolio A and B, 
Figure 3 shows the empirical standardized residuals 
which are (approximately) centered and do not seem 
to have a trend.

We consider for the case x = 2 and d = 0 the corre-
sponding reserves 2.13 as well as the associated pre-
diction uncertainty. Table 5 shows the estimates for 
the aggregated claims reserves, conditional process 
standard deviation, squared conditional estimation 
error and conditional standard error of prediction 
for the aggregated reserves over all accident years 
resulting by the multivariate Bühlmann-Straub (x = 2  
and d = 0), chain-ladder and additive loss reserving 
model. The last two columns contain the estimates 
of the fourth iteration for the multivariate chain- 
ladder and additive loss reserving model, respec-

Table 5. Results for the whole portfolio for aggregated 
accident years

Bühlmann-Straub 
model

CL 
model

ALR 
model

Estimated reserves 54350 52,734 54,042

Process std. deviation 14063 9,697 7,539

Estimation error 12454 5,549 4,749

Prediction std. error 18.785 11,172 8,910
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Figure 3. Empirical standardized residuals of Portfolio A and B by accident year
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Table 7. Observed incremental claim payments C(2)
i,j  in Portfolio B

0 1 2 3 4 5 6 7 8 9 10

0 16.651 8.206 -468 -152 5 4 6 0 1 0 0

1 16.292 8.129 1.713 195 426 35 68 50 55 0 11

2 16.658 10.566 1.736 618 1.272 442 572 15 38 749 2

3 19.715 10.690 968 2.098 154 197 100 63 3.519 24 149

4 21.220 8.815 2.969 896 151 1.146 26 20 0 0 2

5 21.302 10.582 2.237 952 7 1.183 14 0 26 70 -9

6 17.201 7.493 1.574 518 1.685 25 2 56 -8 71 7

7 15.835 11.668 1.728 122 493 -10 4 1 1 0

8 17.560 8.550 2.373 908 1.163 389 127 501 2

9 21.051 12.279 2.387 690 372 2.024 14 0

10 20.368 9.832 1.285 460 43 186 0

11 18.623 11.160 942 892 8 28

12 18.112 12.040 1.662 5.654 979

13 17.744 10.346 2.134 599

14 17.993 8.956 869

15 19.082 11.403

16 17.809

Table 6. Observed incremental claim payments C(1)
i,j  in Portfolio A

0 1 2 3 4 5 6 7 8 9 10

0 14.492 7.746 949 467 814 234 1.718 104 15 49 4

1 17.017 9.251 945 750 33 196 1.144 18 10 1 11

2 19.563 12.265 1.302 1.099 967 1.237 1.838 1.093 276 643 0

3 21.632 13.249 963 136 25 172 27 39 7 0 0

4 22.672 9.677 1.779 153 95 1.265 31 1 45 0 8

5 23.062 13.375 2.200 327 2.273 20 23 0 0 2 0

6 23.588 11.713 1.660 4.569 1.662 256 0 39 0 32 2

7 21.758 12.300 1.685 1.266 -28 -41 -49 -45 -26 0

8 20.233 9.197 932 644 754 2.452 161 34 0

9 24.984 12.632 1.931 415 1.730 163 113 33

10 24.260 13.555 1.585 1.679 123 147 32

11 20.616 11.430 2.932 516 558 37

12 18.814 11.499 3.363 1.711 97

13 18.563 13.492 16.370 2.704

14 18.457 11.089 2.064

15 19.533 9.833

16 17.620
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A.2. Derivation of conditional estimation 
error for single accident years

Using the conditional independence of the normal-
ized incremental claims, given Qi, and (2.13) we obtain
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Hence, we obtain the following formula for the 
conditional estimation error
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Appendix: Proofs and derivations

In order to simplify the notation, we omit the 
superscript “cred” in the following derivations.

A.1. Proof of Lemma 3.1

We have, using the conditional independence of 
the incremental claims, given Qi,

Var = Var ,

Var ,

= Var
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for i ∈ {1, . . . , I}. Using (2.6) we obtain for the sec-
ond term on the right-hand side
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Using the conditional independence of the normal-
ized incremental claims Yi,I-i+1, . . . , Yi,J and (2.5) we 
obtain for the first term on the right-hand side of (A.1)
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This finishes the proof of Lemma 3.1.



Multivariate Bühlmann-Straub Credibility Model Applied to Claims Reserving for Correlated Run-off Triangles

VOLUME 8/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 39

1 D D

D D 1

∑ ∑( )

( )

( ) ( )( )

( )

( )

( )

′ Θ γ − γ γ − γ ′ ×

Θ

− −

�

�

� �

� �

i i j j
j I i

j j
j I i

i i

ˆ ˆ

. (A.5)

> >

In the following we approximate (A.5) by

1 D D

D D 1

1 D D

D D 1

∑ ∑

∑

( )

( )

( )

( )

( ) ( )( )

( )

( )

( )

( )

( )

( )

( )

′ Θ γ − γ γ − γ ′





×

Θ

= ′ Θ γ



 ×

Θ

− −

−

�

�

�

�

� �

� �

� �

� �

Ei i j j
j I i

j j
j I i

i i

i i
j I i

j

i i

ˆ ˆ

Var ˆ

. (A.6)

> >

>
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where Q = (Q0, . . . , QI). Using the independence of 
the accident years and the conditional independence 
of the normalized incremental claims Yk,0, . . . , Yk,J, 
given Qk, we obtain for the first term on the right-
hand side of (A.7)
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To get an estimator for the conditional estimation 
error we have to determine an estimator of each term 
on the right-hand side of (A.2). Using (2.14) and the 
approximation E[Var(µ(Qi)|DN

I )] ≈ T we obtain the 
approximation
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This leads to the following approximation for the 
first term:
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Since different accident years are independent, the 
expectation of the second and third term disappears. 
Using the fact that it holds

=D b a c D d D a b d D c( ) ( ) ( ) ( )′ ′

for all N-dimensional vectors a, b, c and d, we obtain 
for the fourth term on the right-hand side of (A.2)
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A.3. Derivation of conditional MSEP 
for aggregated accident years

To obtain an estimator of the conditional MSEP 
for two aggregated accident years i and k we have 
to derive an estimator for the third term on the right-
hand side of equation (3.13). Analogously to (A.2) 
we have for l ≤ i < k ≤ I
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As for single accident years, we determine for 
each term on the right-hand side of (A.12) an estima-
tor. Due to the fact, that different accident years are 
independent, the expectation of the first and second 
term disappears. Using again the independence of 
different accident years we obtain
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For the second term on the right-hand side of (A.7) 
we obtain
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Using the independence of Q0, . . . , QI we obtain
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where djl is the Kronecker delta, which is 1, when 
j = l and 0 else.

Putting (A.4), (A.6), and (A.11) together and 
replacing all parameters by their estimates leads to 
Estimator 3.3.
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which is given in (A.8). For the calculation of the 
second term on the right-hand side of (A.15) we use 
the variables Zj defined in (A.9) and obtain
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where Var(E[Sj>I-i ˆ
jγ |Q]) is given in (A.10). Hence, 

we obtain
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where Var(Sj>I-i ˆ
jγ ) is given in (A.11).

Putting (A.14) and (A.16) together and replacing all 
parameters by their estimates leads to Estimator 3.14.
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